Variation Functions

Warm Up
 Solve each equation.

1. $\frac{2.4}{x}=\frac{2}{9} \quad 10.8$
2. $1.6 x=1.8(24.8) 27.9$

Determine whether each data set could represent a linear function.
3.

x	2	4	6	8
y	12	6	4	3

4. | x | -2 | -1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- |
| \boldsymbol{y} | -6 | -2 | 2 | 6 | yes

Variation Functions

Objective

Solve problems involving direct, inverse, joint, and combined variation.

Variation Functions

Vocabulary

direct variation
constant of variation joint variation inverse variation combined variation

Variation Functions

In Chapter 2, you studied many types of linear functions. One special type of linear function is called direct variation. A direct variation is a relationship between two variables x and y that can be written in the form $y=k x$, where $k \neq 0$. In this relationship, k is the constant of variation. For the equation $y=k x, y$ varies directly as x.

Variation Functions

A direct variation equation is a linear equation in the form $y=m x+b$, where $b=0$ and the constant of variation k is the slope. Because $b=0$, the graph of a direct variation always passes through the origin.

Variation Functions

Example 1: Writing and Graphing Direct Variation

Given: y varies directly as x, and $y=27$ when $x=6$. Write and graph the direct variation function.

$$
\begin{array}{ll}
y=k x & y \text { varies directly as } x . \\
27=k(6) & \text { Substitute } 27 \text { for } y \text { and } 6 \text { for } x . \\
k=4.5 & \text { Solve for the constant of variation } k . \\
y=4.5 x & \begin{array}{l}
\text { Write the variation function by using } \\
\text { the value of } k .
\end{array}
\end{array}
$$

Variation Functions

Example 1 Continued

Graph the direct variation function. The y-intercept is 0 , and the slope is 4.5 .

Check Substitute the original values of x anc y into the equation.

\[

\]

Variation Functions

Helpful Hint

If k is positive in a direct variation, the value of y increases as the value of x increases.

Variation Functions

Check It Out! Example 1

Given: y varies directly as x, and $y=6.5$ when $x=13$. Write and graph the direct variation function.

$$
\begin{array}{rlrl}
y & =k x & & y \text { varies directly as } x . \\
6.5 & =k(13) & & \text { Substitute } 6.5 \text { for } y \text { and } 13 \text { for } x . \\
k & =0.5 & & \text { Solve for the constant of variation } k . \\
y & =0.5 x & & \text { Write the variation function by using } \\
& & \text { the value of } k .
\end{array}
$$

Variation Functions

Check It Out! Example 1 Continued

Graph the direct variation function. The y-intercept is 0 , and the slope is 0.5 .

Check Substitute the original values of x and y into the equation.

\[

\]

Variation Functions

When you want to find specific values in a direct variation problem, you can solve for k and then use substitution or you can use the proportion derived below.

$$
y_{1}=k x_{1} \rightarrow \frac{y_{1}}{x_{1}}=k \quad \text { and } \quad y_{2}=k x_{2} \rightarrow \frac{y_{2}}{x_{2}}=k \quad \text { so, } \quad \frac{y_{1}}{x_{1}}=\frac{y_{2}}{x_{2}} .
$$

Variation Functions

Example 2: Solving Direct Variation Problems

The cost of an item in euros e varies directly as the cost of the item in dollars d, and $e=3.85$ euros when $d=\$ 5.00$. Find d when e = 10.00 euros.
Method 1 Find k.

$$
\begin{aligned}
e & =k d & & \\
3.85 & =k(5.00) & & \text { Substitute. } \\
0.77 & =k & & \text { Solve for } k .
\end{aligned}
$$

Write the variation function.

$$
\begin{aligned}
e & =0.77 d & & \text { Use } 0.77 \text { for } k . \\
10.00 & =0.77 d & & \text { Substitute } 10.00 \text { for } e . \\
12.99 & \approx d & & \text { Solve for } d .
\end{aligned}
$$

Variation Functions

Example 2 Continued

Method 2 Use a proportion.

$$
\begin{aligned}
\frac{e_{1}}{d_{1}} & =\frac{e_{2}}{d_{2}} \\
\frac{3.85}{5.00} & =\frac{10.00}{d} \quad \text { Substitute. }
\end{aligned}
$$

$3.85 d=50.00 \quad$ Find the cross products
$12.99 \approx d \quad$ Solve for d.

Variation Functions

Check It Out! Example 2

The perimeter P of a regular dodecagon varies directly as the side length s, and $P=18$ in. when $s=1.5$ in. Find s when $P=75$ in.

Method 1 Find $k . \quad P=k s$

$$
\begin{array}{ll}
18=k(1.5) & \\
\text { Substitute. } \\
12=k & \\
\text { Solve for } k .
\end{array}
$$

Write the variation function.

$$
\begin{aligned}
P & =12 s & & \text { Use } 12 \text { for } k . \\
75 & =12 s & & \text { Substitute } 75 \text { for } P . \\
6.25 & \approx s & & \text { Solve for } s .
\end{aligned}
$$

Variation Functions

Check It Out! Example 2 Continued

Method 2 Use a proportion.

$$
\begin{aligned}
\frac{P_{1}}{s_{1}} & =\frac{P_{2}}{s_{2}} \\
\frac{18}{1.5} & =\frac{75}{s}
\end{aligned}
$$

Substitute.
$18 s=112.5$
Find the cross products.
$6.25=s$
Solve for s.

Variation Functions

A ioint variation is a relationship among three variables that can be written in the form $y=k x z$, where k is the constant of variation. For the equation $y=k x z, y$ varies jointly as x and z.

Reading Math

The phrases " y varies directly as x " and " y is directly proportional to x " have the same meaning.

Variation Functions

Example 3: Solving Joint Variation Problems

The volume V of a cone varies jointly as the area of the base B and the height h, and $V=12 \pi \mathrm{ft}^{3}$ when $B=9 \pi \mathrm{ft}^{3}$ and $h=4 \mathrm{ft}$. Find b when $V=24 \pi \mathrm{ft}^{3}$ and $h=9 \mathrm{ft}$.

Step 1 Find k.
$V=k B h$
$12 \pi=k(9 \pi)(4)$ Substitute.

$$
\frac{1}{3}=k \quad \text { Solve for } k
$$

Step 2 Use the variation function.

$$
\begin{aligned}
V & =\frac{1}{3} B h & & \text { Use } \frac{1}{3} \text { for } k \\
4 \pi & =\frac{1}{3} B(9) & & \text { Substitute. } \\
8 \pi & =B & & \text { Solve for } B
\end{aligned}
$$

The base is $8 \pi \mathrm{ft}^{2}$.

Variation Functions

Check It Out! Example 3

The lateral surface area L of a cone varies jointly as the area of the base radius r and the slant height I, and $L=63 \pi \mathrm{~m}^{2}$ when $r=3.5 \mathrm{~m}$ and $I=18 \mathrm{~m}$. Find r to the nearest tenth when $L=8 \pi \mathrm{~m}^{2}$ and $I=5 \mathrm{~m}$.

Step 1 Find k. $L=k r l$
$63 \pi=k(3.5)(18)$ Substitute.
$\pi=k \quad$ Solve for k.

Step 2 Use the variation function.

$$
L=\pi r l \quad \text { Use } \pi \text { for } k
$$

$$
8 \pi=\pi r(5) \quad \text { Substitute. }
$$

$$
1.6=r \quad \text { Solve for } r .
$$

Variation Functions

A third type of variation describes a situation in which one quantity increases and the other decreases. For example, the table shows that the time needed to drive 600 miles decreases

Speed $(\mathbf{m i} / \mathbf{h})$	Time $\mathbf{(h)}$	Distance $(\mathbf{m i})$
30	20	600
40	15	600
50	12	600

This type of variation is an inverse variation. An inverse variation is a relationship between two variables x and y that can be written in the form $y=\frac{k}{x}$, where $k \neq 0$. For the equation $y=\frac{k}{x}$, y varfes inversely as x.

Variation Functions

Example 4: Writing and Graphing Inverse Variation

Given: y varies inversely as x, and $y=4$ when $x=5$. Write and graph the inverse variation function.

$$
\begin{array}{ll}
y=\frac{k}{x} & \\
4=\frac{y}{5} & \begin{array}{ll}
\text { Subsies inversely as } x \\
5 \text { for } x . \\
k=20 & \\
y=\frac{20}{x} & \\
\text { Solve for } k . \\
\text { Write the variation } \\
\text { formula. }
\end{array}
\end{array}
$$

Variation Functions

Example 4 Continued

To graph, make a table of values for both positive and negative values of x. Plot the points, and connect them with two smooth curves. Because division by 0 is undefined, the function is undefined when $x=0$.

x	y
-2	-10
-4	-5
-6	$-\frac{10}{3}$
-8	$-\frac{5}{2}$

x	y
2	10
4	5
6	$\frac{10}{3}$
8	$\frac{5}{2}$

Variation Functions

Check It Out! Example 4

Given: y varies inversely as x, and $y=4$ when $x=10$. Write and graph the inverse variation function.

$$
\begin{array}{ll}
y=\frac{k}{x} & \\
4=\frac{k}{10} & \begin{array}{ll}
\text { Subsies inversely as } x . \\
10 \text { for } x .
\end{array} \\
k=40 & \\
\text { Solve for } y \text { and } \\
y=\frac{40}{x} & \begin{array}{l}
\text { Write the variation } \\
\text { formula. }
\end{array}
\end{array}
$$

Variation Functions

Check It Out! Example 4 Continued

To graph, make a table of values for both positive and negative values of x. Plot the points, and connect them with two smooth curves. Because division by 0 is undefined, the function is undefined when $x=0$.

x	y
-2	-20
-4	-10
-6	$-\frac{20}{3}$
-8	-5

x	y
2	20
4	10
6	$\frac{20}{3}$
8	5

Variation Functions

When you want to find specific values in an inverse variation problem, you can solve for k and then use substitution or you can use the equation derived below.

$$
y_{1}=\frac{k}{x_{1}} \rightarrow y_{1} x_{1}=k \quad \text { and } \quad y_{2}=\frac{k}{x_{2}} \rightarrow y_{2} x_{2}=k \quad \text { so, } \quad y_{1} x_{1}=y_{2} x_{2} .
$$

Variation Functions

Example 5: Sports Application

The time t needed to complete a certain race varies inversely as the runner's average speed s. If a runner with an average speed of $8.82 \mathrm{mi} / \mathrm{h}$ completes the race in 2.97 h , what is the average speed of a runner who completes the race in 3.5 h ?

Method 1 Find k.

$$
\begin{aligned}
t & =\frac{k}{s} & & \\
2.97 & =\frac{k}{8.82} & & \text { Substitute. } \\
k & =26.1954 & & \text { Solve for } k . \\
t & =\frac{26.1954}{s} & & \text { Use } 26.1954 \text { for } k . \\
3.5 & =\frac{26.1954}{s} & & \text { Substitute } 3.5 \text { for } t . \\
s & \approx 7.48 & & \text { Solve for } s .
\end{aligned}
$$

Variation Functions

Example 5 Continued

Method Use $t_{1} s_{1}=t_{2} s_{2}$.

$$
\begin{aligned}
t_{1} s_{1} & =t_{2} s_{2} & & \\
(2.97)(8.82) & =3.5 \mathrm{~s} & & \text { Substitute. } \\
26.1954 & =3.5 \mathrm{~s} & & \text { Simplify. } \\
7.48 & \approx s & & \text { Solve for } s .
\end{aligned}
$$

So the average speed of a runner who completes the race in 3.5 h is approximately $7.48 \mathrm{mi} / \mathrm{h}$.

Variation Functions

Check It Out! Example 5

The time \boldsymbol{t} that it takes for a group of volunteers to construct a house varies inversely as the number of volunteers v. If $\mathbf{2 0}$ volunteers can build a house in 62.5 working hours, how many working hours would it take 15 volunteers to build a house? Method 1 Find k.

$$
t=\frac{k}{v}
$$

$$
62.5=\frac{k}{20}
$$

Substitute.

$$
k=1250
$$

$$
\text { Solve for } k \text {. }
$$

$$
t=\frac{1250}{v}
$$

$$
\text { Use } 1250 \text { for } k .
$$

$$
t=\frac{1250}{15} \quad \text { Substitute } 15 \text { for } \mathrm{v} .
$$

$$
t \approx 83 \frac{1}{3} \quad \text { Solve for } t
$$

Variation Functions

Check It Out! Example 5 Continued

Method 2 Use $t_{1} v_{1}=t_{2} v_{2}$.

$$
\begin{aligned}
t_{1} v_{1} & =t_{2} v_{2} & & \\
(62.5)(20) & =15 t & & \text { Substitute. } \\
1250 & =15 t & & \text { Simplify. } \\
83 \frac{1}{3} & \approx t & & \text { Solve for } t .
\end{aligned}
$$

So the number of working hours it would take 15 volunteers to build a house is approximately $83 \frac{1}{3}$ hours.

Variation Functions

You can use algebra to rewrite variation functions in terms of k.

Direct Variation
$\boldsymbol{y}=\boldsymbol{k} \boldsymbol{x} \rightarrow \boldsymbol{k}=\underbrace{\frac{\boldsymbol{y}}{\boldsymbol{x}}}_{\text {Constant ratio }}$

Inverse Variation

Notice that in direct variation, the ratio of the two quantities is constant. In inverse variation, the product of the two quantities is constant.

Variation Functions

Example 6: Identifying Direct and Inverse Variation

Determine whether each data set represents a direct variation, an inverse variation, or neither.
A.

In each case $x y=52$. The product is constant, so this represents an inverse variation.
B.

In each case $y=6$. The ratio is constaKt, so this represents a direct variation.

Variation Functions

Example 6: Identifying Direct and Inverse Variation

 Determine whether each data set represents a direct variation, an inverse variation, or neither.C.

x	3	6	8
y	5	14	21

Since $x y$ and $\frac{y}{y}$ are not constant, this î́s neither a direct variation nor an inverse variation.

Variation Functions

Check It Out! Example 6

Determine whether each data set represents a direct variation, an inverse variation, or neither.

6 6.

x	3.75	15	5
y	12	3	9

In each case $x y=45$. The ratio is constant, so this represents an inverse variation.

6b.

In each case $y=0.2$. The ratio is constant, so this represents a direct variation.

Variation Functions

> A combined variation is a relationship that contains both direct and inverse variation. Quantities that vary directly appear in the numerator, and quantities that vary inversely appear in the denominator.

Variation Functions

Example 7: Chemistry Application

The change in temperature of an aluminum wire varies inversely as its mass m and directly as the amount of heat energy E transferred. The temperature of an aluminum wire with a mass of 0.1 kg rises $5^{\circ} \mathrm{C}$ when 450 joules (J) of heat energy are transferred to it. How much heat energy must be transferred to an aluminum wire with a mass of 0.2 kg raise its temperature $20^{\circ} \mathrm{C}$?

Variation Functions

Example 7 Continued

Step 1 Find k.

$$
\begin{aligned}
& \Delta T=\frac{k E}{m} \quad \text { Combined } \\
& \text { variation } \\
& 5=\frac{k(450)}{0.1} \text { Substitute. } \\
& \frac{1}{900}=k \quad \text { Solve for } k \text {. }
\end{aligned}
$$

Step 2 Use the variation function.

$$
\begin{aligned}
& \Delta T=\frac{E}{900 m} \\
& 20=\frac{E}{900(0.2)} \\
& \text { Use } \frac{1}{900} \text { for } k . \\
& \text { Substitute. }
\end{aligned}
$$

$$
3600=E \quad \text { Solve for } E
$$

The amount of heat energy that must be transferred is 3600 joules (J).

Variation Functions

Check It Out! Example 7

The volume \boldsymbol{V} of a gas varies inversely as the pressure P and directly as the temperature T. A certain gas has a volume of 10 liters (L), a temperature of 300 kelvins (K), and a pressure of 1.5 atmospheres (atm). If the gas is heated to 400 K , and has a pressure of 1 atm, what is its volume?

Variation Functions

Check It Out! Example 7

Step 1 Find k.

$$
\left.\begin{array}{rl}
V & =\frac{k T}{P}
\end{array} \begin{array}{ll}
\text { Combined } \\
\text { variation }
\end{array}\right]=\frac{k(300)}{1.5} \text { Substitute. }
$$

$0.05=k \quad$ Solve for k.

Step 2 Use the variation function.

$$
\begin{array}{ll}
V=\frac{0.05 T}{P} & \text { Use } 0.05 \text { for } \\
V . \\
V=\frac{0.05(400)}{(1)} & \text { Substitute. }
\end{array}
$$

$$
V=20 \quad \text { Solve for } V
$$

The new volume will be 20 L .

Variation Functions

Lesson Quiz: Part I

1. The volume V of a pyramid varies jointly as the area of the base B and the height h, and $V=24 \mathrm{ft}^{3}$ when $B=12 \mathrm{ft}^{2}$ and $h=6 \mathrm{ft}$. Find B when $V=54 \mathrm{ft}^{3}$ and $h=9 \mathrm{ft}$.
$18 \mathrm{ft}^{2}$
2. The cost per person c of chartering a tour bus varies inversely as the number of passengers n. If it costs $\$ 22.50$ per person to charter a bus for 20 passengers, how much will it cost per person to charter a bus for 36 passengers?
\$12.50

Variation Functions

Lesson Quiz: Part II

3. The pressure P of a gas varies inversely as its volume V and directly as the temperature T. A certain gas has a pressure of 2.7 atm, a volume of 3.6 L , and a temperature of 324 K . If the volume of the gas is kept constant and the temperature is increased to 396 K, what will the new pressure be?
3.3 atm
