
Intertech Engineering Associates, Inc.

Address:	 100 Lowder Brook Avenue

	 Suite 2500
	 Westwood, MA 02090

	 www.inea.com - (781) 801-1100

Industry: 	 (Electro)Medical Devices

Services: 	 Assessments	
	 Training	
	 Consulting	
	 Hands-on Engineering

Skills:	 Product Design	
	 Risk Management	
	 Requirements Engineering	
	 Electronics Development	
	 Software Development	
	 Software Verification and Validation	
	 Production/Quality System Software Validation

Validate it? I just want to use it! Sound
familiar? Most companies in the medical
device industry understand and accept the need

to validate software that is critical to the functioning of
a medical device. Perhaps not as widely understood or
accepted is the regulatory requirement to validate software
that is used to automate any process that is part of a
medical device manufacturer’s quality system. This
broad requirement encompasses manufacturing,
engineering, quality, and regulatory functions within
the firm.
The responsibility for validating such software often
falls to the user of the software, who knows little,
if anything, about software validation. Although
users may not feel qualified to validate software,
it is not necessarily essential to hire software
professionals to validate it for them. Non-software
engineers can validate many types of software. This
article is designed to help non-software engineers

understand what validation is, how to go about it, and
how to know which validation projects really should be
left to software-quality professionals.
Some non-software engineers feel that doing software
validation is wasting time. Perhaps they have
seen or been part of software testing that simply
exercises all the menu commands, and never finds
any defects—ever. If validation efforts only include
testing, engineers are probably over-looking critical
validation activities.

Validating Software for
Manufacturing Processes

by David A. Vogel, Ph.D.
Intertech Engineering Associates, Inc.

as published in Medical Device & Diagnostic Industry,
May 2006

The software for medical device processes—
engineering, quality, regulatory, and so on—must
be validated. You don’t have to be a software
engineer to do it. The software for medical device
processes—engineering, quality, regulatory, and
so on—must be validated. You don’t have to be
a software engineer to do it.

COMPANY PROFILE

“Validating Software for Manufacturing Processes”			 page �
as published in: Medical Device and Diagnostic Industry - May, 2006	 Copyright 2006 - Intertech Engineering Associates, Inc.

Regulatory Background
FDA’s quality system regulation (QSR) that applies
to the validation of the software types discussed here
is 21 CFR 820.70(i), which addresses automated
processes. In addition, 21 CFR Part 11 is the
collection of regulations related to electronic records
and electronic signatures.
It is useful to look at the regulatory origins to
understand what is law and how it differs from the
guidance information that FDA produces to interpret
the law. The regulation that specifically applies to this
software is found in the section on Production and
Process Controls, and states

“(i)	Automated processes. When computers
or automated data processing systems are used
as part of production or the quality system, the
manufacturer shall validate computer software
for its intended use according to an established
protocol. All software changes shall be validated
before approval and issuance. These validation
activities and results shall be documented. 21
CFR 820.70(i)”

FDA is actually quite good about producing documents
to interpret and elaborate on the federal regulations
they are charged with enforcing. The agency issued
a software validation guidance in January 2002. This
document, “General Principles of Software Validation;
Final Guidance for Industry and FDA Staff” (commonly
referred to as the GPSV), includes a section (Section
6) that interprets this regulation1. The next step is to
learn how to apply that interpretation.
What Kinds of Software Must Be Validated?
To answer this question, it’s important to understand
why the software needs to be validated. There are
precise definitions of validation and broadly accepted
activities that lead to the conclusion that software is
validated. But, when all is said and done, validation
activities must confirm that the software does what the
user wants it to, and that patients, users, bystanders,
the environment, and the medical device company are
reasonably well protected from any potential failure
of the software.

So, what software needs to be validated other than that
which is part of a medical device? It is often tempting to
simply conclude that all software should be validated.
What is Required?
As noted earlier, 21 CFR 820.70(i) requires validation
of software that automates all or part of any process that
is part of the quality system. That software includes the
following:

Software used as part of the manufacturing
process (including software embedded in
machine tools, statistical process control
software, programmable logic controllers
[PLCs], and software in automated inspection
or test systems).
Software used in process validation (such as
statistical calculation software, spreadsheets
etc.).
Software used in design and development
processes (such as CAD software, CAM
software, software development tools, software
test tools, compilers, editors, code generators,
etc.).
Software used to automate part of the quality
process (such as complaint-handling systems,
lot-tracking systems, training-database systems,
etc.).
Software used to create, transmit, modify, or
store electronic records that are required by
regulation.
Software used to implement electronic signatures
for documents required by regulation.

Those are the types of software that the regulation
requires to be validated. If a device company is using
software to automate a process that is required by FDA,
it is essential to show that the software accurately,
reliably, and consistently meets the requirements for its
intended use.
Does that mean you need to do it simply because FDA
says so? At the simplest level, yes. But why is FDA so
interested in how software works? FDA isn’t so interested

•

•

•

•

•

•

“Validating Software for Manufacturing Processes”			 page �
as published in: Medical Device and Diagnostic Industry - May, 2006	 Copyright 2006 - Intertech Engineering Associates, Inc.

in the software itself as it is in the processes that the
software is automating. FDA wants to be sure those
processes are accurate, reliable, and consistent.
If FDA is interested in a company’s processes,
shouldn’t the company also be interested? If software
validation reduces the risk of a failure that could
ultimately result in patient harm or jeopardize the
integrity of other quality systems, then why not
require software validation to reduce the risk of
other, non-regulated functions? Wouldn’t it be nice to
reduce the risk of software failure that could disable
your company’s e-mail for a week, or shut down a
production line for hours at a time, or delay deliveries
of raw materials, or lose track of accounts receivable?
Shouldn’t the company be as concerned about these
functions as FDA is about those that are regulated?
The point is that software validation is not just a
regulatory nuisance; it is fast becoming a necessity for
the device industry’s increasingly software-controlled
environments.
What Software Should Non-Software Engineers
Validate?
Non-software engineers should be able to
validate most software categorized as off-the-shelf or
embedded. As its name implies, off-the-shelf software
is purchased for a specific purpose, such as CAD
software, compilers, or calibration-tracking software.
Embedded software (or firmware) is software that is
part of a machine tool or instrument. Sometimes it
may not be obvious that an instrument is designed
with software embedded in the design. Certainly,
instruments with graphic user interfaces are based on
embedded software. Other instruments or tools with
simpler user interfaces may power up with a splash
display that briefly communicates the version of
embedded software that is controlling the display. A
large machine tool may include many microprocessor-
controlled subsystems (and thus use embedded software).
It may take some effort to even identify how many
software items are included in some instruments and
tools. PLCs can, in general, be treated like embedded
software systems. 

For all but the simplest custom software (software
written for a specific purpose that is unique to a
company), validation should probably be left to
software development and validation professionals.
Spreadsheets, macros, batch files, and similar items
created in house for specific purposes should all be
treated like custom software, but those are usually
small and simple enough that they can be validated by
non-software engineers.
Of course, the distinction is not always that clear.
There are combinations of the above classifications.
For example, many off-the-shelf software packages
require custom software elements in order to do
anything useful. There are also custom software
systems that include some subelements that are
either off-the-shelf, custom developed internally,
or custom developed externally. Non-software
engineers can participate in the validation of these
complex systems by focusing on the system-level
validation for intended use, while leaving some of the
more-technical verification testing activities for the
software development and validation professionals.
To understand why the type of software makes any
difference in determining who might be capable of
validating it, it is important to understand the
following:

The tools available to validate the software in
the state it is presented.
The assumptions the engineer can make about
the state of the software when it is presented
for validation.
The objective to keep defects from getting into
the software, to find defects that are already in
the software, or to protect the company from
defects that one simply assumes are in the
software.

What is Validation, Anyway?
First, it helps to understand what validation is not:

Validation is not synonymous with testing.
Validation and verification are not
interchangeable terms.

•

•

•

•
•

“Validating Software for Manufacturing Processes”			 page �
as published in: Medical Device and Diagnostic Industry - May, 2006	 Copyright 2006 - Intertech Engineering Associates, Inc.

Software verification and validation (SV&V)
activities are not simply testing.

FDA’s definition of validation is a good one: “Confirmation
by examination and provision of objective evidence
that software specifications conform to user needs and
intended uses, and that the particular requirements
implemented through software can be consistently
fulfilled.”1 Note the absence of the word test from this
definition. Testing may be one of the means that is used
to provide the objective evidence that the requirements
implemented in software can be fulfilled, but it is not the
only means, nor is it sufficient alone.
Validation comprises all activities appropriate for an
engineer to come to a reasonable conclusion that a given
piece of software reliably meets the requirements for its
intended use. Some of those activities are verification
activities. For example, for custom-developed software,
verifying that each software requirement is represented
in the design is a verification activity. That activity has
provided an additional increment of confidence that the
user’s needs (as represented in the software requirements)
will be implemented because it was verified that they are
properly represented in the design. (This provides just
partial confidence; there is still plenty that can go wrong
between design and final implementation.)
Testing, too, can be a verification activity. It verifies that
the documented design is properly implemented.
Many activities can contribute to the conclusion that
software has been validated. Requirements management,
design reviews, and defect tracking, as well as unit,
integration, and system-level testing are all techniques
available to software professionals during development.
Many of these techniques help prevent defects from
getting into the software during development. Risk
management, change control, life cycle planning, system-
level testing, and output verification are well within the
grasp of non-software professionals. These techniques
are focused on identifying any defects that are in the
software, preventing defects from appearing later in the
life cycle, and planning for the inevitability that defects
will be discovered once the software is used.

• In layman’s language, validation simply gets down to
answering the following questions:

•	 What are you counting on the software to do?
•	 What makes you think that the software is

working?
•	 Can you tell when it is not working?
•	 What will you do about it if and when the software

fails?
•	 What can accidentally cause the software to fail?

Rote exercising of each menu item in a software
application doesn’t fully address any of the above points.
It does provide objective evidence. Unfortunately, it
may not be objective evidence that the software meets
the requirements of the intended use, or that those needs
will be consistently fulfilled.
Validation Step-by-Step
For the types of software that non-software engineers
can easily validate, the validation process consists of
five fundamental components:

Life cycle planning.
Identification of requirements for intended

use.
Identification and management of risk.
Change control.
Testing.

Documentation of the activities that support these
components provides the evidence that the software
will meet the requirements for its intended use
consistently.
Life Cycle Planning. A software life cycle is a
description of the phases that software goes through
from the initial concept that software might be used to
automate a process through the acquisition, installation,

•
•

•
•
•

Define a life cycle for the software by
itemizing the phases that the software will
go through

“Validating Software for Manufacturing Processes”			 page �
as published in: Medical Device and Diagnostic Industry - May, 2006	 Copyright 2006 - Intertech Engineering Associates, Inc.

maintenance, and eventual retirement of the software.
The actual phases may differ from category to category,
or from company to company. Software techies have
various software development life cycles that are widely
described in the literature. Many of those life cycles do
not apply to the types of software that are considered
within the scope of this article, because they are mostly
concerned with the development-related phases of the
life cycle.
It is helpful to consider why this is important. The basic
concept is to think about the software’s life within the
organization and to plan activities at appropriate phases
that will contribute to the company’s confidence that the
software will meet the user needs consistently.
Remember that validation means that the software
meets the requirements for its intended use consistently.

Consequently, it is appropriate to review the validation
components at all or at least several phases of the life
cycle to ensure that the assumptions made early in the
life cycle are still applicable later in the life cycle.
There is no single life cycle model that fits all types of
software used to automate parts of a quality system.
The life cycle of a spreadsheet is very different from the
life cycle of a complaint-handling system that will be
deployed in a hundred locations worldwide. Even the
life cycle of a single-use spreadsheet is different from
the life cycle of a spreadsheet template that could be
used by a number of people. The considerations within
each life cycle phase are different depending on the
software item, its intended use, and its intended users.
This is not boilerplate. It does take some thought, but

Concept

Specification

Design

Implement

Test

Deployment

Retirement

Maintenance

Figure 1.
Example waterfall life cycle for developed software

“Validating Software for Manufacturing Processes”			 page �
as published in: Medical Device and Diagnostic Industry - May, 2006	 Copyright 2006 - Intertech Engineering Associates, Inc.

that thought can establish the foundation of validation
activities for the life of the software. This kind of activity
addresses the consistency requirement of the definition
of validation.
Define a life cycle for the software by itemizing the phases
that the software will go through. For each phase, detail
the activities to be performed to support the remaining
validation components. This becomes the validation plan
for the software. Document it. File it. Follow it.
Requirements Identification. This is not as hard as
it sounds. What are the intended uses of the software?
Itemize them in sentences or short paragraphs. For
each intended use, define the requirements for the
software to adequately meet that intended use. Use
quantifiable, verifiable language to define the
requirements. The following is inadequate: “The
software shall control the temperature of the chamber
to whatever the operator sets it to and shall get to that
temperature as quickly as possible.” This is more like it:
“The software shall control temperature of the chamber
with a resolution of 0.2°C and an accuracy of ±0.4°C.
The software shall operate over a range of 37-120°C. The
software shall drive the chamber to heat at a minimum
rate of 10°C per minute. The software shall not allow
the temperature to overshoot the set point temperature by
more than 0.5°C anywhere in the operating range.”
In planning requirements activities, identify the
requirements early in the conceptual phases of the
life cycle. Review and revise the requirements as you
evaluate competing software packages.
Even in post-deployment maintenance phases, those
responsible for validation should also review and
revise the intended uses and requirements for the
software. Later upgrades and maintenance releases
of the software may introduce new features that will
change the intended use (and therefore the requirements)
for the software. Account for this in the life cycle
validation planning to indicate the need to review
requirements in the maintenance phase.
Risk Analysis & Management. Risk analysis is
predicting, quantifying, evaluating, and controlling

risks associated with the use of the software. Risk
management is the identification and design of
methods to detect software failures and to prevent,
correct, or mitigate the damage caused by such
failures.
The risk component of validation should be factored
in at several phases of the life cycle too. In the early
conceptual phase, engineers can predict what risks
may be present from the use of the software. In later
phases, as more is known about the software and the
system or process it controls, individual failure modes
may be identifiable. At all phases, those responsible for
the software should consider what kinds of risk control
might be put in place to reduce the risk of harm from
failure of the software.

For example, consider software to control a
sterilizer. Without knowing anything about the
requirements for the software, or how it is
implemented, one can readily appreciate that there
is a risk that a software failure might result in parts
not being fully sterilized. In later life cycle phases,
the analysis of risks gets more detailed, and it begins
to recognize specific failure modes that might
result in non-sterilized parts. The software may
not run the sterilizer long enough. The sterilizer
mechanism may become ineffective (blown fuses, out of
sterilizing chemicals, occluded input lines, occluded
drains, etc.). Will the automating software detect these
situations and will it function properly in each case?
If not, control measures should be identified to ensure
safe operation.

If control measures depend on the software
to detect hazardous situations and to take
appropriate action these requirements
of the software should be targets of
testing in later phases of the
 software life cycle.

“Validating Software for Manufacturing Processes”			 page �
as published in: Medical Device and Diagnostic Industry - May, 2006	 Copyright 2006 - Intertech Engineering Associates, Inc.

If control measures depend on the software to detect
hazardous situations and to take appropriate action, these
requirements of the software certainly should be targets
of testing in later phases of the software life cycle.
Sometimes software controls only one component
of a larger process. Later operations, inspections, or
cross-checks in the process may verify the output of the
software-driven component of the process. This is one
of the best risk control measures for software failure,
and it results in solid validation of the software. The
surrounding process is verifying every output of the
software throughout the life cycle of the software. This
is much more confidence boosting than a week of testing
once in the life cycle of the software. In fact, this type of
thinking, with appropriate documentation of the rationale,
can even reduce the amount of testing required.
One component of risk is the likelihood that a failure
can occur and result in harm. At a very high level, it
is important to consider the pedigree of the software to
assess the likelihood of failure. This is why custom-
developed software has so many more validation
activities associated with the requirements, design, and
development phases of the software development life
cycle. These activities provide a level of assurance that
the design and development processes were conducive
to producing high-quality software. If software is
downloaded freeware or shareware, the pedigree is
unknown, and the likelihood of failure is unknown and
must be assumed to be high.
Many more checks and balances or testing should
be considered for high-risk software. If software is
purchased from a reputable supplier that is known to
have quality software used for similar purposes and
known to have a large user base, an assumption of low
risk of failure can be rationalized.
Change Control and Configuration Management.
At some point—prior to deployment of the software—
the software item is considered to be validated for its
intended use. How do you make sure the intended
use, and thus the state of validation, doesn’t change?
That is what must be addressed in the change-control

activities in the later phases of the software’s life
cycle. Software professionals usually refer to these
activities in their configuration management plans.
Configuration management also includes many other
activities related to the development of software.
For the types of software considered in this article,
change control is the most important component of
configuration management. The points to consider
include the following:

How is the validated configuration of the
software item identified? Document the
version, build, or time-and-date stamp of the
software.
What else is needed for the software to
operate? Identify any other software that is
required for the operation of the validated
software item. Record the versions of any of
these collateral software items. For example,
if an engineer is validating a spreadsheet, it is
essential to record the version of spreadsheet
validated (probably the time-and-date stamp
of the spreadsheet file), and to record the
version information for the underlying
spreadsheet application program (e.g., Excel
2003, build 11.6560.6568, service pack
2). Identify which associated hardware and
operating system version levels were part of
the validated configuration.
Who is responsible for determining when
the software can change? This is change
control. How will changes to the software be
controlled? Someone should be identified as
responsible for deciding when the software
changes, and for revalidating the software
after it changes.
What should be done to revalidate the software
when a change is made? Revalidating means
more than retesting. Requirements and
risks need to be reevaluated to be sure they
haven’t changed with any new features or
other changes to the software. Maintenance-
phase changes to the software should be

•

•

•

•

“Validating Software for Manufacturing Processes”			 page �
as published in: Medical Device and Diagnostic Industry - May, 2006	 Copyright 2006 - Intertech Engineering Associates, Inc.

viewed as their own mini life cycles, as almost
all validation activities of each life cycle phase
should be reviewed, revised, and supplemented
to adequately validate the new software.

Testing. Testing is really a risk control measure. Risk
combines the severity of harm resulting from a failure
with the likelihood of the failure. Testing can reduce
the likelihood of failure, thus reducing risk. The level
of reduction, of course, depends on the quality of the
testing. Furthermore, because the likelihood of failure is
unknown before the test, and because an engineer likely
does not have a good quantitative measure of how much
testing reduces the likelihood of failure, it leaves an
engineer with little to measure how much the testing has
lowered the risk. All that is known is that some testing
is probably better than no testing; and more testing is
probably better than less testing.
So what can be done to increase the value of testing?
First of all, use all that great thought that went into risk
analyses and risk management plans. If a company
has risk controls in place to prevent, detect, correct,
or mitigate failures in the process that is automated by
software, it is imperative to test them. Be sure they
really do prevent, detect, correct, or mitigate. FDA’s
GPSV guidance repeatedly calls for validation effort
commensurate with complexity and risk. Focusing testing
on making sure risk control measures are effective is
perhaps the best use of a test budget that is commensurate
with risk.
Next, focus test efforts on areas of complexity because
that’s where defects are likely to be found. Look for
complex error conditions to make sure the software deals
with them properly. For example, in many software-
driven instruments, power failure and recovery handling
are often fruitful areas of testing simply because they are
often implemented as afterthoughts. The conditions are
complex, difficult to predict, and difficult to simulate.
On the production floor, however, power failure is a
fact of life. Machines can destroy valuable product or
simply self-destruct because the software designers didn’t
anticipate the software starting with the machine in an
unexpected state. Similarly, user error or intentional

misuse of the software is often not predicted by the
software developer and consequently may not be
handled properly by the software.
Check for conditions that could cause problems such as
pressing two buttons at the same time, stuck inputs, out-
of-range input values. Perform operations in different
sequences to ensure that the software functions properly
in each case. Testing functionality in which defects
are suspected (i.e., error guessing) is testing budget
well spent. Conversely, exercising menu commands
(which probably have been exercised missions of times
by other users) seldom yields new defects. The best
test is one that finds a new defect.
Special Situations: 100% Verifiable Output
In certain situations, the output of a software-driven
machine tool or software-driven process may be 100%
verifiable. For example, consider a software-driven
production instrument that crimps connectors onto a
wire lead. The pull strength and conductivity of the
lead are tested by a quality control (QC) test on every
lead that is produced by the machine. In this case, the
output of the software-driven machine is 100% verified
by the QC tests on every lead ever produced. This is
a much better validation of the output of the machine
than any software testing executed at a snapshot in
time would ever produce.
Does the software still need to be validated? The
answer is yes. Again, validation is not synonymous
with testing. The analysis that would lead one to ask
this question is, in fact, a validation activity. To ask the
question implies that one has evaluated the intended
use and has combined that with a risk management
plan to check the machine output for the safety-critical
attributes of pull strength and conductivity. Intended
use and risk management are validation activities.
Now consider how changes to the software are
controlled, and how the validation state of the software
would need to be reevaluated when the software
changes. Again, this change control or configuration
management is a validation activity.

“Validating Software for Manufacturing Processes”			 page �
as published in: Medical Device and Diagnostic Industry - May, 2006	 Copyright 2006 - Intertech Engineering Associates, Inc.

Testing in this example may be greatly reduced.
If it is concluded that any possible software
malfunction that could affect product quality would be
detected in the QC test, then software testing for those
malfunctions can be greatly reduced or
eliminated. Some testing may still be recommended for
operator safety functions (such as emergency stops and
safety interlocks), security functions, power fail and
recovery functions, etc.
Note that the testing is focused on functions related
to intended use and safety, not on trying to reverse
engineer the detailed software requirements that are
then verified in numerous and lengthy tests. The
validation is the collection of all of the activities that
lead to the conclusion that the software is fit for use.
Documentation of the activities, the resulting logic, and
any test results becomes the validation package. Take
credit for it if you do it by documenting it.
Conclusion
Keep two key points in mind. First, and engineer
does not need to be a software guru to validate some
types of software for their intended uses. Second,
software validation is not synonymous with software
testing. Software validation is thinking rationally and
systematically about the use of the software throughout
its life cycle. Validation is establishing controls for
ensuring the correct operation, detection capabilities for
improper operation, backup plans for what happens if
the software fails, and yes, some testing to ensure that
the software and the backup plans perform as desired.

Reference
1 “General Principles of Software Validation: Final
Guidance for Industry and FDA Staff” (Rockville,
MD: FDA, 2002).

INTERTECH Engineering Associates, Inc.
100 Lowder Brook Drive Suite 2500 Westwood, MA 02090 USA

www.inea.com - info@inea.com - Tel: (781) 801-1100 - Fax: (781) 801-1108

ABOUT THE AUTHOR:

David Vogel is the founder and president
of Intertech Engineering Associates, Inc.
Dr. Vogel was a participant in a joint AAMI/
FDA workgroup to develop a standard
for Critical Device Software Validation
which was subsequently included in
the IEC 62304 Software Lifecycle
Standard. He was also a participant on

the joint AAMI/FDA workgroup to develop a Technical
Information Report (TIR) for Medical Device Software
Risk Management. Currently, Dr. Vogel is a member
of the AAMI/FDA workgroup developing a TIR on
Quality System Software Validation.
A frequent lecturer for workshops and seminars on
topics related to medical device development and
validation, Dr. Vogel also is the author of numerous
publications and holds several patents.
Dr. Vogel received a bachelor’s degree in electrical
engineering from Massachusetts Institute of Technology.
He earned a master’s degree in biomedical engineering, a
master’s degree in electrical and computer engineering,
and a doctorate in biomedical engineering from the
University of Michigan.

Leverage INTERTECH’s expertise to:

	 Reduce Project Risk
	 Shorten Time to Market
	 Cut Development and Test Cost
	 Assure Quality Products
	

ABOUT INTERTECH:

Intertech Engineering Associates has been
helping medical device manufacturers bring their
products to market since 1982. Through a distinct
top-down service model, Intertech offers high-
level consulting and hands-on engineering. By
balancing technical expertise and practical business
experience, we support clients through all phases of
product development. While we do make your job
easier, Intertech exists not to replace but to partner
with clients to help balance the concerns of quality,
time and cost.

With considerable experience in FDA regulatory
compliance, our time-tested development process
can anticipate and solve problems inexpensively
on the planning board rather than through costly
solutions later in the development, test, or post-
deployment phases. By using deliberate processes,
Intertech ensures an improvement in quality and
can build client expertise.

Call us today for more information or a free
consultation at 781.801.1100

Intertech Service Offerings:

Risk Analysis and Management
Software Design and Development
Electronic Design and Development
Requirements Development and Management
Documentation and Traceability
Verification and Validation
Evaluations, Reviews, Inspections
Planning
Project Management
Compliance Consulting and Training
Manufacturing and Quality System Software Validation

