

Shielding techniques
Summer School 2007

- Scatter will not be isotropic
- But scatter is always predictable as a function of energy, angle and area

- First principles- back of the envelope
- NCRP 147

- Envelope \qquad - NCRP 147
- $3.88 \mathrm{mGy} / \mathrm{week}$
- $5.74 \mathrm{mGy} / \mathrm{week}$
- $447 \mathrm{mR} /$ week
- $660 \mathrm{mR} /$ week

NCRP 147
- Fast and easy
up to commercially available thicknesses gives 1/16 inch of lead for the shield thickness

The NCRP 147 quick way(1)

- Scatter at barrier at 4 m
$=3.8 \mathrm{mGy} /$ patient*25patients per week/4^2
- $=5.9 \mathrm{mGy} /$ week at the barrier
- (compared to 5.74 mGy we got before)

The NCRP 147 quick way(2)

- $\mathrm{NT} / \mathrm{Pd}^{\wedge}{ }^{2}$

The NCRP 147 quick way(1)

- Scatter at barrier at 4 m
$=3.8 \mathrm{mGy} /$ patient*25patients per week $/ 4 \wedge 2$
- $=5.9 \mathrm{mGy} /$ week at the barrier
- Attenuation required $=0.02 / 5.9=3.4 \mathrm{e}-3$
- (3.5e-3 before)

Diagnostic x-ray rooms

- This evaluation was first carried out in 1994 when the exposure limits to the general were lowered from 500 to 100 mR /year
- At that time only TLD were readily available for long-term monitoring with a lower detectable limit of 10 mR

Optically Stimulated Luminescent

 Dosimeters- Range from 1 mR - 1,000 R
- Good long term stability
- Convenient for environmental monitoring

Rooms		
Room1 Dedicated chest	5 days/week	
Room 6	General purpose Radiographic room	7 days/week
Room 7	General purpose Radiographic room	7 days/week
Room 5	General purpose R\&F room	5 days/week

Dedicated chest room				
Location mR inside mR outside $\%$ Transmission Behind chest stand $63-103$ 0 $<1 \%$ Protective cubicle glass	$75-103$	0	$<1 \%$	

General purpose Rad room				
Location	mR inside	mR outside	$\%$	
Transmission				

General purpose Rad room			
Location	mR inside	mR outside	$\%$
Behind chest	43-22	0	$<3 \%$
Protective	97-117	0	<.9\%
cubicle glass			
Wall inside	209-205	0	<0.5\%

| General purpose R / F room | |
| :--- | :--- | :--- | :--- |
| | Location mR inside mR outside $\%$
 Transmission
 Behind chest
 stand $43-22$ 0 $<3 \%$
 Protective
 cubicle glass $323-308$ 0 $<.3 \%$
 Wall inside $197-192$ 0 $<0.5 \%$
 Corridor wall $39-41$ 0 $<2.5 \%$ |

- All the rooms examined were designed according to NCRP 49 to $10 \mathrm{mR} /$ week with corridor occupancy factor of 0.25 and full occupancy behind protective cubicle
- Each room actually had $1 / 16$ inch of lead everywhere-except behind the chest stand (1/8 inch)
- The corridor should expect about 320 mR over 8 weeks

NCRP 147

- NCRP 147 calculation for Michigan example
- Only assumption for calculation is that scatter at 1m
$=3.6 \mathrm{e}-2 \mathrm{mGy} /$ patient

NCRP 147

- NCRP 147 calculation

NCRP 147

- NCRP 147 calculation
- Only assumption for calculation is that scatter at 1 m
- $=3.6 \mathrm{e}-2 \mathrm{mGy} /$ patient
- $=3.6 \mathrm{e}-2 * 150 \mathrm{mGy} / \mathrm{week}$

Only assumption for calculation is that scatter at
1 m

- $=3.6 \mathrm{e}-2 \mathrm{mGy} /$ patient
- $=3.6 \mathrm{e}-2$ * $150 \mathrm{mGy} / \mathrm{week}$

NCRP 147

NCRP 147

- NCRP 147 calculation
- Only assumption for calculation is that scatter at 1 m
- $=3.6 \mathrm{e}-2 \mathrm{mGy} /$ patient
- $=3.6 \mathrm{e}-2 * 150 \mathrm{mGy} /$ week
- $=3.6 \mathrm{e}-2 * 150 /(1.5)^{\wedge} 2 \mathrm{mGy}$ for barrier at 1.5 m
- $=1.6 \mathrm{mGy} / \mathrm{week}$
- Attenuation= 0.02/1.6

NCRP 147

- NCRP 147 calculation
- Only assumption for calculation is that scatter at 1 m
- $=3.6 \mathrm{e}-2 \mathrm{mGy}$ /patient
- $=3.6 \mathrm{e}-2$ * $150 \mathrm{mGy} /$ week
- $=3.6 \mathrm{e}-2 * 150 /(1.5)^{\wedge} 2 \mathrm{mGy}$ for barrier at 1.5 m
- $=1.6 \mathrm{mGy} /$ week
- Attenuation= 0.02/1.6
- $=1.25 \mathrm{e}-2$

Transmission through wood and sheetrock

- Required transmission is $1.25 \mathrm{e}-2$

- NCRP 147
- Or using NT/Pd^2
$\cdot=(150 * 1) /\left(0.02 * 1.5^{\wedge} 2\right)$
$\mathrm{NT} / \mathrm{Pd}^{\wedge} 2$

- Dose to the patient is related to CTDI (in some form)
- Scatter will depend on the phantom chosen
- So FDA dosimetry phantoms are chosen as
standard scattering objects
- And the axis 1 cm from the periphery chosen as the CTDI measurement location

CT Scanners:
 Estimate Unshielded Kerma

- Estimate Workload
- Ben Archer (c.1993) guessed that there were ~ 40 (10 mm
thick) slices/patient
- Helical/multislice scanners: probably more like
- 20 cm total thickness imaged for head patients
- $40-60 \mathrm{~cm}$ total thickness imaged for body patients
- $\times 2$ for patients scanned with \& without contrast
- 100-200 patient/wk typically

Unshielded Kerma from DLP

