Warm Up

Solve each equation.

1.
$$\frac{2.4}{x} = \frac{2}{9}$$
 10.8

2.
$$1.6x = 1.8(24.8)$$
 27.9

Determine whether each data set could represent a linear function.

Objective

Solve problems involving direct, inverse, joint, and combined variation.

Vocabulary

direct variation constant of variation joint variation inverse variation combined variation In Chapter 2, you studied many types of linear functions. One special type of linear function is called *direct variation*. A **direct variation** is a relationship between two variables x and y that can be written in the form y = kx, where $k \neq 0$. In this relationship, k is the **constant of variation**. For the equation y = kx, y varies directly as x.

A direct variation equation is a linear equation in the form y = mx + b, where b = 0 and the constant of variation k is the slope. Because b = 0, the graph of a direct variation always passes through the origin.

Example 1: Writing and Graphing Direct Variation

Given: y varies directly as x, and y = 27 when x = 6. Write and graph the direct variation function.

$$y = kx$$

y varies directly as x.

$$27 = k(6)$$

Substitute 27 for y and 6 for x.

$$k = 4.5$$

Solve for the constant of variation k.

$$y = 4.5x$$

Write the variation function by using the value of k.

Example 1 Continued

Graph the direct variation function. The *y*-intercept is 0, and the slope is 4.5.

Check Substitute the original values of x and y into the equation.

$$y = 4.5x$$
27 | 4.5(6)
27 | \checkmark

Helpful Hint

If k is positive in a direct variation, the value of y increases as the value of x increases.

Check It Out! Example 1

Given: y varies directly as x, and y = 6.5 when x = 13. Write and graph the direct variation function.

$$y = kx$$

y varies directly as x.

$$6.5 = k(13)$$

Substitute 6.5 for y and 13 for x.

$$k = 0.5$$

Solve for the constant of variation k.

$$y = 0.5x$$

Write the variation function by using the value of k.

Check It Out! Example 1 Continued

Graph the direct variation function. The *y*-intercept is 0, and the slope is 0.5.

Check Substitute the original values of x and y into the equation.

$$y = 0.5x$$
 $6.5 \quad 0.5(13)$
 $6.5 \quad 6.5 \checkmark$

When you want to find specific values in a direct variation problem, you can solve for k and then use substitution or you can use the proportion derived below.

$$y_1 = kx_1 \to \frac{y_1}{x_1} = k$$
 and $y_2 = kx_2 \to \frac{y_2}{x_2} = k$ so, $\frac{y_1}{x_1} = \frac{y_2}{x_2}$.

Example 2: Solving Direct Variation Problems

The cost of an item in euros e varies directly as the cost of the item in dollars d, and e = 3.85 euros when d = \$5.00. Find d when e = 10.00 euros.

Method 1 Find *k*.

$$e = kd$$

3.85 = k(5.00)

Substitute.

0.77 = k

Solve for k.

Write the variation function.

$$e = 0.77d$$

Use 0.77 for k.

$$10.00 = 0.77d$$

Substitute 10.00 for e.

$$12.99 \approx d$$

Solve for d.

Example 2 Continued

Method 2 Use a proportion.

$$\frac{e_1}{d_1} = \frac{e_2}{d_2}$$

$$\frac{3.85}{5.00} = \frac{10.00}{d}$$

Substitute.

$$3.85d = 50.00$$

Find the cross products.

$$12.99 \approx d$$

Solve for d.

Check It Out! Example 2

The perimeter P of a regular dodecagon varies directly as the side length s, and P = 18 in. when s = 1.5 in. Find s when P = 75 in.

Method 1 Find
$$k$$
. $P = kS$

$$18 = k(1.5)$$

$$12 = k$$
Solve for k .

Write the variation function.

$$P = 12s$$
 Use 12 for k.
 $75 = 12s$ Substitute 75 for P.
 $6.25 \approx s$ Solve for s.

Check It Out! Example 2 Continued

Method 2 Use a proportion.

$$\frac{P_1}{S_1} = \frac{P_2}{S_2}$$

$$\frac{18}{1.5} = \frac{75}{S}$$

Substitute.

$$18s = 112.5$$

Find the cross products.

$$6.25 = s$$

Solve for s.

A **joint variation** is a relationship among three variables that can be written in the form y = kxz, where k is the constant of variation. For the equation y = kxz, y varies jointly as x and z.

Reading Math

The phrases "y varies directly as x" and "y is directly proportional to x" have the same meaning.

Example 3: Solving Joint Variation Problems

The volume V of a cone varies jointly as the area of the base B and the height h, and $V = 12\pi$ ft³ when $B = 9\pi$ ft³ and h = 4 ft. Find bwhen $V = 24\pi$ ft³ and h = 9 ft.

Step 1 Find *k*.

$$V = kBh$$

$$12\pi = k(9\pi)(4)$$
 Substitute.

$$\frac{1}{3} = k$$

Solve for k.

Step 2 Use the variation function.

$$V = \frac{1}{3}Bh$$

Use
$$\frac{1}{3}$$
 for k.

$$24\pi = \frac{1}{3}B(9)$$
 Substitute.

$$8\pi = B$$

Solve for B.

The base is 8π ft².

Check It Out! Example 3

The lateral surface area L of a cone varies jointly as the area of the base radius r and the slant height I, and $L = 63\pi$ m² when r = 3.5 m and I = 18 m. Find r to the nearest tenth when $L = 8\pi$ m² and I = 5 m.

Step 1 Find *k*.

$$L = krI$$

$$63\pi = k(3.5)(18)$$
 Substitute.

$$\pi = k$$

Solve for k.

Step 2 Use the variation function.

$$L = \pi r I$$

Use π for k.

$$8\pi = \pi r(5)$$

Substitute.

$$1.6 = r$$

Solve for r.

A third type of variation describes a situation in which one quantity increases and the other decreases. For example, the table shows that the time needed to drive 600 miles decreases as speed increases.

Speed (mi/h)	Time (h)	Distance (mi)
30	20	600
40	15	600
50	12	600

This type of variation is an inverse variation. An **inverse variation** is a relationship between two variables x and y that can be written in the form $y = \frac{k}{x}$, where $k \neq 0$. For the equation $y = \frac{k}{x}$, y varies inversely as x.

Example 4: Writing and Graphing Inverse Variation

Given: y varies inversely as x, and y = 4 when x = 5. Write and graph the inverse variation function.

$$y = \frac{k}{x}$$

y varies inversely as x.

$$4 = \frac{k}{5}$$

Substitute 4 for y and 5 for x.

$$k = 20$$

Solve for k.

$$y = \frac{20}{x}$$

Write the variation formula.

Example 4 Continued

To graph, make a table of values for both positive and negative values of x. Plot the points, and connect them with two smooth curves. Because division by 0 is undefined, the function is undefined when x = 0.

X	У
- 2	-10
– 4	- 5
– 6	<u>- 10</u> 3
-8	<u>-</u> <u>5</u> 2

X	У
2	10
4	5
6	<u>10</u> 3
8	<u>5</u> 2

Check It Out! Example 4

Given: y varies inversely as x, and y = 4 when x = 10. Write and graph the inverse variation function.

$$y = \frac{k}{x}$$

y varies inversely as x.

$$4 = \frac{k}{10}$$

Substitute 4 for y and

$$k = 40$$

Solve for k.

$$y = \frac{40}{x}$$

Write the variation formula.

Check It Out! Example 4 Continued

To graph, make a table of values for both positive and negative values of x. Plot the points, and connect them with two smooth curves. Because division by 0 is undefined, the function is undefined when x = 0.

X	У
– 2	–20
– 4	-10
– 6	<u>- 20</u> 3
-8	– 5

X	У
2	20
4	10
6	<u>20</u> 3
8	5

When you want to find specific values in an inverse variation problem, you can solve for k and then use substitution or you can use the equation derived below.

$$y_1 = \frac{k}{x_1} \to y_1 x_1 = k$$
 and $y_2 = \frac{k}{x_2} \to y_2 x_2 = k$ so, $y_1 x_1 = y_2 x_2$.

Example 5: Sports Application

The time t needed to complete a certain race varies inversely as the runner's average speed s. If a runner with an average speed of 8.82 mi/h completes the race in 2.97 h, what is the average speed of a runner who completes the race in 3.5 h?

Method 1 Find *k*.

$$t = \frac{K}{s}$$
 $2.97 = \frac{k}{8.82}$
 $k = 26.1954$
 $t = \frac{26.1954}{s}$
 $t = \frac{26.1954}{s}$

Example 5 Continued

Method Use
$$t_1s_1 = t_2s_2$$
.
 $t_1s_1 = t_2s_2$
(2.97)(8.82) = 3.5s Substitute.
26.1954 = 3.5s Simplify.
7.48 \approx s Solve for s.

So the average speed of a runner who completes the race in 3.5 h is approximately 7.48 mi/h.

Check It Out! Example 5

The time t that it takes for a group of volunteers to construct a house varies inversely as the number of volunteers v. If 20 volunteers can build a house in 62.5 working hours, how many working hours would it take 15 volunteers to build a house?

Method 1 Find k.

$$t = \frac{k}{V}$$

$$62.5 = \frac{k}{20}$$

$$k = 1250$$

$$t = \frac{1250}{v}$$

$$t = \frac{1250}{v}$$

$$t = \frac{1250}{15}$$

$$t \approx 83\frac{1}{3}$$
Solve for k.
Substitute 15 for v.

Solve for t.

Check It Out! Example 5 Continued

Method 2 Use
$$t_1v_1 = t_2v_2$$
.

 $t_1v_1 = t_2v_2$

(62.5)(20) = 15t Substitute.

1250 = 15t Simplify.

83 $\frac{1}{3} \approx t$ Solve for t.

So the number of working hours it would take 15 volunteers to build a house is approximately $83\frac{1}{3}$ hours.

You can use algebra to rewrite variation functions in terms of *k*.

Direct Variation

$$y = kx \rightarrow k = \frac{y}{x}$$
Constant ratio

Inverse Variation

$$y = \frac{k}{x} \rightarrow k = xy$$
Constant product

Notice that in direct variation, the *ratio* of the two quantities is constant. In inverse variation, the *product* of the two quantities is constant.

Example 6: Identifying Direct and Inverse Variation

Determine whether each data set represents a direct variation, an inverse variation, or neither.

Α.

X	6.5	13	104
У	8	4	0.5

In each case xy = 52. The product is constant, so this represents an inverse variation.

В,

X	5	8	12
У	30	48	72

In each case $\frac{y}{x} = 6$. The ratio is constant, so this represents a direct variation.

Example 6: Identifying Direct and Inverse Variation

Determine whether each data set represents a direct variation, an inverse variation, or neither.

C.

X	3	6	8
У	5	14	21

Since xy and $\frac{y}{x}$ are not constant, this is neither a direct variation nor an inverse variation.

Check It Out! Example 6

Determine whether each data set represents a direct variation, an inverse variation, or neither.

6a.

X	3.75	15	5
У	12	3	9

In each case xy = 45. The ratio is constant, so this represents an inverse variation.

6b.

X	1	40	26
У	0.2	8	5.2

In each case $\frac{y}{x} = 0.2$. The ratio is constant, so this represents a direct variation.

A <u>combined variation</u> is a relationship that contains both direct and inverse variation. Quantities that vary directly appear in the numerator, and quantities that vary inversely appear in the denominator.

Example 7: Chemistry Application

The change in temperature of an aluminum wire varies inversely as its mass m and directly as the amount of heat energy E transferred. The temperature of an aluminum wire with a mass of 0.1 kg rises 5°C when 450 joules (J) of heat energy are transferred to it. How much heat energy must be transferred to an aluminum wire with a mass of 0.2 kg raise its temperature 20°C?

Example 7 Continued

Step 1 Find *k*.

$$\Delta T = \frac{kE}{m}$$
 Combined variation
$$5 = \frac{k(450)}{0.1}$$
 Substitute.
$$\frac{1}{0.00} = k$$
 Solve for k.

Step 2 Use the variation function.

$$\Delta T = \frac{E}{900m} \qquad Use_{\frac{1}{900}} for k.$$

$$20 = \frac{E}{900(0.2)}$$
 Substitute.

$$3600 = E$$
 Solve for E.

The amount of heat energy that must be transferred is 3600 joules (J).

Check It Out! Example 7

The volume *V* of a gas varies inversely as the pressure *P* and directly as the temperature *T*. A certain gas has a volume of 10 liters (L), a temperature of 300 kelvins (K), and a pressure of 1.5 atmospheres (atm). If the gas is heated to 400K, and has a pressure of 1 atm, what is its volume?

Check It Out! Example 7

Step 1 Find *k*.

$$V = \frac{kT}{P}$$
 Combined variation

$$10 = \frac{k(300)}{1.5}$$
 Substitute.

$$0.05 = k$$
 Solve for k.

Step 2 Use the variation function.

$$V = \frac{0.05T}{P} \qquad \frac{Use \ 0.05 \ for}{k.}$$

$$V = \frac{0.05(400)}{(1)}$$
 Substitute.

$$V = 20$$
 Solve for V .

The new volume will be 20 L.

Lesson Quiz: Part I

- **1.** The volume V of a pyramid varies jointly as the area of the base B and the height h, and V = 24 ft³ when B = 12 ft² and h = 6 ft. Find B when V = 54 ft³ and h = 9 ft.

 18 ft²
- **2.** The cost per person *c* of chartering a tour bus varies inversely as the number of passengers *n*. If it costs \$22.50 per person to charter a bus for 20 passengers, how much will it cost per person to charter a bus for 36 passengers? \$12.50

Lesson Quiz: Part II

3. The pressure *P* of a gas varies inversely as its volume *V* and directly as the temperature *T*. A certain gas has a pressure of 2.7 atm, a volume of 3.6 L, and a temperature of 324 K. If the volume of the gas is kept constant and the temperature is increased to 396 K, what will the new pressure be?

3.3 atm