

Yong Zhao Johnson Controls Australia

1 Johnson Controls

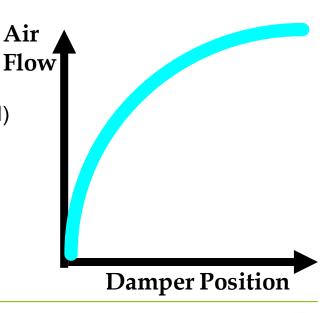
Variable air volume (VAV) Air Handling System

VAV systems are vary popular in many modern buildings

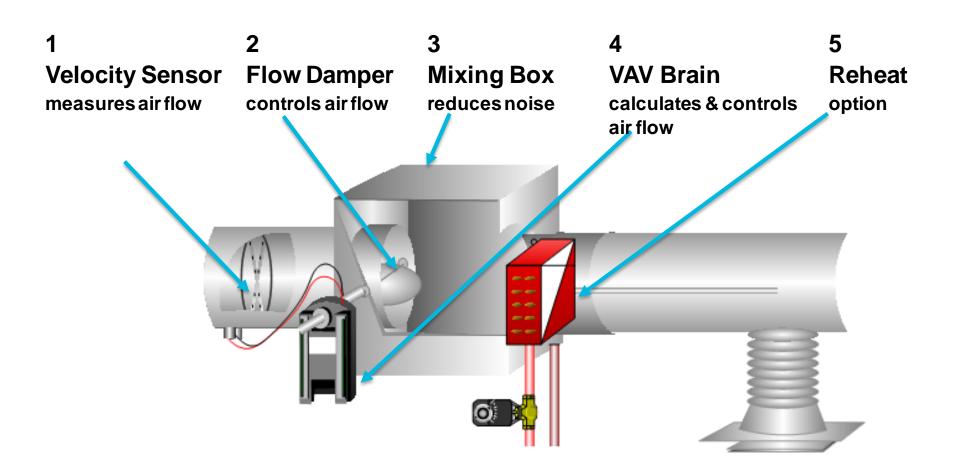
- VAV systems contain many zones with diverse airflow needs
- VAV systems have "bad" zones
- VAV systems are dynamic
- VAV systems have minimum airflow zones

Variable air volume (VAV) Terminal Unit

Consider the relationship between damper position and airflow


- System is sensitive as damper starts to open, so large proportional band is needed
- When damper is almost open, system is not very sensitive, so a small proportional band is needed

Consider the "optimal" proportional band for a mixed air control loop


- It will vary by a factor of ten between summer and winter
- Good commissioning is critical

Conventional PI control resulted in

- Systems tuned for "worst case" (typically low load) conditions and unresponsive at other times
- Comfort problems
- High energy (fan consumption) cost

What makes VAV box performance better

- 1. Air flow measuring Velocity sensor
 - more accurate to measure the air flow = better control (less hunting) = less temperature variation = less energy consumption
 - not easy to maintain accuracy when flow rate is lower
- 2. Air flow controlling Flow damper
 - Pressure drop across the VAV box
 - Less the pressure drop = less fan energy consumption
- 3. Noise level Mixing box
 - Lower dB rating = quieter the box = more comfortable
- 4. Controller

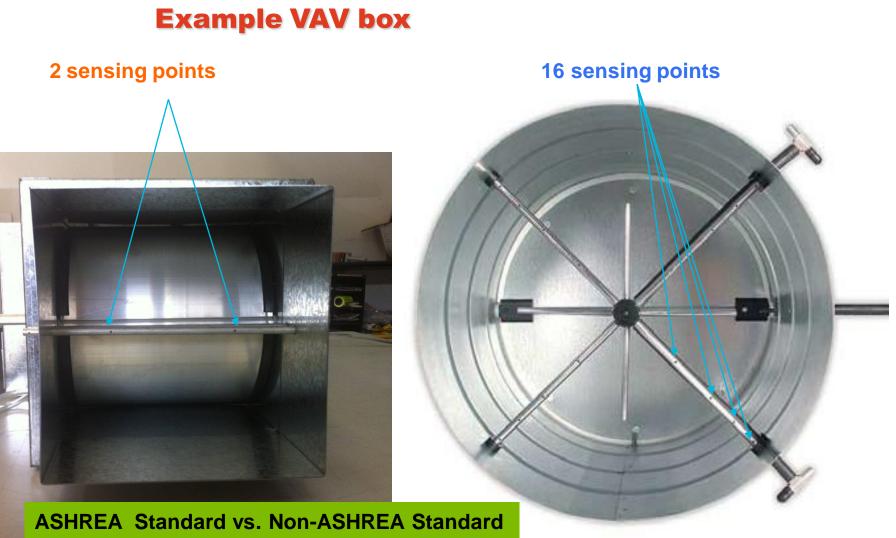
Flow measurement is the key factor in VAV controls

- 1. Based on ASHRAE 2001 Fundamentals, Chapter 14.15 Measurement and Instruments (table 4)
 - Pitot tube is a Standard instrument for measuring duct velocities
 - It can measure air velocity in the duct from 0.9 to 50 m/s with micro manometer
 - The accuracy is 1-5% and falls off at low end of range
- 2. Large turn down ratio (Vmax/Vmin) can save energy but how to measure low velocity accurately when Vmin is very small.
 - Using expansive measuring instrument, such as ultrasonic sensor
 - Using amplify velocity pressure signal to increase accuracy
 - Check Patented FlowStar[™] airflow sensor (Patent #5,481,925)

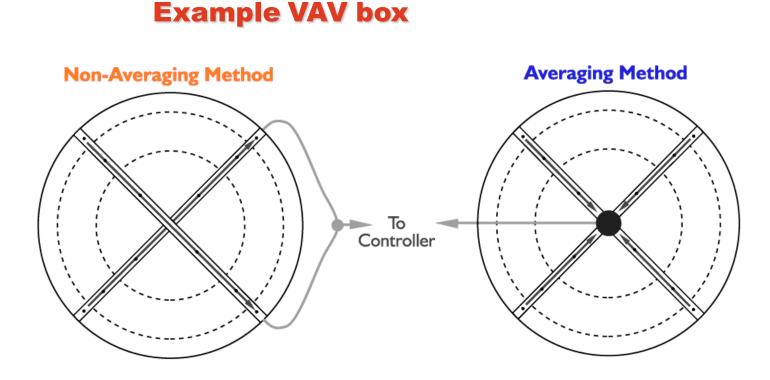
ASHRAE 2001 Fundamentals Chapter 14.17 -Measuring Flow in Ducts

- Velocity in a duct is seldom uniform, a traverse is usually made to determine average velocity
- Point velocities are determined by the log-Tchebycheff rule (ISO Standard 3966) or, if care is taken, by the equal area method.
- Figure 6 shows suggested sensor locations for traversing round and rectangular ducts
- For a rectangular duct traverse, a minimum of 25 points should be measured.

Log-Tchebycheff rule for rectangular ducts


No. of Points for Traverse Lines	Position Relative to Inner Wall
5	0.074, 0.288, 0.500, 0.712, 0.926
6	0.061, 0.235, 0.437, 0.563, 0.765, 0.939
7	0.053, 0.203, 0.366, 0.500, 0.634,0.797, 0.947

Log-linear rule for circular ducts


No. of Measuring Points per Diameter	s Position Relative to Inner Wall
6	0.032, 0.135, 0.321, 0.679, 0.865, 0.968
8	0.021, 0.117, 0.184, 0.345, 0.655, 0.816, 0.883, 0.981
10	0.019, 0.077, 0.153, 0.217, 0.361, 0.639, 0.783, 0.847, 0.923, 0.981

Air Flow Measuring – Velocity sensor

Reading will skewed by
 Stratification of the velocity profile

Averaging vs. Non-Averaging Method

• Accurate reading, even there is a higher velocity on one side of the sensor

Example of VAV Box selection

Maximum inlet velocity less than 8 m/s

	PRIM	ARY AIRI	FLOW	NOM	VAV Inlet Velocity /Cooling				
	MAX [l/s]	Turn Down	MIN [I/s]	s] SIZE @ Max @ N [m/s] [m/					
Example 1	395	30%	119	10	7.98	2.39			
Example 2	395	50%	198	10	7.98	3.99			
Example 1	420	30%	126	12	5.86	1.76			
Example 2	420	60%	252	12	5.86	3.52			

The turn down ratio (minimum air flow) has to be increased to compensate stable control at low flow rate

Amplified Velocity Pressure

- Compensate for VAV Controller Limitations
- Prevent need to undersize VAV unit
- Minimum suggested Velocity is 3.56m/s
- Improved Temperature Control
- Meet IAQ Airflow Requirements
- Use Properly Sized Terminals

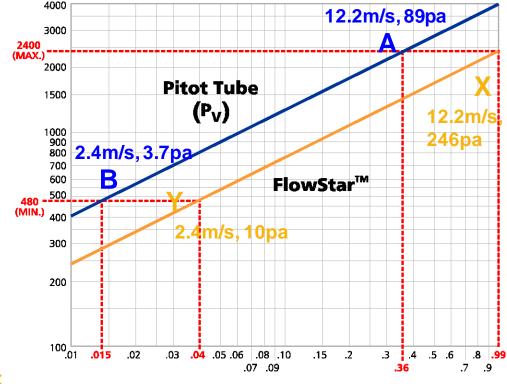
Velocity (FPM)

Amplified Velocity Pressure

Line AB using pitot tube

A:12.2m/s, 89pa
B: 2.4m/s, 3.7pa

Line XY using FlowStarTM


X: 12.2m/s 246pa
Y: 2.4 m/s 10pa

Flowstar pressure gain

Increase from 89 to 246paIncrease from 3.7 to 10pa

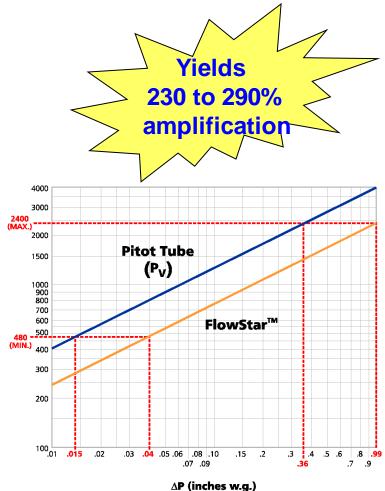
Increase Control Range

Increase from 3.7 to 10pa
 Decrease minimum controllable setpoint
 Increase from 89 to 246pa

△P (inches w.g.)

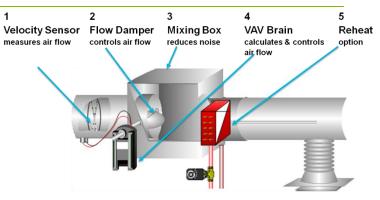
Size 8	Velocity	Velocit	Yield			
example	velocity	Pitot/Pv FlowStar/dP		increase		
	m/s	Ра	Ра			
Vmax	15.3	139.5	373.6	268%		
Design	12.2	89.7	246.6	275%		
Vmin	2.44	3.7	10.0	266%		

Amplified Velocity Pressure


Velocity (FPM)

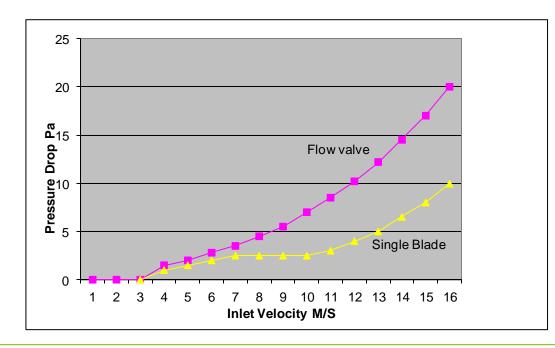
Increased Range of Control

- Pitot Tube: 3.7 to 90 Pa
- FlowStar: 10 to 246 pa


Decreased Minimum Controllable Setpoint

- Example. Size 8:
- Pitot Tube:44 I/s @3.7 Pa
- FlowStar:29 l/s @3.7 Pa

Air Flow Controlling – Flow damper



- 1. ASHRAE 2001 Fundamentals, Chapter 15.7 Fundamentals of Control Damper
 - Automatic dampers are used in air-conditioning and ventilation to control airflow
 - A. Multi-blade dampers are used to control flow through large openings typical of those in air handlers
 - B. Single-blade dampers are typically used for flow control at the zone
- 2. Multi-blade damper requires smaller actuator (toque) than single-blade damper to control/modulate air flow
- 3. Control accuracy
 - No difference in control accuracy between multi-blade or single blade damper
 - 5% accuracy from minimum flow rate to maximum flow rate as standard requirement

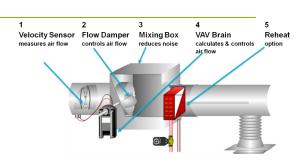
Air Flow Controlling – Flow damper

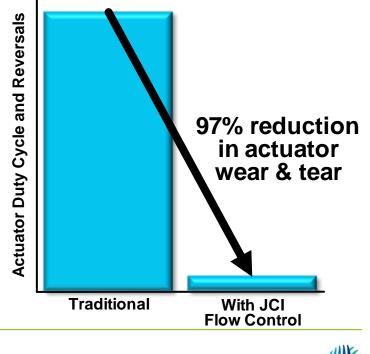
- 4. Energy consumption
 - Damper leakage, particularly where tight shutoff is necessary to reduce significantly
 - Less pressure drop, less fan energy consumption
 - Example of VAV Boxes comparison



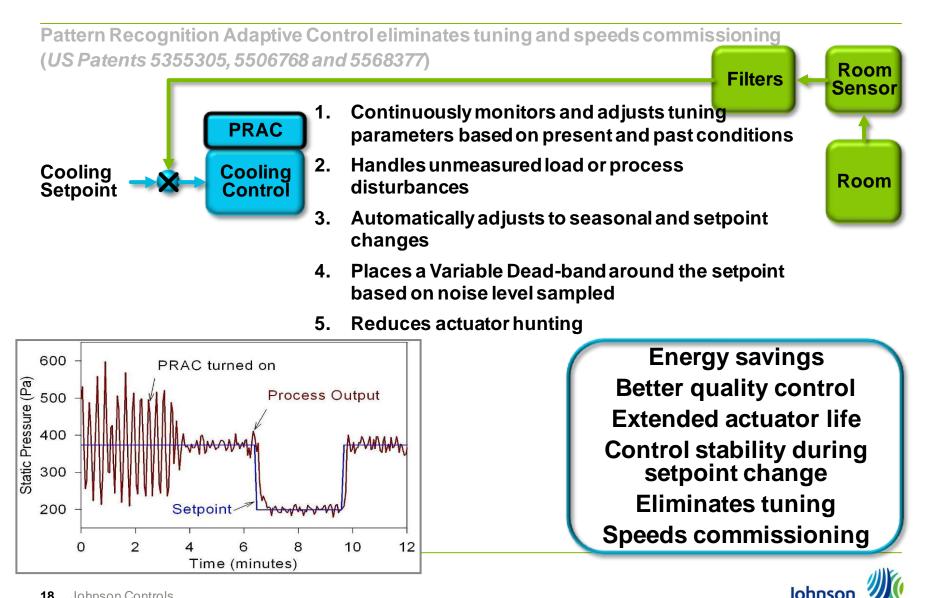
Noise Level – Mixing Box

- 1. Noise will occur when damper is throttling/controlling air flow
 - Discharge sound power is more significant to the noise level in the room
- 2. Mixing box is critical to reduce noise level
 - Poor quality designed mixing box will require an extra acoustic barrier in downstream of VAV box to reduce noise level


	Flow Valve							Single-Blade								Multi -Blade						
Size	Flow	125	250	500	1K	2K	4K	Ave	125	250	500	1K	2K	4K	Ave	125	250	500	1K	2K	4K	Ave
	L/S	2	3	4	5	6	7		2	3	4	5	6	7		2	3	4	5	6	7	
		Discharge Sound power																				
8	350	53	54	51	50	53	50	99%	57	55	52	48	43	40	94%	62	59	56	54	54	53	107%
10	500	55	55	53	52	54	52	99%	57	55	52	49	43	40	91%	63	62	61	58	57	57	110%
12	700	57	57	55	53	56	54	101%	56	55	54	49	45	42	91%	65	61	61	58	57	56	109%
14	1,000	59	60	57	56	58	57	101%	58	56	55	50	46	42	89%	70	64	62	63	61	60	110%
16	1,250	60	61	59	57	59	59	101%	60	55	54	49	46	42	88%	74	66	65	63	61	59	111%
										Rad	iateo	d So	und	powe	ər							
8	350	51	45	37	32	30	26	94%	57	46	40	33	30	27	99%	61	47	42	36	34	33	107%
10	500	52	46	38	33	31	27	93%	54	45	40	34	29	29	94%	66	53	46	39	36	36	113%
12	700	53	48	40	34	32	28	93%	52	47	43	36	32	29	94%	65	55	46	43	41	39	114%
14	1,000	55	50	42	35	33	30	91%	52	47	42	38	34	30	90%	68	59	50	48	46	46	118%
16	1,250	56	51	43	36	34	31	92%	52	47	41	36	31	30	87%	70	62	53	50	48	47	121%

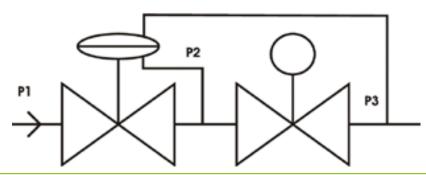


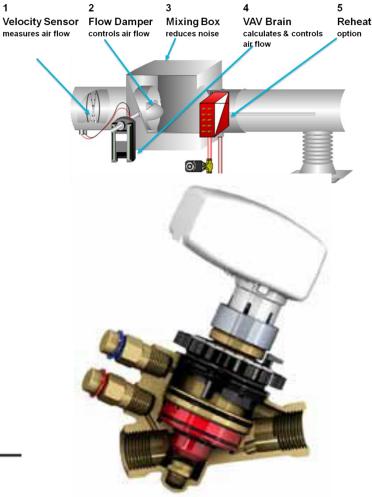
Air Flow Controlling – Controller


- 1. Flow control algorithm provides fast, accurate control and extends actuator life
 - Integral actuator is ninety times more precise than a traditional actuator
 - (US Patents 5768121 and 5875109)
- 2. Precision damper actuator provides accurate control
 - (US Patent 6198243)
- 3. Finite State Machine eliminate simultaneous heating and cooling to reduce energy
 - (US Patents 6006142 and 6219590
 - Finite State Machine now incorporated into ASHRAE
 Fundamentals Handbook

Air Flow Controlling – Controller

Controls

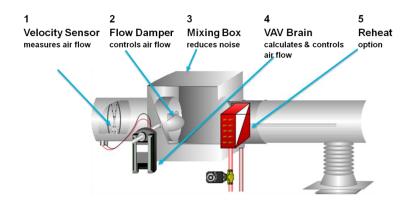

Heating Water Coil Controlling – PICV


1

Pressure Independent Control Valve

- adjusts the flow rate in case of partial load
- the differential pressure regulator corrects any differential pressure variation
- allows precise modulating control.
- guarantee a suitable flow rate and avoiding too high energy consumption.

a considerable reduction in temperature variations and adjustment movements and to the extension of the life of the moving devices



Conclusion

- The sensing point of velocity sensor is critical to measure air flow accurately
- Amplified Velocity Pressure is the solution to measure low air flow rate when high turn-down ratio required
- Single-blade has advantage of lower pressure drop and lower noise level
- Fast_Accurate_Stable air flow controller can deliver both comfortable and energy efficient VAV system
- PICV for hot water coil is another solution to deliver both comfortable and energy efficient VAV system

- Factory calibrated VAV box with Generic Bacnet MS/TP controller for any BMS system
- Control system can deliver both comfortable and energy efficient solution ONLY when the mechanical equipment allows to

