

Valuing Genetic Gain in Forages

Current FVI

Valuing Forages is not Trivial

- Pastures are an intermediary product or input
- Cultivar grazing comparisons are rare
- They are seldom traded in their own right
 Hay, silage, standing for agistment
- They are "harvested' multiple times

- The components that contribute to value are poorly defined for some systems
- They may not be the whole diet

Valuing Stuff With Variable Specifications

Price: Triton \$48k < D-Max \$54k < Navara & BT-50 \$54.5k < Hilux \$56.5k < Colarado \$57k < Ranger \$62k < Amarok \$69k

But does price reflect value?

Are they equivalent?

• Triton doesn't have sat-nav; Amarok doesn't have rear airbags

Performance and Specification data is available

• Market price tells you how consumers value performance, specification and other factors such as prestige/brand

4

Choosing a Perennial Ryegrass Cultivar

Why do we have a FVI for perennial ryegrass?

- Accounts for 80% of the estimated >\$100 million/year Australian dairy farmers spend on pasture renovation
- 60+ cultivars of perennial ryegrass on the market

Australia's first Forage Value Index

Dairy farmers can now access independently-analysed comparative information on the performance of perennial ryegrass cultivars

https://www.dairyaustralia.com.au/fvi

Gippsland - Forage Value Index

Cultivar		FVI Gipps	Autumn	Winter	Early Spring	Late Spring	Summer	Endophyte	Pioldy	Heading Date	Marketer	No. of trials
Base AR37		183	115	115	100	96	110	AR37	Tetrapioid	Late	PGG Wrightson Seeds	7
Bealey NEA2		180	112	115	100	96	113	NEA2	Tetrapioid	Very Late	Heritage Seeds	8
One50		158	113	116	99	95	110	SE	Diploid	Late	Agricom	4
Matrix - Festulollum		130	107	115	98	96	110	Unknown	Diploid	Late	Cropmark Seeds	3
Fitzroy		127	107	110	104	96	106	SE	Diploid	Early	PGG Wrightson Seeds	5
Halo AR37		125	113	113	95	93	112	AR37	Tetrapioid	Late	Agricom	7
Kingston		122	110	113	98	97	107	SE	Diploid	Mid	Agricom	3
Kidman		122	108	113	101	96	106	AR1	Dipioid	Early	Heritage Seeds	3

Overall FVI rating and seasonal tables are available for each region

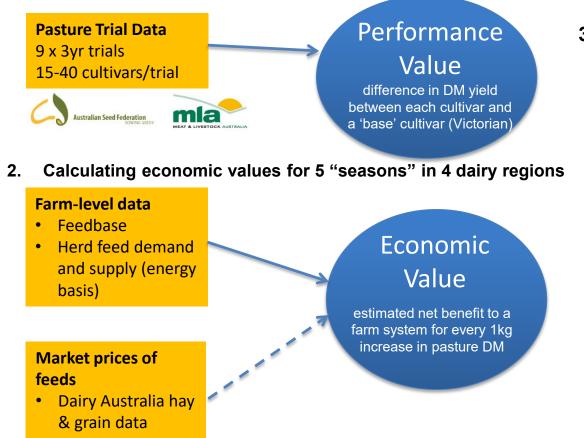
1. Overall FVI ranking

Gippsland - Forage Value Index

Cultivar	FVI Gipps
Base AR37	183
Bealey NEA2	180
One50	158
Matrix - Festulollum	130
Fitzroy	127
Halo AR37	125
Kingston	122
Kidman	122
Ansa	117
Extreme AR37	111
Banquet II Endo5	109
Endure	100
Arrow AR1	89
One50 AR1	82
Barberia	76
Avaion (+AR1)	72
Ohau AR37	50
Revolution - Festulolium	49
Impact 2 NEA2	46
Helix - Festulolium	10
Victorian	0

2. Seasonal

Gippsland - Autumn Seasonal Performance


Cultiver	Autumn
Base AR37	115
Halo AR37	113
One50	113
Beaky NEA2	112
Extreme AR37	111
Kingston	110
Banquet II Endo5	109
Kidman	108
Arsa	107
Matrix - Festuloilum	107
Fitzroy	107
Endure	107
Impact 2 NEA2	105
One50 AR1	105
Chau AR37	105
Avaion AR1	105
Revolution - Festulailum	103
Arrow AR1	103
Helk - Festulolum	101
Barberia	101
Victorian	100

Gippsland - Winter Seasonal Performance

Cultiver		Winte
One50		116
Base AR37		115
Ansa		115
Bealey NEA2		115
Matrix - Festulollum		115
Extreme AR37		114
Halo AR37		113
Kingston		113
Rdman		113
Endure		111
Banquet II Endos		111
Fitzroy		110
Avalon AR1		110
Barberia		109
Revolution - Festuloilum		109
Arrow AR1		107
Helix - Festulolium		106
One50 AR1		104
Ohau AR37		104
Impact 2 NEA2		103
Victorian	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100

How was the FVI developed?

1. Calculating seasonal performance values for each cultivar

3. Combining performance values and economic values into a FVI rating

Current FVI Calculation of Performance Values (PV's)

Statistical Modelling: MEMH trials

Realistic prediction of the performance values of cultivars requires appropriate modelling of:

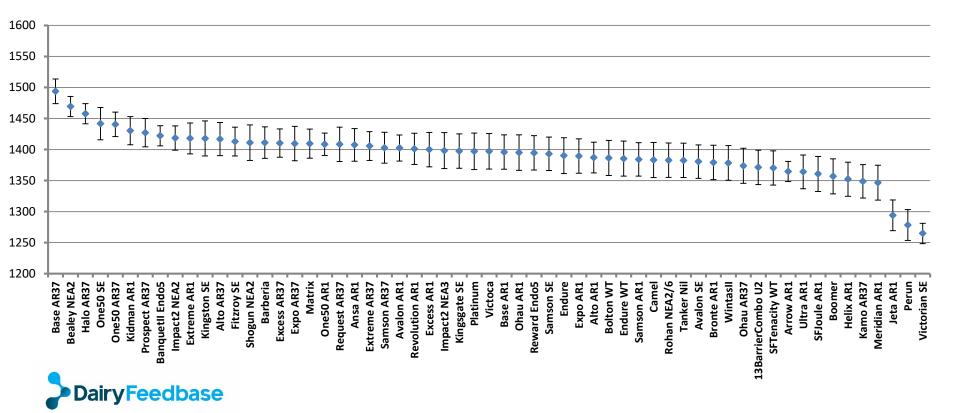
- genotypic variance
- residual variance

By accounting for:

- Temporal correlation between observations on the same plot from consecutive harvests (repeated measurements)
- > Spatial correlation between observations in row and column directions at trial sites
- > Heterogeneity of residual variance at different trials or in different harvests within a trial
- > Appropriate model for residual covariance between harvests

Statistical Modelling

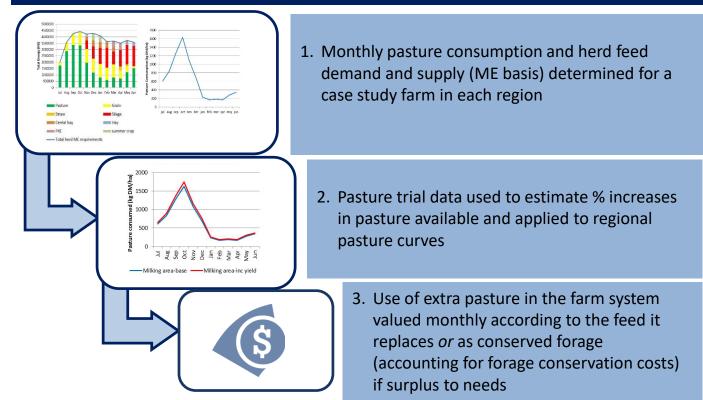
Each harvest was analysed using a linear mixed model


$$y = X\beta + Z\gamma + e$$

Where

- > β is the vector of fixed effects
- \succ X is a design matrix for the fixed effects
- \triangleright γ is the vector of random effects
- \succ Z is the design matrix for the random effects and
- \blacktriangleright e is the vector of residuals

Results: Winter BLUP means (kg/ha)



Current FVI Calculation of Economic Values (EV's)

A partial budget approach in a whole farm systems context is used to calculate EV's in the FVI

ECONOMIC VALUE = predicted \$ net benefit to a dairy farm system for a single unit change in the trait of interest (e.g. kg pasture DM)

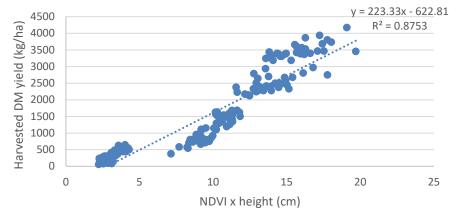
Economic values

Estimated economic values for dairy regions shows the value of pasture grown varies according to location and time of year

Region	Autumn	Winter	Early Spring	Late Spring	Summer
SW Vic	\$0.31	\$0.33	\$0.20	\$0.23	\$0.37
Nth Vic	\$0.29	\$0.34	\$0.34	\$0.32	\$0.26
Gippsland	\$0.36	\$0.43	\$0.37	\$0.22	\$0.38
Tasmania	\$0.33	\$0.35	\$0.36	\$0.11	\$0.17

Economic Value = estimated net benefit to a farm system for every 1kg increase in pasture dry matter Seasons:

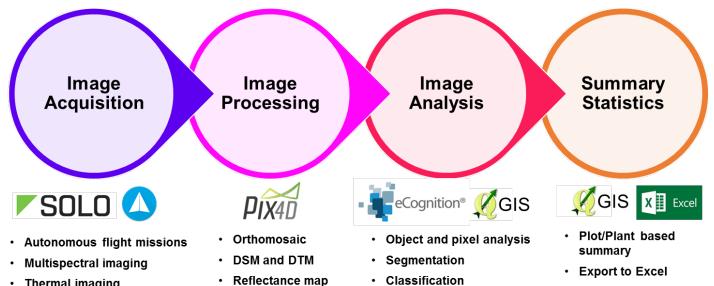
- Autumn = March, April, May
- Winter = June, July
- E. Spring = August, September
- L.Spring = October, November
- Summer = December, January, February



Automated data capture

More efficient data capture through modern sensor technologies

Relationship between destructive harvest and non-destructive measurements across 6 'harvests'* at the Timboon FVI site



Incorporation of automated measurement = 16 fold decrease in time of measurement (1h vs 16h)

Aerial Phenotyping: Workflow

- Thermal imaging
- RGB imaging

airyFeedbase

Index map

Workflow in Pictures

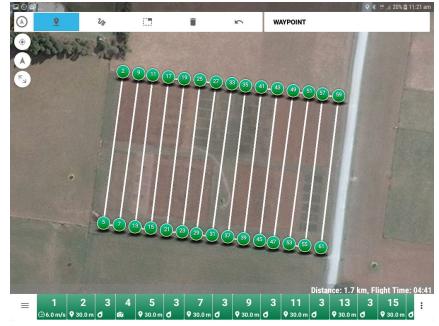
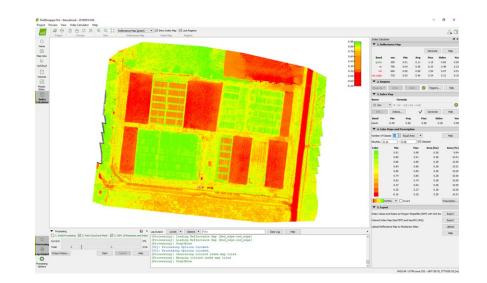


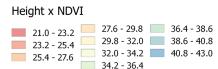
Image Acquisition

- Flight path entered as a template into an application called Tower
- Distance covered 1.7km
- Flight time approx. 5 minutes



Non-destructive Yield Estimation using NDVI

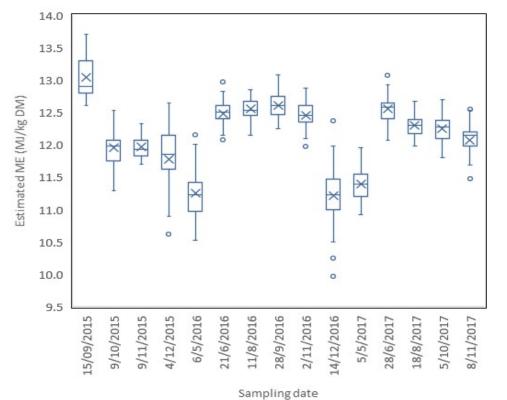
- NDVI is not a direct measurement of yield
- Highly correlated to vegetative biomass of perennial ryegrass (R² = 0.49 to 0.89)
- NDVI is very effective in ranking plants for biomass yield



23

NDVI x Plant Height

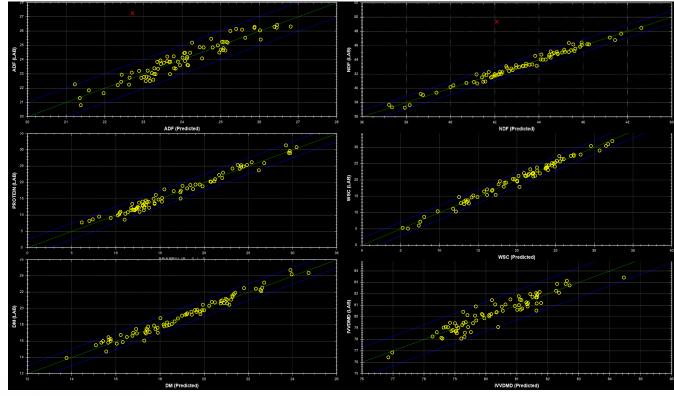
• "Yield" map of a perennial ryegrass cultivar trial



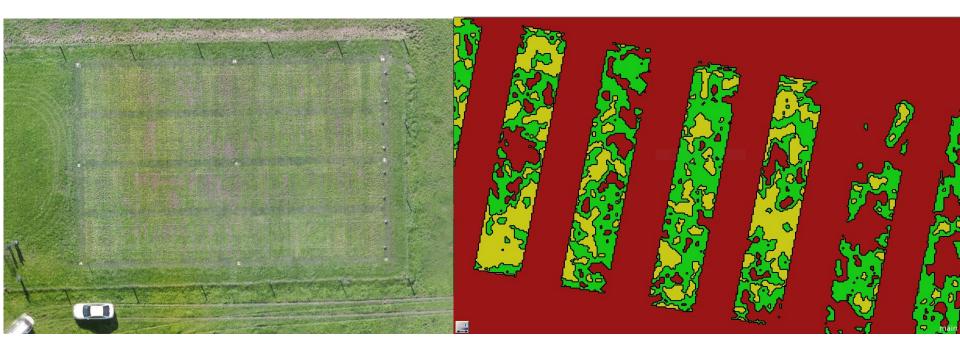
- More efficient data capture through modern sensor technologies
- New traits persistence and forage quality measure with new technologies

Metabolisable energy will be the first quality measure to be added

Composite sample strategy can reduce analysis costs by 40%


- Results of composite data model (77 samples/harvest) were similar to the full data model (128 samples/harvest).
- Compared to full data model, the composite data model had:
 - Slightly higher variability due to season and cultivar
 - A slightly lower linear row and column effect and lower column and row variability (due to 3 "missing values" in cultivars that had been bulked).
 - Higher row and column auto correlation.
 - Slightly higher average standard error of difference between any cultivar and 'Victorian' with standard endophyte.
- Implementing strategy would reduce sampling costs by 40% (from \$5,120 to \$3080 per harvest).
- If composite sampling is done properly:
 - it will yield statistically valid inference.
 - Precision of estimates and 'BLUP' means will be very similar to the full data model.
- Strategy has been applied to analysis of samples from other 3 FVI trial sites (Ellinbank, Tongala, Elliott).

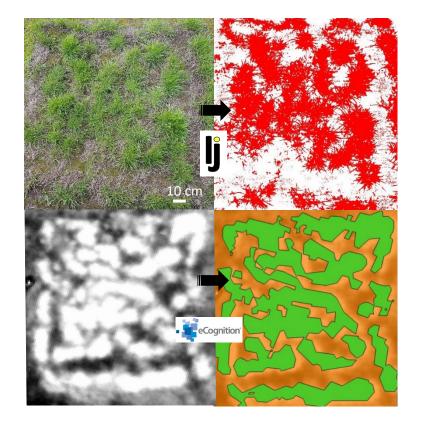
Comparison of strategies (crude protein%)


Effects	Full data model	Composite data model	
Overall mean	21.11	21.16	
Linear row	-0.17	-0.14	
Linear column	0.008	0.004	
Seasonal var.	24.54	26.18	
Cultivar var.	0.08	0.10	
Season x Cultivar var.	0.22	0.14	
Row var.	5.28	4.38	
Column var.	0.16	0.15	
Row cor.	0.18	0.28	
Column cor.	0.14	0.22	
Avg. s.e.d	0.40	0.44	

2. Non-Destructive Measurement of Forage Quality

DairyFeedbase

Lifetime Productivity/Persistence

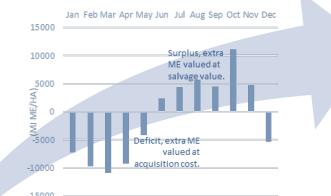


29

Persistence

RGB image

NDVI raster



30

Revised calculation of EV's

Alternative model to generate FVI economic values

Farm model Specific to the characteristics of an individual farm system

Acquisition cost & salvage value model

- Extra pasture produced when pasture is typically in deficit is valued higher than that produced when typically in surplus
- Valued using a range of supplementary feeds

Acknowledgments

- Graduate Students Chinthaka Jayasinghe, Chaya Smith, Alem Gebre
- Field & Phenomics Elly Polonowita, Danielle Stachys, Clare Leddin, Pieter Badenhorst
- Biometrics Khageswor Giri
- Farm Systems Economics Clare Leddin, Claire Lewis, Christie Ho

