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Abstract
In the last decade ultrasound elastography, an already widely used technique in the diagnosis of hepatic fibrosis, has raised 

the attention of nephrologists as a potential valuable noninvasive tool for the diagnosis of renal fibrosis. Due to renal deep 
location and anatomic complexity, the shear wave techniques are the most appropriate elastography methods for exploring 
native kidneys. Recent research offers promising results, but further larger studies are required for a better standardization of 
this method and also for establishing reference values of normal kidney elasticity. This article reviews the studies conducted 
for exploring the native kidney, highlighting the advantages and limitations of ultrasound elastography for assessing fibrosis 
development in chronic kidney diseases.
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Introduction

For many years, ultrasonography has become the 
most valuable imagistic investigation in renal diseases. It 
can be used regardless of serum creatinine, it is noninva-
sive and it is also applicable in pregnancy. Renal biopsies 
under ultrasonography guidance are already performed 
as routine in clinical practice. Thus, since the incidence 
of chronic kidney disease (CKD) is constantly increasing 
[1], new methods are required for a non-invasive early 
detection of renal fibrosis and for assessing the degree of 
fibrosis in different stages of CKD. In the last decades, 

promising results in this respect have emerged not just 
from various biological markers [2], but also from a new 
field of ultrasound examination, i.e. elastography. Elas-
tography – a method which provides information about 
tissue stiffness [3] – has already proved valuable for the 
diagnosis and assessment of the severity of liver fibrosis. 
However, regarding renal diseases, ultrasound (US) elas-
tography is still in the pioneering stage due to anatomical 
characteristics of the kidney and the complexity of the 
pathological processes incriminated by renal dysfunc-
tion.

The present article reviews the existing ultrasound 
elastography techniques and their applicability in renal 
pathology, focusing on renal fibrosis and CKD.

Ultrasound elastography techniques

Elastography uses ultrasound to asses and quantify 
the stiffness or the elasticity of a tissue. The method per-
mits an accurate quantitative diagnosis of the differences 
in tissues stiffness in contrast with the classic palpation 
which is subjective. Additionally, it is superior to conven-
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tional ultrasonography which does not provide accurate 
information on elastic properties of an organ, because the 
propagation of ultrasound is relative homogeneous in dif-
ferent biological tissues [4].

The basic principle of elastography is to generate a 
stress in a tissue and then to measure the strain induced 
by this stress [5]. The tissue stiffness is quantified with 
Young modulus, defined by the ratio between the applied 
stress and the induced strain and expressed in pressure 
units – Pascals or kilo Pascals [6,7]. Depending on the 
external force applied on a tissue, several types of elas-
tography can be performed.

In static or quasi-static US elastography, an exter-
nal compression is applied on the interest organ and a 
qualitative map with the tissue strains before and after 
compression is provided. Young module cannot be calcu-
lated in this method, because the magnitude of the stress 
applied is unknown; an image with the strain, frequent-
ly called elastogram, is displayed and compared with 
healthy tissue [7,8].

Transient elastography provides a one-dimensional 
quantitative image of examined tissue stiffness. The un-
derlying principle is to produce a transient skin vibration 
with a device and then to record, with a 1D transducer, 
the shear waves that propagates within the examined tis-
sue. A quantitative line of tissue stiffness is obtained [7]. 
This method, also developed in 2D with the result of ob-
taining a map of Young’s modulus in the examined tis-
sue [7], is already approved in clinical guidelines for the 
quantification of hepatic fibrosis [9].

Acoustic Radiation Force Impulse Imaging (ARFI) or 
Acoustic Radiation Force Imaging is another elastogra-
phy method which allows construction of a qualitative 
stiffness map of the examined tissue. It uses a focused 
beam of ultrasound to apply a localized radiation force in 
small volumes of the tissue to be tested and for short du-
rations [10]; this force induces variable tissue displace-
ment varying upon the stiffness of the tissue at the focal 
spot [7,10]. Making measurements in different places, 
finally it can be obtained a 2D map stiffness [7].

Shear Wave Elasticity Imaging (SWEI) is a method 
similar to ARFI – a radiation force is sent into the tissue, 
but, in contrast with ARFI, the shear waves created by 
this push and propagated laterally from the beam axis are 
measured [11]. A limitation of US generated shear waves 
is the weakness of these waves, with little displacement 
of the tissue and rapid dissipation of the propagation; 
therefore, for larger displacements, increased power of 
the focused beam is required with the risk of overheating 
[10,12].

The shear wave velocity measurement is also the 
principle of the most advanced type of US elastogra-

phy – Supersonic Shear Imaging (SSI) [13,14]. In SSI 
technology, a supersonic shear wave source is generated 
within the tissue, the amplitude of shear waves being in-
creased while limiting the acoustic power; multiple ra-
diation beam pushes can be successively focused at dif-
ferent points in the examined tissue and they generate a 
shear wave with a supersonic speed [13,15]. The pushes 
are sent from the source at different depths at a higher 
speed than the speed of the generated shear waves; in the 
end, all shear waves concentrate in a small area, a “Mach 
cone” shape, which increases their amplitude and the 
distance of their propagation [13]. The generated shear 
waves are then mapped quantitatively by using ultrafast 
imaging technique [13].

Ultrasound elastography in renal diseases

Static elastography methods, with extensive usage in 
the pathology of superficial organs [16] such as thyroid 
or breast, have no utility in renal exploration because of 
the deeply profound location of the native kidney, a situa-
tion in which a compression directly on the organ cannot 
be applied [17]; furthermore, because of the non-uniform 
pattern of fibrosis in CKD or other diffuse pathologies 
(such as glomerulonephritis or renal allograft fibrosis), 
there is no healthy tissue to compare with the elastogra-
phy results [18].

In addition, in renal diseases, 1D transient elas-
tography has an applicability only in the transplanted 
kidney [19,20], because this is positioned superficially, 
under the skin. In transient elastography, the sample 
volume is placed 4 cm long in a window with little 
variations below the skin surface (25-65 mm) and there 
is no ultrasound guidance to position the sample on the 
native kidney which is located at variable depths [18]. 
Therefore, errors of interpretations of the results may 
arise when exploring native kidneys. Additionally, the 
sample must be positioned behind a solid structure, 
which may further complicate the kidney exploration 
because several organs are present in the way to the 
kidney [18].

Shear wave-based techniques seem to be more appro-
priate for native kidney stiffness assessment because they 
allow exploring selectively the different compartments in 
the kidney; several animal or human studies have been 
performed with varying results (Tables I). The results are 
encouraging but, at the same time, numerous uncertain-
ties arise from this research as a result of the modalities 
to perform the technique, the complexity of the kidney 
architecture or the heterogeneous and dynamic processes 
possible at this site without a pathognomonic marker to 
compare with.
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linear increase of renal tissue elasticity associated with 
elevated urinary pressure [22,26].

Gender [21,34], race [27], weight or body mass index 
(BMI) [20], and also age [23,34,46] can modify the re-
sults in US elastography and several studies have found 
significant variations of renal parenchymal elasticity in 
these parameters [20,21,23,27,34,46].

The examinations must be performed while the sub-
jects hold their breath, which can be difficult especially 
in pediatric patients [26].

Inter-observer agreement is reported in various stud-
ies at different ICC (intra-class coefficients correlation), 
from 0.71 [27] to 0.47 [47] or even 0.31 [48], being 
smaller than those for the assessment of liver fibrosis 
[49,50]. These variations are explained by the deeper 
location of the native kidney compared to the liver, by 
the different experience of the operators in the field of 
renal US elastography, or may be due to the type of kid-
ney examined, native or transplanted [27]. Intra-observer 
variation coefficients are also reported between 20% [51] 
and 24% [48].

Evaluating fibrosis in native kidney with US 
elastography

CKD is characterized by progressive scarring of the 
renal parenchyma with loss of intrinsic renal cells and 
increased production of extracellular matrix, ultimately 
leading to fibrosis that affects all components of the kid-
ney – glomeruli, tubules, interstitium and vessels, irre-
spective of the primary renal insult [52]. Several media-
tors that induce fibrosis in the common pathway of CKD 
progression have been identified (transforming growth 
factor β1 (TGF-β1), connective tissue growth factor 
(CTGF), platelet-derived growth factor (PDGF), epider-
mal growth factor (EGF) etc) [52] and experimental stud-
ies performed until the present offer hope for reversal or 
stopping the fibrogenic process in CKD using various 
interventions (anti-TGF-β1 or anti-EGF antibodies, in-
hibitors of TGF-β1 or EGF receptors, administration of 
hepatocyte growth factor or bone morphogenic protein 7 
(BMP-7), synthetic inhibitors of tissue transglutaminase 
etc) [52]. Unfortunately, ideal markers for assessing the 
degree of fibrosis are lacking, except for the kidney bi-
opsy which is not only an invasive procedure, but has 
several limitations and contraindications [53]. Therefore, 
kidney US elastography opens new perspectives as it 
would permit the decrease of biopsy and also can be used 
to track fibrosis progression in repeatable examinations.

Several US elastography studies have been performed 
until the present for assessing fibrosis in the native kid-
ney. In an experimental study performed by Derieppe et 

The most important problem is the lack of defining 
the normal limits of stiffness in the native, healthy kid-
ney, as it is already defined for other organs as liver [36-
38], breast [39], or thyroid [40]. Measurements taken so 
far have significant variations between studies, highlight-
ing the necessity for extensive trials on healthy kidneys. 
For example, the elasticity values of renal cortex varies, 
upon different assessments, between 15.4±2.5 kPa [18] 
to 5.0±2.9 kPa [21] or even 4.40 (3.68, 5.70) kPa [32] 
for Young’s modulus in SSI or SWEI, and between 1.75 
m/s [25] to 2.54±0.83 m/s [27] for shear wave velocity 
in ARFI. The kidney region examined is important, as 
significant differences in elasticity have been reported 
between the outer and inner cortex [22], between the 
medullary and cortical portion of the kidney [18], and 
between the cortex and renal pelvis [21]. Several factors 
may influence the variability of the results.

In ARFI, the power of the force applied on the trans-
ducer by the operator [18,41,42], the distance from 
source to target [21,27,34,42] – in current imaging meth-
ods is important as is the maximal depth is 8 cm [8], and 
also the frequency of the probe [42,43], all of these be-
ing potential modifiers of measured shear wave velocity. 
Furthermore, placement of the probe on the cortex may 
be difficult in advanced CKD because of a small cortical 
parenchyma thickness.

Anisotropy is present in all renal compartments, espe-
cially in the medullary region [22,44,45], and this is impor-
tant when interpreting the results; sending the ultrasound 
beam in a perpendicular axis on these structures will lead 
to higher elasticity values because the shear waves propa-
gate more rapid; when the ultrasound beam is sent parallel 
to a highly anisotropic structure, the elasticity values will 
be lower because the shear waves will propagate slower 
and will dissipate as a result of multiple interfaces created 
by the blood vessels, renal tubuli and stromal compart-
ments [18,22]. Therefore, measurements of the stiffness 
in the same part of the kidney (subcapsular, cortex and 
medulla) are advisable to obtain valid and uniform results 
[20,27] and also establish universal technique standards in 
the future for reliable and comparable results.

Vascularization is another factor influencing the 
measured elasticity values of the kidney. Reduced kid-
ney elasticity after ligation renal artery and, conversely 
increased elasticity after ligation in the renal vein were 
reported in an animal study by Genisson et al [22]. More-
over, Asano et al raised the possibility that, in CKD, in-
creased stiffness kidney measured in ARFI may be in-
duced more by vascular abnormalities in this disease than 
by renal parenchymal fibrosis [28].

Urinary obstruction must be ruled out before perform-
ing US elastography, as several studies have reported the 
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al [54], glomerulosclerosis and increased urinary protein 
/ creatinine ratio were associated with an increased elas-
ticity of renal parenchyma. In the native kidney, human 
studies have reported various markers associated with 
increased kidney stiffness: estimated glomerular filtrate 
rate (eGFR) [23,28,29], urinary albumin / creatinine 
or protein / creatinine ratio [30,33], serum creatinine 
[23,29], urea nitrogen [23], elasticity values in healthy 
native kidneys [23-33,35], kidney biopsies [25], other 
imaging tests etc [24,26,35]. Thus, there are studies find-
ing no significant correlation between markers of chronic 
kidney injury and elasticity of renal parenchyma in na-
tive [27] or transplanted kidney [48,51], and also studies 
which could not prove a significant difference of elastic-
ity between different stages of CKD [23,25]; in addition, 
it has been reported an increased intra-subject variability 
of results in CKD versus healthy controls [33] or a higher 
influence of arteriosclerosis markers, such as pulsatility 
index or resistivity index, on kidney stiffness than eGFR 
[28]. Such discrepancies may be explained not only by 
the heterogeneity of the markers utilized for the presence 
of fibrosis, by anatomic features of the kidney or by sev-
eral confounders (age, BMI, technique variations etc), 
but also by the heterogeneity of primary kidney diseases 
which may be accompanied, in different stages of evolu-
tion, by inflammation, as it happens in the early phase of 
graft rejection or in vesicoureteral reflux.

Despite these limitations, ultrasound elastography 
shows the potential for becoming a valuable tool in non-
invasive assessment of kidney fibrosis.

Conclusions

Recent studies based on shear wave techniques which 
have explored different compartments of the native kid-
ney are encouraging, but many gaps have to be filled and 
questions to be answered, mainly due to the complexity 
of the kidney architecture or the heterogeneous and dy-
namic processes possible at this site without a pathogno-
monic marker to compare with.

The most important problem is the lack of defining 
the normal limits of stiffness in the native, healthy kid-
ney, as it is already defined for other organs (e.g. liver, 
breast, thyroid). Up to this moment, there is no consensus 
between trials regarding the reference values for the nor-
mal stiffness / elasticity of the native kidney, high varia-
tions being noticed in intra- and inter-operator measure-
ment. Several factors may influence the variability of the 
results and therefore there are significant differences in 
elasticity between various renal regions in healthy kid-
neys: outer and inner cortex, medullary and cortical por-
tion of the kidney, cortex and renal pelvis. Furthermore, 

the impact of various pathological processes (e.g. diabet-
ic nephropathy, hydronephrosis, glomerulopathies etc) 
on the stiffness of the kidney presents large variations in 
different studies.

In conclusion, elastography is a promising tool for 
assessing kidney fibrosis; further studies are required in 
order to establish a standardized technique method and 
also normal and pathological reference values.
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