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PREFACE

In this book we aim to present, in a unified framework, a broad spectrum
of mathematical theory that has grown in connection with the study of prob-
lems of optimization, equilibrium, control, and stability of linear and nonlinear
systems. The title Variational Analysis reflects this breadth.

For a long time, ‘variational’ problems have been identified mostly with
the ‘calculus of variations’. In that venerable subject, built around the min-
imization of integral functionals, constraints were relatively simple and much
of the focus was on infinite-dimensional function spaces. A major theme was
the exploration of variations around a point, within the bounds imposed by the
constraints, in order to help characterize solutions and portray them in terms
of ‘variational principles’. Notions of perturbation, approximation and even
generalized differentiability were extensively investigated. Variational theory
progressed also to the study of so-called stationary points, critical points, and
other indications of singularity that a point might have relative to its neighbors,
especially in association with existence theorems for differential equations.

With the advent of computers, there has been a tremendous expansion
of interest in new problem formulations that similarly demand such modes of
analysis but are far from being covered by classical concepts, not to speak
of classical results. For those problems, finite-dimensional spaces of arbitrary
dimensionality are important alongside of function spaces, and theoretical con-
cerns go hand in hand with the practical ones of mathematical modeling and
the design of numerical procedures.

It is time to free the term ‘variational’ from the limitations of its past and
to use it to encompass this now much larger area of modern mathematics. We
see ‘variations’ as referring not only to movement away from a given point along
rays or curves, and to the geometry of tangent and normal cones associated
with that, but also to the forms of perturbation and approximation that are
describable by set convergence, set-valued mappings and the like. Subgradients
and subderivatives of functions, convex and nonconvex, are crucial in analyzing
such ‘variations’, as are the manifestations of Lipschitzian continuity that serve
to quantify rates of change.

Our goal is to provide a systematic exposition of this broader subject as a
coherent branch of analysis that, in addition to being powerful for the problems
that have motivated it so far, can take its place now as a mathematical discipline
ready for new applications.

Rather than detailing all the different approaches that researchers have
been occupied with over the years in the search for the right ideas, we seek to
reduce the general theory to its key ingredients as now understood, so as to
make it accessible to a much wider circle of potential users. But within that
consolidation, we furnish a thorough and tightly coordinated exposition of facts
and concepts.

Several books have already dealt with major components of the subject.
Some have concentrated on convexity and kindred developments in realms of
nonconvexity. Others have concentrated on tangent vectors and subderiva-
tives more or less to the exclusion of normal vectors and subgradients, or vice
versa, or have focused on topological questions without getting into general-
ized differentiability. Here, by contrast, we cover set convergence and set-valued
mappings to a degree previously unavailable and integrate those notions with
both sides of variational geometry and subdifferential calculus. We furnish a
needed update in a field that has undergone many changes, even in outlook. In
addition, we include topics such as maximal monotone mappings, generalized
second derivatives, and measurable selections and integrands, which have not
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in the past received close attention in a text of this scope. (For lack of space,
we say little about the general theory of critical points, although we see that
as a close neighbor to variational analysis.)

Many parts of this book contain material that is new not only in its manner
of presentation but also in research. Each chapter provides motivations at
the beginning and throughout, and each concludes with extensive notes which
furnish credits and references together with historical perspective on how the
ideas gradually took shape. These notes also explain the reasons for some of
the decisions about notation and terminology that we felt were expedient in
streamlining the subject so as to prepare it for wider use.

Because of the large volume of material and the challenge of unifying it
properly, we had to draw the line somewhere. We chose to keep to finite-
dimensional spaces so as not to cloud the picture with the many complications
that a treatment of infinite-dimensional spaces would bring. Another reason for
this choice was the fact that many of the concepts have multiple interpretations
in the infinite-dimensional context, and more time may still be needed for them
to be sorted out. Significant progress continues, but even in finite-dimensional
spaces it is only now that the full picture is emerging with clarity. The abun-
dance of applications in finite-dimensional spaces makes it desirable to have an
exposition that lays out the most effective patterns in that domain, even if, in
some respects, such patterns are not able go further without modification.

We envision that this book will be useful to graduate students, researchers
and practitioners in a range of mathematical sciences, including some front-line
areas of engineering and statistics that draw on optimization. We have aimed
at making available a handy reference for numerous facts and ideas that cannot
be found elsewhere except in technical papers, where the lack of a coordinated
terminology and notation is currently a formidable barrier. At the same time,
we have attempted to write this book so that it is helpful to readers who want
to learn the field, or various aspects of it, step by step. We have provided many
figures and examples, along with exercises accompanied by guides.

We have divided each chapter into a main part followed by sections marked
by *, so as to signal to the reader a stage at which it would be reasonable, in a
first run, to skip ahead to the next chapter. The results placed in the * sections
are often important as well as necessary for the completeness of the theory, but
they can suitably be addressed at a later time, once other developments begin
to draw on them.

For updates and errata, see http://math.ucdavis.edu/~rjbw.
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1. Max and Min

Questions about the maximum or minimum of a function f relative to a set C
are fundamental in variational analysis. For problems in n real variables, the
elements of C' are vectors © = (z1,...,2,) € IR". In any application, f or C
are likely to have special structure that needs to be addressed, but we begin
here with concepts associated with maximization and minimization as general
operations.

It’s convenient for many purposes to consider functions f that are allowed
to be extended-real-valued, i.e., to take values in IR = [—00, oc] instead of just
IR = (—00,00). In the extended real line IR, which has all the properties of a
compact interval, every subset R C IR has a supremum (least upper bound),
which is denoted by sup R, and likewise an infimum (greatest lower bound),
inf R, either of which could be infinite. (Caution: The case of R = () is anoma-
lous, in that inf() = oo but sup@ = —oo, so that inf() > sup@!) Custom
allows us to write min R in place of inf R if the greatest lower bound inf R
actually belongs to the set R. Likewise, we have the option of writing max R
in place of sup R if the value sup R is in R.

For inf R and sup R in the case of the set R = {f(z) }x € C} C R, we
introduce the notation

infe f:= inf f(z):=inf {f(z)|z € C},
zeC

supe f = sggf(m) :=sup {f(z)|z € C}.

(The symbol ‘.=’ means that the expression on the left is defined as equal to
the expression on the right. On occasion we’ll use ‘=:" as the statement or
reminder of a definition that goes instead from right to left.) When desirable
for emphasis, we permit ourselves to write ming f in place of info f when
info f is one of the values in the set {f(x) ’x € C} and likewise maxq f in
place of sup. f when sup, f belongs to {f(x) ’x € C}.

Corresponding to this, but with a subtle difference dictated by the inter-
pretations that will be given to oo and —oo, we introduce notation also for the
sets of points x where the minimum or maximum of f over C' is regarded as
being attained:
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argming f :=argmin f(z)
zeC
__{{a; € C| f(z) =infc f} if infc f # oo,
L0 if info f = oo,
argmax f :=argmax f(z)
zeC
— { {@x eC ’ f(x) = supgq f} if supq f # —o0,

if sup, f = —o0.

Note that we don’t regard the minimum as being attained at any z € C' when
f =00 on C, even though we may write ming f = oo in that case, nor do we
regard the maximum as being attained at any x € C when f = —oo on C'. The
reasons for these exceptions will be explained shortly. Quite apart from whether
infc f < oo or supy f > —oo, the sets argmin. f and argmax, f could be
empty in the absence of appropriate conditions of continuity, boundedness or
growth. A simple and versatile statement of such conditions will be devised in
this chapter.

The roles of oo and —oo deserve close attention here. Let’s look specifically
at minimizing f over C. If there is a point € C' where f(x) = —o0, we know
at once that = furnishes the minimum. Points z € C' where f(x) = oo, on the
other hand, have virtually the opposite significance. They aren’t even worth
contemplating as candidates for furnishing the minimum, unless f has co as
its value everywhere on (', a case that can be set aside as expressing a form of
degeneracy—which we underline by defining argmin. f to be empty then. In
effect, the side condition f(x) < oo is considered to be implicit in minimizing
f(x) over x € C. Everything of interest is the same as if we were minimizing
over C' := {x € C| f(x) < oo} instead of C.

A. Penalties and Constraints

This gives birth to an important idea in the context of C' being a subset of IR".
Perhaps f is merely real-valued on C, but whether this is true or not, we can
transform the problem of minimizing f over C' into one of minimizing f over
all of IR"™ just by defining (or as the case may be, redefining) f(x) to be co
for all the points z € IR" such that ¢ C. This helps in thinking abstractly
about minimization and in achieving a single framework for the development
of properties and results.

1.1 Example (equality and inequality constraints). A set C' C IR" may be

specified as consisting of the vectors x = (x1,...,x,) such that
fz(m)SO fOfiEIl,
veX and {fz(ac):o for i € I,

where X is some subset of IR" and I, and I, are index sets for families of
functions f; : IR" — IR called constraint functions. The conditions f;(z) < 0
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are inequality constraints on x, while those of form f;(x) = 0 are equality
constraints; the condition © € X (where in particular X could be all of R") is
an abstract or geometric constraint.

A problem of minimizing a function fy : IR" — IR subject to all of these
constraints can be identified with the problem of minimizing the function f :
IR" — R defined by taking f(x) = fo(z) when x satisfies the constraints but
f(x) = oo otherwise. The possibility of having inf f = oo corresponds then to
the possibility that C = (), i.e., that the constraints may be inconsistent.

Fig.1-1. A set defined by inequality constraints.

Constraints can also have the form f;(x) < ¢;, fi(z) = ¢; or fi(z) > ¢; for
values ¢; € IR, but this doesn’t add real generality because f; can always be
replaced by f; — ¢; or ¢; — f;. Strict inequalities are rarely seen in constraints,
however, since they could threaten the attainment of a maximum or minimum.

An abstract constraint x € X is often convenient in representing conditions
of a more complicated or open-ended nature, to be worked out later, but also
for conditions too simple to be worth introducing constraint functions for, such
as upper or lower bounds on the variables z; as components of x.

1.2 Example (box constraints). A set X C IR" is called a boz if it is a product
X1 x -+ x X, of closed intervals X; of IR, not necessarily bounded. The
condition x € X, a box constraint on x = (x1,...,z,), then restricts each
variable x; to X;. For instance, the nonnegative orthant

RY :={z = (z1,...,2,) | x; >0 forall j}=][0,00)"

is a box in IR"; the constraint x € IR" restricts all variables to be nonnegative.
With X = IR} x IR"™® = [0,00)® x (—00,00)"~*, only the first s variables x;
would have to be nonnegative. In other cases, useful for technical reasons, some
intervals X; could have the degenerate form [c;, ¢;], which would force z; = ¢;.

Constraints refer to the structure of the set over which the minimization or
maximization should effectively take place, and in the approach of identifying
a problem with a function f : IR™ — IR they enter the specification of f. But
the structure of the function being minimized or maximized can be affected by
constraint representations in other ways as well.
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1.3 Example (penalties and barriers). Instead of imposing a direct constraint
fi(z) <0 or fi(x) =0, one could add a term 6;(f;(z)) to the function being
minimized, where 0; : IR — IR has 0;(t) = 0 for t < 0 but is positive for values
of f; that violate the condition in question. Then 0; is a penalty function
associated with f;. A problem of minimizing fo(x) over x € X subject to
constraints on f1(x),..., fm(x), might in this way be replaced by:

minimize fo(z) + 601 (f1(x)) + -+ + O (fm(z)) subject to z € X.

A related idea in lieu of f;(x) < 0 is adding a term Gz(fz(x)) where 0; is a
barrier function: 0;(t) = oo for t > 0, and 6;(t) — oo ast 0.

A
;9 A

@ / )
J penalt;/ barrrer

' 0

Fig.1-2. (a) A penalty function with rewards. (b) A barrier function.

As a penalty substitute for a constraint f;(z) < 0, for instance, a term
0;(fi(z)) with 6;(t) = At,, where ¢, := max{0,¢} and A > 0, would give so-
called linear penalties, while 0;(t) = %)\ti would give quadratic penalties. The

penalty function
0 ift<o,
0i(t) = {oo if£>0,

would enforce f;(xz) < 0 by triggering an infinite cost for any transgression.
This is the limiting case of linear or quadratic penalties when A\ — oco. Penalty
functions can also involve negative values (rewards) when a constraint f;(z) <0
is satisfied with room to spare, cf. Figure 1-2(a); the same for barrier functions,
cf. Fig 1-2(b). Common barrier functions for f;(x) < 0 are, for any € > 0,

o _ Je/lt] whent <O, o _ ) —elog|t| whent <0,
0:(t) = {oo when t > 0, or 03(t) = {oo when t > 0.

These examples underscore the useful range of possibilities opened up
by admitting extended-real-valued functions. They also show that properties
like differentiability which are routinely assumed in classical analysis can’t be
counted on in variational analysis. A function of the composite kind in 1.3 can
fail to be differentiable regardless of the degree of differentiability of the f;’s
because of kinks and jumps induced by the 6;’s, which may be essential to the
problem model being used.
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Everything said about minimization can be translated into the language
of maximization, with —oo taking the part of co. Such symmetry is reassur-
ing, but it must be understood that a basic asymmetry is implicit too in the
approach we’re taking. In passing from the minimization of a given function
over C to the minimization of a corresponding function over IR", we’ve resorted
to an extension by the value oo, but in the case of maximization it would be
—00. The extended function would then be different, and so would be the
properties we’d like it to have. In effect we're abandoning any predisposition
toward having a theory that treats maximization and minimization together on
an equal footing. In the assumptions eventually imposed to identify the classes
of functions most suitable for applying these operations, we mark out separate
territories for each.

In actual practice there’s rarely a need to consider both minimization and
maximization simultaneously for a single combination of a function f and a
set (', so this approach causes no discomfort. Rather than spend too many
words on parallel statements, we adopt minimization as the vehicle of expo-
sition and mention maximization only from time to time, taking for granted
that the reader will generally understand the accommodations needed in that
direction. We thereby enter a pattern of working mainly with extended-real-
valued functions on IR" and treating them in a one-sided manner where oo has
a qualitatively different role from that of —oo in our formulas, and where the
terminology and notation reflect this bias.

Starting off now on this path, we introduce for f : IR" — IR the set

dom f := {z € R"| f(z) < oo},
called the effective domain of f, and write

inf f:=inf, f(z):= inf f(x)= inf f(z),

zeR" z€dom f

argmin f := argmin_ f(z) := argmin f(x) = argmin f(z).
zeR™ z€dom f

We call f a proper function if f(x) < oo for at least one z € IR", and f(x) >
—oo for all z € IR", or in other words, if dom f is a nonempty set on which f is
finite; otherwise it is émproper. The proper functions f : IR™ — IR are thus the
ones obtained by taking a nonempty set C C IR" and a function f : C — IR,
and putting f(z) = oo for all z ¢ C. All other kinds of functions f : R" — IR
are termed smproper in this context. While proper functions are our central
concern, improper functions may arise indirectly and can’t always be excluded
from consideration.

The developments so far can be summarized as follows in the language of
optimization.

1.4 Example (principle of abstract minimization). Problems of minimizing a
finite function over some subset of IR" correspond one-to-one with problems of
minimizing over all of IR" a function f : IR" — IR, under the identifications:



6 1. Max and Min

dom f = set of feasible solutions,
argmin f = set of optimal solutions,
inf f = optimal value.

The convention that argmin f = () when f = oo ensures that a problem
is not regarded as having an optimal solution if it doesn’t even have a feasible
solution. A lack of feasible solutions is signaled by the optimal value being oco.

IR

\argmi n/f IR"

Fig.1-3. Local and global optimality in a difficult yet classical case.

It should be emphasized here that the notation argmin f refers to points
Z giving a global minimum of f. A local minimum occurs at Z if f(Z) < oo and
f(x) > f(z) for all x € V| where

V € N(Z) := the collection of all neighborhoods of z.

Then Z is a locally optimal solution to the problem of minimizing f. By a
neighborhood of x one means any set having x in its interior, for example a
closed ball

B(z,\) = {a' | d(z,2") < A},

where we use the notation

d(xz,z") := |z — 2’| (Euclidean distance), with

2| :=|(21,...,2n)| = /23 + -+ 22 (Euclidean norm).

A point T giving a local minimum of f can also be viewed as giving the global
minimum in an auxiliary problem in which the function agrees with f on some
neighborhood of Z but takes the value co elsewhere, so the study of local
optimality can to a large extent be subsumed into the study of global optimality.

An extremely useful type of function in the framework we’re adopting is
the indicator function d¢ of a set C' C IR", which is defined by

do(x) =0 if z € C, do(z) =00 if z ¢ C.

The indicator functions on IR™ are characterized as a class by taking on no value
other than 0 or co. The constant function 0 is the indicator of C' = IR", while
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the constant function oo is the indicator of C' = ). Obviously domdc = C,
and d¢ is proper if and only if C' is nonempty.

There’s no question of our wanting to minimize a function like do, but
indicators nonetheless are important in problems of minimization. To take
a simple but revealing case, suppose we’re given a finite-valued function f; :
IR" — IR and wish to minimize it over a set C' C IR"™. This is equivalent, as
already seen, to minimizing a certain extended-real-valued function f over all
of IR", namely the one defined by f(z) = fo(x) for 2 € C but f(x) = oo for
x ¢ C. The new observation is that f = fo+dc. The constraint x € C' can thus
be enforced by adding its indicator to the function being minimized. Similarly,
the condition that z be locally optimal in minimizing f can be expressed by
z € argmin (f 4 dv) for some V € N (z).

By identifying each set C' with its indicator dco, we can pass between
facts about subsets of IR" and facts about extended-real-valued functions on
IR™. This helps to cross-fertilize between geometrical and analytical concepts.
Further assistance comes from identifying functions on IR"™ with certain subsets
of R™!, as we explain next.

B. Epigraphs and Semicontinuity

Ideas of geometry have traditionally been brought to bear in the study of func-
tions and mappings by applying them to graphs. In variational analysis, graphs
continue to serve this purpose for vector-valued functions, but extended-real-
valued functions require a different perspective. The graph of such a function
on IR™ would generally be a subset of IR™ x IR rather than IR™"', and this
wouldn’t be convenient because IR" x IR isn’t a vector space. Anyway, even
if extended values weren’t an issue, the geometry of graphs wouldn’t convey
the properties that turn out to be crucial for our purposes. Graphs have to be
replaced by ‘epigraphs’.
For f: IR" — IR, the epigraph of f is the set

epi f := {(ac,a) € IR" x ]R}a > f(x)}

(see Figure 1-4). The epigraph thus consists of all the points of R™*! lying
on or above the graph of f. (Note that epi f is truly a subset of R"™*, not
just of IR™ x IR.) The image of epif under the projection (x,a) + x is
dom f. The points x where f(z) = oo are the ones such that the vertical line
(z,R) := {x} x IR misses epi f, whereas the points where f(x) = —oc are the
ones such that this line is entirely included in epi f.

What distinguishes the class of subsets of IR"*! that are the epigraphs
of the extended-real-valued functions on IR"? Clearly E belongs to this ‘epi-
graphical’ class if and only if it intersects every vertical line (z, IR) in a closed
interval which, unless empty, is unbounded above. The associated function in
that case is proper if and only if F includes no entire vertical line, and E # ().
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Every property of f has its counterpart in a property of epi f, because the
correspondence between functions and epigraphs is one-to-one. Many proper-
ties also relate very naturally to the various level sets of f. In general, we’ll
find it useful to have the notation

evo fi={reR"|f(z) <

ev_o fi={zeR"| f(z) <
vof={zeR"|f(z)= a}

lev_,, f:={z € R"| f(z)

lev,, f:={z € R"| f(z)
The most important of these in the context of minimization are the lower level

sets lev_,, f. For « finite, they correspond to the ‘horizontal cross sections’ of
epi f. For a = inf f, one has lev_, f =lev_, f = argmin f.

IR

Fig. 1-4. Epigraph and effective domain of an extended-real-valued function.

We're ready now to answer a basic question about a function f : R" — IR.
What property of f translates into the sets lev_, f all being closed? The
answer depends on a one-sided concept of limit.

1.5 Definition (lower limits and lower semicontinuity). The lower limit of a
function f : IR"™ — IR at % is the value in IR defined by

it )= Ji | pt )]
1(1)
= sup { inf f(x)] = sup {inf f(x)]
§>0 [z€B(Z,9) VEN(z) LzeV
The function f : IR" — IR is lower semicontinuous (Isc) at T if

liminf f(z) > f(Z), or equivalently liminf f(z)= f(Z), 1(2)

Tr—x r—T
and lower semicontinuous on IR" if this holds for every & € IR".

The two versions in 1(2) agree because inf { f() }x € B(z,6)} < f(z) for
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all 0 > 0. For this reason too,

liminf f(z) < f(Z) always. 1(3)
r—x
In replacing the limit as § ~. 0 by the supremum over 6 > 0 in 1(1) we appeal
to the general fact that

inf f(x) < inf f(z) when X; D Xo.

x€X1 mGXg

1.6 Theorem (characterization of lower semicontinuity). The following proper-
ties of a function f : IR" — IR are equivalent:

(a) f is lower semicontinuous on IR";

(b) the epigraph set epi f is closed in IR" x IR;

(c) the level sets of type lev_, f are all closed in IR".

These equivalences will be established after some preliminaries. An exam-
ple of a function on IR that happens to be lower semicontinuous at every point
but two is displayed in Figure 1-5. Notice how the defect is associated with
the failure of the epigraph to include all of its boundary.

Fig.1-5. An example where lower semicontinuity fails.

In the proof of Theorem 1.6 and throughout the book, we use sequence
notation in which the running index is always superscript v (Greek ‘nu’). We
symbolize the natural numbers by IV, so that v € IN means v = 1,2,.... The
notation x¥ — x, or x = lim, x”, refers then to a sequence {x”}yew in IR"
that converges to x, i.e., has |z — x| — 0 as v — o0o. We speak of x as a
cluster point of x¥ as v — oo if, instead of necessarily claiming ¥ — x, we
wish merely to assert that some subsequence converges to z. (Every bounded
sequence in IR™ has at least one cluster point. A sequence in IR" converges to

x if and only if it is bounded and has x as its only cluster point.)

1.7 Lemma (characterization of lower limits).

liminf f(z) = min{o € R| 32" — & with f(z") — a}.

T—T

(Here the constant sequence x¥ = T is admitted and yields o = f(Z).)
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Proof. By the conventions explained at the outset of this chapter, the ‘min’
in place of ‘inf’ means that the value on the left is not only the greatest lower
bound in IR of the possible limit values o described in the set on the right,
it’s actually attained as the limit corresponding to some sequence =¥ — x. Let
a = liminf, .z f(z). We first suppose that 2 — Z with f(2”) — « and show
this implies &« > &. For any § > 0 we eventually have = in the ball B(z,0)
and therefore f(z”) > inf{f(z) |z € B(%,§)}. Taking the limit in v with §
fixed, we get o > inf{f(:z:) ’:1: € B(z, 5)} for arbitrary 0 > 0, hence o > a.
Next we must demonstrate the existence of ¥ — Z such that actually
f(x¥) — a. Let @ = inf{f(a:) }x € B(z, 5”)} for a sequence of values 6" . 0.
The definition of the lower limit & assures us that & — &. For each v it is
possible to find =¥ € IB(z,¢") for which f(z") is as near as we please to &,
say in the interval [@”, a”], where o is chosen to satisfy o¥ > a” and o¥ — a.
(If @ = 0o, we get f(z¥) = @” = oo automatically.) Then obviously =¥ — x
and f(x") has the same limit as a@”, namely a. O

R

Fig. 1-6. An lsc function with effective domain not closed or connected.

Proof of 1.6. (a)=-(b). Suppose (z",a”) € epi f and (z,a”) — (Z, ) with
« finite. We have 2 — Z and o — a with o > f(2¥) and must show that
a > f(Z), so that (Z, ) € epi f. The sequence {f(x”)} has at least one cluster
point 3 € IR. We can suppose (through replacing the sequence {(:(:”, O‘V)}ue N
by a subsequence if necessary) that f(z") — (. In this case o > 3, but also
f > liminf, ,z f(z) by Lemma 1.7. Then o > f(Z) by our assumption of lower
semicontinuity.

(b)=(c). When epi f is closed, so too is the intersection [epi f] N (R", @)
for each o € IR. This intersection in IR"™ X IR corresponds geometrically to the
set lev_, f in IR", which therefore is closed. The set lev___ f = lev___ f,
being the intersection of these closed sets as o ranges over IR, is closed also,
whereas lev__ f is just the whole space IR".

(c)=(a). Fix any z and let & = liminf,_,z f(x). To establish that f is lsc
at Z, it will suffice to show f(Z) < @, since the opposite inequality is automatic.
The case of @ = oo is trivial, so suppose @ < oo. Consider a sequence ¥ — T
with f(z") — @, as guaranteed by Lemma 1.7. For any a > & it will eventually
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be true that f(2") < o, or in other words, that 2 belongs to lev_, f. Since
x¥ — Z, this level set, which by assumption is closed, must contain Z. Thus
we have f(Z) < a for every a > &. Obviously, then, f(z) < a. O

When Theorem 1.6 is applied to indicator functions, it reduces to the fact
that d¢c is Isc if and only if the set C is closed. The lower semicontinuity of
a general function f : IR™ — IR doesn’t require dom f to be closed, however,
even when dom f happens to be bounded. Figure 1-6 illustrates this.

C. Attainment of a Minimum

Another question can now be addressed. What conditions on a function f :
IR" — IR ensure that f attains its minimum over IR" at some z, i.e., that the
set argmin f is nonempty? The issue is central because of the wide spectrum
of minimization problems that can be put into this simple-looking form.

A fact customarily cited is this: a continuous function on a compact set
attains its minimum. It also, of course, attains its maximum; this assertion
is symmetric with respect to max and min. A more flexible approach is de-
sirable, however. We don’t always wish to single out a compact set, and con-
straints might not even be present. The very distinction between constrained
and unconstrained minimization is suppressed in working with the principle of
abstract minimization in 1.4, not to mention problem formulations involving
penalty expressions as in 1.3. It’s all just a matter of whether the function f
being minimized takes on the value oo in some regions or not. Another feature
is that the functions we want to deal with may be far from continuous. The one
in Figure 1-6 is a case in point, but that function f does attain its minimum.
A property that’s crucial in this regard is the following.

1.8 Definition (level boundedness). A function f : IR™ — IR is (lower) level-
bounded if for every a € IR the set lev_,, f is bounded (possibly empty).

Note that only finite values of o are considered in this definition. The level
boundedness property corresponds to having f(z) — oo as |z| — oo.

1.9 Theorem (attainment of a minimum). Suppose f : R" — IR is lower semi-
continuous, level-bounded and proper. Then the value inf f is finite and the
set argmin f is nonempty and compact.

Proof. Let & = inf f; because f is proper, @ < co. For a € (@, 00), the set
lev_,, f is nonempty; it’s closed because f is Isc (cf. 1.6) and bounded because
f is level-bounded. The sets lev_,, f for a € (@, o) are therefore compact
and nested: lev_, f Clev_g f when o < 3. The intersection of this family of
sets, which is lev_, f = argmin f, is therefore nonempty and compact. Since f
doesn’t have the value —oo anywhere, we conclude also that & is finite. Under
these circumstances, inf f can be written as min f. O
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1.10 Corollary (lower bounds). If f : IR" — IR is Isc and proper, then it
is bounded from below (finitely) on each bounded subset of IR"™ and in fact
attains a minimum relative to any compact subset of IR"™ that meets dom f.

Proof. For any bounded set B C IR"™ apply the theorem to the function g
defined by g(x) = f(x) when = € cl B but g(x) = oo when x ¢ cl B. The case
where g = oo can be dealt with as a triviality, while in all other cases g is lsc,
level-bounded and proper. O

The conclusion of Theorem 1.9 would hold with level boundedness replaced
by the weaker assumption that, for some a € IR, the set lev_,, f is bounded
and nonempty; this is easily gleaned from the proof. But level boundedness is
more convenient to work with in applications, and it’s typically present anyway
in situations where the attainment of a minimum is sought.

The crucial ingredient in Theorem 1.9 is the fact that when f is both
Isc and level-bounded it is inf-compact, which means that the sets lev_, f for
a € IR are all compact. This property is very flexible in providing a criterion
for the existence of optimal solutions, and it can be applied to a variety of
problems, with or without constraints.

1.11 Example (level boundedness relative to constraints). For a problem of
minimizing a continuous function fy : IR"™ — IR over a nonempty, closed set
C C IR", if all sets of the form

{xEC}fO(af;)ga} for a € IR

are bounded, then the minimum of fy over C' is finite and attained on a
nonempty, compact subset of C.

This criterion is fulfilled in particular if C' is bounded or if fy is level
bounded, with the latter condition covering even the case of unconstrained
minimization, where C' = IR".

Detail. The problem corresponds to minimizing f = fo + dc over IR". Here
f is proper because C' # (), and it’s Isc by 1.6 because its level sets of the form
cn {:L‘ ’ fo(z) < a} for o < oo are closed—Dby virtue of the closedness of C'
and the continuity of fy. In assuming these sets are also bounded, we get the
desired conclusions from 1.9. O

An illustration of existence in the pattern of Example 1.11 with C' not
necessarily bounded but fy inf-compact is furnished by fo(x) = |z|. The min-
imization problem consists then of finding the point or points of C' nearest to
the origin of IR™. Theorem 1.9 is also applicable, of course, to minimization
problems that do not fit the pattern of 1.11 at all. For instance, in minimizing
the function in Figure 1-6 one isn’t simply minimizing a continuous function
relative to a closed set, but the conditions in 1.9 are satisfied and a minimizing
point exists. This is the kind of situation encountered in general when dealing
with barrier functions, for instance.
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D. Continuity, Closure and Growth

These results for minimization can be extended in evident ways to maximiza-
tion. Instead of the lower limit of f at Z, the required concept in dealing with
maximization is that of the upper limit

limsup f(z) : = lim { sup f(flf)}
T 50 LzeB(z,9) 1(4)

:inf[ sup f(x)]: inf {sup f(a;)].

0>0 LzeB(z,0) VeN(z) LzeV

The function f is upper semicontinuous (usc) at Z if this value equals f(Z).
Upper semicontinuity at every point of IR" corresponds geometrically to the
closedness of the hypograph of f, which is the set

hypo f = {(z,a) € R" x R|a < f(2)}, 1(5)

and the closedness of the upper level sets lev., f. Corresponding to the lower
limit formula in Lemma 1.7, there’s the upper limit formula

limsup f(z) = max{o € R|32" — & with f(z") = a}.

T—T

AN\

AR

Fig.1-7. The hypograph of a function.

Of course, f is regarded as continuous if x — Z implies f(x) — f(Z), with
the obvious interpretation being made when f(Z) = oo or f(Z) = —oc.

1.12 Exercise (continuity of functions). A function f : IR" — IR is continuous
if and only if it is both lower semicontinuous and upper semicontinuous:

lim f(z) = f(z) <= liminf f(z) = limsup f(z).
T—T T—T T—T
Upper and lower limits of the values of f also serve to describe the closure

and interior of epi f. In stating the facts in this connection, we use the notation
that



14 1. Max and Min

clC = closure of C = {z|VV eN(z), VNC #0},
int C' = interior of C = {a: ’ AV e N(z),V C C},
bdry C' = boundary of C = clC\ intC' (set difference).

1.13 Exercise (closures and interiors of epigraphs). For an arbitrary function
f:IR" — IR and a pair of elements T € IR" and & € IR, one has

(a) (z,a) € cl(epi f) if and only if & > liminf, ,z f(z),

)
(b) (z,@) € int(epi f) if and only if & > limsup,_,. f(z),
(¢) (z,a) ¢ cl(epi f) if and only if (Z,a) € int(hypo f),
(d) (z,a) ¢ int(epi f) if and only if (Z,&) € cl(hypo f).

Semicontinuity properties of a function f : IR" — IR are ‘constructive’ to
a certain extent. If f is not lower semicontinuous, its epigraph is not closed (cf.
1.6), but the set E := cl(epi f) is not only closed, it’s the epigraph of another
function. This function is Isc and is the greatest (the highest) of all the lsc
functions g such that g < f. It is called Isc regqularization, or more simply, the
lower closure of f, and is denoted by cl f; thus

epi(cl f) := cl(epi f). 1(6)
The direct formula for cl f in terms of f is seen from 1.13(a) to be
(cl f)(z) = liminf f(z'). 1(7)
T/ —x

To understand this further, the reader may try the operation out on the function
in Figure 1-5. Of course, cl f < f always.

The usc regularization or upper closure of f is analogously defined in terms
of closing hypo f, which amounts to taking the upper limit of f at every point x.
(With cl f denoting the lower closure, — cl(—f) is the upper closure.) Although
lower and upper semicontinuity can separately be arranged in this manner, f
obviously can’t be redefined to be continuous at = unless the two regularizations
happen to agree at x.

Lower and upper limits of f at infinity instead of at a point Z are also
of interest, especially in connection with various growth properties of f in the
large. They are defined by

liminf f(z) := lim inf f(z), limsup f(z) := lim sup f(z). 1(8)

|z|—o00 r oo |z|>r |z|—o0 r oo |z|>r

1.14 Exercise (growth properties). For a function f : IR" — IR and exponent
p € (0,00), if f is Isc and f > —oo one has

lim inf M

|z|—o00 "T’p

= sup{'yEIR)EIBE]R with f(x) > ~v|z|P + 8 for all a;},

whereas if f is usc and f < oo one has
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lim sup J@) = inf{'yEIR’EIBER with f(z) <~v|z|P + 3 for all a;}

|z|—o00 ’x‘p

Guide. For the first equation, denote the ‘lim inf’ by 4 and the set on the
right by I'. Begin by showing that for any v € I" one has v < 4. Next argue
that for finite v < 7 the inequality f(z) > 7|z|P will hold for all = outside a
certain bounded set B. Then, by appealing to 1.10 on B, demonstrate that
by subtracting off a sufficiently large constant from «|z|P an inequality can be
made to hold on all of IR"™ that corresponds to v being in I'. O

E. Extended Arithmetic

In applying the results so far to particular functions f, one has to be able to
verify the needed semicontinuity. As with continuity, it’s helpful to know how
semicontinuity behaves relative to the operations often used in constructing a
function from others, and criteria for this will be developed shortly. A question
that sometimes must be settled first is the very meaning of such operations for
functions having infinite values. Expressions like fi(x) + f2(z) and Af(z) have
to be interpreted properly in cases involving oo and —oo.

Although the arithmetic of IR doesn’t carry over to IR without certain
deficiencies, many rules extend in an obvious manner. For instance, oo +
a should be regarded as oo for any real a. The only combinations raising
controversy are (0-o0 and oo — 0o. It’s expedient to set

000 = 0 = 0-(—00),

but there’s no single, symmetric way of handling oo — co. Because we orient
toward minimization, the convention we’ll generally use is inf-addition:

00 + (—00) = (—00) + 00 = 0.

(The opposite convention in IR is sup-addition; we won’t invoke it without ex-
plicit warning.) Extended arithmetic then obeys the associative, commutative
and distributive laws of ordinary arithmetic with one crucial exception:

A(00 — 00) # (Aoo — Aoo) when A < 0.

With a little experience, it’s as easy to cope with this as it is to keep on the
lookout for implicit division by 0 in algebraic formulas. Since o — v # 0 when
a = 00 or @ = —o0, one must in particular refrain from canceling from both
sides of an equation a term that might be oo or —oo.

Lower and upper limits for functions are closely related to the concept of
the lower and upper limit of a sequence of numbers o” € IR, defined by

liminf ¥ := lim {inf a“], limsup o” := lim {sup a“]. 1(9)

V—+00 v—oo [ k>v V—+00 v—oo [ k>v
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1.15 Exercise (lower and upper limits of sequences). The cluster points of any
sequence {a”},en in IR form a closed set of numbers in IR, of which the lowest
is liminf, o and the highest is limsup, o”. Thus, at least one subsequence of
{a”},en converges to liminf, o, and at least one converges to limsup, a”.

In applying ‘lim inf’ and ‘lim sup’ to sums and scalar multiples of sequences
of numbers there’s an important caveat: the rules for oo — oo and 0-00 aren’t
necessarily preserved under limits:

e o 5 a and ¥ > = o'+ Y - a+ f when a+ =00 — o0
e o »a and ¥ -3 = oY — af when o = 0-(£o0).

Either of the sequences {a”} or {8”} could overpower the other, so limits
involving oo — oo or 0-00 may be ‘indeterminate’.

F. Parametric Dependence

The themes of extended-real-valued representation, semicontinuity and level
boundedness pervade the parametric study of problems of minimization as
well. From 1.4, a minimization problem in n variables can be specified by a
single function on IR", as long as infinite values are admitted. Therefore, a
problem in n variables that depends on m parameters can be specified by a
single function f : R™ x IR™ — IR: for each vector u = (uy,...,uy) there is
the problem of minimizing f(x,u) with respect to x = (x1,...,2,). No loss
of generality is involved in having u range over all of IR™, since applications
where u lies naturally in some subset U of IR™ can be handled by defining
f(z,u) = oo for u ¢ U.

Important issues are the behavior with respect to u of the optimal value
and optimal solutions of this problem in z. A parametric extension of the level
boundedness concept in 1.8 will help in the analysis.

1.16 Definition (uniform level boundedness). A function f : R" x R™ — IR
with values f(x,u) is level-bounded in = locally uniformly in u if for each u €
IR™ and a € IR there is a neighborhood V' € N (u) along with a bounded set
B C IR" such that {JJ ’ flx,u) < a} C B for all uw € V; or equivalently, there
is a neighborhood V € N'(u) such that the set {(z,u) |u €V, f(z,u) < a} is
bounded in IR" x IR™.

1.17 Theorem (parametric minimization). Consider
p(u) :=inf, f(x,u), P(u) := argmin,, f(x,u),

in the case of a proper, Isc function f : IR" x IR™ — IR such that f(x,u) is
level-bounded in x locally uniformly in w.

(a) The function p is proper and Isc on IR™, and for each u € domp the
set P(u) is nonempty and compact, whereas P(u) = () when u ¢ dom p.
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(b) If ¥ € P(u”), and if u¥ — @ € domp in such a way that p(u”) — p(a)
(as when p is continuous at u relative to a set U containing u and u" ), then
the sequence {x"},cn is bounded, and all its cluster points lie in P(@).

(c) For p to be continuous at a point u relative to a set U containing u,
a sufficient condition is the existence of some T € P(u) such that f(Z,u) is
continuous in u at u relative to U.

Proof. For each u € R™ let f,(z) = f(x,u). As a function on IR", either
fu = o0 or f, is proper, Isc and level-bounded, so that Theorem 1.9 is applicable
to the minimization of f,,. The first case, which corresponds to p(u) = oo, can’t
hold for every u, because f # oo. Therefore dom p # (), and for each u € dom p
the value p(u) = inf f, is finite and the set P(u) = argmin f,, is nonempty and
compact. In particular, p(u) < « if and only if there is an x with f(z,u) < .
Hence for V' C IR™ we have

(lev_,p) NV = [image of (lev_, f)N (IR" x V) under (x,u)+— u].

Since the image of a compact set under a continuous mapping is compact, we
see that (lev_, p) NV is closed whenever V is such that (lev_, f) N (R" x V)
is closed and bounded. From the uniform level boundedness assumption, any
u € IR™ has a neighborhood V' such that (lev_, f) N (IR™ x V) is bounded,
replacing V' by a smaller, closed neighborhood of @ if necessary, we can get
(lev_, f) N (IR™ x V) also to be closed, because f is Isc. Thus, each u € R™
has a neighborhood whose intersection with lev <o P is closed, hence lev_, p
itself is closed. Then p is Isc by 1.6(c). This proves (a). B

In (b) we have for any a > p(u) that eventually o > p(u”) = f(a¥,u").
Again taking V' to be a closed neighborhood of u as in Definition 1.16, we
see that for all v sufficiently large the pair (z”,u”) lies in the compact set
(lev_, f) N (IR™ x V). The sequence {z"},en is therefore bounded, and for
any cluster point Z we have (Z,u) € lev_, f. This being true for arbitrary
a > p(@), we see that f(Z,u) < p(a), which means that z € P(a).

In (c) we have p(u) < f(Z,u) for all v and p(u) = f(Z,u). The upper
semicontinuity of f(z, -) at @ relative to any set U containing @ therefore implies
the upper semicontinuity of p at u. Inasmuch as p is already known to be Isc
at u, we can conclude in this case that p is continuous at u relative to U. 0O

A simple example of how p(u) = inf, f(z,u) can fail to be Isc is furnished
by f(z,u) = e* on IR' x IR*. This has p(u) = 0 for all u # 0, but p(0) = 1;
the set P(u) = argmin,, f(z,u) is empty for all u # 0, but P(0) = (—o0, 00).
Switching to f(x,u) = |2¢™ — 1|, we get the same function p and the same
set P(0), but P(u) # 0 for uw # 0, with P(u) consisting of a single point. In
this case like the previous one, Theorem 1.17 isn’t applicable; actually, f(z,u)
isn’t level-bounded in z for any u. A more subtle example is obtained with
f(z,u) = min{ |z —u™|,1+ |z| } when u # 0, but f(z,u) = 1+ |z| when
uw = 0. This is continuous in (z,u) and level-bounded in z for each u, but not
locally uniformly in u. Once more, p(u) = 0 for u # 0 but p(0) = 1; on the
other hand, P(u) = {1/u} for u # 0, but P(0) = {0}.
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The important question of when actually p(u”) — p(u) for a sequence
u’ — u, as called for in 1.17(b), goes far beyond the simple sufficient condition
offered in 1.17(c). A fully satisfying answer will have to await the theory of
‘epi-convergence’ in Chapter 7.

Parametric minimization has a simple geometric interpretation.

1.18 Proposition (epigraphical projection). Suppose p(u) = inf, f(z,u) for a
function f : R" x R™ — IR, and let E be the image of epi f under the pro-
jection (x,u, ) — (u, ). If for each v € dom p the set P(u) = argmin,, f(z,u)
is attained, then epip = E. In general, epip is the set obtained by adjoining
to E any lower boundary points that might be missing, i.e., by closing the
intersection of E with each vertical line in IR™ x IR.

Proof. This is clear from the projection argument given for Theorem 1.17. O

Fig. 1-8. Epigraphical projection in parametric minimization.

1.19 Exercise (constraints in parametric minimization). For each u in a closed
set U C IR™ let p(u) denote the optimal value and P(u) the optimal solution
set in the problem

<0 foriel,

minimize fo(x,u) over all x € X satisfying f;(x,u) { —0 foriel
= 25

for a closed set X C IR" and continuous functions f; : X x U — IR (for
i € {0} UI; UlIy). Suppose that for each u € U, € > 0 and o € IR the set of
pairs (z,u) € X x U satisfying |u — u| < ¢ and fo(x,u) < «, along with all the
constraints indexed by I and I, is bounded in IR" x IR™.

Then p is Isc on U, and for every u € U with p(u) < oo the set P(u)
is nonempty and compact. If only fyo depends on u, and the constraints are
satisfied by at least one x, then domp = U, and p is continuous relative to U.
In that case, whenever z¥ € P(u") with v — wu in U, all the cluster points of
the sequence {x"},cn are in P(a).

Guide. This is obtained from Theorem 1.17 by taking f(x,u) = fo(z,u) when
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(x,u) € X x U and all the constraints are satisfied, but f(z,u) = oo otherwise.
Then p(u) is assigned the value co when u ¢ U. O

1.20 Example (distance functions and projections). For any nonempty, closed
set C' C IR", the distance dc(z) of a point x from C depends continuously
on x, while the projection Po(x), consisting of the points of C nearest to x is
nonempty and compact. Whenever w” € Po(z") and ¥ — %, the sequence
{w"},en is bounded and all its cluster points lie in Po(Z).

Detail. Taking f(w,z) = |w — z| + dc(w), we get de(z) = inf,, f(w,z) and
Po(z) = argmin,, f(w,z), and we can then apply Theorem 1.17. O

1.21 Example (convergence of penalty methods). Suppose a problem of type
minimize f(z) over all x € R" satistying F(z) € D,

with proper, Isc f : IR™ — IR, continuous F : IR" — IR"™, and closed D C IR™,
is approximated through some penalty scheme by a problem of type

minimize f(z)+0(F(x),r) over all x € R"

with parameter r € (0, 00), where the function 6 : IR™ x (0, 00) — IR is Isc with
—00 < O(u,r) ~dp(u) as r — oco. Assume that for some 7 € (0, c0) sufficiently
high the level sets of the function = — f(z) + 0(F(z),F) are bounded, and
consider any sequence of parameter values r” > r with r¥ — oo. Then:

(a) The optimal value in the approximate problem for r¥ converges to the
optimal value in the true problem.

(b) Any sequence {x"},ecn chosen with x¥ an optimal solution to the ap-
proximate problem for r¥ is a bounded sequence such that every cluster point
Z is an optimal solution to the true problem.

Detail. Set s =1/7 and define g(z, s) := f(x) + é(F(a:), s) on IR" x IR for

0(u, s) := 4 6p(u) when s =0,

~ {Q(U,l/s) when s >0 and s < 5,
00 when s <0 or s > 5.

Identifying the given problem with that of minimizing g(x,0) in € IR", and
identifying the approximate problem for parameter r € [F,00) with that of
minimizing g(z, s) in z € R" for s = 1/r, we aim at applying Theorem 1.17 to
the ‘inf’ p(s) and the ‘argmin’ P(s).

The function 6 on IR™ x IR is proper (because D # ()), and furthermore it’s
Isc. The latter is evident at all points where s # 0, while at points where s = 0
it follows from having 8(u,s).”0(u,0) as s~ 0, since then for any a € IR the
set lev_, 0(-,s) in R™ decreases as s decreases in (0, 5], the intersection over

all s > 0 being lev_, 6(-,0). The assumptions that f is lsc, F' is continuous
and D is closed, ensure through this that g is Isc, and proper as well unless
g = 00, in which event everything would trivialize.
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The choice of 5, along with the monotonicity of §(u, s) in s € (0, 5], ensures
that ¢ is level bounded in z locally uniformly in s, and that p is nonincreasing
on [0,8]. From 1.17(a) we have then that p(s) — p(0) as s~ 0. In terms of
s” :=1/r" this gives claim (a), and from 1.17(b) we then have claim (b). O

Facts about barrier methods of constraint approximation (cf. 1.3) can like-
wise be deduced from the properties of parametric optimization in 1.17.

G. Moreau Envelopes

These properties support a method of approximating general functions in terms
of certain ‘envelope functions’.

1.22 Definition (Mciea,u envelopes and proximal mappings). For a proper, Isc
function f : IR™ — IR and parameter value A > 0, the Moreau envelope function
ey f and proximal mapping P, f are defined by

eyf(z) = infw{f(w)+%|w—x|2} < f(x),

P, f(z) = argminw{f(w) + %\w — x|2}

Here we speak of P, f as a mapping in the ‘set-valued’ sense that will later
be developed in Chapter 5. Note that if f is an indicator function 6o, then
P, f coincides with the projection mapping P in 1.20, while e, f is (1/2)\)dZ,
for the distance function d¢ in 1.20.

In general, e, f approximates f from below in the manner depicted in Fig-
ure 1-9. For smaller and smaller ), it’s easy to believe that, e, f approximates
f better and better, and indeed, 1/ can be interpreted as a penalty parameter
for a putative constraint w — 2 = 0 in the minimization defining e, f(x). We’ll
apply Theorem 1.17 in order to draw exact conclusions about this behavior,
which has very useful implications in variational analysis. First, though, we
need an associated definition.

Fig.1-9. Approximation by a Moreau envelope function.
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1.23 Definition (prox-boundedness). A function f : IR" — IR is proz-bounded
if there exists A > 0 such that e, f(z) > —oo for some x € IR". The supremum
of the set of all such A is the threshold Ay of prox-boundedness for f.

1.24 Exercise (characteristics of prox-boundedness). For a proper, Isc function
f: IR" — IR, the following properties are equivalent:

(a) f is prox-bounded;

(b) f majorizes a quadratic function (i.e., f > q for a polynomial function
q of degree two or less);

(c) for some r € R, f + 3r| - |? is bounded from below on R";

(d) l|ir|n_inf f(z)/|z]* > —oo.
Indeed, if 1; is the infimum of all v for which (c) holds, the limit in (d) is —%rf
and the proximal threshold for f is Ay = 1/ max{0,r,} (with 1/0 = o0’).

In particular, if f is bounded from below, i.e., has inf f > —oo, then f is

prox-bounded with threshold Ay = oo.

Guide. Utilize 1.14 in connection with (d). Establish the sufficiency of (b) by
arguing that this condition implies (d). O

1.25 Theorem (proximal behavior). Let f : IR™ — IR be proper, Isc, and prox-
bounded with threshold Ay > 0. Then for every A € (0, \y) the set Py f(z)
is nonempty and compact, whereas the value e, f(z) is finite and depends
continuously on (A, x), with

exf(xz) 7 f(x) for all x as A~0.

In fact, eyvf(z¥) — f(Z) whenever ¥ — T while \¥ .0 in (0, A\¢) in such a
way that the sequence {|x¥ — Z|/\"},en is bounded.

Furthermore, if w¥ € Pyvf(z¥), ¥ — = and \¥ — X € (0, \s), then the
sequence {w"},en is bounded and all its cluster points lie in P, f(Z).

Proof. Fixing any Ao € (0,Af), we apply 1.17 to the problem of minimizing
h(w,z, \) in w, where h(w,z, \) = f(w) + ho(w, z, \) with

(1/2)\)|w — z|*  when X € (0, Aol
ho(w,x,A) :== ¢ 0 when A = 0 and w = x,
00 otherwise.

Here hg is lsc, in fact continuous when A > 0 and also on sets of the form
{(w,x, A) } lw—z| < pA, 0 <A< )\0} for any ;1 > 0. Hence h is Isc and proper.
We verify next that h(w,z, \) is level-bounded in w locally uniformly in (x, \).
If not, we could have where h(w”,z",\") < & < oo with (2, \) — (Z, )
but |w”| — oo. Then w” # z¥ (at least for large v), so \¥ € (0, \g] and
fw”)+(1/22)|w” —x¥|?> < a. The choice of g ensures through the definition
of A the existence of Ay > \g and 8 € IR such that f(w) > —(1/2X\)|w|? + 8.
Then —(1/2X1)|w” >+ (1/2X0)|w” —2¥|?> < &— . In dividing this by |w”|? and
taking the limit as v — oo, we get —(1/2A1) 4+ (1/2)g) < 0, a contradiction.
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The conclusions come now from Theorem 1.17, with the continuity properties
of hg being used in 1.17(c) to see that h(z,-,-) is continuous relative to sets
containing the sequences {(z”,\")} that come up. O

The fact that e, f is a finite, continuous function, whereas f itself may
merely be lower semicontinuous and extended-real-valued, shows that approx-
imation by Moreau envelopes has a natural effect of ‘regularizing’ a function
f. This hints at some of the uses of such approximation which will later be
prominent in many phases of theory.

In the concept of Moreau envelopes, minimization is used as a means of
defining one function in terms of another, just like composition or integration
can be used in classical analysis. Minimization and maximization have this role
also in defining for any family of functions {f;};cs from IR" to IR another such
function, called the pointwise supremum, by

(Supiel fi) () == sup;e; fiz), 1(10)
as well as a function, called the pointwise infimum of the family, by
(infz‘ej fz)(x) = infer fi(x). 1(11)
IR

Fig. 1-10. Pointwise max operation: intersection of epigraphs.

Geometrically, these functions have a nice interpretation, cf. Figures 1—
10 and 1-11. The epigraph of the pointwise supremum is the intersection of
the sets epi f;, whereas the epigraph of the pointwise infimum is the ‘vertical
closure’ of the union of the sets epi f; (vertical closure in IR" x IR being the
operation that closes a set’s intersection with each vertical line; cf. 1.18).

1.26 Proposition (semicontinuity under pointwise max and min).
(a) sup,c;fi is Isc if each f; is Isc;
(b) inf;c;f; is Isc if each f; is Isc and the index set I is finite;

(c) sup;erfi and inf,erf; are both continuous if each f; is continuous and
the index set I is finite.
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Fig. 1-11. Pointwise min operation: union of epigraphs.

Proof. In (a) and (b) we apply the epigraphical criterion in 1.6; the inter-
section of closed sets is closed, as is the union if only finitely many sets are
involved. We get (c) from (b) and its usc counterpart, using 1.12. O

The pointwise min operation is parametric minimization with the index %
as the parameter, and this is a way of finding criteria for lower semicontinuity
beyond the one in 1.26(b). In fact, to say that p(u) = inf, f(z,u) for f :
R" x R™ — IR is to say that p is the pointwise infimum of the family of
functions f,(u) := f(x,u) indexed by z € R".

Variational analysis is heavily influenced by the fact that, in general, opera-
tions like pointwise maximization and minimization can fail to preserve smooth-
ness. A function is said to be smooth if it is continuously differentiable, i.e., of
class C!; otherwise it is nonsmooth. (It is twice smooth if of class C2, which
means that all first and second partial derivatives exist and are continuous, and
so forth.) Regardless of the degree of smoothness of a collection of the f;’s, the
functions sup;c; fi and inf;c; f; aren’t likely to be smooth, cf. Figures 1-10 and
1-11. Therefore, they typically fall outside the domain of classical differential
analysis, as do the functions in optimization that arise through penalty expres-
sions. The search for ways around this obstacle has led to concepts of one-sided
derivatives and ‘subgradients’ that support a robust nonsmooth analysis, which
we’ll start to look at in Chapter 8. Despite this tendency of maximization and
minimization to destroy smoothness, the process of forming Moreau envelopes
will often be found to create smoothness where none was present initially. (This
will be seen for instance in 2.26.)

H. Epi-Addition and Epi-Multiplication

Especially interesting as an operation based on minimization, for this and other
reasons, is epi-addition, also called inf-convolution. For functions f; : R" — IR
and fy : R" — IR, the epi-sum is the function fi4 fo : IR" — IR defined by

(fi# f2)(x) := inf x{f1($1)+f2(902)}

T1+T2=

1(12)
=inf, {fi(z — w) + fo(w)} = inf, { f1(w) + fo(z —w)}.
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(Here the inf-addition rule co — oo = oo is to be used in case of conflicting
infinities.) For instance, epi-addition is the operation behind 1.20 and 1.22:

1
do = bc#| - |, exf=r+51 2. 1(13)

1.27 Proposition (properties of epi-addition). Let fi and f2 be Isc and proper
on IR", and suppose for each bounded set B C IR" and « € IR that the set

{(xl,xg) e R" x R" fl(xl) —|—f2(:z:2) <a, 1 +x0 € B}

is bounded (as is true in particular if one of the functions is level-bounded while
the other is bounded below). Then fi4 fo is Isc and proper. Furthermore,
f1# fo is continuous at any point ¥ where its value is finite and expressible as
f1(Z1) + f2(Z2) with 1 + T2 = & such that either fi is continuous at T; or f
is continuous at .

Proof. This follows from Theorem 1.17 in the case of minimizing f(w,z) =
fi(x —w) + fo(w) in w with = as parameter. The symmetry between the roles
of f1 and f5 yields the symmetric form of the continuity assertion. O

Epi-addition is commutative and associative; the formula in the case of
more than two functions works out to

(e fote o @) = inf {fulan) + folan) +- -+ filan) |-
T1t+xo+ - FTr=

One has f4 00y = f for all f, where 070} is of course the indicator of the

singleton set {0}. A companion operation is epi-multiplication by scalars A > 0;

the epi-multiple \«f is defined by

(Af)(z) := Af(A"tx) for A >0
0 ifx=0,f% o0, 1(14)
oo otherwise.

Fig.1-12. Minkowski sum of two sets.
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The names of these operations come from a connection with set algebra.
The translate of a set C by a vector a is C' + a := {x +a ’ T € C’}. General
Minkowski scalar multiples and sums of sets in IR" are defined by

NC:={Xz|zeC}, C/r=77'C, -C=(-1)C,
Cy+Cy = {:L‘l + 9 ’xl e (Cq, 2o € 02},
Ci—Cy = {xl — Z9 ’xl e (Cq, x9 € Cg}.
In general, C'; + C5 can be interpreted as the union of all the translates C + -
of C'; obtained through vectors zo € C5, but it is also the union of all the

translates Cy + x1 of Cy for 1 € C7. Minkowski sums and scalar multiples are
particularly useful in working with neighborhoods. For instance, one has

B(xz,e) =x+eB for B:=1B(0,1) (closed unit ball). 1(15)

Similarly, for any set C' C IR" and £ > 0 the ‘fattened’ set C' + £IB consists of
all points x lying in a closed ball of radius € around some point of C| cf. Figure
1-13. Note that Cy + Cs is empty if either C; or C5 is empty.

Fig.1-13. A fattened set.

1.28 Exercise (sums and multiples of epigraphs).
(a) For functions fi and fo on IR", the epi-sum f14 fo satisfies

epi(fi# f2) = epifi +epifo

as long as the infimum defining (f1# f2)(x) is attained when finite. Regardless
of such attainment, one always has

{(z,0) | (fr# fo)(2) < a} =
{(z1,01) | i) < ar} + { (22, 2) | fal2a) <z},

(b) For a function f and a scalar X\ > 0, the epi-multiple \~f satisfies
epi(Axf) = A(epi f).

Guide. Caution is needed in (a) because the functions f; can take on oo and
—oo as values, whereas elements (z;, «;) of epi f; can only have «; finite. [
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IR"

Fig.1-14. Epi-addition of two functions: geometric interpretation.

For A = 0, A(epi f) would no longer be an epigraph in general: Oepi f =
{(0,0)} when f # oo, while Oepi f = () when f = co. The definition of O«f in
1(14) fits naturally with this and, through the epigraphical interpretations in
1.28, supports the rules

M(fr# f2) = (Axf1)# (Axfz) for A >0,
)\1*()\2*f) = ()\1)\2)*f for )\1 Z 0, )\2 Z 0.

In the case of convex functions in Chapter 2 it will turn out that another form of
distributive law holds as well, cf. 2.24(c). For such functions a fundamental du-
ality will be revealed in Chapter 11 between epi-addition and epi-multiplication
on the one hand and ordinary addition and scalar multiplication on the other
hand.

epif 7 4(epif)

\r IR"

4+ f

SN

Fig. 1-15. Epi-multiplication of a function: geometric interpretation.

1.29 Exercise (calculus of indicators, distances, and envelopes).
(a) dc4p = 0c# dp, whereas oo = A\+d¢ for A > 0,
(b) det+p = do# dp, whereas dyc = Md¢ for A > 0,
(€) ex,inf = ey, (e, f) for Ay >0, Ay > 0.

Guide. In part (b), verify that the function h(z) = | - | satisfies h# h = h and
Axh = h for A > 0. Demonstrate in the first equation that both sides equal
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dc# dp# h and in the second that both sides equal (Axd¢)# h. In part (c), use
the associative law to reduce the issue to whether (1/2X1)] - |23 (1/2X\2)] - | =
(1/2X)| - |? for A = A1 + A2, and verify this by direct calculation. O

1.30 Example (vector-max and log-exponential functions). The functions
vecmax(z) := max{z1,...,Tn}, logexp(x) := log(ex1 + 4 ex”),
for x = (x1,...,x,) € IR" are related by the estimate
exlogexp —elogn < vecmax < exlogexp for any & > 0. 1(16)

Thus, for any smooth functions fi,..., fm on IR", viewed as the components
of a mapping F : IR" — IR™, the generally nonsmooth function

f(z) = VecmaX(F(x)) = ma,x{fl(a:), e fm(ac)}
can be approximated uniformly, to any accuracy, by a smooth function
o(2) = (e logexp) (F(2)) = elog (e @/% 4. efn@)/%),

Detail. With p = vecmax(z), we have et/¢ < Z?Zl e%i/ < net/s. In taking
logarithms and multiplying by €, we get the estimates in 1(16). From those
inequalities the function exlogexp converges uniformly to the function vecmax
as € 0. The epigraphical significance of this will emerge in Chapter 3. O

Another operation through which new functions are constructed by min-
imization is epi-composition. This combines a function f : R" — IR with a
mapping F': R" — IR™ to get a function Ff: R™ — IR by

(Ff)(u) == inf{f(z) | F(z) = u}. 1(17)

The name comes from the fact that the epigraph of F'f is essentially obtained
by ‘composing’ f with the epigraphical mapping (z, ) — (F (x), a) associated
with F. Here is a precise statement which exhibits parallels with 1.28(a).

1.31 Exercise (images of epigraphs). For a function f : R" — IR and a mapping
F: IR" — IR™, the epi-composite function Ff : R™ — IR has

epi Ff = {(F(z),a)|(z,a) € epif}

as long as the infimum defining (F'f)(u) is attained when it is finite. Regardless
of such attainment, one always has

{(w0)| (Ff(w) <a} = {(F(x).0)] f(z) < a}.

Epi-composition as defined by 1(17) clearly concerns the special case of
parametric minimization in which the parameter vector u gives the right side
of a system of equality constraints, but its usefulness as a concept goes beyond
what this simple description might suggest.
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1.32 Proposition (properties of epi-composition). Let f : IR" — IR be proper
and Isc, and let F' : IR™ — IR™ be continuous. Suppose for each o € IR and
u € IR™ that the set {z| f(z) < o, F(z) € B(u,e)} is bounded for some
€ > 0. Then the epi-composite function Ff : R™ — IR is proper and Isc, and
the infimum defining (F f)(u) is attained for each u for which it is finite.

Proof. Let f(z,u) = f(z) when v = F(z) but f(z,u) = co when u # F(z).
Then (Ff)(u) = inf, f(z,u). Applying 1.17, we immediately find justification
for all the claims. a

I7 Auxiliary Facts and Principles

A sidelight on lower and upper semicontinuity is provided by their localization.
A set C' C IR" is said to be locally closed at a point Z (not necessarily in C) if
C'NV is closed for some closed neighborhood V € NV (Z). A test for whether C
is (globally) closed is whether C is locally closed at every Z.

1.33 Definition (local semicontinuity). A function f : IR"™ — IR is locally lower
semicontinuous at T, a point where f(Z) is finite, if there is an € > 0 such that
all sets of the form {x € B(Z,¢) | f(z) < a} with o < f(Z)+e are closed. The
definition of f being locally upper semicontinuous at x is parallel.

1.34 Exercise (consequences of local semicontinuity).

(a) f is locally Isc at T, a point where f(Z) is finite, if and only if epi f is
locally closed at (z, f(Z)).

(b) f is finite and continuous on some neighborhood of & if and only if f(Z)
is finite and f is both locally Isc and locally usc at x.

Several rules of calculation are often useful in dealing with maximization
or minimization. Let’s look first at one that’s reminiscent of standard rules for
interchanging the order of summation or integration.

1.35 Proposition (interchange of order of minimization). For f : R" x R™ — IR
one has in terms of p(u) := inf, f(z,u) and q(z) := inf,, f(x,u) that
inf, ,, f(z,u) = inf, p(u) = inf, q(z),
argmin, ,, f(z,u) = {(i‘, u) )11 € argmin, p(u), T € argmin, f(x,ﬂ)}

= {(a‘c, w) )i‘ € argmin, ¢(z), u € argmin,, f(Z,u) .

Proof. Elementary. O

Note here that f(x,u) could have the form fo(z,u)+0c(z, ) for a function
foon R" x IR™ and a set C' C IR" x IR™, where C could in turn be specified
by a system of constraints f;(x,u) < 0 or f;(x,u) = 0. Then in minimizing
relative to x to get p(u) one is in effect minimizing fo(z, u) subject to these
constraints as parameterized by wu.
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1.36 Exercise (max and min of a sum). For any extended-real-valued functions
f1 and fs, one has (under the convention oo — co = c0) the estimates

@)+ o)) = ik (o) + o fole),

sup{ f1(z) + f2(z)} < sup fi(z) + sup fo(z),
zeX zeX reX

as well as the rule

inf {f1($1)+f2(a:2)} = inf fi(x1)+ inf fo(xs).

(z1,22)EX1 X X2 r1€X1 o€ X2

1.37 Exercise (scalar multiples versus max and min). For any extended-real-
valued function f one has (under the convention 0-co = 0) that

inf Af(xz) =\ inf f(x), sup Af(z) = Asup f(x) when X\ >0,
zeX zeX rzeX zeX

while on the other hand

inf f(x):—sup{—f(x)}, sup f(z) = — inf{—f(a:)}.

zeX zeX reX zeX

1.38 Proposition (lower limits of sums). For arbitrary extended-real-valued
functions one has

lim inf [ fi(z) + fa(z)] > lim inf fy (z) + lim inf f5(z)
if the sum on the right is not co — oco. On the other hand, one always has

liminf A\f(x) = Aliminf f(z) when A > 0.

T—T T—T

Proof. From the definition of lower limits in 1.5 we calculate

timinf [fife) + fole)] = Jumy it [fie) + folo)]

> lim [ inf  fi(x)+ inf fg(:l:)}
5§01 zeB(z,6) c€B(z,5)

by the first rule in 1.36 and then continue with

> lim inf  fi(z) + lim  inf fo(z) = liminf fi(2) + liminf fo(z)
0 0 zeB(z,d) d 0 zeB(z,9) T—T T—T

as long as this sum is not oo — co. The second formula in the proposition is
easily verified from the scalar multiplication rule in 1.37 when A > 0. When
A = 0, it’s trivial because both sides of the equation have to be 0. O

Since lower semicontinuity is basic to the geometry of epigraphs, there’s a
need for conditions that can facilitate the verification of lower semicontinuity
in circumstances where a function is not just ‘abstract’ but expressed through
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operations performed on other functions. Some criteria have already been given
in 1.17, 1.26 and 1.27, and here are others.

1.39 Proposition (semicontinuity of sums, scalar multiples).
(a) fi1+ faisIscif f; and fy are Isc and proper.
(b) Af isIsc if f is Isc and A > 0.

Proof. Both facts follow from 1.38. O

The properness assumption in 1.39(a) ensures that fi(x) + fo(z) isn’t
00 — 00, as required in applying 1.38. For f; + f5 to inherit properness, we’d
have to know that dom f; Ndom fo isn’t empty.

1.40 Exercise (semicontinuity under composition).

(a) If f(z) = g(F(z)) with F : R" — IR™ continuous and g : R™ — R
Isc, then f is Isc.

(b) If f(z) = 0(g(x)) with g : R" — R Isc, § : R — IR Isc and non-
decreasing, and with 6 extended to infinite arguments by 6(oco) = sup and
0(—o0) = inf 0, then f is Isc.

1.41 Exercise (level-boundedness of sums and epi-sums). For functions f; and
fo on IR"™ that are bounded from below,

(a) f1+ f2 is level-bounded if either fi or fo is level-bounded,

(b) fi# f2 is level-bounded if both f; and f, are level-bounded.

An extension of Theorem 1.9 serves in the study of computational methods.
A minimizing sequence for a function f : R" — IR is a sequence {z" }, ¢ such
that f(z”) — inf f.

1.42 Theorem (minimizing sequences). Let f : IR"™ — IR be Isc, level-bounded
and proper. Then every minimizing sequence {x"} for f is bounded and has
all of its cluster points in argmin f. If f attains its minimum at a unique point
Z, then necessarily =¥ — .

Proof. Let {z”} be a minimizing sequence and let & = inf f, which is finite
by 1.9; then f(z¥) — @. For any a € (@, ), the point =¥ eventually lies in
lev_,, f, which on the basis of our assumptions is compact. The sequence {z"}
is thus bounded and has all of its cluster points in lev_,, f. Since this is true for
arbitrary o € (@, co), such cluster points all belong in fact to the set lev_, f,
which is the same as argmin f. O

The concept of e-optimal solutions to the problem of minimizing f on IR" is
natural in a context of optimizing sequences and provides a further complement
to Theorem 1.9. Such points form the set

e-argmin,, f(z) := {z | f(z) <inf f +€}. 1(18)

According to the next result, they can be approximated by nearby points that
are true optimal solutions to a slightly perturbed problem of minimization.
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1.43 Proposition (variational principle; Ekeland). Let f : IR" — IR be Isc with
inf f finite, and let T € e-argmin f, where ¢ > 0. Then for any § > 0 there
exists a point

i € B(z,e/6) with f(Z) < f(z), argmin,{f(z)+ 6|z — z|} = {z}.

Proof. Let @ =inf f and f(z) = f(x)+ 6|z — Z|. The function f is Isc, proper
and level-bounded: lev_, f C {z|a+d|lz—z| < a} = B(z, (a—a&)/d). The set
C := argmin f is therefore nonempty and compact (by 1. 9) Then the function
f:= f+0dc is Isc, proper and level-bounded, so argmin fis nonempty (by 1.9).
Let Z € argmin f; this means that Z is a point minimizing f over argmin f. For
all x belonging to argmin f we have f(z) < f(x), while for all x not belonging to
it we have f(Z) < f(x), which can be written as f(%) < f(z)+0|z—2Z| 5|2 —z|,
where |z — Z| — |2 — Z| < |x — Z|. Tt follows that f(Z) < f(z) + |z — Z| for
all z # &, so that the set argmin,{ f(z)+ d|z — Z|} consists of the single point
Z. Moreover, f(z) < f(z) — 6| — |, where f(Z) < a+¢e,s0 & € lev_, f for
a = a+e. Hence & € B(z,e/0). B O

The following example shows further how the pointwise supremum oper-
ation, as a way of generating new functions from given ones, has interesting
theoretical uses. It also reveals another role of the envelope functions in 1.22.
Here a function f is regularized from below by a sort of maximal quadratic
interpolation based on specifying a ‘curvature parameter’ A > 0. The interpo-
lated function hy f that is obtained can serve as an approximation to f whose
properties in some respects are superior to those of f, yet are different from
those of the envelope ey f.

1.44 Example (proximal hulls). For a function f : IR" — IR and any \ > 0, the
A-prozimal hull of f is the function h, f : IR" — IR defined as the pointwise
supremum of the collection of all the quadratic functions of the elementary
form x + o — (1/2\)|x — w|? that are majorized by f. This function h, f,
satisfying e, f < hyf < f, is related to the envelope e, f by the formulas

1

hyf(@) = sup ey flw) = 5

weR™

|x—w\ }» so hyf = —ey[—e\fl,

ext(@) = int L fw)+ gyle—wl?}, so enf =eylnnf]
It is Isc, and it is proper as long as f is proper and prox-bounded with threshold
A¢ > A, in which case one has

hyf(x) 7 f(z) for all x as A~0.

At all points x that are \-prozimal for f, in the sense that f(x) is finite
and x € P, f(w) for some w, one actually has h, f(x) = f(x). Thus, h, f always
agrees with f on rge P, f. When h, f agrees with f everywhere, f is called a
A-proximal function.
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Detail. In the notation jy(u) = (1/2X)[ul?, let gy, o(%) = @ — jy(z — w),
with the pair (w,«) € IR" x IR as a parameter element. By definition, h, f is
the pointwise supremum of the collection of all the functions g, ,, , majorized
by f. These functions are continuous, so h,f is lsc by 1.26(a). We have
Urw.o < fif and only if a < f(z) + jy(x — w) for all x, which in the envelope
notation of 1.22 means that o < e, f(w). Therefore, h, f can just as well be
viewed as the pointwise supremum of the collection { gy }wern, where g, (z) :=
eyf(w) — jy(x —w). This is what the displayed formula for hy f(x) says.

The observation that e, f is determined by the collection of all quadratics
Dwa < f, with these being the same as the collection of all g, ,, , < hyf,
reveals that e, f = e, [h, f]. The displayed formula for e, f in terms of h, f is
therefore valid as well.

When z € Py(w), we have f(z) + jy(z —w) < f(2') + jy(2 — w) for
all 2. As long as f(z) is finite, this comes out as saying that f > g, ,, . for
a = f(x) + jy(z — w), with these two functions agreeing at x itself. Then
obviously h, f(x) = f(x).

In the case of f = oo we have h, f = oo for all A. On the other hand, if
f isn’t prox-bounded, we have h, f = —oo for all A\. Otherwise h, f # oo, yet
hyf > ey\f (as seen from taking w = z in the displayed formula). Since e, f is
finite for A € (0, Af), hy f must be proper for such A.

The inequality h,f < h,/f holds when X < A\, for the following rea-
son. A second-order Taylor expansion of g, , , at any point Z shows there’s
a function gy v o < @ w.a With @y o/ (T) = ) p.o(Z). Hence the sup of
all gy, o < [ is at least as high everywhere as the sup of all g, , , < f.
Thus, h, f(z) increases, if anything, as A~ 0. Because e, f < h,f < f, and
exf(x) 7 f(z)as A~ 0by 1.25 when f is prox-bounded and Isc, we must likewise
have h, f(z) 7~ f(x) as A~ 0 in these circumstances. O

Fig. 1-16. Interpolation of a function by a proximal hull.

It’s intriguing that each of the functions ey f and h)f in Example 1.44
completely embodies all the information necessary to derive the other. This is
a relationship of ‘duality’, and many more examples of such a phenomenon will
appear as we go along, especially in Chapters 6, 8, and 11. (More will be seen
about this specific instance of duality in 11.63.)
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1.45 Exercise (proximal inequalities). For functions f; and fy on IR™ and any
A > 0, one has
exf1<eyfo <= hyfi < hyfe.

Thus in particular, f; and fo have the same Moreau A-envelope if and only if
they have the same A-proximal hull.

Guide. Get this from the description of these envelopes and proximal hulls in
terms of quadratics majorized by f1 and f. (See 1.44 and its justification.) O

Also of interest in the rich picture of Moreau envelopes and proximal hulls
are the following functions, which illustrate further the potential role of max
and min in generating approximations of a given function. Their special ‘sub-
smoothness’ properties will be documented in 12.62.

1.46 Example (double envelopes). For a proper, Isc function f : IR" — IR that
is prox-bounded with threshold Ay, and parameter values 0 < p < XA < Ay, the
Lasry-Lions double envelope e, ,f is defined by

1
exuf(@) = sy {erfw) = ow=aP ], o er,f = —e,[-erd]
This function is bracketed by e, f <e, ,f <e,_,f < f and satisfies
e)\,uf = ex—u[hxf] = hu[ex—uf]- 1(19)

Also, inf e, ,f =inf e, f =inf f and argmin e, ,f = argmin e, f = argmin f.

Detail. Frome, f = f4 j,, with j, (w) = (1/2)\)|w|?, one easily gets inf e, f =
inf f and argmin e, f = argmin f. The agreement of these with inf e, ,f and
argmin e, , f will follow from proving that e, ,f lies between e, f and f.

It’s elementary from the definition of Moreau envelopes that e,_, f < f.
Likewise e, [—ex f] < —eaf, hence e, f < e, ,f. The first equation of 1(19) will
similarly yield e, ,f <e,_, f, inasmuch as h, f < f, so we concentrate hence-
forth on 1(19). The formulas in 1.44 and 1.29(c) give e, ,f = —e,[—e, f] =
—e,[—eulex, fll = h,lex_,. f]. Because ey f = e,[h,f], this implies also that
eA,pf = e)\,u[h)\f] = hu [eA—p[h)\f]]'

All that remains is verifying for g := e,_ ,[h, f] that h,g = g, or equiva-
lently through the description of proximal hulls in 1.44, that ¢ is the pointwise
supremum of all the functions of the form ¢, , ,(z) = a —j,(r — w) that
it majorizes. It suffices to demonstrate for arbitrary = the existence of some
Quwa < g such that g, ; 5(Z) = g(Z). Because we're dealing with a class of
functions f that’s invariant under translations, we can focus on x = 0.

Let w € Py_,[hyf](0), which is nonempty by 1.25, since A — pu < A < Af
(this being also the proximal threshold for h, f). Then k(w) > k(w) = g(0) for
k:=hyf + js_,- Next, observe from hy f(w) = sup_{e, f(z) — jy(w —z)} (cf.
1.44) and the quadratic expansion

za+Tw) —jy\(a) = 7 [j)\(a +w) — jA(“)] —7(1 = 71)j\(w), 1(20)
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as applied to a = w — z, that h, f(@ + Tw) can be estimated for 7 € (0,1) by

supz{e)\f(z) — a0+ Tw — 2)}
=sup.{eyf(2) = (L= 7)jx(0 — 2) = 7y (0 — 2 +w) = 7(1 = 7)jr(w) }
< (1—7)sup,{e,f(z) —jr(@ —2)} + Tsup,{e,f(2) — jr(W+w—2)}
—7(1=7)jy(w) = (1 =7)hyf(@) + Thy f(0 +w) —7(1 —7)jy(w).

Thus, for such 7 we have the ‘upper expansion’

haf (0 + Tw) — hy f(0) < 7[hy f(0 +w) = hy f(0)] — 7(1 = 7)j5(w),

which can be added to the expansion in 1(20) of jx—, instead of jy, this time
at a = w, to get for all 7 € (0, 1) that

k(w + tw) — k(w) < T[k‘(ﬁ) +w) — k:(u?)} +7(1—1) [j/\(w) —j/\fu(w)}.

Since k(W+7w)—k(w) > 0, we must have k(0 +w) —k(w)+j, (w) —jr_,(w) >0
and, in substituting w = w + w, can write this as

haf(w) = g(0) = jr—p(w) + iy (w — @) = jy(w —w) forall w.  1(21)

The quadratic function of w on the right side of 1(21) has its second-order
part coming only from the j, term, due to cancellation in the j,_ , terms, so
it must be of the form g, ; 5(w) for some w and &. From hy f > g, ; 5 We get
ex—plhrfl 2 ex_,lay o,a)- But the latter is g, ; 5; this follows from the rule
that [—jy]# j\_, = —J,, which can be checked by simple calculation. Hence
9(x) > q,, .a(z) for all z. On the other hand,

qu,w,d(()) = eA—p[q)\,w,d](O) = infw{q)\vw@(w) +jA—u(w>}
= infy, {g(0) + jr_,(w — @) — jy(w —w)} = g(0),

because j,_,, > j, when 0 < o < A. Thus, the quadratic function g, ; 5 fits
the prescription. O

Commentary

The key notion that a problem of minimizing f over a subset C of a given space
can be represented by defining f to have the value co outside of C, and that lower
semicontinuity is then the essential property to look for, originated independently
with Moreau [1962], [1963a], [1963b], and the dissertation of Rockafellar [1963]. Both
authors were influenced by unpublished but widely circulated lecture notes of Fenchel
[1951], which for a long time were a prime source for the theory of convex functions.
Fenchel’s tactic was to deal with pairs (C, f) where C' is a nonempty subset of
IR™ and f is a real-valued function on C, and to call such a pair ‘closed’ if the set

{(x,a) GCXR’f(.Z’) Sa}
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is closed in IR" x IR. Moreau and Rockafellar observed that in extending f beyond
C with oo, not only could notation be simplified, but Fenchel’s closedness property
would reduce to the lower semicontinuity of f, a concept already well understood
in analysis, and the set on which Fenchel focused his attention as a substitute for
the graph of f over C' could be studied then as the epigraph of f over IR". At the
same time, Fenchel’s operation of closing a pair (C, f) could be implemented simply
by taking lower limits of the extended function f, so as to obtain the function we’ve
denoted by cl f. (It must be mentioned that our general usage of ‘closure’ and ‘cl f’
departs from the traditions of convex analysis in the context of convex functions f,
where a slightly different operation, ‘biconjugate closure’, has been expressed in this
manner. In passing to the vast territory beyond convex analysis, it’s better to reserve
a different symbol, cl*f, for the latter operation in its relatively limited range of
interest. For a convex function f, cl f and cl*f agree in every case except the very
special one where cl f is identically —oo on its effective domain (cf. 2.5), this domain
D being nonempty and yet not the whole space; then cl* f differ for points = ¢ D,
where (cl f)(z) = oo but (cl* f)(z) :== —0c0.)

Moreau and Rockafellar recognized also that, in the extended-real-valued frame-
work, ‘indicator’ functions o could assume an operational character like that of
characteristic functions in integration. For Fenchel, the corresponding object associ-
ated with a set C' would have been a pair (C,0). This didn’t convey the fertile idea
that constraints can be imposed by adding an indicator to a given function, or that
an indicator function was an extreme case of a penalty or barrier function.

Penalty and barrier functions have some earlier history in association with
numerical methods, but in optimization they were popularized by Fiacco and Mc-
Cormick [1968]. The idea that a sequence of such functions, with parameter values
increasingly severe, can be viewed as converging to an indicator—in the geometric
sense of converging epigraphs (i.e., epi-convergence, which will be laid out in Chapter
7)—originated with Attouch and Wets [1981]. The parametric approach in 1.21 by
way of 1.17 is new.

The study of how optimal values and optimal solutions might depend on the
parameters in a given problem is an important topic with a large literature. The
representation of the main issues as concerned with minimizing a single extended-
real-valued function f(x,u) on IR"™ x IR™ with respect to x, and looking then to the
behavior with respect to u of the infimum p(u) and argmin set P(u), offers a great
conceptual simplification in comparison to what is often seen in this subject, and at
the same time it supports a broader range of applications. Such an approach was first
adopted full scale by Rockafellar [1968a], [1970a], in work with optimization problems
of convex type and their possible modes of dualization. The geometric interpretation
of epip as the projection of epi f (cf. 1.18 and Fig. 1-8) was basic to this.

The fundamental result of parametric optimization in Theorem 1.17, in which
properties of p(u) and P(u) are derived from a uniform level-boundedness assump-
tion on f(z,u), goes back to Wets [1974]. He employed a form of ‘inf-compactness’,
a concept developed by Moreau [1963c] for the sake of obtaining the attainment of a
minimum as in Theorem 1.9 and other uses. For problems in IR", we have found it con-
venient instead to keep the boundedness aspect of inf-compactness separate from the
lower semicontinuity aspect, hence the introduction of the term ‘level-boundedness’.
Of course in infinite-dimensional spaces the boundedness and closedness of a level set
wouldn’t guarantee its compactness.

Questions of the existence of solutions and how they depend on a problem’s pa-
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rameters have long been recognized as crucial to applications of mathematics, not only
in optimization, and treated under the heading of ‘well-posedness’. In the past, that
term was usually taken to refer to the existence and uniqueness of a solution and its
continuous behavior in response to data perturbations, as well as accompanying ro-
bustness properties in the convergence of sequences of approximate solutions. Studies
in the calculus of variations, optimal control and numerical methods of minimization,
however, have shown that uniqueness and continuity are often too restrictive to be
adopted as the standards of nicety; see Dontchev and Zolezzi [1993] for a broad ex-
position of the subject and its classical roots. It’s increasingly apparent that forms
of semicontinuity in a problem’s data elements and solution mappings, along with
potential multivaluedness in the latter, are the practical concepts. Semicontinuity of
multivalued mappings will be taken up in Chapter 5, while their generalized differen-
tiation, which likewise is central to well-posedness as now understood, will be studied
in Chapter 8 and beyond.

Semicontinuity of functions was itself introduced by Baire in his 1899 thesis;
see Baire [1905] for more on early developments, for instance the fact that a lower
semicontinuous function on a compact set attains its minimum (cf. Theorem 1.9),
and the fact that the pointwise limit of an increasing sequence of continuous func-
tions is lower semicontinuous. Interestingly, although Baire never published anything
about parametric optimization, he attributes to that topic his earliest inspiration for
studying separately the two inequalities which Cauchy had earlier distilled as the
essence of continuity. In an historical note (Baire [1927]) he says that in late 1896
he considered (as translated to our setting) a function f(z,u) of two real variables
on a product of closed, bounded intervals X and U, assuming continuity in x and u
separately, but not jointly. He looked at p(u) = min,cx f(z,u) and observed it to
be upper semicontinuous with respect to v € U, even if not necessarily continuous.
(A similar observation is the basis for part (c) of our Theorem 1.17.) Baire explains
this in order to make clear that he arrived at semicontinuity not out of a desire to
generalize, but because he was led to it naturally by his investigations. The same
could now be said for numerous other ‘one-sided’ concepts that have come to be very
important in variational analysis.

Epi-addition originated with Fenchel [1951] in the theory of convex functions,
but Fenchel’s version was slightly different: he automatically replaced fi4 fo by its
Isc hull, cl(f14 f2). Also, Fenchel kept to a format in which a pair (Cq, f1) was
combined with a pair (Cq, f2) to get a new pair (C, f), which was cumbersome and
did not suggest the ripe possibilities. But Fenchel did emphasize what we now see
as addition of epigraphs, and he recognized that such addition was dual to ordinary
addition of functions with respect to the kind of dualization of convex functions that
we’ll take up in Chapter 11. For the very special case of finite, continuous functions
on [0,00), a related operation was developed in a series of papers by Bellman and
Karush [1961], [1962a], [1962b], [1963]. They called this the ‘maximum transform’.
Although unaware of Fenchel’s results, they too recognized the duality of this opera-
tion in a certain sense with that of ordinary function addition. Moreau [1963b] and
Rockafellar [1963] changed the framework to that of extended-real-valued functions,
with Rockafellar emphasizing convex functions on IR"™ but Moreau considering also
nonconvex functions and infinite-dimensional spaces.

The term ‘inf-convolution’ is due to Moreau, who brought to light an analogy
with integral convolution. Our alternative term ‘epi-addition’ is aimed at better
reflecting Fenchel’s geometric motivation and the duality with addition, as well as
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providing a parallel opportunity for introducing the term ‘epi-multiplication’ for an
operation that has a closely associated history, but which hitherto has been nameless.
The new symbols ‘4’ for epi-addition and ‘*’ for epi-multiplication are designed as
reminders of the ties to ‘+’ and ‘-’.

The results about epi-addition in 1.27 show the power of placing this operation in
the general framework of parametric optimization. In contrast, Moreau [1963b] only
treats the case where one of the functions f1 or f2 is inf-compact, while the other
is bounded below. For other work on epi-addition see Moreau [1970] and especially
Stromberg [1994]. Applications of this operation, although not yet formulated as
such, can be detected as far back as the 1950s in research on solving Hamilton-Jacobi
equations when n = 1; cf. Lax [1957].

Set addition and scalar multiplication have long been a mainstay in functional
analysis, but have their roots in the geometric theories of Minkowski [1910], [1911].
Extended arithmetic, with its necessary conventions for handling +oo, was first ex-
plored by Moreau [1963c|. The operation of epi-composition was developed by Rock-
afellar [1963], [1970a].

The notion of a proximal mapping, due to Moreau [1962], [1965], wasn’t treated
by him in the parametric form we feature here, but only for A = 1 in our notation. He
concentrated on convex functions f and the ways that proximal mappings generalize
projection operators. Although he investigated many properties of the associated case
of the epi-addition operation, which yields what we have called an ‘envelope’ function,
he didn’t treat such functions as providing an approximation or regularization of f.
That idea, tied to the increasingly close relationship between f and its A-envelope as
A\ 0, stems from subsequent work of Attouch [1977] in the convex case and Attouch
and Wets [1983a] for arbitrary functions. Nonetheless, it has seemed appropriate
to attach Moreau’s name to such envelope functions, since it’s he who initiated the
whole study of epi-addition with a squared norm and brought the rich consequences to
everyone’s attention. The term ‘Moreau-Yosida regularization’, which has sometimes
been used in referring to envelopes, doesn’t seem appropriate in our setting because,
at best, it makes sense only for the case of convex functions f (through a connection
with the subgradient mappings of such functions, cf. 10.2).

The double envelopes in 1.46 were introduced by Lasry and Lions [1986] as
approximants that can be better behaved than the Moreau envelopes; for more on
this, see also Attouch and Azé [1993]. The surprising ‘interchange’ formulas for these
double envelopes in 1(19) were discovered by Stromberg [1996].

The variational principle of Ekeland [1974] in Proposition 1.43 is especially use-
ful in infinite-dimensional Banach spaces and general metric spaces, where (with a
broader statement and a different proof relying on completeness instead of compact-
ness) it provides an important handle on the existence of ‘approximate solutions’ to
various problems. Another powerful variational principle which relies on the norm-
squared instead of the norm of a Banach space, has been developed by Borwein and
Preiss [1987].



2. Convexity

The concept of convexity has far-reaching consequences in variational analysis.
In the study of maximization and minimization, the division between problems
of convex or nonconvex type is as significant as the division in other areas
of mathematics between problems of linear or nonlinear type. Furthermore,
convexity can often be introduced or utilized in a local sense and in this way
serves many theoretical purposes.

A. Convex Sets and Functions

For any two different points 2y and x; in IR" and parameter value 7 € IR the
point
Ty =x0+7(x1 —20) = (1 — T)X0 + T3 2(1)

lies on the line through xy and x1. The entire line is traced as 7 goes from
—o0 to 0o, with 7 = 0 giving g and 7 = 1 giving x;. The portion of the line
corresponding to 0 < 7 < 1 is called the closed line segment joining xy and
x1, denoted by [zg,z1]. This terminology is also used if g and z; coincide,
although the line segment reduces then to a single point.

2.1 Definition (convex sets and convex functions).

(a) A subset C of IR"™ is convex if it includes for every pair of points the
line segment that joins them, or in other words, if for every choice of xy € C
and z1 € C one has [xg,z1] C C:

(1—-7)zg+721 € C forall 7€ (0,1). 2(2)

(b) A function f on a convex set C is convex relative to C' if for every
choice of xq € C' and x1 € C one has

f((L=7)zo+7121) < (1—7)f(20) + 7f(21) for all 7€ (0,1), 2(3)

and f is strictly convex relative to C' if this inequality is strict for points xo # x1
with f(zo) and f(z1) finite.

In plain English, the word ‘convex’ suggests a bulging appearance, but
the convexity of a set in the mathematical sense of 2.1(a) indicates rather the
absence of ‘dents’, ‘holes’, or ‘disconnectedness’. A set like a cube or floating
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disk in IR?, or even a general line or plane, is convex despite aspects of flatness.
Note also that the definition doesn’t require C' to contain two different points,
or even a point at all: the empty set is convex, and so is every singleton set
C = {z}. At the other extreme, IR" is itself a convex set.

Fig. 2—-1. Examples of closed, convex sets, the middle one unbounded.

Many connections between convex sets and convex functions will soon be
apparent, and the two concepts are therefore best treated in tandem. In both
2.1(a) and 2.1(b) the 7 interval (0,1) could be replaced by [0,1] without really
changing anything. Extended arithmetic as explained in Chapter 1 is to be
used in handling infinite values of f; in particular the inf-addition convention
00 — 00 = 00 is to be invoked in 2(3) when needed. Alternatively, the convexity
condition 2(3) can be recast as the condition that

f(zo) <ag <oo, f(r1) <ar<oo, 7€(0,1)

= f(l—7)axg+7121) < (1 —7)p + Tav1. 2(4)

An extended-real-valued function f is said to be concave when — f is con-
vex; similarly, f is strictly concave if — f is strictly convex. Concavity thus cor-
responds to the opposite direction of inequality in 2(3) (with the sup-addition
convention co — co = —00).

The geometric picture of convexity, indispensable as it is to intuition, is
only one motivation for this concept. Equally compelling is an association with
‘mixtures’, or ‘weighted averages’. A convexr combination of elements xg, x1,. . .,
x, of IR™ is a linear combination Zf:o A;x; in which the coefficients A; are
nonnegative and satisfy Y -_, A; = 1. In the case of just two elements a convex
combination can equally well be expressed in the form (1 — 7)x¢ + 721 with
T € [0,1] that we’ve seen so far. Besides having an interpretation as weights
in many applications, the coefficients )\; in a general convex combination can
arise as probabilities. For a discrete random vector variable that can take on
the value x; with probability A;, the ‘expected value’ is the vector Zf:() i

2.2 Theorem (convex combinations and Jensen’s inequality).
(a) A set C is convex if and only if C' contains all convex combinations of
its elements.

(b) A function f is convex relative to a convex set C' if and only if for every
choice of points xg, x1,..., ¥, in C one has
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f<2f:0 )\ixi) < Zf:o Nif(x;) when A; >0, Zf:() Ai =1 2(5)

Proof. In (a), the convexity of C' means by definition that C' contains all
convex combinations of two of its elements at a time. The ‘if’ assertion is
therefore trivial, so we concentrate on ‘only if’. Consider a convex combination
T = A\oZo + - - -+ A\px,, of elements x; of a convex set C' in the case where p > 1,
we aim at showing that x € C'. Without loss of generality we can assume that
0 < A\; < 1 for all 7, because otherwise the assertion is trivial or can be reduced
notationally to this case by dropping elements with coefficient 0. Writing

p—1
. Ai
x=(1 —)\p)Z)\;xi—i—)\pxp with A, = .

=0

where 0 < N, < Tand 3-P_0 X, = 1, we see that = € C'if the convex combination
= Zf;ol Mx; is in C. The same representation can now be applied to z’ if
necessary to show that it lies on the line segment joining x,_; with some
convex combination of still fewer elements of C, and so forth. Eventually one
gets down to combinations of only two elements at a time, which do belong to
C. A closely parallel argument establishes (b). O

Any convex function f on a convex set C' C IR"™ can be identified with a
convex function on all of IR™ by defining f(z) = oo for all x ¢ C. Convexity
is thereby preserved, because the inequality 2(3) holds trivially when f(z¢) or
f(x1) is oco. For most purposes, the study of convex functions can thereby
be reduced to the framework of Chapter 1 in which functions are everywhere
defined but extended-real-valued.

2.3 Exercise (effective domains of convex functions). For any convex function
f:R" = IR, dom f is a convex set with respect to which f is convex. The
proper convex functions on IR" are thus the functions obtained by taking a
finite, convex function on a nonempty, convex set C' C IR" and giving it the
value oo everywhere outside of C'.

The indicator d¢ of a set C C IR" is convex if and only if C' is convex.
In this sense, convex sets in IR" correspond one-to-one with special convex
functions on IR™. On the other hand, convex functions on IR" correspond
one-to-one with special convex sets in IR"", their epigraphs.

2.4 Proposition (convexity of epigraphs). A function f : R" — IR is convex if
and only if its epigraph set epi f is convex in IR" x IR, or equivalently, its strict
epigraph set {(af;, «) }f(ac) <a< oo} is convex.

Proof. The convexity of epif means that whenever (zg,p) € epif and
(x1,01) € epi f and 7 € (0,1), the point (z,,a;) := (1 — 7)(zo, o) + 7(1, 1)
belongs to epi f. This is the same as saying that whenever f(zq) < ag € IR and
f(z1) <y € R, one has f(z,) < a,. The latter is equivalent to the convexity
inequality 2(3) or its variant 2(4). The ‘strict’ version follows similarly. O
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dom f

Fig. 2—2. Convexity of epigraphs and effective domains.

For concave functions on IR" it is the hypograph rather than the epigraph
that is a convex subset of IR" x IR.

2.5 Exercise (improper convex functions). An improper convex function f must
have f(x) = —oo for all z € int(dom f). If such a function is Isc, it can only
have infinite values: there must be a closed, convex set D such that f(x) = —o0
for x € D but f(x) = oo for x ¢ D.

Guide. Argue first from the definition of convexity that if f(z¢) = —oo and
f(z1) < oo, then f(z,) = —oo at all intermediate points z, as in 2(1). O

Improper convex functions are of interest mainly as possible by-products
of various constructions. An example of an improper convex function having
finite as well as infinite values (it isn’t Isc) is

—oo  for z € (0, 00)
flx)=10 for x =0 2(6)
oo for x € (—o0,0).

The chief significance of convexity and strict convexity in optimization
derives from the following facts, which use the terminology in 1.4 and its sequel.

2.6 Theorem (characteristics of convex optimization). In a problem of minimiz-
ing a convex function f over IR" (where f may be extended-real-valued), every
locally optimal solution is globally optimal, and the set of all such optimal
solutions (if any), namely argmin f, is convex.

Furthermore, if f is strictly convex and proper, there can be at most one
optimal solution: the set argmin f, if nonempty, must be a singleton.

Proof. If zy and x; belong to argmin f, or in other words, f(xg) = inf f and
f(z1) = inf f with inf f < oo, we have for 7 € (0,1) through the convexity
inequality 2(3) that the point z, in 2(1) satisfies

f(z;) < (1 —7)inf f + 7inf f = inf f,

where strict inequality is impossible. Hence x, € argmin f, and argmin f is
convex. When f is strictly convex and proper, this shows that xy and x; can’t
be different; then argmin f can’t contain more than one point.
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In a larger picture, if zy and z; are any points of dom f with f(zg) >
f(x1), it’s impossible for 2y to furnish a local minimum of f because every
neighborhood of zy contains points x, with 7 € (0, 1), and such points satisfy
flxz:) < (1 —=7)f(x0) + 7f(z1) < f(zp). Thus, there can’t be any locally
optimal solutions outside of argmin f, where global optimality reigns. a

The uniqueness criterion provided by Theorem 2.6 for optimal solutions is
virtually the only one that can be checked in advance, without somehow going
through a process that would individually determine all the optimal solutions
to a problem, if any.

B. Level Sets and Intersections

For any optimization problem of convex type in the sense of Theorem 2.6 the
set of feasible solutions is convex, as seen from 2.3. This set may arise from
inequality constraints, and here the convexity of constraint functions is vital.

2.7 Proposition (convexity of level sets). For a convex function f : IR" — IR
all the level sets of type lev., f and lev_, f are convex.

Proof. This follows right from the convexity inequality 2(3). O

<a, X> >0

Fig. 2—-3. A hyperplane and its associated half-spaces.

Level sets of the type lev., f and lev., f are convex when, instead, f
is concave. Those of the type lev_, f are convex when f is both convex and
concave at the same time, and in this respect the following class of functions
is important. Here we denote by (x,y) the canonical inner product in R":

<x,y>:x1y1+~-~+xnyn for x = (z1,...,20), Y= (Y1,---,Yn)-

2.8 Example (affine functions, half-spaces and hyperplanes). A function f on
IR" is said to be affine if it differs from a linear function by only a constant:

f(z) = (a,z) + B for some a € R" and € R.

Any affine function is both convex and concave. As level sets of affine functions,
all sets of the form {z | (a,z) < a} and {z|(a,z) > a}, as well as all those of
the form {:1; } (a,x) < a} and {:1: ’ (a,x) > a}, are convex in IR"™, and so too
are all those of the form {z } (a,xz) = a}. For a # 0 and « finite, the sets in
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the last category are the hyperplanes in IR", while the others are the closed
half-spaces and open half-spaces associated with such hyperplanes.

Affine functions are the only finite functions on IR"™ that are both convex
and concave, but other functions with infinite values can have this property,
not just the constant functions co and —oo but examples such as 2(6).

A set defined by several equations or inequalities is the intersection of the
sets defined by the individual equations or inequalities, so it’s useful to know
that convexity of sets is preserved under taking intersections.

2.9 Proposition (intersection, pointwise supremum and pointwise limits).
(a) (N,e; Ci is convex if each set C; is convex.
(b) sup;c; fi is convex if each function f; is convex.
(c) sup,c; fi is strictly convex if each f; is strictly convex and I is finite.
(d) f is convex if f(x)=limsup, fY(x) for all z and each f" is convex.

Proof. These assertions follow at once from Definition 2.1. Note that (b) is the
epigraphical counterpart to (a): taking the pointwise supremum of a collection
of functions corresponds to taking the intersection of their epigraphs. O

Fig. 2—4. A feasible set defined by convex inequalities.

As an illustration of the intersection principle in 2.9(a), any set C C R"
consisting as in Example 1.1 of the points satisfying a constraint system

fz(x) <0 forie I,

zeX and {fz(ac)zo for 1 € I,

is convex if the set X C IR" is convex and the functions f; are convex for i € Iy
but affine for ¢ € I5. Such sets are common in convex optimization.

2.10 Example (polyhedral sets and affine sets). A set C' C IR" is said to be
a polyhedral set if it can be expressed as the intersection of a finite family of
closed half-spaces or hyperplanes, or equivalently, can be specified by finitely
many linear constraints, i.e., constraints f;(x) < 0 or f;(x) = 0 where f; is
affine. It is called an affine set if it can be expressed as the intersection of
hyperplanes alone, i.e., in terms only of constraints f;(x) = 0 with f; affine.
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Affine sets are in particular polyhedral, while polyhedral sets are in par-
ticular closed, convex sets. The empty set and the whole space are affine.

Detail. The empty set is the intersection of two parallel hyperplanes, whereas
IR"™ is the intersection of the ‘empty collection’ of hyperplanes in IR"™. Thus,
the empty set and the whole space are affine sets, hence polyhedral. Note that
since every hyperplane is the intersection of two opposing closed half-spaces,
hyperplanes are superfluous in the definition of a polyhedral set.

The alternative descriptions of polyhedral and affine sets in terms of linear
constraints are based on 2.8. For an affine function f; that happens to be a
constant function, a constraint f;(z) < 0 gives either the empty set or the whole
space, and similarly for a constraint f;(z) = 0. Such possible degeneracy in a
system of linear constraints therefore doesn’t affect the geometric description
of the set of points satisfying the system as being polyhedral or affine. O

Fig. 2—5. A polyhedral set.

2.11 Exercise (characterization of affine sets). For a nonempty set C' C IR" the
following properties are equivalent:

(a) C is an affine set;
(b) C is a translate M + p of a linear subspace M of IR™ by a vector p;
(¢) C has the form {z | Az = b} for some A € R™*" and b € R™.

(d) C contains for each pair of distinct points the entire line through them:
ifxg € C and x1 € C then (1 —7)xg + 721 € C for all T € (—00, 0).

affine) \

M +p p
(
/k@tfm

Fig. 2—6. Affine sets as translates of subspaces.
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Guide. Argue that an affine set containing 0 must be a linear subspace.
A subspace M of dimension n — m can be represented as the set of vectors
orthogonal to certain vectors ay, . .., a,,. Likewise reduce the analysis of (d) to
the case where 0 € C. O

Taking the pointwise supremum of a family of functions is just one of many
convexity-preserving operations. Others will be described shortly, but we first
expand the criteria for verifying convexity directly. For differentiable functions,
conditions on first and second derivatives serve this purpose.

C. Derivative Tests

We begin the study of such conditions with functions of a single real variable.
This approach is expedient because convexity is essentially a one-dimensional
property; behavior with respect to line segments is all that counts. For instance,
a set (' is convex if and only if its intersection with every line is convex. By the
same token, a function f is convex if and only if it’s convex relative to every
line. Many of the properties of convex functions on IR" can thus be derived
from an analysis of the simpler case where n = 1.

2.12 Lemma (slope inequality). A real-valued function f on an interval C C IR
is convex on C if and only if for arbitrary points o < y < x1 in C one has

F) = f@o) _ f) = flao) _ fz) = f(y)

Y — o N T — Xo o Ty —y

2(7)

Then for any = € C' the difference quotient A, (y) = [f(y) — f(x)]/(y
a nondecreasing function of y € C'\{zx}, i.e., one has A, ( ) < Ay ) for a]l
choices of yy and y; not equal to x with yg < 1.

Similarly, strict convexity is characterized by strict inequalities between the
difference quotients, and then A, (y) is an increasing function of y € C'\ {z}.

0 y )'(1 [=4

X #-—

Fig. 2-7. Slope inequality.

Proof. The convexity of f is equivalent to the condition that

n7y xo)+uf(a:1) when 7o <y < z; in C, 2(8)
r1 — o T1 — o

fly) <
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since this is 2(3) when y is z, for 7 = (y —xg)/(x1 —xo). The first inequality is
what one gets by subtracting f(z¢) from both sides in 2(8), whereas the second
corresponds to subtracting f(z1). The case of strict convexity is parallel. O

2.13 Theorem (one-dimensional derivative tests). For a differentiable function
f on an open interval O C IR, each of the following conditions is both necessary
and sufficient for f to be convex on O:

(a) f’ is nondecreasing on O, i.e., f'(z¢) < f'(x1) when xo < x1 in O;

(b) f(y) = f(x) + f(a)(y — @) for all 2 and y in O;

(¢) f(z) >0 for all x in O (assuming twice differentiability).
Similarly each of the following conditions is both necessary and sufficient for f
to be strictly convex on O:

(') f’ is increasing on O: f'(xg) < f'(x1) when xy < x1 in O.

(b") f(y) > f(z)+ f'(z)(y — x) for all x and y in O with y # .
A sufficient (but not necessary) condition for strict convexity is:

(") f"(z) > 0 for all x in O (assuming twice differentiability).

Proof. The equivalence between (a) and (c) when f is twice differentiable is
well known from elementary calculus, and the same is true of the implication
from (c’) to (a’). We'll show now that [convexity] = (a) = (b) = [convexity].
If f is convex, we have

f(x1) = f(wo) _ flxo) — f(21)

f(zo) < = < f'(x1) when zy <z in O
L1 — o Lo — T1

from the monotonicity of difference quotients in Lemma 2.12, and this gives
(a). On the other hand, if (a) holds we have for any y € O that the function
gy(x) = f(z) — f(y) — f'(y)(z — y) has g (z) > 0 for all z € (y,00) N O but
gy(x) <0 for all x € (—oo,y) N O. Then g, is nondecreasing to the right of y
but nonincreasing to the left, and it therefore attains its global minimum over
O at y. This means that (b) holds. Starting now from (b), consider the family
of affine functions l,(z) = f(y) + f'(y)(x — y) indexed by y € O. We have
f(z) = maxyeo ly(z) for all x € O, so f is convex on O by 2.9(b).

In parallel fashion we see that [strict convexity] = (a’) = (b’). To establish
that (b’) implies not just convexity but strict convexity, consider zo < x; in
O and an intermediate point z, as in 2(1). For the affine function I(z) =
F(2r) + f(5:) (& — -) we have f(zo) > U(zo) and f(z1) > L(z1), but f(z,) =
l(z;) = (1 —7)l(xo) + 7l(x1). Therefore, f(z,;) < (1 —7)f(xo) +7f(x1). 0O

Here are some examples of functions of a single variable whose convexity or
strict convexity can be established by the criteria in Theorem 2.13, in particular
by the second-derivative tests:

x) = ax?® + bz + c on (—o0, 00) when a > 0; strictly convex when a > 0.
) = € on (—o00,00); strictly convex when a # 0.

x) =" on (0,00) when r > 1; strictly convex when r > 1.

x) = —z" on (0,00) when 0 < r < 1; strictly convex when 0 < r < 1.
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e f(x) =27" on (0,00) when r > 0; strictly convex in fact on this interval.
e f(z)=—logx on (0,00); strictly convex in fact on this interval.

The case of f(z) = z* on (—oo,00) furnishes a counterexample to the

common misconception that positivity of the second derivative in 2.13(c’) is not
only sufficient but necessary for strict convexity: this function is strictly convex
relative to the entire real line despite having f”/(0) = 0. The strict convexity
can be verified by applying the condition to f on the intervals (—oo,0) and
(0, 00) separately and then invoking the continuity of f at 0. In general, it can
be seen that 2.13(c’) remains a sufficient condition for the strict convexity of a
twice differentiable function when relaxed to allow f”(z) to vanish at finitely
many points x (or even on a subset of O having Lebesgue measure zero).

To extend the criteria in 2.13 to functions of x = (x1,...,z,), we must
call for appropriate conditions on gradient vectors and Hessian matrices. For
a differentiable function f, the gradient vector and Hessian matrix at x are

Vi) = | 5 )

n n,n

=]

Recall that a matrix A € IR™*" is called positive-semidefinite if (z, Az) > 0 for
all z, and positive-definite if (z, Az) > 0 for all z # 0. This terminology applies
even if A is not symmetric, but of course (z, Az) depends only on the symmetric
part of A, i.e., the matrix %(A+ A*), where A* denotes the transpose of A. In
terms of the components a;; of A and z; of z, one has

(z,Az) = i Zn: aij2i%j.

i=1 j=1

J=1 i,j=1

2.14 Theorem (higher-dimensional derivative tests). For a differentiable func-
tion f on an open convex set O C IR", each of the following conditions is both
necessary and sufficient for f to be convex on O:

(a) (r1 —x0,Vf(x1) — Vf(20)) >0 for all xg and z1 in O;

(b) f(y) > f(&)+ (Vf(),y—a) for all z and y in O;

(c) V2f(x) is positive-semidefinite for all x in O (f twice differentiable).

For strict convexity, a necessary and sufficient condition is (a) holding with
strict inequality when xo # w1, or (b) holding with strict inequality when
x #y. A condition that is sufficient for strict convexity (but not necessary) is
the positive definiteness of the Hessian matrix in (c) for all x in O.

Proof. As already noted, f is convex on O if and only if it is convex on
every line segment in O. This is equivalent to the property that for every
choice of y € O and z € IR" the function g(¢t) = f(y + tz) is convex on any
open interval of ¢ values for which y +tz € O. Here ¢'(t) = (2, Vf(y + t2))
and ¢”(t) = (2, V2f(y + tz)z). The asserted conditions for convexity and
strict convexity are equivalent to requiring in each case that the corresponding
condition in 2.13 hold for all such functions g. O
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Twice differentiable concave or strictly concave functions can similarly be
characterized in terms of Hessian matrices that are negative-semidefinite or
negative-definite.

2.15 Example (quadratic functions). A function f on IR" is quadratic if it’s
expressible as f(x) = % (x, Az) + (a, ) + const., where the matrix A € IR"*"
is symmetric. Then Vf(x) = Az + a and V2 f(z) = A, so f is convex if and
only if A is positive-semidefinite. Moreover, a function f of this type is strictly
convex if and only if A is positive-definite.

Detail. Note that the positive definiteness of the Hessian is being asserted as
necessary for the strict convexity of a quadratic function, even though it was
only listed in Theorem 2.14 merely as sufficient in general. The reason is that if
A is positive-semidefinite, but not positive-definite, there’s a vector z # 0 such
that (z, Az) = 0, and then along the line through the origin in the direction of
z it’s impossible for f to be strictly convex. O

Because level sets of convex functions are convex by 2.7, it follows from
Example 2.15 that every set of the form

C={z| 5(x, Az) + (a,z) < a} with A positive-semidefinite

is convex. This class of sets includes all closed Euclidean balls as well as general
ellipsoids, paraboloids, and ‘cylinders’ with ellipsoidal or paraboloidal base.
Algebraic functions of the form described in 2.15 are often called quadratic,
but that name seems to carry the risk of suggesting sometimes that A # 0 is
assumed, or that second-order terms—only—are allowed. Sometimes, we’ll
refer to them as linear-quadratic as a way of emphasizing the full generality.

2.16 Example (convexity of vector-max and log-exponential). In terms of z =
(z1,...,2y), the functions

vecmax(z) := max{zy,...,Tn}, logexp(z) := log(e™ + - -+ + €*),
are convex on IR" but not strictly convex.

Detail. Convexity of f = logexp is established via 2.14(c) by calculating in
terms of o(z) = Z;L:1 e®i that

1 1
v2 _ Tj 2 (zi4x5) 1%
BV = S T 2 T
I O (gias
" 20(x)? > elrit)(z — 2)? > 0.

Strict convexity fails because f(x + tl) = f(x) +t for 1 = (1,1,...,1). As
f = vecmax is the pointwise max of the n linear functions x — x;, it’s convex
by 2.9(c). It isn’t strictly convex, because f(Ax) = Af(x) for A > 0. O
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2.17 Example (norms). By definition, a norm on IR" is a real-valued function
h(z) = ||z|| such that

Azl = Alllzll, [z +yll < [l +lyll,  [lzl >0 for z 0.

Any such a function h is convex, but not strictly convex. The corresponding
balls {z | ||z — xo|| < p} and {x| ||z — z0|| < p} are convex sets. Beyond the
Euclidean norm |z = (3_7_, |a;|*)'/? these properties hold for the I, norms

n p 1/p

lallpi= (327 Josl?) " for 1<p<oo,  lall == max |zl 2(9)
Detail. Any norm satisfies the convexity inequality 2(3), but the strict version
fails when x¢g = 0, 1 # 0. The associated balls are convex as translates of level
sets of a convex function. For any p € [1, oo] the function h(z) = ||z, obviously
fulfills the first and third conditions for a norm. In light of the first condition,
the second can be written as h(%x + %y) < $h(z) + 5h(y), which will follow
from verifying that h is convex, or equivalently that epih is convex. We have
epih = {\(z,1) |z € B, A >0}, where B = {x|||z]|, < 1}. The convexity of
epi h can easily be derived from this formula once it is known that the set B is
convex. For p = oo, B is a box, while for p € [1,00) it is lev.; g for the convex
function g(z) = Z;L:1 |z;|P, hence it is convex in that case too. O

D. Convexity in Operations

Many important convex functions lack differentiability. Norms can’t ever be
differentiable at the origin. The vector-max function in 2.16 fails to be differ-
entiable at = = (Z1,...,Z,) if two coordinates z; and Zzj tie for the max. (At
such a point the function has ‘kinks’ along the lines parallel to the x;-axis and
the xj axis.) Although derivative tests can’t be used to establish the convexity
of functions like these, other criteria can fill the need, for instance the fact in
2.9 that a pointwise supremum of convex functions is convex. (A pointwise
infimum of convex functions is convex only in cases like a decreasing sequence

of convex functions or a ‘convexly parameterized’ family as will be treated in
2.22(a).)

2.18 Exercise (addition and scalar multiplication). For convex functions f; :
R"™ — IR and real coefficients \; > 0, the function Y ", \;f; is convex. It is
strictly convex if for at least one index i with \; > 0, f; is strictly convex.

Guide. Work from Definition 2.1. O

2.19 Exercise (set products and separable functions).

(a) If C'=Cq x---xC,, where each C; is convex in IR"*, then C' is convex
in R™ x --- x IR"™. In particular, any box in IR" is a closed, convex set.
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(b) If f(x) = fi(x1)+ -+ fm(xy) forz = (x1,...,2y) in R™ x-- - xR"™,
where each f; is convex, then f is convex. If each f; is strictly convex, then f
is strictly convex.

2.20 Exercise (convexity in composition).

(a) If f(z) = g(Ax +a) for a convex function g : IR™ — IR and some choice
of A€ R™""™ and a € IR™, then f is convex.

(b) If f(z) = 6(g(x)) for a convex function g : R™ — IR and a nondecreas-
ing convex function 6 : IR — IR, the convention being used that §(co) = oo
and 0(—o0) = inf @, then f is convex. Furthermore, f is strictly convex in the
case where g is strictly convex and 6 is increasing.

(¢) Suppose f(z) = g(F(z)) for a convex function g : R™ — IR and a
mapping F : R" — IR™, where F(z) = (fl(a:), e, fm(a:)) with f; convex for
i=1,...,s and f; affine for i = s+ 1,...,m. Suppose that g(ui,...,uy) is
nondecreasing in u; fort =1,...,s. Then f is convex.

An example of a function whose convexity follows from 2.20(a) is f(x) =
|Az — b|| for any matrix A, vector b, and any norm || - ||. Some elementary
examples of convex and strictly convex functions constructed as in 2.20(b) are:

o f(x) = €9 is convex when g is convex, and strictly convex when g is
strictly convex.
e f(z) = —log|g(z)| when g(x) < 0, f(z) = oo when g(z) > 0, is convex
when ¢ is convex, and strictly convex when g is strictly convex.
o f(z) = g(x)? when g(x) > 0, f(x) = 0 when g(x) < 0, is convex when ¢ is
convex.
As an example of the higher-dimensional composition in 2.20(c), a vector of
convex functions fi,..., f,n can be composed with vecmax or logexp, cf. 2.16.
This confirms that convexity is preserved when a nonsmooth function, given as
the pointwise maximum of finitely many smooth functions, is approximated by
a smooth function as in Example 1.30. Other examples in the mode of 2.20(c)
are obtained with g(z) of the form

’zh :=max{z,0} for z€ R

in 2.20(b), or more generally

‘Z}Jr = \/‘Zl‘i 4+ }zm‘i for z=1(z1,...,2m) € R™ 2(10)

in 2.20(c). This way we get the convexity of a function of the form f(x) =
|(fr(2), ..., ﬁn(:l:))}Jr when f; is convex. Then too, for instance, the pth power
of such a function is convex for any p € [1,00), as seen from further composition
with the nondecreasing, convex function 6 : t — ’t’i .

2.21 Proposition (images under linear mappings). If L : IR" — IR™ is linear,
then L(C) is convex in IR™ for every convex set C C IR", while L=1(D) is
convex in IR" for every convex set D C IR™.
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Proof. The first assertion is obtained from the definition of the convexity
of C' and the linearity of L. Specifically, if u = (1 — 7)ug + 7uy for points
ug = L(zp) and uw; = L(x1) with z¢ and z7 in C, then v = L(x) for the
point © = (1 — 7)xg + 721 in C. The second assertion can be proved quite as
easily, but it may also be identified as a specialization of the composition rule
in 2.20(a) to the case of g being the indicator é¢. O

Projections onto subspaces are examples of mappings L to which 2.21 can
be applied. If D is a subset of R™ x IR? and C' consists of the vectors z € IR™
for which there’s a vector w € IR® with (z,w) € D, then C is the image of D
under the mapping (z,w) — z, so it follows that C' is convex when D is convex.

2.22 Proposition (convexity in inf-projection and epi-composition).

(a) If p(u) = inf, f(x,u) for a convex function f on IR™ x IR™, then p is
convex on IR™. Also, the set P(u) = argmin, f(x,u) is convex for each u.

(b) For any convex function f : IR" — IR and matrix A € IR™*" the
function Af : R™ — IR defined by (Af)(u) :=inf{f(z)| Az = u} is convex.

Proof. In (a), the set D = {(u,) ’p(u) < a < oo} is the image of the set
E = {(z,u,a)| f(z,u) < o < co} under the linear mapping (z,u, ) — (u, @).
The convexity of F through 2.4 implies that of D through 2.21, and this ensures
that p is convex. The convexity of P(u) follows from 2.6.

Likewise in (b), the set D' = {(u, )| (Af)(u) < o < oo} is the image
of B/ = {(z,a) | f(z) < @ < oo} under the linear transformation (z,a) —
(Azx,«). Again, the claimed convexity is justified through 2.4 and 2.21. O

The notation Af in 2.22(b) is interchangeable with Lf for the mapping
L : z — Ax, which fits with the general definition of epi-composition in 1(17).

2.23 Proposition (convexity in set algebra).
(a) Cy + Cq is convex when Cy and Cy are convex.
(b) AC is convex for every A € IR when C' is convex.
(c) When C is convex, one has (A1 + X2)C' = A\ C + X\2C for Aj, Ay > 0.

Proof. Properties (a) and (b) are immediate from the definitions. In (c) it
suffices through rescaling to deal with the case where A\ +A2 = 1. The equation
is then merely a restatement of the definition of the convexity of C. |

As an application of 2.23, the ‘fattened’ set C' + €IB is convex whenever C'
is convex; here BB is the closed, unit Euclidean ball, cf. 1(15).

2.24 Exercise (epi-sums and epi-multiples).
(a) fi4 fo is convex when f; and fy are convex.
(b) Axf is convex for every X > 0 when f is convex.
(c) When f is convex, one has (A1 +A2)*f = (A*f)# (Aaxf) for A1, Ay > 0.

Guide. Get these conclusions from 2.23 through the geometry in 1.28. O

2.25 Example (distance functions and projections). For a convex set C, the
distance function d¢ is convex, and as long as C' is closed and nonempty, the
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projection mapping Pc is single-valued, i.e., for each point x € IR" there is a
unique point of C' nearest to x. Moreover Pc is continuous.

Detail. The distance function (from 1.20) arises through epi-addition, cf.
1(13), so its convexity is a consequence of 2.24. The elements of Po(x) minimize
|w—x| over all w € C, but they can also be regarded as minimizing |w—x|? over
all w € C. Since the function w + |w — z|? is strictly convex (via 2.15), there
can’t be more than one such element (see 2.6), but on the other hand there’s
at least one (by 1.20). Hence Po(z) is a singleton. The cluster point property
in 1.20 ensures then that, as a single-valued mapping, P¢ is continuous. O

For a convex function f, the Moreau envelopes and proximal mappings
defined in 1.22 have remarkable properties.

2.26 Theorem (proximal mappings and envelopes under convexity). Let f :
IR"™ — R be Isc, proper, and convex. Then f is prox-bounded with threshold
00, and the following properties hold for every A > 0.

(a) The proximal mapping P, f is single-valued and continuous. In fact
P, f(x) — Psf(Z) whenever (\,z) — (A, Z) with A > 0.

(b) The envelope function e, f is convex and continuously differentiable,
the gradient being

Verf(a) = [~ Puf(x)].

Proof. From Definition 1.22 we have e, f(z) := inf,, ga(z,w) and P, f(z) :=
argmin,, gx(z,w) for the function gy(x,w) := f(w) + (1/2)\)|w — x|?, which
our assumptions imply to be Isc, proper and convex in (z,w), even strictly
convex in w. If the threshold for f is co as claimed, then e, f and P, f have
all the properties in 1.25, and in addition e, f is convex by 2.22(a), while P, f
is single-valued by 2.6. This gives everything in (a) and (b) except for the
differentiability in (b), which will need a supplementary argument. Before
proceeding with that argument, we verify the prox-boundedness.

In order to show that the threshold for f is oo, it suffices to show for
arbitrary A > 0 that e, f(0) > —oo, which can be accomplished through The-
orem 1.9 by demonstrating the boundedness of the level sets of g)(0,-). If
the latter property were absent, there would exist o € IR and points x” with
f(x”) 4+ (1/20)]2¥]? < a such that 1 < |2¥| — co. Fix any x¢ with f(zg) < cc.

Then in terms of 7% = 1/|z¥| € (0,1) and z" := (1 — 7¥)z¢ + V2" we have
7 — 0 and
f@) < (X =7")f(zo) + 7" f(2")
< (1 —=7")f(xo) + 77 — (1/2XN)]|z"| — —o0.

The sequence of points ¥ is bounded, so this is incompatible with f being
proper and lsc (cf. 1.10). The contradiction proves the claim.

The differentiability claim in (b) is next. Continuous differentiability will
follow from the formula for the gradient mapping, once that is established, since
P, f is already known to be a continuous, single-valued mapping. Consider
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any point Z, and let w = P, f(Z) and v = (z — w)/\. Our task is to show
that e, f is differentiable at z with Ve, f(Z) = v, or equivalently in terms of
h(u) := e, f(Z+u)—e, f(Z)— (v, u) that h is differentiable at 0 with VA(0) = 0.
We have e, f(Z) = f(w) + (1/2)\)|w — Z|?, whereas e, f(Z +u) < f(w) +
(1/2)\)|w — (T + u)|?, so that

1 1 1

hw) < oylo = (@ +w)l = grlo =2’ = L@ —w,u) = S|ul

But A inherits the convexity of e, f and therefore has $h(u)+3h(—u) > h(%u—I—
%(—u)) = h(0) = 0, so from the inequality just obtained we also get

1 1
> h(—u) > ——| —ul? = ——|ul?
() > ~h(~u) > ~ o] — w2 = 5l
Thus we have |h(u)| < (1/2A)[u|? for all u, and this obviously yields the desired
differentiability property. O

Especially interesting in Theorem 2.26 is the fact that regardless of any
nonsmoothness of f, the envelope approximations e, f are always smooth.

E. Convex Hulls

Nonconvex sets can be ‘convexified’. For C C IR", the convex hull of C, denoted
by conC| is the smallest convex set that includes C'. Obviously conC'is the
intersection of all the convex sets D O C, this intersection being a convex set
by 2.9(a). (At least one such set D always exists—the whole space.)

2.27 Theorem (convex hulls from convex combinations). For a set C C IR",
con C' consists of all the convex combinations of elements of C':

conC = {Zf:o i

BEC, A =0,>" A=1,p>0}

Fig. 2—8. The convex hull of a set.

Proof. Let D be the set of all convex combinations of elements of C. We
have D C conC by 2.2, because conC' is a convex set that includes C'. But
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D is itself convex: if = is a convex combination of zy,...,z, in C and 2’ is
a convex combination of z,...,z}, in C, then for any 7 € (0,1), the vector
(1 = 7)x + 72’ is a convex combination of zo,...,r, and zg, ..., r,, together.

Hence conC' = D. O

Sets expressible as the convex hull of a finite subset of IR" are especially
important. When C' = {ag, a1, ...,a,}, the formula in 2.27 simplifies: conC
consists of all convex combinations Agag + Aiai + -+ + A\ya,. If the points
ap,ai,...,a, are affinely independent, the set con{ag,as,...,a,} is called a
p-simplex with these points as its vertices. The affine independence condition
means that the only choice of coefficients \; € (—o00,00) with A\gag + A1a; +
o+ Apap, = 0and Ao+ A +-- -+, = 0is A\; = 0 for all 4; this holds if and only
if the vectors a; — ag for ¢ = 1,...,p are linearly independent. A 0-simplex is
a point, whereas a 1-simplex is a closed line segment joining a pair of distinct
points. A 2-simplex is a triangle, and a 3-simplex a tetrahedron.

Fig. 2—-9. The convex hull of finitely many points.

Simplices are often useful in technical arguments about convexity. The
following are some of the facts commonly employed.

2.28 Exercise (simplex technology).

(a) Every simplex S = con{ap, a1, ...,a,} is a polyhedral set, in particular
closed and convex.

(b) When ay,...,a, are affinely independent in IR", every x € IR" has a
unique expression in barycentric coordinates: ¥ = Y- \ia; with y . X\, = 1.

(c) The expression of each point of a p-simplex S = con{ag, ai,...,a,} as
a convex combination Zf:o Aia; is unique: there is a one-to-one correspon-
dence, continuous in both directions, between the points of S and the vectors
(Ao ALy - -5 Ap) € RPT! such that \; > 0 and Y°F_ A = 1.

(d) Every n-simplex S = con{ag, ai,...,a,} in IR" has nonempty interior,
and x € int S if and only if v = >  Nia; with \; >0 and > A\ = 1.

(e) Simplices can serve as neighborhoods: for every point © € IR" and
neighborhood V' € N (Z) there is an n-simplex S C V with T € int S.

(f) For an n-simplex S = con{ag, ai,...,a,} in IR" and sequences a — a;,
the set S¥ = con{ay,ay,...,a’} is an n-simplex once v is sufficiently large.
Furthermore, if x* — x with barycentric representations =¥ =Y ., A\/a! and
T =Y 1 gNa;, where 3" (N =1and Yy . A\ =1, then \Y — ;.
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dim=0 dim=1 dim=2 dim=3

Fig. 2—-10. Simplices of dimensions 0, 1, 2 and 3.

Guide. In (a)-(d) simplify by translating the points to make ap = 0; in (a) and
(c) augment aq, ..., a, by other vectors (if p < n) in order to have a basis for
IR". Consider the linear transformation that maps a; to e; = (0,...,1,0,...,0)
(where the 1 in e; appears in ith position). For (e), the case of £ = 0 and
convex neighborhoods V' = IB(0,¢) is enough. Taking any n-simplex S with
0 € int S, show there’s a 6 > 0 such that 6S C B(0,e). In (f) let A be
the matrix having the vectors a; — ag as its columns; similarly, A”. Identify
the simplex assumption on S with the nonsingularity of A and argue (by way
of determinants for instance) that then A” must eventually be nonsingular.
For the last part, note that x = Az + ag for z = (A1,...,\,) and similarly
x¥ = AYzZY + ag for v sufficiently large. Establish that the convergence of A"
to A entails the convergence of the inverse matrices. O

In the statement of Theorem 2.27, the integer p isn’t fixed and varies over
all possible choices of a convex combination. This is sometimes inconvenient,
and it’s valuable then to know that a fixed choice will suffice.

2.29 Theorem (convex hulls from simplices; Carathéodory). For a set C' # () in
IR", every point of con C belongs to some simplex with vertices in C and thus
can be expressed as a convex combination of n+ 1 points of C' (not necessarily
different). For every point in bdry C, the boundary of C, n points suffice.
When C' is connected, then every point of conC' can be expressend as the
combination of no more than n points of C.

Proof. First we show that conC' is the union of all simplices formed from
points of C: each x € con C' can be expressed not only as a convex combination
?:o Az with z; € C, but as one in which g, z1, ..., x, are affinely indepen-
dent. For this it suffices to show that when the convex combination is chosen
with p minimal (which implies \; > 0 for all i), the points x; can’t be affinely
dependent. If they were, we would have coefficients p;, at least one of them
positive, such that > ¥  u;x; = 0 and >.7_ pu; = 0. Then there is a largest
7 > 0 such that 7u; < \; for all 4, and by setting \; = A\; — 71; we would get
a representation x = > °_ Mz, in which Y7 A, = 1, X, > 0, and actually
A, = 0 for some 7. This would contradict the minimality of p.
Of course when zg,1,...,2, are affinely independent, we have p < n.
If p < n we can choose additional points x4, ..., x, arbitrarily from C and
expand the representation z = Y ©_  \;x; to z = >, \iz; by taking \; = 0
fore=p+1,...,n. This proves the first assertion of the theorem.
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By passing to a lower dimensional space if necessary, one can suppose
that con C' is n-dimensional. Then con C' is the union of all n-simplices whose
vertices are in C. A point in bdry C, while belonging to some such n-simplex,
can’t be in its interior and therefore must be on boundary of that n-simplex.
But the boundary of an n-simplex is a union of (n — 1)-simplices whose vertices
are in C, i.e., every point in bdry C' can be obtained as the convex combination
of no more than n point in C.

Finally, let’s show that if some point z in conC, but not in C, has a
minimal representation Z?:o \iz; involving exactly n + 1 points z; € C, then
C' can’t be connected. By a translation if necessary, we can simplify to the
case where Z = 0; then > 1" (A, = 0 with 0 < A; < 1, >0 A = 1, and
o, T1, - - -, T, affinely independent. In this situation the vectors z1,...,z, are
linearly independent, for if not we would have an expression 2?21 wix; = 0 with
S, i = 0 (but not all coefficients 0), or one with Y " | p; = 1; the first case
is precluded by xg,z1,...,z, being affinely independent, while the second is
impossible by the uniqueness of the coefficients \;, cf. 2.28(b). Thus the vectors
x1,...,T, form a basis for IR", and every x € IR" can be expressed uniquely as
a linear combination ) ., a;x;, where the correspondence z <> (a, ..., ay) is
continuous in both directions. In particular, zo <+ (—=A1/Xo, - .., —An/Ao).

Let D be the set of all x € IR" with ; < 0 for ¢ = 1,...,n; this is a
closed set whose interior consists of all x with a; < 0 for i =1,...,n. We have
xo € int D but z; ¢ D for all i # 0. Thus, the open sets int D and IR™\ D both
meet C. If C' is connected, it can’t lie entirely in the union of these disjoint
sets and must meet the boundary of D. There must be a point z(, € C' having
an expression x(, = y ., a;z; with a; <0 for i =1,...,n but also a; = 0 for
some 4, which we can take to be i = n. Then zj + Z;-:ll |aj|z; = 0, and in
dividing through by 1 + Z?:_ll |a;| we obtain a representation of 0 as a convex
combination of only n points of C, which is contrary to the minimality that
was assumed. O

2.30 Corollary (compactness of convex hulls). For any compact set C C IR",
conC' is compact. In particular, the convex hull of a finite set of points is
compact; thus, simplices are compact.

Proof. Let D C (IR™)™T! x R"™" consist of all w = (xg,...,Zn, Ao,- - An)
with z; € C, \; >0, Y1y A\; = 1. From the theorem, con C' is the image of D
under the mapping F' : w — Z?:o Aix;. The image of a compact set under a
continuous mapping is compact. O

For a function f : IR" — IR, there is likewise a notion of convex hull:
con f is the greatest convex function majorized by f. (Recall that a function
g : R" — TR is majorized by a function h : R" — IR if g(x) < h(x) for
all x. With the opposite inequality, g is minorized by h.) Clearly, con f
is the pointwise supremum of all the convex functions g < f, this pointwise
supremum being a convex function by 2.9(b); the constant function —oo always
serves as such a function g. Alternatively, con f is the function obtained by
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taking epi(con f) to be the epigraphical closure of con(epi f). The condition
f = con f means that f is convex. For f = dc one has con f = dp, where
D =conC.

2.31 Proposition (convexification of a function). For f: R" — IR,

(con )(e) = mt{ 3" Afe) | 3 Nm=w 20,3 =1},

Proof. We apply Theorem 2.29 to epi f in IR"™*: every point of con(epi f)
is a convex combination of at most n + 2 points of epi f. Actually, at most
n+ 1 points z; at a time are needed in determining the values of con f, since a
point (z, @) of con(epi f) not representable by fewer than n + 2 points of epi f
would lie in the interior of some n+ 1-simplex S in con(epi f). The vertical line
through (z, @) would meet the boundary of S in a point (z, &) with @ > &, and
such a boundary point is representable by n 4 1 of the points in question, cf.
2.28(d). Thus, (con f)(z) is the infimum of all numbers a such that there exist
n + 1 points (z;, ;) € epi f and scalars A; > 0, with Y"1 X\ (@i, o) = (=, @),
S oA = 1. This description translates to the formula claimed. O

-

Fig.2-11. The convex hull of a function.

F. Closures and Continuity

Next we consider the relation of convexity to some topological concepts like
closures and interiors of sets and semicontinuity of functions.

2.32 Proposition (convexity and properness of closures). For a convex set CcC
IR", clC is convex. Likewise, for a convex function f : IR" — IR, cl f is convex.
Moreover cl f is proper if and only if f is proper.

Proof. First, for sequences of points zf; and z} in C' converging to z¢ and z;
in clC, and for any 7 € (0, 1), the points z¥ = (1 — 7)xf + T2} € C, converge
to . = (1 —7)xo + 721, which therefore lies in ¢l C. This proves the convexity
of clC. In the case of a function f, the epigraph of the function cl f (the lsc
regularization of f introduced in 1(6)-1(7)) is the closure of the epigraph of f,
which is convex, and therefore cl f is convex as well, cf. 2.4.

If f is improper, so is cl f by 2.5. Conversely, if cl f is improper it is
—oo on the convex set D = dom(cl f) = cl(dom f) by 2.5. Consider then a
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simplex S = con{ag, ai,...,a,} of maximal dimension in D. By a translation
if necessary, we can suppose ag = 0, so that the vectors aq,...,a, are linearly
independent. The p-dimensional subspace M generated by these vectors must
include D, for if not we could find an additional vector a,4+1 € D linearly in-
dependent of the others, and this would contradict the maximality of p. Our
analysis can therefore be reduced to M, which under a change of coordinates
can be identified with IRP. To keep notation simple, we can just as well as-
sume that M = IR", p = n. Then S has nonempty interior; let x € int S,
so that © = Y0 Na; with A; > 0, >0 (A = 1, cf. 2.28(d). For each i we
have (cl f)(a;) = —oo, so there is a sequence a? — a; with f(a) — —oo.
Then for v sufficiently large we have representations x = > jA/a? with
N> 0, Yo oA =1, cf. 2.28(f). From Jensen’s inequality 2.2(b), we ob-
tain f(z) < Y1 A f(a¥) < max{f(a}), f(a}), ..., f(a%)} — —oc. Therefore,
f(x) = —o0, and f is improper. O

The most important topological consequences of convexity can be traced to
a simple fact about line segments which relates the closure cl C' to the interior
int C' of a convex set C, when the interior is nonempty.

2.33 Theorem (line segment principle). A convex set C' has int C # () if and
only if int(clC') # (). In that case, whenever x( € int C and x; € clC, one has
(1 —=7)xg+ 721 € int C for all 7 € (0,1). Thus, int C' is convex. Moreover,

clC = cl(int C), int C' = int(cl C).

Proof. Leaving the assertions about int(clC) to the end, start just with the
assumption that int C' # (). Choose 9 > 0 small enough that the ball B(xz, £¢)
is included in C. Writing B(zg,£0) = xo+¢e0lB for B = IB(0, 1), note that our
assumption x; € clC implies z1 € C' + 1B for all e; > 0. For arbitrary fixed
7 € (0,1), it’s necessary to show that the point z, = (1 —7)x+ 721 belongs to
int C'. For this it suffices to demonstrate that z, + ¢,1B C C for some &, > 0.
We do so for e, := (1 — 7)eg — Te1, with & fixed at any positive value small
enough that e, > 0 (cf. Figure 2-12), by calculating

r+e,B=1—-1)xg+181+,BC(1—71)xg+7(C+e1B)+¢e,B
=(1—-7)xo+ (te1+¢e,)B+7C =(1—71)(x0+0B) +1C
c(l—-nC+7C=0C,

where the convexity of C' and B has been used in invoking 2.23(c).

As a special case of the argument so far, if z; € int C' we get =, € int C,
thus, int C' is convex. Also, any point of clC can be approached along a line
segment by points of int C, so clC = cl(int C).

It’s always true, on the other hand, that intC' C int(clC), so the
nonemptiness of int C' implies that of int(clC'). To complete the proof of the
theorem, no longer assuming outright that int C' # (), we suppose T € int(clC)
and aim at showing z € int C.

By 2.28(e), some simplex S = con{ag,ai,...,a,} C clC has T € int S.
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Fig. 2-12. Line segment principle for convex sets.

Then z = Y ;"  Aja; with >0 (A = 1, A\; > 0, cf. 2.28(d). Consider in C
sequences af — a;, and let S¥ = con{afj,ay,...,a%} C C. For large v, S” is an
n-simplex too, and Z = > "  AYa? with Y 1" - AV =1 and AY — \;; see 2.28(f).
Eventually A\Y > 0, and then & € int S by 2.28(d), so Z € int C. O

2.34 Proposition (interiors of epigraphs and level sets). For f convex on IR",

int(epi f) = {(z,a) € R" x R |z € int(dom f), f(z) < a},
int(leveo f) = {z € int(dom f) | f(z) < a} for a € (inf f,00).

Proof. Obviously, if (Z,a) € int(epi f) there’s a ball around (z,&) within
epi f, so that Z € int(dom f) and f(Z) < a.

On the other hand, if the latter properties hold there’s a simplex S =
con{ag,ai,...,a,} with € intS C dom f, cf. 2.28(e). Each x € S is a
convex combination Y . A\;a; and satisfies f(z) < Y"1 A; f(a;) by Jensen’s
inequality in 2.2(b) and therefore also satisfies f(z) < max {f(ao),..., f(an)}.
For & := max { f(ao), ..., f(ay)} the open set int S x (&, oo) lies then within
epi f. The vertical line through (Z, &) thus contains a point (Z, ag) € int(epi f)
with ap > @, but it also contains a point (Z, a;) € epi f with a3 < &, inasmuch
as f(Z) < a. The set epif is convex because f is convex, so by the line
segment principle in 2.33 all the points between (Z, ag) and (Z, @1 ) must belong
to int(epi f). This applies to (Z,@) in particular.

Consider now a level set lev_g f. If Z € int(dom f) and f(Z) < @, then
some ball around (Z, &) lies in epi f, so f(z) < @ for all z in some neighborhood
of . Then z € int(lev_s f). Conversely, if € int(lev_g f) and inf f < & <
00, we must have Z € int(dom f), but also there’s a point o € dom f with
f(zg) < @. For e > 0 sufficiently small the point z; = Z + £(Z — xg) still
belongs to lev.g f. Then £ = (1 — 7)xg + 721 for 7 = 1/(1 + ¢), and we get
f(@) < (1—71)f(xo)+ 7f(x1) < &, which is the desired inequality. O

2.35 Theorem (continuity properties of convex functions). A convex function
f : R" — IR is continuous on int(dom f) and therefore agrees with cl f on
int(dom f), this set being the same as int(dom(cl f)). (Also, f agrees with
cl f as having the value oo outside of dom(cl f), hence in particular outside of
cl(dom f).) Moreover,
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(clf)(z) = lim f((1—7)zo+7x) forall z if zo € int(dom f).  2(11)
!

If f is Isc, it must in addition be continuous relative to the convex hull of any
finite subset of dom f, in particular any line segment in dom f.

Proof. The closure formula will be proved first. We know from the basic
expression for cl f in 1(7) that (cl f)(z) < liminf_ »~; f((1—7)zo+72), so it will
suffice to show that if (cl f)(z) < @ € R then limsup, ~; f((1—7)zo+72) < a.
The assumption on o means that (z, «) € cl(epi f), cf. 1(6). On the other hand,
for any real number ag > f(xg) we have (z,ap) € int(epi f) by 2.34. Then
by the line segment principle in Theorem 2.33, as applied to the convex set
epi f, the points (1 — 7)(zg, ag) + 7(z, ) for 7 € (0, 1) belong to int(epi f). In
particular, then, f((1 —7)zo 4+ 72) < (1 —7)ap + 7o for 7 € (0,1). Taking the
upper limit on both sides as 7.7 1, we get the inequality needed.

When the closure formula is applied with x = z( it yields the fact that cl f
agrees with f on int(dom f). Hence f islsc on int(dom f). But f is usc there by
1.13(b) in combination with the characterization of int(epi f) in 2.34. It follows
that f is continuous on int(dom f). We have int(dom f) = int(dom(cl f)) by
2.33, because dom f C dom(cl f) C cl(dom f). The same inclusions also yield
cl(dom f) = cl(dom(cl f)).

R

f(X)
(cl )(x)

Fig. 2—-13. Closure operation on a convex function.

Consider now a finite set C' C dom f. Under the assumption that f is
Isc, we wish to show that f is continuous relative to conC. But conC' is the
union of the simplices generated by the points of C', as shown in the first part
of the proof of Theorem 2.29, and there are only finitely many of these. If a
function is continuous on a finite family of sets, it is also continuous on their
union. It suffices therefore to show that f is continuous relative to any simplex
S = con{agp,a,...,a,} C dom f. For simplicity of notation we can translate
so that 0 € S and investigate continuity at 0; we have a unique representation
of 0 as a convex combination Zf:o \i@;.

We argue next that S is the union of the finitely many other simplices
having 0 as one vertex and certain a;’s as the other vertices. This will enable
us to reduce further to the study of continuity relative to such a simplex.

Consider any point £ # 0 in .S and represent it as a convex combination

P o M\;a;. The points z, = (1 — 7)0 + 7Z on the line through 0 and Z can’t
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all be in S, which is compact (by 2.30), so there must be a highest 7 with
z, € S. For this we have 7 > 1 and z, = Y 7 p;a; for p; = (1 — )i + i
with Y% o pi = 1, where p; > 0 for all ¢ but g; = 0 for at least one i such
that A\; > \; (or 7 wouldn’t be the highest). We can suppose pg = 0; then in
particular Ao > 0. Since Z lies on the line segment joining 0 with z,, it belongs
to con{0,as,...,a,}. This is a simplex, for if not the vectors a, ..., a, would
be linearly dependent: we would have Y 7 n;a; = 0 for certain coefficients
n;, not all 0. It’s impossible that Y ¢, n; = 0, because {ag,a1,...,a,} are
affinely independent, so if this were the case we could, by rescaling, arrange that

P_m; = 1. But then in defining 79 = 0 we would be able to conclude from the
affine independence that n; = \; for i = 0,...,p, because 0 = Zfzo(m — \i)a;
with % (i — A;) = 0. This would contradict Ay > 0.

We have gotten to where a simplex Sy = con{0, a1, ...,a,} lies in dom f
and we need to prove that f is not just Isc relative to Sy at 0, as assumed, but
also usc. Any point of Sy has a unique expression Zle N;a; with A\; > 0 and

P_ X <1, and as the point approaches 0 these coefficients vanish, cf. 2.28(c).
The corresponding value of f is bounded above by Aof(0) + D5 Xif(a;)
through Jensen’s inequality 2.2(b), where A\g = 1 — Y% | A;, and in the limit
this bound is f(0). Thus, limsup,_,, f(x) < f(0) for x € Sp. O

2.36 Corollary (finite convex functions). A finite, convex function f on an
open, convex set O # () in IR" is continuous on O. Such a function has a
unique extension to a proper, Isc, convex function f on IR" with dom f C clO.

Proof. Apply the theorem to the convex function g that agrees with f on O
but takes on oo everywhere else. Then int(domg) = O. O

Finite convex functions will be seen in 9.14 to have the even stronger
property of Lipschitz continuity locally.

2.37 Corollary (co_nvex functions of a single real variable). Any Isc, convex
function f : IR — IR is continuous with respect to cl(dom f).

Proof. This is clear from 2(11) when int(dom f) # (); otherwise it’s trivial. O

Not everything about the continuity properties of convex functions is good
news. The following example provides clear insight into what can go wrong.

2.38 Example (discontinuity and unboundedness). On IR?, the function

22 /2wy if 19 >0,
flx1,29) =40 ifzy =0 and z9 =0,
00 otherwise,

is Isc, proper, convex and positively homogeneous. Nonetheless, f fails to be
continuous relative to the compact, convex set C' = {(:1:1, x2) }x‘ll <z < 1} in
dom f, despite f being continuous relative to every line segment in C. In fact
f is not even bounded above on C'.
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Fig. 2—14. Example of discontinuity.

Detail. The convexity of f on the open half-plane H = {(.771,.772) ’xz > 0}
can be verified by the second-derivative test in 2.14, and the convexity relative
to all of IR" follows then via the extension procedure in 2.36. The epigraph of
f is actually a circular cone whose axis is the ray through (0,1, 1) and whose
boundary contains the rays through (0, 1,0) and (0,0, 1), see Figure 2-14. The
unboundedness and lack of continuity of f relative to H are seen from its
behavior along the boundary of C' at 0, as indicated from the piling up of the

level sets of this function as shown in Figure 2-15. O
X2
f= f=2
f=3
f=4
(0,0) X1

Fig. 2—-15. Nest of level sets illustrating discontinuity.

G7* Separation

Properties of closures and interiors of convex sets lead also to a famous principle
of separation. A hyperplane {x } (a,x) = a}, where a # 0 and a € IR, is
said to separate two sets C7 and Cs in IR" if C is included in one of the
corresponding closed half-spaces {x } (a,z) < a} or {x } {a,z) > a}, while Cy
is included in the other. The separation is said to be proper if the hyperplane
itself doesn’t actually include both C7 and C5. As a related twist in wording,
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we say that Cy and Cy can, or cannot, be separated according to whether a
separating hyperplane exists; similarly for whether they can, or cannot, be
separated properly. Additional variants are strict separation, where the two
sets lie in complementary open half-spaces, and strong separation, where they
lie in different half-spaces {z | (a,z) < a1} and {z | (a,z) > o} with oq < as.
Strong separation implies strict separation, but not conversely.

2.39 Theorem (separation). Two nonempty, convex sets C7 and Cs in IR" can
be separated by a hyperplane if and only if 0 ¢ int(Cy — C5). The separation
must be proper if also int(Cy; — Cy) # (). Both conditions certainly hold when
int O # () but Cy Nint O = (), or when int Cy # () but Cy Nint Cy = 0.
Strong separation is possible if and only if 0 ¢ cl(Cy —Cy). This is ensured
in particular when C1NCy = () with both sets closed and one of them bounded.

Proof. In the case of a separating hyperplane {x ’ (a,z) = a} with C C
{z|({a,z) < a} and C; C {z|(a,z) > a}, we have 0 > (a, z1 — x3) for all
x1 — 9 € C7 — Co, in which case obviously 0 ¢ int(Cy; — Cs). This condition is
therefore necessary for separation. Moreover if the separation weren’t proper,
we would have 0 = (a, x1 —x29) for all x1 —z9 € C1—C3, and this isn’t possible if
int(Cy —C3) # 0. In the case where int Cy # () but CoyNint Cy = (), we have 0 ¢
(int Cy) — Cy where the set (int Cy) —Cy is convex (by 2.23 and the convexity of
interiors in 2.33) as well as open (since it is the union of translates (int C;) —z2,
each of which is an open set). Then (int C;) —Cs C Cy —C> C cl [(int Cy ) — C5]
(through 2.33), so actually int(C; — Cy) = (int Cy) — Cy (once more through
the relations in 2.33). In this case, therefore, we have 0 ¢ int(Cy — Cs) # 0.
Similarly, this holds when int Cy # () but C7 Nint Cy = (.

The sufficiency of the condition 0 ¢ int(Cy — C2) for the existence of a
separating hyperplane is all that remains to be established. Note that because
Cy — Cy is convex (cf. 2.23), so is C' := cl(Cy — C3). We need only produce a
vector a # 0 such that (a,z) < 0 for all z € C, for then we’ll have (a,z1) <
(a,x9) for all 1 € C7 and x5 € Cy, and separation will be achieved with any
« in the nonempty interval between sup, cc, (a,z1) and inf,,cc, (a, 22).

Fig. 2—-16. Separation of convex sets.

f. 2.25). For any z € C

Let Z denote the unique point of C' nearest to 0 (c
(1 — 7)Z + 72|? satisfies

the segment [Z,z] lies in C, so the function g(7) = 3
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g(t) > g(0) for 7 € (0,1). Hence 0 < ¢'(0) = (Z,z —Z). If 0 ¢ C, so that
Z # 0, we can take a = —Z and be done. A minor elaboration of this argument
confirms that strong separation is possible if and only if 0 ¢ C. Certainly
we have 0 ¢ C in particular when C; N Cy = () and C; — Cy is closed, i.e.,
C; — Cy = () it’s easy to see that C'; — (5 is closed if both C7 and C5 are
closed and one is actually compact.

When 0 € C, so that x = 0, we need to work harder to establish the
sufficiency of the condition 0 ¢ int(Cy — C3) for the existence of a separating
hyperplane. From C = cl(Cy — C3) and 0 ¢ int(Cy — C3), we have 0 ¢ int C' by
Theorem 2.33. Then there is a sequence z¥ — 0 with ¥ ¢ C. Let " be the
unique point of C' nearest to x¥; then ¥ # z¥, x¥ — 0. Applying to ¥ and z”
the same argument we earlier applied to 0 and its projection on C' when this
wasn’t necessarily 0 itself, we verify that (z —z", ¥ — z") < 0 for every = € C.
Let a be any cluster point of the sequence of vectors a” := (z¥ — z") /|z¥ — V|,
which have |a¥| = 1 and (x — z¥,a”) < 0 for every z € C. Then |a| = 1, so
a # 0, and in the limit we have (z,a) < 0 for every x € C, as required. O

H?* Relative Interiors

Every nonempty affine set has a well determined dimension, which is the di-
mension of the linear subspace of which it is a translate, cf. 2.11. Singletons
are O-dimensional, lines are 1-dimensional, and so on. The hyperplanes in IR"
are the affine sets that are (n — 1)-dimensional.

For any convex set C in IR", the affine hull of C' is the smallest affine set
that includes C' (it’s the intersection of all the affine sets that include C). The
interior of C relative to its affine hull is the relative interior of C, denoted by
rint C'. This coincides with the true interior when the affine hull is all of IR",
but is able to serve as a robust substitute for int C' when int C' = ().

2.40 Proposition (relative interiors of convex sets). For C' C IR" nonempty
and convex, the set rint C' is nonempty and convex with cl(rint C') = ¢l C and
rint(clC) =rint C. If z¢ € rint C' and x; € clC, then rint[zg, z1] C rint C.

Proof. Through a translation if necessary, we can suppose that 0 € C'. We
can suppose further that C' contains more than just 0, because otherwise the
assertion is trivial. Let aq, ..., a, be a set of linearly independent vectors chosen
from C with p as high as possible, and let M be the p-dimensional subspace of
IR"™ generated by these vectors. Then M has to be the affine hull of C, because
the affine hull has to be an affine set containing M, and yet there can’t be any
point of C' outside of M or the maximality of p would be contradicted. The
p-simplex con{0,ay,...,a,} in C has nonempty interior relative to M (which
can be identified with IRP through a change of coordinates), so rint C' # ). The
relations between rint C' and cl C follow then from the ones in 2.33. O
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2.41 Exercise (relative interior criterion). For a convex set C' C IR", one has
x € rint C if and only if x € C' and, for every xy # x in C, there exists z1 € C
such that x € rint [xg, z1].

Guide. Reduce to the case where C' is n-dimensional. O

The properties in Proposition 2.40 are crucial in building up a calculus of
closures and relative interiors of convex sets.

2.42 Proposition (relative interiors of intersections). For a family of convex
sets C; C IR" indexed by i € I and such that (., rintC; # (), one has
cl(V,er Ci = ;e €l Cs. If I is finite, then also rint (,.; C; = (,¢; rint C;.

Proof. On general grounds, cl(),.; C; C [),c;clC;. For the reverse consider
any xg € [, rint C; and 1 € (,c; clC;. We have [zg,21) C (), rint C; C
MNies Ci by 2.40, so z1 € cl();c; C;. This argument has the by-product that
cl(V,c; Ci = cl[ ;¢ rint C;. In taking the relative interior on both sides of this
equation, we obtain via 2.40 that rint(7);c; C; = rint(),c;rint C;. The fact
that rint ("), rint C; = (),¢; rint C; when [ is finite is clear from 2.41. O

2.43 Proposition (relative interiors in product spaces). For a convex set G in
R" x R™, let X be the image of G under the projection (z,u) — x, and for
each x € X let S(x) = {u|(z,u) € G}. Then X and S(x) are convex, and

(r,u) €rintG <= =z erintX and u € rint S(x).

Proof. We have X convex by 2.21 and S(x) convex by 2.9(a). We begin
by supposing that (z,u) € rint G and proving x € rint X and u € rint S(z).
Certainly z € X and u € S(x). For any xg € X there exists uy € S(z¢), and
we have (zg,up) € G. If ¢ # x, then (x9,up) # (z,u) and we can obtain from
the criterion in 2.41 as applied to rint G the existence of (x1,u;) # (z,u) in
G such that (z,u) € rint [(zo,uo), (z1,u1)]. Then 1 € X and x € rint[zg, z1].
This proves by 2.41 (as applied to X) that = € rint X. At the same time, from
the fact that u € S(x) we argue via 2.41 (as applied to G) that if uj € S(x)
and uf, # u, there exists (2,u}) € G for which (z,u) € rint [(x, uf), (z],u})].
Then necessarily ) = x, and we conclude u € rint[uy, u}], thereby establishing
by criterion 2.41 (as applied to S(x)) that u € rint S(z).

We tackle the converse now by assuming x € rint X and u € rint S(z)
(so in particular (z,u) € G) and aiming to prove (z,u) € rint G. Relying yet
again on 2.41, we suppose (zg,up) € G with (zo,up) # (x,u) and reduce the
argument to showing that for some choice of (z1,u1) € G the pair (x,u) lies in
rint [(2o, uo), (1, u1)]. If 79 = z, this follows immediately from criterion 2.41
(as applied to S(x) with 1 = z). We assume therefore that xo # . Since z €
rint X, there then exists by 2.41 a vector z; € X, &1 # xg, with € rint[zg, 7],
ie, © = (1 — 7)xg + 721 for a certain 7 € (0,1). We have (Z1,u;) € G
for some w1, and consequently (1 — 7)(xg,uo) + 7(Z1,u1) € G. If the point
up := (1 —7)ug+7u; coincides with u, we get the desired sort of representation
of (z, u) as a relative interior point of the line segment [(zo, o), (Z1, @1)], whose
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Fig.2-17. Relative interior argument in a product space.

endpoints lie in G. If not, uy, is a point of S(x) different from u and, because
u € rint S(z), we get from 2.41 the existence of some u} € S(z), u} # uf, with
w € rint[uf, u}], i.e., u = (1 — p)uy + pu) for some p € (0,1). This yields

(2,u) = (1= 1) () + pa(er, )
= (1= ) [(1 = 7)(x0, o) + 7(Z1, )] + p(,uh)
= 70(20, uo) + T1(Z1, U1) + T2, uy),
where 0 <7, <1, 7o+ 71 + 70 =1.

We can write this as (z,u) = (1 — 7) (2o, ug) + 7'(x1,u1) with 7" := 17 + 175 =
1—7€ (0, 1) and (a;l,ul) = [Tl/(Tl —|—7'2)](§71,ﬂ1> + [7'2/(7'1 +T2>](£L’,U/1> e G.
Here (z1,u1) # (x0,u), because otherwise the definition of z; would imply
x = T in contradiction to our knowledge that = € rint[zg, z1]. Thus, (z,u) €
rint [(zo, uo), (1, u1)], and we can conclude that (z,u) € rint G. O

2.44 Proposition (relative interiors of set images). For linear L : R" — IR™,
(a) rint L(C') = L(rint C') for any convex set C' C IR",
(b) rint L=Y(D) = L~ (rint D) for any convex set D C IR™ such that rint D
meets the range of L, and in this case also cl L=1(D) = L™(cl D).

Proof. First we prove the relative interior equation in (b). In R™ x IR™ let
G = {(z,u)|u=L(z) € D} = M N (R" x D), where M is the graph of L, a
certain linear subspace of IR" x IR™. We'll apply 2.43 to G, whose projection on
R" is X = L™Y(D). Our assumption that rint D meets the range of L means
M Nrint[IR™ x D] # 0, where M = rint M because M is an affine set. Then
rint G = M Nrint(IR"™ x D) by 2.42; thus, (x,u) belongs to rint G if and only
if u= L(z) and u € rint D. But by 2.43 (x,u) belongs to rint G if and only if
z € rint X and u € rint{L(z)} = {L(x)}. We conclude that x € rint L=1(D)
if and only if L(z) € rint D, as claimed in (b). The closure assertion follows
similarly from the fact that c1G = M N cl(IR" x D) by 2.42.

The argument for (a) just reverses the roles of x and u. We take G =
{(z,u)|z € C, u=L(z)} = M N(C x IR™) and consider the projection U of
G in IR™, once again applying 2.42 and 2.43. |
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2.45 Exercise (relative interiors in set algebra).

(a) If C = CyxCy for convex sets C; C IR™, then rint C' = rint C xrint Cs.
(b) For convex sets Cy and Co in IR", rint(C7 + C3) = rint Cy + rint Cs.
(¢) For a convex set C and any scalar A € IR, rint(AC) = A(rint C).
(d) For convex sets C7 and Cy in IR", the condition 0 € int(Cy — Cs) holds
if and only if 0 € rint(Cy — C3) but there is no hyperplane H > Cy U Cy. This
is true in particular if either Cy Nint Cy # () or Coy Nint Cy # 0.

(e) Convex sets Cy # () and Cy # () in IR™ can be separated properly if and
only if 0 ¢ rint(Cy — Cs). This condition is equivalent to rint C; Nrint Cy = ().

Guide. Get (a) from 2.41 or 2.43. Get (b) and (c) from 2.44(a) through
special choices of a linear transformation. In (d) verify that C; U Cy lies in a
hyperplane if and only if C; — Cs lies in a hyperplane. Observe too that when
Cy Nint Oy # B the set C7 — int Cs is open and contains 0. For (e), work with
Theorem 2.39. Get the equivalent statement of the relative interior condition
out of the algebra in (b) and (c). O

2.46 Exercise (closures of functions).

(a) If f1 and fy are convex on IR" with rint(dom f1) = rint(dom f5), and
on this common set fi and f, agree, then cl f; = cl fs.

(b) If fi and fo are convex on IR"™ with rint(dom f;) N rint(dom f3) # 0,
then Cl(fl + f2> =cl fl +cl f2.

(¢) If f = goL for a linear mapping L : IR" — IR™ and a convex function
g : R™ — IR such that rint(dom g) meets the range of L, then rint(dom f) =
L~ (rint(dom g)) and cl f = (clg)oL.

Guide. Adapt Theorem 2.35 to relative interiors. In (b) use 2.42. In (c) argue
that epi f = Ly '(epig) with Lo : (z, ) — (L(x),a), and apply 2.44(b). O

I¥ Piecewise Linear Functions

Polyhedral sets are important not only in the geometric analysis of systems of
linear constraints, as in 2.10, but also in piecewise linearity.

2.47 Definition (piecewise linearity).

(a) A mapping F' : D — IR™ for a set D C IR" is piecewise linear on D
if D can be represented as the union of finitely many polyhedral sets, relative
to each of which F(z) is given by an expression of the form Az + a for some
matrix A € IR™*" and vector a € IR™.

(b) A function f : R" — IR is piecewise linear if it is piecewise linear on
D = dom f as a mapping into IR.

Piecewise linear functions and mappings should perhaps be called ‘piece-
wise affine’, but the popular term is retained here. Definition 2.47 imposes no
conditions on the extent to which the polyhedral sets whose union is D may
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overlap or be redundant, although if such a representation exists a refinement
with better properties may well be available; cf. 2.50 below. Of course, on the
intersection of any two sets in a representation the two formulas must agree,
since both give f(x), or as the case may be, F'(x). This, along with the finite-
ness of the collection of sets, ensures that the function or mapping in question
must be continuous relative to D. Also, D must be closed, since polyhedral
sets are closed, and the union of finitely many closed sets is closed.

2.48 Exercise (graphs of piecewise linear mappings). For F' : D — IR™ to be
piecewise linear relative to D, it is necessary and sufficient that its graph, the
set G = {(z,u) |z € D, u = F(z)}, be expressible as the union of a finite
collection of polyhedral sets in IR" x IR™.

Here we're interested primarily in what piecewise linearity means for con-
vex functions. An example of a convex, piecewise linear function is the vector-
max function in 1.30 and 2.16. This function f on IR" has the linear formula
f(x1,...,2n) =2 on Cy := {(ml,...,xn) }xj—:l:k <0 for j= 1,...,n}, and
the union of these polyhedral sets C is the set dom f = IR".

The graph of any piecewise linear function f : JR" — IR must have a
representation like that in 2.48 relative to dom f. In the convex case, however,
a more convenient representation appears in terms of epi f.

2.49 Theorem (convex piecewise linear functions). A proper function f is both
convex and piecewise linear if and only if epi f is polyhedral.

In general for a function f : R™ — IR, the set epi f C R is polyhedral
if and only if f has a representation of the form

_ Jmax{li(z),...,l,(x)} whenz € D,
f(x)_{oo { } when x ¢ D,

where D is a polyhedral set in IR" and the functions l; are affine on IR"; here
p = 0 is admitted and interpreted as giving f(xr) = —oo when x € D. Any
function f of this type is convex and Isc, in particular.

Proof. The case of f = oo being trivial, we can suppose dom f and epi f to
be nonempty. Of course when epi f is polyhedral, epi f is in particular convex
and closed, so that f is convex and lsc (cf. 2.4 and 1.6).

To say that epi f is polyhedral is to say that epi f can be expressed as the
set of points (z,a) € IR" x IR satisfying a finite system of linear inequalities
(cf. 2.10 and the details after it); we can write this system as

vi > {(cismi), (z, @) = (¢, ) + myv for i=1,...,m

for certain vectors ¢; € IR" and scalars n; € IR and v; € IR. Because epi f # (),
and (z,a’) € epi f whenever (z,a) € epif and & > «, it must be true that
n; < 0 for all i. Arrange the indices so that n; < 0 for ¢ =1,...,p but n;, =0
fori =p+1,...,m. (Possibly p =0, i.e., n; = 0 for all i.) Taking b; = ¢;/|n;|
and B; = ~;/|ni| for i = 1,...p, we get epif expressed as the set of points
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(z,) € R" x IR satisfying
(biyz) —B; <a for i=1,...,p, (c¢j,x) <~ for i=p+1,...,m.

This gives a representation of f of the kind specified in the theorem, with D the
polyhedral set in IR" defined by the constraints (¢;,x) <~; fori =p+1,...,m
and [; the affine function with formula (b;, x) — ; for i =1,...,p.

Under this kind of representation, if f is proper (i.e., p # 0), f(z) is given
by (bi,z) — Br on the set Cj, consisting of the points € D such that

(bi,x) — B < (bg,x) — P for i=1...,p, i #k.

Clearly CY% is polyhedral and Uzzl Cx = D, so f is piecewise linear, cf. 2.47.

Suppose now on the other hand that f is proper, convex and piecewise
linear. Then dom f = |J;_; Ck with C} polyhedral, and for each k there exist
ar € R" and «y € IR such that f(z) = (ag,z) — ay for all x € Cf. Let

E; = {(a:,a) ’x € Cy, (ag,z) —a <a < oo}.

Then epi f = UZ:1 FE.. Each set Ej is polyhedral, since an expression for C
by a system of linear constraints in IR" readily extends to one for Ej, in IR" .
The union of the polyhedral sets Ej, is the convex set epi f. The fact that epi f
must then itself be polyhedral is asserted by the next lemma, which we state
separately for its independent interest. O

2.50 Lemma (polyhedral convexity of unions). If a convex set C' is the union
of a finite collection of polyhedral sets CY, it must itself be polyhedral.
Moreover if int C' # (), the sets C), with int Cy = () are superfluous in the

representation. In fact C' can then be given a refined expression as the union
of a finite collection of polyhedral sets {D;};c; such that

(a) each set D; is included in one of the sets Cy,

(b) int Dj 75 @, SO Dj = Cl(int Dj),

(c) int Dj, Nint Dj, = ) when j; # jo.

Proof. Let’s represent the sets Cy for £k =1,...,r in terms of a single family
of affine functions l;(x) = {(a;, ) — «; indexed by i = 1,..., m: for each k there
is a subset Jj, of {1,...,m} such that C, = {z|l;(x) <0 for all i € I;}. Let
I denote the set of indices i € {1,...,m} such that /;(x) < 0 for all z € C.
We’ll prove that

C={z|li(x) <0 forall i€}

Trivially the set on the right includes C, so our task is to demonstrate that the
inclusion cannot be strict. Suppose & belongs to the set on the right but not
to C. We'll argue this to a contradiction.

For each index k € {1,...,7} let C}, be the set of points € C such that
the line segment [z,z] meets Cj, this set being closed because Cy is closed.
For each x € C, a set which itself is closed (because it is the union of finitely
many closed sets C}), let K(z) denote the set of indices k such that x € Cj.
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Select a point & € C for which the number of indices in K(Z) is as low as
possible. Any point z in C'N [z, z] has K(z) C K(Z) by the definition of K (x)
and consequently K (x) = K(z) by the minimality of K (Z). We can therefore
suppose (by moving to the ‘last’ point that still belongs to C, if necessary) that
the segment [z, Z] touches C only at Z.

For any k, the set of z € C with k ¢ K(z) is complementary to C} and
therefore open relative to C'. Hence the set of = € C satisfying K(x) C K(&)
is open relative to C. The minimality of K (&) forbids strict inclusion, so there
has to be a neighborhood V' of 2 such that K(z) = K(2) forallz € CNV.

Take any index kg € K(&). Because Z is the only point of [z,Z] in C, it
must also be the only point of [%,Z] in Cj,, and accordingly there must be an
index ig € Iy, such that l;,(£) = 0 < [;,(z). For each z € C' NV the line
segment [z, Z] meets C, and thus contains a point z’ satisfying [;, (') < 0 as
well as the point Z satisfying [;,(Z) > 0, so necessarily ;,(x) < 0 (because l;,
is affine). More generally then, for any = # Z in C' (but not necessarily in V)
the line segment [z, Z|, which lies entirely in C by convexity, contains a point
x* # T in V, therefore satisfying l;,(z*) < 0. Since [;,(z) = 0, this implies
liy(z) < 0 (again because [;, is affine). Thus, iy is an index with the property
that C' C {x|l;,(x) < 0}, or in other words, ig € I. But since l;,(Z) > 0 this
contradicts the choice of Z as satisfying [;(z) < 0 for every i € I.

In passing now to the case where int C' # (), there’s no loss of generality
in supposing that none of the affine functions /; is a constant function. Then

int C, = {z|l;(z) <0 for i€ I}, int C = {x|li(z) <0 for i €I}

Let Ky denote the set of indices k such that int C # ), and K7 the set of indices
k such that int C;, = (). We wish to show next that C' = Ukex, Ck- It will be
enough to show that int C' C Jc g, Ck, since C D Uye g, Ck and C = cl(int O)
(cf. 2.33). If int C' ¢ Uy, Ck, the open set int C'\ Uy, Crk # 0 would be
contained in \Jcg, Ck, the union of the sets with empty interior. This is
impossible for the following reason. If the latter union had nonempty interior,
there would be a minimal index set K C K such that int|J, o, Ci # 0. Then
K would have to be more than a singleton, and for any k* € K the open set
[int Uye e Cr) \ Uker\ =3 Cx would be nonempty and included in Cj-, in
contradiction to int Cj- = 0.

To construct a refined representation meeting conditions (a), (b), and (c),
consider as index elements j the various partitions of {1, ..., m}; each partition
j can be identified with a pair (I, I_), where I, and I_ are disjoint subsets of
{1,...,m} whose union is all of {1,...,m}. Associate with such each partition
J the set D; consisting of all the points x (if any) such that

li(x) <0 forall i e1_, li(x) >0 forall iel,.

Let Jy be the index set consisting of the partitions j = (I,,I_) such that
I D I, for some k, so that D; C C},. Since every x € C belongs to at least one
C, it also belongs to a set D; for at least one j € Jy. Thus, C is the union of
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the sets D; for j € Jy. Hence also, by the argument given earlier, it is the union
of the ones with int D; # (), the partitions j with this property comprising a
possibly smaller index set J within Jy. For each j € J the nonempty set int D;
consists of the points x satisfying

li(x) <0 forall iel_, li(x) >0 forall iel,.

For any two different partitions j; and jo in J there must be some * €
{1,...,m} such that one of the sets D, and D,, is contained in the open
half-space {x } Li«(z) < 0}, while the other is contained in the open half-space
{@|l;(x) > 0}. Hence intDj, Nint Dj, = @ when j; # ja. The collection
{D;};cs therefore meets all the stipulations. O

J7 Other Examples

For any convex function f, the sets lev., f are convex, as seen in 2.7. But a
nonconvex function can have that property as well; e.g. f(z) = /|z|.

2.51 Exercise (functions with convex level sets). For a differentiable function
f:R" — IR, the sets lev_,, f are convex if and only if

(Vf(z0), ®o — x1) > 0 whenever f(z1) < f(z0).

Furthermore, if such a function f is twice differentiable at & with V f(z) = 0,
then V2 f(Z) must be positive-semidefinite.

The convexity of the log-exponential function in 2.16 is basic to the treat-
ment of a much larger class of functions often occurring in applications, espe-
cially in problems of engineering design. These functions are described next.

2.52 Example (posynomials). A posynomial in the variables yi,...,y, is an
expression of the form

T . . .
9, yn) =) cytys ey

where (1) only positive values of the variables y; are admitted, (2) all the coef-
ficients ¢; are positive, but (3) the exponents a;; can be arbitrary real numbers.
Such a function may be far from convex, yet convexity can be achieved through
a logarithmic change of variables. Setting b; = log c; and

f(xlv"wxn) = 10g9(9177yn> for .77]' = logyj7

one obtains a convex function f(x) = logexp(Ax + b) defined for all x € IR",
where b is the vector in IR" with components b;, and A is the matrix in IR"*"
with components a;j. Still more generally, any function

9(y) = q1(y)* - gp(y)* with g, posynomial, \j, > 0,
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can be converted by the logarithmic change of variables into a convex function
of form f(z) =Y 1_, Ak logexp(Ayx + by).

Detail. The convexity of f follows from that of logexp (in 2.16) and the
composition rule in 2.20(a). The integer r is called the rank of the posynomial.
When r = 1, f is merely an affine function on R". O

The wide scope of example 2.52 is readily appreciated when one considers
for instance that the following expression is a posynomial:

- 1/2 1/2
9(y1,y2,y3) = 5y17/y§‘ +VY2ys = 52/17982/3 * y?yz/ y3/ for y; > 0.
The next example illustrates the approach one can take in using the deriva-
tive conditions in 2.14 to verify the convexity of a function defined on more
than just an open set.

2.53 Example (weighted geometric means). For any choice of weights \; > 0
satisfying A1 +---+ X\, <1 (for instance \; = 1/n for all j), one gets a proper,
Isc, convex function f on IR"™ by defining

fz) = {—xi\la@? coexpn forx = (21,...,x,) wWith x; >0,

00 otherwise.

Detail. Clearly f is finite and continuous relative to dom f, which is
nonempty, closed, and convex. Hence f is proper and Isc. On int(dom f),
which consists of the vectors © = (x1,...,z,) with x5 > 0, the convexity of f
can be verified through condition 2.14(c) and the calculation that

(2, V2f(z)2) = |f ()] {Zn i (25 /5) — <Zn )\j(zj/l’j))? ;

j=1 j=1

this expression is nonnegative by Jensen’s inequality 2.2(b) as applied to the
function 6(t) = t*. (Specifically, 8( X" Njt;) < >0 A;60(t;) in the case of
tj = zj/xjfor j =1,...,n,tg =0, \o = 1 =37, A;.) The convexity of f
relative to all of dom f rather than merely int(dom f), is obtained then by
taking limits in the convexity inequality. O

A number of interesting convexity properties hold for spaces of matrices.
The space IR"™*" of all square matrices of order n is conveniently treated in
terms of the inner product

<A, B> = Z aijbji = tI‘AB, 2(12)
ij=1
where tr C' denotes the trace of a matrix C' € IR™*", which is the sum of the

diagonal elements of C. (The rule that tr AB = tr BA is obvious from this
inner product interpretation.) Especially important is

Ry = space of symmetric real matrices of order n, 2(13)



J* Other Examples 73

which is a linear subspace of IR™*"™ having dimension n(n + 1)/2. This can
be treated as a Euclidean vector space in its own right relative to the trace
inner product 2(12). In IR, the positive-semidefinite matrices form a closed,
convex set whose interior consists of the positive-definite matrices.

2.54 Exercise (eigenvalue functions). For each matrix A € IR denote by
eig A = (A1,...,\,) the vector of eigenvalues of A in descending order (with
eigenvalues repeated according to their multiplicity). Then for k = 1,...,n

one has the convexity on IRZ\" of the function

Ag(A) := sum of the first k components of eig A.

Guide. Show that A(A) = maxpep, tr[PAP], where Py is the set of all
matrices P € IR such that P has rank k and P? = P. (These matrices
are the orthogonal projections of IR™ onto its linear subspaces of dimension k.)

Argue in terms of diagonalization. Note that tr[PAP] = (A, P). O

2.55 Exercise (matrix inversion as a gradient mapping). On ]R:yﬁl, the function

log(det A) if A is positive-definite,
—00 if A is not positive-definite,

)=

is concave and usc, and, where finite, differentiable with gradient Vj(A) = A1,

Guide. Verify first that for any symmetric, positive-definite matrix C' one has
tr C' — log(det C') > n, with strict inequality unless C' = I; for this consider
a diagonalization of C'. Next look at arbitrary symmetric, positive-definite
matrices A and B, and by taking C' = B'/2AB'/? establish that

log(det A) + log(det B) < (A, B) —n
with equality holding if and only if B = A~!. Show that in fact

j(A)= inf {(A,B)—j(B)—n} forall Ac R

sym
BeRgL

where the infimum is attained if and only if A is positive-definite and B =
A~!. Using the differentiability of j at such A, along with the inequality
JA) < (A A7Y) — §(A7Y) — n for all A, deduce then that Vj(A) = A~ O

The inversion mapping for symmetric matrices has still other remarkable
properties with respect to convexity. To describe them, we’ll use for matrices
A, B € R"X" the notation

sym
A> B <= A-— B is positive-semidefinite. 2(14)

2.56 Proposition (convexity property of matrix inversion). Let P be the open,
convex subset of ]R:yﬁl consisting of the positive-definite matrices, and let

J : P — P be the inverse-matrix mapping: J(A) = A~'. Then J is convex
with respect to > in the sense that
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J((l —AN)Ag + )\Al) < (1 =X)J(Ap) + AJ (A1)
for all Ag, A1 € P and A € (0,1). In addition, J is order-inverting:
AojAl < AaltAfl

Proof. We know from linear algebra that any two positive-definite matrices
Ap and A; in ]R:yxn? can be diagonalized simultaneously through some choice
of a basis for IR". We can therefore suppose without loss of generality that
Ap and A; are diagonal, in which case the assertions reduce to properties that
are to hold component by component along the diagonal, i.e. in terms of the
eigenvalues of the two matrices. We come down then to the one-dimensional
case: for the mapping J : (0,00) — (0, 00) defined by J(a) = a1, is J convex
and order-inverting? The answer is evidently yes. O

2.57 Exercise (convex functions of positive-definite matrices). On the convex
subset P of IR!'" consisting of the positive-definite matrices, the relations

f(A)=g(A™h),  g(B)=f(B),

give a one-to-one correspondence between the convex functions f : P — IR that
are nondecreasing (with f(Ag) < f(Ay) if Ag = A1) and the convex functions
g : P — IR that are nonincreasing (with g(Bgy) > ¢(B1) if By =< By). In

particular, for any subset S of IR(," the function
g(B) = sup tr[CB~'C*] = sup (C*C,B™") 2(15)
ces ces

is convex on P and nonincreasing.

Guide. This relies on the properties of the inversion mapping J in 2.56,
composing it with f and g in analogy with 2.20(c). The example at the end
corresponds to f(A) = supqcg tr[CAC™]. O

Functions of the kind in 2(15) are important in theoretical statistics. As a
special case of 2.57, we see from 2.54 that the function g(B) = Ax(B™1), giving
the sum of the first k eigenvalues of B~!, is convex and nonincreasing on the
set of positive-definite matrices B € ]R:yxrf. This corresponds to taking S to
be the set of all projection matrices of rank k.

Commentary

The role of convexity in inspiring many of the fundamental strategies and ideas of
variational analysis, such as the emphasis on extended-real-valued functions and the
geometry of their epigraphs, has been described at the end of Chapter 1. The lecture
notes of Fenchel [1951] were instrumental, as were the cited works of Moreau and
Rockafellar that followed.

Extensive references to early developments in convex analysis and their historical
background can be found in the book of Rockafellar [1970a]. The two-volume opus
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of Hiriart-Urruty and Lemaréchal [1993] provides a more recent perspective on the
subject and its relevance to optimization. The book of Ekeland and Temam [1974] has
long served as a source for extensions to infinite-dimensional spaces and applications
to variational problems related to partial differential equations, as have the lecture
notes of Moreau [1967].

Geometry in its basic sense provided much of the original motivation for study-
ing convex sets, as evidenced by the classical works of Minkowski [1910], [1911]. From
another angle, however, convexity has long been seen as vital for understanding the
topologies of infinite-dimensional vector spaces, again in part through the contribu-
tions of Minkowski in associating gauge functions and norms with convex sets and in
developing polar duality, such as will be discussed in Chapter 11 (see 11.19). Oddly,
though, convex functions received relatively little attention in that context, apart
from the case of norms. For many years, results pertaining to the differentiability
properties of convex functions, for instance, were developed and presented almost ex-
clusively in the case of norms and seen mainly as an adjunct to the study of Banach
space geometry instead of being viewed more broadly, which would easily have been
possible. Little was made of the characterization of the convexity of a function by the
convexity of its epigraph, which provides such a strong bridge between convex geom-
etry and analysis. Perhaps this was because the geometry of the time was focused on
bounded sets, whereas epigraphs are inherently unbounded.

An example of this conceptual limitation is furnished by the famous Hahn-
Banach theorem, which in its traditional formulation says that if a linear function
on a linear subspace is bounded from above by some multiple of a given norm, it
can be extended to the whole space while preserving that bound. Actually, this is
nothing more than a very special case of the separation theorem for convex sets (cf.
Theorem 2.39 in the finite-dimensional setting) as applied to the epigraph of the norm
function. For applications nowadays, separation properties are much more important
than extensions of linear functions. Yet, textbooks on functional analysis in linear
spaces often persist in giving only the traditional version of the Hahn-Banach theorem
rather than its more potent geometric counterpart.

The earliest version of the separation theorem in 2.39, due to Minkowski [1911],
concerned a pair of disjoint convex sets, one of which is bounded. The general version
in 2.45(e), using relative interiors, was developed by Fenchel [1951]. The equivalence
of Fenchel’s condition with 0 ¢ rint(C7 — C2) in 2.45(d) was first utilized in Rock-
afellar [1970a]. The related condition 0 ¢ int(C; — C2) has ties especially to infinite-
dimensional theory; see Rockafellar [1974a]. For further refinements in the subject of
separation, see Klee [1968].

The usefulness of the classical concept of ‘relative interior’ for convex sets is
one of the basic features distinguishing finite-dimensional from infinite-dimensional
convexity. The key is the fact that every nonempty convex set in IR" lies in the closure
of its relative interior (cf. 2.40). The algebra of the ‘rint’ operation was developed by
Rockafellar [1970a].

The upper bound of n+1 points in Carathéodory’s theorem 2.29 for sets C C IR"
is primarily useful for compactness arguments which require that only a fixed number
of points come into play at any one time. For the fact that n points suffice when the
set C' is connected, see Bonnesen and Fenchel [1934]. Actually this result holds as
long as C'is the union of at most n connected sets; cf. Hanner and Radstrom [1951].

The results in 2.26(b) about the Moreau envelopes of convex functions and the
expression of proximal mappings as gradients come essentially from Moreau [1965].
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In speaking of polyhedral sets, we make a distinction between such sets and
‘polyhedra’ in the sense developed in topology in reference to certain unions of sim-
plices. A polyhedral set is a conver polyhedron. Accordingly, many authors use
‘polyhedral convex set’ for this concept, but ‘polyhedral set’ is simpler and has the
advantage that, as an independent term not employed elsewhere, it can be defined
directly as in 2.10 with respect to systems of linear constraints. In contrast, one
isn’t really authorized to speak of such a set as a convex polyhedron without first
demonstrating that it fits the topological definition of a polyhedron, which requires
the serious machinery of the Minkowski-Weyl theorem—see 3.52 and 3.54. On the
other hand, with polyhedral sets defined simply and directly, one can equally well
speak of general polyhedra as piecewise polyhedral sets.

Convex functions with polyhedral epigraphs were studied by Rockafellar [1970a],
but their characterization in 2.49 in terms of the definition of piecewise linearity in
2.47 has not previously been made explicit.

Functions f for which the sets lev., f are convex, as in 2.51, are called qua-
siconvez. This usage dates back many decades in game theory and economics, but
an entirely different meaning for ‘quasiconvexity’ prevails in the branch of variational
calculus related to partial differential equations. That meaning, due to Morrey [1952],
refers instead to possibly nonconvex functions f on IR™ that, as ‘integrands’, yield
convex integral functionals on certain Sobolev spaces.

The ‘posynomials’ in 2.52 were introduced to optimization theory by Duffin,
Peterson and Zener [1967] for the promotion of various applications in engineering.
The conversion of posynomials to convex functions through a logarithmic change of
variables (and the convexity of the log-exponential function in 2.16) was subsequently
demonstrated by Rockafellar [1970a].

The class of all convex functions f(A) on Ry, that, like the functions A (A)
in 2.54, depend only on the eigenvalues of A was characterized by Davis [1957].
Additional results in this direction may be found in Lewis [1996]. The log-determinant
function in 2.55, which falls into this category as well, has recently gained significance
in the development of interior-point methods for solving optimization problems that
concern matrices. For a survey of that subject see Boyd and Vandenberghe [1995];
for eigenvalue optimization more generally see Lewis and Overton [1996].



3. Cones and Cosmic Closure

An important advantage that the extended real line IR has over the real line IR
is compactness: every sequence of elements has a convergent subsequence. This
property is achieved by adjoining to IR the special elements oo and —oo, which
can act as limits for unbounded sequences under special rules. An analogous
compactification is possible for IR"™. It serves in characterizing basic ‘growth’
properties that sets and functions may have in the large.

Every vector x # 0 in IR" has both magnitude and direction. The magni-
tude of x is |z|, which can be manipulated in familiar ways. The direction of
x has often been underplayed as a mathematical entity, but our interest now
lies in a rigorous treatment where directions are viewed as ‘points at infinity’
to be adjoined to ordinary space.

A. Direction Points

Operationally we wish to think of the direction of x, denoted by dirz, as an
attribute associated with z under the rule that dirz = dir 2’ means ' = Az # 0
for some A\ > 0. The zero vector is regarded as having no direction; dir0 is
undefined. There is a one-to-one correspondence, then, between the various
directions of vectors x # 0 in IR"™ and the rays in IR", a ray being a closed
half-line emanating from the origin. Every direction can thus be represented
uniquely by a ray, but it will be preferable to think of directions themselves as
abstract points, designated as direction points, which lie beyond IR"™ and form
a set called the horizon of IR", denoted by hzn IR".

For n =1 there are only two direction points, symbolized by co and —o0;
it’s in adding these direction points to IR that IR is obtained. We follow the
same procedure now in higher dimensions by adding all the direction points in
hzn IR"™ to IR™ to form the extended space

csm R" := IR" U hzn IR",

which will be called the cosmic closure of IR", or n-dimensional cosmic space.
Our aim is to supply this extended space with geometry and topology so that
it can serve as a useful companion to IR" in questions of analysis, just as IR
serves alongside of IR. (Caution: while csmR' can be identified with IR,
csm IR™ isn’t the product space IR".)
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Fig. 3—1. The ray space model for n-dimensional cosmic space.

There are several ways of interpreting the space csm IR" geometrically,
all of them leading to the same mathematical structure but having different
advantages. The simplest is the celestial model, in which IR" is imagined as
shrunk down to the interior of the n-dimensional ball IB through the mapping
x — x/(1 + |z|), and hzn IR" is identified with the surface of this ball. For
n = 3, this brings to mind the picture of the universe as bounded by a ‘celestial
sphere’. For n = 2, we get a Flatland universe comprised of a closed disk, the
edge of which corresponds to the horizon set.

A second approach to setting up the structure of analysis in n-dimensional
cosmic space utilizes the ray space model. This refers to the representation of
csm R" in IR™ x IR that’s illustrated in Figure 3—1. Each = € IR"™ corresponds
uniquely to a downward sloping ray in IR" x IR, namely the one passing through
(x,—1). The points in hzn IR", on the other hand, correspond uniquely to
the ‘horizontal” rays in IR" x IR, which are the ones lying in the hyperplane
(IR",0); for the meaning to attach to the set C'~ see Definition 3.3. This
model, although less intuitive than the celestial model and requiring an extra
dimension, is superior for many purposes, such as extensions of convexity, and
it will turn out also to be the most direct in applications involving generalized
differentiation as will be met in Chapter 8. (Such applications, by the way,
dictate the choice of downward instead of upward sloping rays; see Theorem
8.9 and the comment after its proof.)

A third approach, which fits between the other two, uses the fact that each
ray in the ray space model in IR" x IR, whether associated with an ordinary
point of IR™ or a direction point in hzn IR"™, pierces the closed unit hemisphere

Hy,:={(z,8) e R" x R|B <0, |z|*+ 8> =1} 3(1)

in a unique point. Thus, H, furnishes an alternative model of csm IR" in
which the rim of H,, represents the horizon of IR"™. This will be called the
hemispherical model of csm IR".

This framework leads very naturally to an extended form of convergence.
In expressing it we’ll systematically rely on the notation:
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Fig. 3—2. The hemispherical model for n-dimensional cosmic space.

VN0 <= N =0 with \¥ > 0.

3.1 Definition (cosmic convergence to direction points). A sequence of points
¥ € IR" converges to a direction point dirx € hzn IR", written ¥ — dirx
(where x # 0), if \Yx¥ — x for some choice of \¥ ~. 0. Likewise, a sequence of
direction points dir ¥ € hzn IR" converges to a direction point dirxz € hzn IR",
written dir z¥ — dirx, if \Yx¥ — x for some choice of scalars \¥ > 0.

A mixed sequence of ordinary points and direction points converges to
dir z if every subsequence consisting of ordinary points converges to dir x, and
the same holds for every subsequence consisting of direction points.

This definition isn’t sensitive to the particular nonzero vectors chosen in
representing given direction points in the ‘dir’ notation. Clearly, a sequence
of points in csm IR"™ converges in the extended sense if and only if the corre-
sponding sequence of points in H,, converges in the ordinary sense.

3.2 Theorem (compactness of cosmic space). Every sequence of points in
csm IR" (whether ordinary points, direction points or some mixture) has a
convergent subsequence (in the cosmic sense). In this setting, the bounded se-
quences in IR" are characterized as the sequences of ordinary points such that
no cluster point is a direction point.

Proof. This is immediate from the interpretation in the hemispherical model,
since H,, is compact in IR" x IR. O

Obviously hzn IR" is itself compact as a subset of csm IR", whereas IR",
its complement, is open as a subset of csm IR".

Cosmic convergence can be quantified through the introduction of a met-
ric, which can be done in several ways. One possibility is to start from the
Poincaré metric, taking the distance between two points z and y in IR" to be
the Euclidean distance between /(1 + |z|) and y/(1+ |y|). Then csm R™ can
be identified with the completion of IR™. The extension of Poincaré distance
to this completion furnishes a metric on csm /R"™. Another possibility is to
measure distances between points of csm IR" in terms of the distances between
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the corresponding points of H,, in the hemispherical model, either geodesically
or in the Euclidean sense in IR™™. A different tactic is better, however. The
cosmic metric desy, that will be adopted in Chapter 4 (see 4.48) is based instead
on the ray space model, which is the real workhorse for analysis in csm IR".

For a set C C IR" we must distinguish between csm C, the cosmic closure
of C' in which direction points in csm IR"™ are allowed as possible limits, and
cl C, the ordinary closure of C' in IR". The collection of all direction point
limits will be called the horizon of C' and denoted by hzn C'. Thus,

hzn C' = c¢sm C' N hzn R", csmC =clCUhznC. 3(2)

The set hzn C, closed within hzn IR", furnishes a precise description of any
unboundedness exhibited by C, and it will be quite important in what follows.

However, rather than working directly with hzn C' and other subsets of
hzn IR" in developing specific conditions, we’ll generally find it more expedient
to work with representations of such sets in terms of rays in IR". The reason
is that such representations lend themselves better to calculations and, when
applied later to functions, yield properties more attuned to ‘analysis’.

B. Horizon Cones

A set K C IR" is called a cone if 0 € K and Az € K for all x € K and
A > 0. Aside from the zero cone {0}, the cones K in IR" are characterized as
the sets expressible as nonempty unions of rays. The set of direction points
represented by the rays in K will be denoted by dir K. There is thus a one-to-
one correspondence between cones in IR™ and subsets of the horizon of IR",

K (conein R"™) <+— dir K (direction set in hzn IR"),

where the cone is closed in IR"™ if and only if the associated direction set is
closed in hzn IR". Cones K are said in this manner to represent sets of direction
points. The zero cone corresponds to the empty set of direction points, while
the full cone K = IR" gives the entire horizon.

A general subset of csm IR"™ can be expressed in a unique way as

CudirK

for some set C' C IR" and some cone K C IR"; C gives the ordinary part of the
set and K the horizon part. The corresponding cone in the ray space model in
Figure 3-1 is then {(Az, —\) |z € C, A > 0} U{(2,0) |z € K}. We'll typically
express properties of C' U dir K in terms of properties of the pair C' and K.
Results in which such a pair of sets appears, with K a cone, will thus be one
of the main vehicles for statements about analysis in csm R".

In dealing with possibly unbounded subsets C of IR", the cone K that
represents hzn C interests us especially.
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3.3 Definition (horizon cones). For aset C C IR", the horizon cone is the closed
cone C>= C IR" representing the direction set hzn C, so that

hzn C' = dir C*, csmC =clC UdirC*,
this cone being given therefore by

O {x}EIxVGC’, AY 0, with \’z¥ — z}  when C # 0,
L {o} when C = ().

Note that (c1C)> = C> always. If C happens itself to be a cone, C*
coincides with clC. The rule that C= = {0} when C = () isn’t merely a
convention, but is dictated by the principle of having hznC' = dirC> and
csm C' = clC U dir C*, since the empty set of direction points is represented
by the cone K = {0}.

4
2

Fig. 3—3. The horizon cone associated with an unbounded set.

3.4 Exercise (cosmic closedness). A subset of csm IR", written as C Udir K for
a set C C IR" and a cone K C IR", is closed in the cosmic sense if and only if
C and K are closed in IR" and C>~ C K. In general, its cosmic closure is

csm(CUdir K) = clCUdir(C=Ucl K).

3.5 Theorem (horizon criterion for boundedness). A set C' C IR" is bounded if
and only if its horizon cone is just the zero cone: C>~ = {0}.

Proof. A set is unbounded if and only if it contains an unbounded sequence.
Equivalently by the facts in 3.2, a set is bounded if and only if hznC = (.
Since C' is the cone representing hzn C', this means that C>~ = {0}. O

Of course, the equivalence in Theorem 3.5 is also evident directly from the
limit formula for C> in 3.3. The proof of Theorem 3.5 reminds us, however, of
the underlying principles. The formula just serves as an operational expression
of the correspondence between horizon cones and horizon sets; the cone that
stands for the empty set of directions points is the null cone.

A calculus of horizon cones will soon be developed, and this will make it
possible to apply the criterion in Theorem 3.5 to many situations. A powerful
tool will be the special horizon properties of convex sets.
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3.6 Theorem (horizon cones of convex sets). For a convex set C' the horizon
cone C* is convex, and for any point * € C' it consists of the vectors w such
that T + 7w € clC for all T > 0.

In particular, when C' is closed it is bounded unless it actually includes a
half-line {i‘ + Tw } T > 0} from some point x, and it must then also include all
parallel half-lines {a: + 7w ’ T> 0} emanating from other points x € C.

X+1TW

y

C

Fig. 3—4. Half-line characterization of horizon cones of convex sets.

Proof. There is nothing to prove when C = (), so suppose C # () and fix any
point = € C'. If w has the property that z+ 7w € cl C for all 7 > 0, we can find
points ¥ € C with |(Z +vw)—"| < 1/v for all v € IN. Then for X = 1/v we
have AYz¥ — w and can conclude that w € C*>. On the other hand, starting
from the assumption that w € C* and taking any 7 € (0,00), we know that
Tw € C> (because C* is a cone) and hence that there are sequences of points
¥ € C and scalars AV € (0,1) with \¥ ~. 0 and AY2¥ — 7w. Then the points
(1 — AY)Z + A\z¥ belong to C' by convexity and converge to T + 7w, which
therefore belongs to clC.

This establishes the criterion for membership in C'. The assertion about
boundedness is then obvious from Theorem 3.5. The convexity of C*> now
follows through the convexity of clC' in 2.32: if both z 4+ 7wy and  + 7w,
belong to clC for all 7 > 0 then for any 6 € (0,1) the point

(1—0)[z + Two] + 0]+ Twi] =Z + 7[(1 — O)wo + Ow |
likewise belongs to clC for all 7 > 0, so (1 — §)wg + Hw;y belongs to C>~. O

The properties in Theorem 3.6 and Figure 3-4 associate the horizon cone
of a convex set very closely with its global ‘recession cone’, as will be seen in
6.34. Local and global recession cones for convex and nonconvex sets will be
defined in 6.33.

3.7 Exercise (convex cones). For K C IR" the following are equivalent:
(a) K is a convex cone.
(b) K is a cone such that K + K C K.
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(¢) K is nonempty and contains y :._, \;x; whenever z; € K and A\; > 0.

Examples of convex cones include all linear subspaces of IR", in particular
the zero cone K = {0} and the full cone K = IR". Half-spaces {x | (a,z) <0}
and {x|(a,z) > 0} are also in this class, as is the nonnegative orthant R in
Example 1.2.

3.8 Proposition (convex cones versus subspaces). For a convex cone K in IR",
the set M = K N (—K) is the largest of the linear subspaces M such that
M C K, while M = K — K is the smallest one such that M D K. For K itself
to be a linear subspace, it is necessary and sufficient that K = — K.

Proof. A set K is a convex cone if and only if it contains the origin and is
closed under the operations of addition and nonnegative scalar multiplication,
cf. 3.7(c). The only thing lacking for a convex cone to be a linear subspace is
the possibility of multiplying by —1. This justifies the last statement of 3.8.
It’s elementary that the sets K N(—K) and K — K are themselves closed under
all the operations in question and are, respectively, the largest such set within
K and the smallest such set that includes K. O

Some rules will now be developed for determining horizon cones and using
them to ascertain the closedness of sets constructed by various operations.

3.9 Proposition (intersections and unions). For any collection of sets C; C IR"
for 1 € I, an arbitrary index set, one has

[miefci}ooc iGIC;O’ [ ieICi}ooDUz'efcfo'

The first inclusion holds as an equation for closed, convex sets C; having
nonempty intersection. The second holds as an equation when I is finite.

Proof. The general facts follow directly from the definition of the horizon
cones in question. The special result in the convex case is seen from the char-
acterization in 3.6. O

3.10 Theorem (images under linear mappings). For a linear mapping L : R" —
IR™ and a closed set C C IR", a sufficient condition for the set L(C') to be closed
is that L=1(0) N C>= = {0}. Under this condition one has L(C*=) = L(C)*>,
although in general only L(C*>) C L(C)>.

Proof. The condition will be shown first to imply that L carries unbounded
sequences in C' into unbounded sequences in IR™. If this were not true, there
would exist by 3.2 a sequence of points ¥ € C' converging to a point of hzn IR",
but such that the sequence of images u” = L(z") is bounded. We would then
have scalars A¥ ~. 0 with A¥z” converging to a vector z # 0. By definition we
would have x € C*, but also (because linear mappings are continuous)

L(z) = lim L(\’z") = lim A\"u” =0,

V—r 00 V—r 00

which the condition prohibits.
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Assuming henceforth that the condition holds, we prove now that L(C) is a
closed set. Suppose u” — u with v” € L(C), or in other words, u” = L(z") for
some z¥ € C. The sequence {L(z")},emn is bounded, so the sequence {z"},en
must be bounded as well, for the reasons just given, and it therefore has a
cluster point z. We have z € C (because C' is closed) and u = L(z) (again
because linear mappings are continuous), and therefore u € L(C).

The next task is to show that L(C*) C L(C)>=. This is trivial when
C =0, so we assume C' # (). Any z € C> is in this case the limit of \*z" for
some choice of ¥ € C and A\¥ ~. 0. The points v” = L(z¥) in L(C) then give
ANu” — L(x), showing that L(z) € L(C)>.

For the inclusion L(C>~) D L(C)>, we consider any u € L(C)>, writ-
ing it as lim, \Yu” with v € L(C) and A\ ~0. For any choice of z¥ € C
with L(z") = u”, we have L(A\"z") — u. The boundedness of the sequence
{L(A\"z")} implies the boundedness of the sequence {\”z"}, which therefore
must have a cluster point . Then x € C>~ and L(x) = u, and we conclude
that u € L(C*). O

The hypothesis in Theorem 3.10 is crucial to the conclusions: counterex-
amples are encountered even when L is a linear projection mapping. Sup-
pose for instance that L is the linear mapping from IR* into itself given by
L(z1,x9) = (21,0). If C is the hyperbola defined by the equation ziz5 = 1,
the cone C'™ is the union of the zj-axis and the zs-axis and doesn’t satisfy
the condition assumed in 3.10: the xs-axis gives vectors x # 0 in C* that
project onto 0. The image L(C) in this case consists of the xi-axis with the
origin deleted; it is not closed. For a different example, where only the inclusion
L(C>=) C L(C)> holds, consider the same mapping L but let C' be the parabola
defined by x2 = 7. Then C* is the nonnegative ws-axis, and L(C*) = {0}.
But L(C) is the z1-axis (hence a closed set), and L(C')> is the x;-axis too.

3.11 Exercise (products of sets). For sets C; C IR"", i =1,...,m, one has
(Crx--xCp)* C CF¥x---xCr.

If every C; is convex and nonempty, this holds as an equation. It also holds as
an equation when no more than one of the nonempty sets C; is unbounded.

Guide. Derive the inclusion from the definition of the horizon cone. In the
convex case, use the characterization provided in 3.6. O

The equality in 3.11 can fail in some situations where convexity is absent.
An example with m = 2 is obtained by taking C} = Cy = {2’“ ’ ke ﬂV} in R".
One has Cy° = C5° = IR, but (Cy x Cy)>* # IR, x IR,. This is because a
vector (a,b) belongs to (C; x Cy)* if and only if one has A”(2*",2!") — (a,b)
for some sequence \” ~. 0 and exponents k¥ and [”; for a > 0 and b > 0 this
is realizable if and only if a/b is an integral power of 2 (the exponent being
positive, negative or zero).

3.12 Exercise (sums of sets). For closed sets C; C IR", i =1,...,m, a sufficient
condition for Cy +- - -+ C,, to be closed is the nonexistence of vectors x; € C;*
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such that x1 + - -+ x,, = 0, except with x; = 0 for all i. Then also
(Cr4-+Cp)>CCyF+---+Cp,

where the inclusion holds as an equation if the sets () # C; are convex, or if at
most one of them is unbounded.

In particular, if C' and B are closed sets with () # B bounded, then C' + B
is closed with (C'+ B)> = C*.
Guide. Apply the mapping L : (x1,...,2Zm) = @1 + - -+ + &, to the product
set in 3.11, using 3.10. O

The possibility that C7 + C's might not be closed, even though C; and Cs
themselves are closed, is demonstrated in Figure 3-5. This can’t happen if one
of the two sets is also bounded, as the last part of 3.12 makes clear.

c;+C
P 2
o o

»
‘

C,

Fig. 3—5. Closed, convex sets whose sum is not closed.

This result can be applied to the convex hull operation, which for cones
takes a special form. The following concept of ‘pointedness’ will be helpful in
determining when the convex hull of a closed cone is closed.

3.13 Definition (pointed cones). A cone K C IR" is pointed if the equation
z1 + -+, = 0 is impossible with x; € K unless x; = 0 for all .

3.14 Proposition (pointedness of convex cones). A convex cone K C IR" is
pointed if and only if KN —K = {0}.

Proof. This is immediate from Definition 3.13 and the fact that a convex cone
contains any sum of its elements (cf. 3.7). O

3.15 Theorem (convex hulls of cones). For a cone K C IR", a vector x belongs
to con K if and only if it can be expressed as a sum x1 + -+ -+, withz; € K.
When x # 0, the vectors x; can be taken to be linearly independent (sop < n).

In particular, con K = K + --- 4+ K (n terms). Moreover, if K is closed
and pointed, so too is con K.

Proof. From 2.27, con K consists of all convex combinations Ajz1+---+ A,z
of elements x; € K. But K contains all nonnegative multiples of its elements,
so the coefficients \; are superfluous; con K consists of all sums x; +---+
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with x; € K. Since K is a union of rays emanating from the origin, it is a
connected subset of IR", and therefore by 2.29, one can restrict p to be n.

On the other hand, if  has an expression zy + --- + z, with z; € K and
p minimal, the vectors x; must be linearly independent, for otherwise there
would exist coefficients p;, at least one positive, with p21 +-- -4+ ppz, = 0. In
this case, supposing without loss of generality that the largest of the positive
components is ji,, and p, = 1, we would get * = 7 + -+ + z;,_; for ] =
(1 — p;)x; € K, and this would contradict the minimality of p.

The fact that con K consists of all sums x1 + - - - + z,, with x; € K means
that con K is the image of K™ (product of n copies of K) under the linear
transformation L : (x1,...,2z,) — x1 + - -+ + x,,. According to Theorem 3.10,
this image is a closed set if K™ is closed (true when K is closed) and L~1(0)
meets the horizon cone of K, which is K" itself (because K" is a cone), only
at 0. The latter condition is precisely the condition that K be pointed. Hence
con K is closed when K is closed and pointed.

Moreover, con K N[— con K] = {0} in this case, for otherwise some nonzero
sum z +- - -+, of elements of K would equal —[z] +- - - 4] for certain other
elements of K, and then xy + -+, + 2} + -+ z;, = 0 for a combination of
elements of K which aren’t all 0, in contradiction to the pointedness of K. We
conclude from 3.14 that con K is pointed when K is closed and pointed. O

The criterion in 3.10 for closed images under linear mappings has the
following extension, which however says nothing about the horizon cone of the
image. Other extensions will be developed in Chapter 5 (cf. 5.25, 5.26).

3.16 Exercise (images under nonlinear mappings). Consider a continuous map-
ping F': R" — IR™ and a closed set C' C IR". A sufficient condition for F(C)
to be closed in IR™ is the nonexistence of an unbounded sequence {x"},cmN
with {F(z")},en bounded, such that ¥ — dirx for a vector z # 0 in C*.

Guide. Pattern the argument after the proof of Theorem 3.10. O

The condition in 3.16 holds in particular when |F(z)| — oo as |z| — oo,
or if C* = {0}, the latter case being classical through 3.5.

C. Horizon Functions

Our next goal is the application of these ‘cosmic’ ideas to the understanding of
the behavior-in-the-large of functions f : IR" — IR. We look at the direction
points in the cosmic closure of epi f, which form a subset of hzn R""! rep-
resented by a certain closed cone in JR"*!, namely the horizon cone (epi f)>.
A crucial observation is that—as long as f # oco—this horizon cone is itself
an epigraph: not only is it a cone, it has the property that if a vector (z, 3)
belongs to (epi f)>, then for all 8’ € (3, 00) one also has (x,3’) € (epi f)>.
This is evident from Definition 3.3 as applied to the set epi f, and it leads to
the following concept.
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3.17 Definition (horizon functions). For any function f : R" — IR, the associ-
ated horizon function is the function f* : IR" — IR specified by

epi f> = (epi f)> if f # o, [ =00y if f=o0.

The exceptional case in the definition arises because the function f = oo
has epi f =0, so (epi f)= = {(0,0)}. The set (epi f)> is not an epigraph then,
since it doesn’t contain along with (0,0) all the points (0, 8) with 0 < 8 < oo.
When such points are added, the set becomes the epigraph of d¢y.

Fig.3—6. An example of a horizon function.

To gain an appreciation of horizon functions and their properties, we must
make concrete what it means for the epigraph of a function to be a cone.

3.18 Definition (positive homogeneity and sublinearity). A function h : IR" —
IR is positively homogeneous if 0 € dom h and h(Az) = Ah(zx) for all x and all
A > 0. It is sublinear if in addition

h(z + x') < h(z) + h(z") for all x and z'.

Norms and linear functions are examples of positively homogeneous func-
tions that are actually sublinear. An indicator function d¢ is positively homo-
geneous if and only if C' is a cone.

3.19 Exercise (epigraphs of positively homogeneous functions). A function h is
positively homogeneous if and only if epih is a cone. Then either h(0) = 0 or
h(0) = —oo. When h is Isc with h(0) = 0, it must be proper.

Sublinearity of h is equivalent to h being both positively homogeneous and
convex. It holds if and only if epih is a convex cone.

For every function f one has (cl f)> = f>~. If f is positively homogeneous,
one has f>~ = cl f. These relations just specialize to the set E' = epi f the fact
that (cl E)>* = E*>, and if E is a cone, also E~ = cl E.

3.20 Exercise (sublinearity versus_linearity). For a proper, convex, positively
homogeneous function h : IR" — IR, the set

{x ’ h(—x) = —h(x)}
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is a linear subspace of IR" relative to which h is linear. It is all of IR" if and
only if h is a linear function on IR".

Guide. Apply 3.8 to epih. O

3.21 Theorem (properties of horizon functions). For any f : R" — IR, the
function f* is Isc and positively homogeneous and, if f # oo, is given by

f=(w) = liminf (A+f)(z) := lim  inf Af(\"'z). 3(3)
A N0 50 \€(0,6)
T=w zeB(w,9d)

When f is convex, f> is sublinear (in particular convex), and if f is also Isc
and proper one has for any * € dom f that
o) - i JEETO @) fEe) —S@)

T—00 T 7€(0,00) T

Proof. Trivially f* is Isc and positively homogeneous when it is dgy, so sup-
pose f # oo. Then the epigraph of f> is the closed set (epi f)> by definition,
and this implies f> is Isc (cf. 1.6). Since (epi f)> is a cone, f* is positively
homogeneous (cf. 3.19). We have f>(w) = inf {§ ’ (w, B) € (epi f)>} for any
w € IR"™. The formula for (epi f)> stemming from Definition 3.3 tells us then
that f>~(w) is the lowest value of 3 such that for some choice of w” and A\¥ with
AY N0 and \Yw” — w, one can find o > f(w") with Ao — . Equivalently,
f(w) is the lowest value of 8 such that for some choice of ¥ — w and AV ~. 0,
one has N f(z¥/A\”) — (. Through the sequential characterization of lower
limits in Lemma 1.7 this reduces to saying that f*(w) is given by 3(3).

The special formula 3(4) in the convex case follows from the characteriza-
tion of C'* in 3.6 as applied to the closed, convex set C' = epi f at (:Z‘, f(a_c))
The fact that the limit in 7 agrees with the supremum in 7 comes from the
monotonicity of difference quotients of convex functions, cf. 2.12. O

fw

Fig. 3—7. Horizon properties of a convex function.

The illustration in Figure 3-6 underscores the geometric ideas behind hori-
zon functions. The special properties in the case of convex functions are brought
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out in Figure 3-7. An interesting example in the convex case is furnished by
the vector-max and log-exponential functions in 1.30 and 2.16, where

(logexp)™ = vecmax 3(5)

by formula 3(3) or 3(4) and the estimates in 1(16). For convex quadratic
functions, we have

f(z) = %<$,AJJ> +(b,z)+c = [f=(z)=(bz)+ i(z|Az =0).

This is seen through either 3(3) or 3(4). For a nonconvex quadratic function
f, given by the same formula but with A not positive-semidefinite (cf. 2.15),
only 3(3) is applicable; then f>~(z) = —oo for vectors z with (x, Az) < 0,
but f>~(z) = oo for z with (z, Az) > 0. This demonstrates that the horizon
function of a proper—even finite—function f can be improper if the growth
properties of f so dictate.

For a set C' C IR" one has 07 = dge~. The function f(z) = |z — a| + «
yields f< =1 - |, while f(z) = |z — a|* + a yields f= = d;p3. In general,

9= = f* when g(z)= f(zr —a)+ a. 3(6)

Since epig in this formula is simply the translate of epi f by the vector (a, «),
the equation is just an analytical expression of the geometric fact that the set
of direction points in the cosmic closure of a set is unaffected when the set is
translated. Indeed, 3(6) reduces to this fact when applied to f = ¢ and o = 0.

3.22 Corollary (monotonicity on lines). If a proper, Isc, convex function f on
IR" is bounded from above on a half-line {a‘c + Tw } T > O}, then for every
x € IR" the function T — f(x + Tw) is nonincreasing:

flz+7w) > f(x+7'w) when —oo <7 <7 < o00.

In fact, this has to hold if for any sequence {z"},c converging to dirw such
that the sequence {f(z")}, e is bounded from above.

Proof. A vector w as described is one such that (w,0) € (epif)*, i.e.,
f(w) < 0. The claim is justified therefore by formula 3(4). O

fw

Fig. 3—8. Epigraphical interpretation of the horizon cone to a level set.
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Through horizon functions, the results about horizon cones of sets can be
sharpened to take advantage of constraint representations.

3.23 Proposition (horizon cone of a level set). For any function f : R" — IR
and any « € IR, one has (lev., )= Clev_g f*>, i.e.,

{z|f(z)<a}™ c{z|f~(z) <0}

This is an equation when f is convex, Isc and proper, and lev_,, f # (). Thus,
for such a function f, if some set lev., f is both nonempty and bounded, for
instance the level set argmin f, then f must be level-bounded.

Proof. The inclusion is trivial if lev., f is empty, because the horizon cone
of this set is then {0} by definition, whereas f>~(0) < 0 always because f>
is positively homogeneous (cf. 3.21). Suppose therefore that lev., f # 0 and
consider any = € (lev, f)=. We must show f>~(z) < 0, and for this only the
case of z # 0 requires argument. There exist ¥ in lev<, f and A¥ ~ 0 with
Na¥ — . Let w” = Az”. Then N f(w”/\) = N f(z¥) < WWa — 0 with
w” — x. This implies by formula 3(3) that f>~(z) < 0.

When f is convex, lsc and proper, the property in 3(4), which holds for
arbitrary € dom f, yields the further conclusions. O

3.24 Exercise (horizon cones from constraints). Let
C={zeX|filx)<0 for i eI}
for a nonempty set X C IR" and finite functions f; on IR". Then
C>c{zeX>|f>(x)<0 for i€}

The inclusion holds as an equation when C' is nonempty, X is closed and convex,
and each function f; is convex.

Guide. Combine 3.23 with 3.9, invoking 2.36. O

D. Coercivity Properties

Growth properties of a function f involving an exponent p € (0,00) have al-
ready been met with in Chapter 1 (cf. 1.14). The case of p = 1, which is the
most important, is closely tied to properties of the horizon function f.

3.25 Definition (coercivity properties). A function f : IR" — IR is level-coercive
if it is bounded below on bounded sets and satisfies

lim inf M > 0,

whereas it is coercive if it is bounded below on bounded sets and
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lim inf Lx) =

It is counter-coercive if instead

lim inf M = —00

For example, if f(z) = |z|P for an exponent p € (1,00), f is coercive, but
for p = 1 it’s merely level-coercive. For p € (0,1), f isn’t even level-coercive,
although it’s level-bounded. These cases are shown in Figure 3-9. Likewise,
the function f(z) = /1 + |x|? is level-coercive but not coercive.

Note that properties of dom f can have a major effect: if f is Isc and proper
(hence bounded below on bounded sets by 1.10), and dom f is bounded, then
f is coercive. Thus, the function f defined by f(z) =1/(1 — |z|) when |z| < 1,
f(x) = oo when |z| > 1, is coercive. An indicator function d¢ is coercive if and
only if C' is bounded.

Counter-coercivity is exhibited by the function f(z) = —|z|P when p €
(1,00), but not when p € (0,1).

coercive level-coercive countercoercive

Fig. 3-9. Coercivity examples.

3.26 Theorem (horizon functions and coercivity). Let f : IR" — IR be Isc and
proper. Then @)
R A € . -
st T = e 50)
and in consequence
(a) f is level-coercive if and only if f*°(x) > 0 for all x # 0; this means for
some 7y € (0,00) there exists f € (—o0,00) with f(x) > ~|z| + B for all x;
(b) f is coercive if and only if f~(x) = oo for all x # 0; this means for
every v € (0,00) there exists § € (—oo,00) with f(x) > v|x| + B for all x;
(¢) f is counter-coercive if and only if f~(x) = —oo for some z # 0, or
equivalently, f>~(0) = —oo; this means that for no v € (—o00,00) does there
exist € (—oo,00) with f(x) > vy|x| + B for all x.

Proof. The sequential characterization of lower limits in Lemma 1.7 adapts
to the kind of limit on the left in 3(7) as well as to the one giving f>~(z) in
3(3). The right side of 3(7) can in this way be expressed as
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inf {'y ’ Ja, VN0, 2%, ¥ > f(x¥) with |z] =1, \a” — v, \z¥ — x}
=inf {y[3IN" 0, 2", ¥ > f(a") with Aa” — 5, [\a"| — 1}
=inf {y[3IN" 0, 2 with N f(z") = v, \|2"] — 1}
=inf {y| 32" with |2 = oo, f(z")/|z"]| = 7},

where we have arrived at an expression representing the left side of 3(7). There-
fore, 3(7) is true. From 1.14 we know that the left side of 3(7) is the supremum
of the set of all v € IR for which there exists § € IR with f(z) > ~v|x| + 8
for all z. Everything in (a), (b) and (c) then follows, except for the claim in
(c) that the conditions there are also equivalent to having f>~(0) = —oo. If
f=(x) = —oo for some z # 0, then f~(0) = —oo because f* is Isc and pos-
itively homogeneous (by 3.21). On the other hand, if f>~(0) = —oo it’s clear
from 3(3) that there can’t exist v and 8 in IR with f(z) > ||+ for all z. O

3.27 Corollary (coercivity and convexity). For any proper, Isc function f on
IR", level coercivity implies level boundedness. When f is convex the two
properties are equivalent. No proper, Isc, convex function is counter-coercive.

Proof. The first assertion combines 3.26(a) with 3.23. The second combines
3.26(c) with the fact that by formula 3(4) in Theorem 3.21 every proper, lsc,
convex function f has f>~(0) = 0. O

3.28 Example (coercivity and prox-boundedness). If a proper, Isc function f
on IR" is not counter-coercive, it is prox-bounded with threshold Ay = oc.

Detail. The hypothesis ensures through 3.26(c) the existence of values v € IR
and (8 € IR such that f(x) > ~y|z|+ 8. Then liminf), . f(x)/|z|* > 0, hence
by 1.24 the threshold of prox-boundedness for f is oco. O

Coercivity properties are especially useful because they can readily be
verified for functions obtained through various constructions or ‘perturbations’
of other functions. The following are some elementary rules.

3.29 Exercise (horizon functions in addition). Let f1 and fo be Isc and proper
on IR", and suppose that neither is counter-coercive. Then

(f1+ fo)= > fI" + f5°,

where the inequality becomes an equation when both functions are convex and
dom f; Ndom fo # (). Thus,

(a) if either f1 or fy is level-coercive while the other is bounded from below
(as is true if it too is level-coercive), then f; + fo is level-coercive;

(b) if either fy or fs is coercive, then fi + fo is coercive.

Guide. Use formula 3(3) while being mindful of 1.36, but in the convex case
use formula 3(4). For the coercivity conclusions apply Theorem 3.26. O

A counterexample to equality always holding in 3.29 in the absence of
convexity, even when the domain condition is satisfied, can be obtained from



D. Coercivity Properties 93

the counterexample after 3.11, concerning the horizon cones of product sets,
by considering indicators of such sets.

3.30 Proposition (horizon functions in pointwise max and min). For a collection
{fi}ier of functions f; : R" — IR, one has

(supjer fi) ™ > supeq fi7 (inficr i)™ < inficr 7.

The first inequality is an equation when sup,c; f; Z oo and the functions are
convex, Isc and proper. The second inequality is an equation whenever the
index set is finite.

Proof. This applies 3.9 to the epigraphs in question. O

3.31 Theorem (Coerciviy in parametric minimization). For a proper, Isc func-
tion f : R" x IR™ — IR, a sufficient condition for f(x,u) to be level-bounded
in x locally uniformly in u, which is also necessary when f is convex, is

f<(x,0) >0 for all = # 0. 3(8)

If this is fulfilled, the function p(u) := inf, f(x,u) has
p>(u) = inf, f>(x,u), attained when finite. 3(9)
Thus, p is level-coercive if f is level-coercive, and p is coercive if f is coercive.

Proof. The question of whether f(z,u) is level-bounded in z locally uni-
formly in u revolves by definition around whether, for balls IB(u, €) and scalars
@ € R, sets of the form C = (R" x B(u,c)) Nleve, f are bounded when
nonempty. Boundedness corresponds by Theorem 3.5 to the horizon cone of
such a nonempty set C' being just the zero cone. The horizon cone can be
calculated from 3.9 and 3.23:

C> C (R" x B(u,e))™ N (levea )™
C (R" x {0}) N {(z,w) | f=(z,u) <0} = {(2,0) | f~(z,0) <0},
where equality holds throughout when f is convex. Clearly, then, condition
3(8) is always sufficient, and if f is convex it is both necessary and sufficient.
The level boundedness property of f ensures through 1.17 and 1.18 that p is a
proper, lsc function on IR™ whose epigraph is the image of that of f under the
linear mapping L : (z,u, a) — (u,a). We have L=1(0,0) N (epi f)>= = (0,0,0)
under 3(8), because (epi f)> = epif> by definition. This ensures through

Theorem 3.10 that L((epi f)>) = L(epi f)>, which is the assertion of 3(9) (cf.
the general principle in 1.18 again). O

3.32 Corollary (boundedness in convex parametric minimization). Let
p(u) = inf,, f(x,u), P(u) = argmin,, f(z,u),

for a proper, Isc, convex function f : R" x IR™ — IR, and suppose that for
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some @ the set P(u) is nonempty and bounded. Then P(u) is bounded for all
u, and p is a proper, Isc, convex function with horizon function given by 3(9).

Proof. Since P(u) is one of the level sets of g(x) = f(z,u), the hypothesis
implies through 3.23 that g>=(z) > 0 for all  # 0. But g~(z) = f>~(z,0) by
formula 3(4) in Theorem 3.21. Therefore, assumption 3(8) of Theorem 3.31 is
satisfied in this case. We see also that all functions f(-,u) on IR™ have f*(-,u)
as their horizon function, so all are level-bounded. In particular, all sets P(u)
must be bounded. O

3.33 Corollary (coercivity in epi-addition).

(a) Suppose that f = f14 f2 for proper, Isc functions f; and fs on IR" such
that f°(—w) + f5°(w) > 0 for all w # 0. Then f is a proper, Isc function and
the infimum in its definition is attained when finite. Moreover f> > f*4# f5°.
When f1 and fy are convex, this holds as an equation.

(b) Suppose that f = fi% fo for proper, Isc functions f; and fo on IR"
such that fo is coercive and f; is not counter-coercive. Then f is a proper, Isc
function and the infimum in its definition is attained when finite. Moreover
f~ > fi°. When f, and fs are convex, this holds as an equation.

Proof. We have f(x) = inf,, g(w, z) for g(w, z) = f1(x —w)+ fa(w). Theorem
3.31 can be applied using the estimate g (w, z) > f*(w — x) + f5°(w), which
comes from 3.29 and holds as an equation when f; and f; are convex. This
yields (a). Then (b) is the special case where f$° has the property in 3.26(b)
but f;° avoids the property in 3.26(c). O

3.34 Theorem (cancellation in epi-addition). If fi# g = fo4 g for proper, Isc,
convex functions f1, fo and g such that g is coercive, then f; = fs.

Proof. The hypothesis implies through 3.33(b) that f;# ¢ is finite (since f;
is not counter-coercive, cf. 3.27). Also, f;#4 g is convex (cf. 2.24), hence for all
A > 0 the Moreau envelope e, (f;# ¢g) is finite, convex and differentiable (cf.
2.26). In terms of j, (z) := (1/2\)|z|* we have

ex(fi# 9) = (fik 9)# Jn = (fi# i\ )* 9 =erfi* g

Then for any choice of v € IR" we have
inf{[ex(fi# 9))(2) — (v,2) } = nf{ e, S g)(2) = (v,2) }
—inf (inf {esfi(w)+g(w)} - (v.2))
— uljnua {e\fi(w) + g(w') — (v, w+w')}
= inf {eyf;(w) = (v,w)} + inf {g(w') = (v, )},

where the last infimum has a finite value because of the coercivity of g. Our as-
sumption that fi4 g = fo4 g implies that e, f;4 g = e, fo# g and consequently
through this calculation that
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igf {erfr(w) — (v,w)} = igf {e\fo(w) — (v,w)} for all v. 3(10)

If the targeted conclusion f; = f were false, we would have to have e, f; # e, f5
for all A > 0 sufficiently small, cf. 1.25. Then for any such A and any z=
where these Moreau envelopes disagree, say e, f;(x) > e, fo(x), the vector
v = Ve, f;(z) would satisfy e, f;(w) > e, f;(z) + (v, w — z) for all w, so that
we would have

inf {e fy(w) — (v, w)} > ey fy(2) — (0,2)

> exfo(z) = (v,) = inf {e, fo(w) — (v, w) }.

The conflict between this strict inequality and the general equation in 3(10)
shows that necessarily f1 = fo. O

3.35 Corollary (cancellation in set addition). If Cy+ B = Cy+ B for nonempty,
closed, convex sets C'1, Cy and B such that B is bounded, then C = CS.

Proof. This specializes Theorem 3.34 to f; = d¢, and g = ép. O

Alternative proofs of 3.34 and 3.35 can readily be based on the duality
that will be developed in Chapter 11.

3.36 Corollary (functions determined by their Moreau envelopes). If f1, fo, are
proper, Isc, convex functions with e, f; = e, fy for some X\ > 0, then f; = fs.

Proof. This case of Theorem 3.34, for g = (1/2)\)| - |, was a stepping stone
in its proof. O

3.37 Corollary (functions determined by their proximal mappings). If fi, fa,
are proper, Isc, convex functions such that P, f; = P, f, for some A\ > 0, then
f1 = f2 + const.

Proof. From the gradient formula in Theorem 2.26, it’s clear that P, f; = P, f5
if and only if e, f; = e, fy + const. = e, (fy + const.). The preceding corollary
then comes into play. O

E* Cones and Orderings

Besides their importance in connection with growth properties and unbound-
edness, cones are useful also in many other ways beyond representing sets of
direction points.

3.38 Proposition (vector inequalities). For an arbitrary closed, convex cone
K C IR"™, define the inequality x >, y for vectors x and y in IR" to mean that
x —y € K. The partial ordering >, then satisfies:

(a) © > x for all z;
(b) x > y implies —y >, —z;
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(¢) x >k y implies \x >, Ay for all X > 0;

(d) T >y andx’ >,y imply x +2' > y+y';

(e) a¥ > y¥, ¥ — x, y¥ =y, imply x >, y.
Conversely, if a relation ‘>’ for vectors has these properties, it must be of the
form >, for a closed, convex cone K.

To have the additional property that x = y when both x >, y andy > =,
it is necessary and sufficient to have K be pointed.

Proof. The first part is immediate from the definition of >,. In the converse
part, one notes from (d) that x > y must be equivalent to x —y > 0, so the
ordering must be of type >, for K = {:1; } T > 0}. The various conditions,
taken with y = 0 in (c¢), and y = 3’ = 0 in(d), and y” = 0 in (e), then force K
to be a closed, convex cone. The role of pointedness is seen from 3.14. O

The standard case for vector inequalities in IR" is the one where K is the
nonnegative orthant IR” in 1.2, which in particular is a pointed, closed, convex
cone. For this case the customary notation is simply x > y:

(X1, 2n) > (Y1, Yn) <= z;>y; for j=1,...,n.

Such notation is often convenient in representing function inequalities as well,
for instance, a system f;(z) < 0 for i = 1,...,m can be written as F'(z) <0
for the mapping F' : = — (fl(a:), cee fm(aj))

Another partial ordering that fits the general pattern in 3.38 is the matrix
ordering described at the end of Chapter 2.

3.39 Example (matrix inequalities). In R:yxrf, the space of symmetric real ma-
trices of order n, the partial ordering A = B is the one associated with the
pointed, closed, convex cone consisting of the positive-semidefinite matrices,
and it therefore obeys the rules:

(a) A>» A for all A;

(b) A > B implies —B = —A;

(¢) A= B implies N\A = AB for all A > 0;

(d) A= Band A" = B imply A+ A’ = B+ B’;

(e) AY = B¥, A¥ - A, BY — B, imply A = B.

(f) A> B and B = A imply A = B.

Detail. The set K C IR, consisting of the positive-semidefinite matrices
is defined by the system of inequalities 0 < [,(A) =: (x, Ax) indexed by the
vectors z € IR". Each function [, is linear on R:yﬁl, and the set of solutions to
a system of linear inequalities is always a closed, convex cone. The reason K
is pointed is that the eigenvalues of a symmetric, positive-semidefinite matrix
A are nonnegative. If —A is positive-semidefinite too, the eigenvalues must all

be 0, so A has to be the zero matrix. O

The class of cones is preserved under a number of common operations, and
so too is the class of positively homogeneous functions.
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3.40 Exercise (operations on cones and positively homogeneous functions).
(a) (N;er K and |, K; are cones when each K; is a cone.
(b) Kj + K5 is a cone when K; and Ky are cones.
()

(d) LY(K) is a cone when K is a cone and L is linear.

(e) sup,e;hi and inf;c; h; are positively homogeneous functions when each
h; is positively homogeneous.

( ) is a cone when K is a cone and L is linear.

f) hy + he and hy# hy are positively homogeneous functions when h; and
ho are positively homogeneous.
(g) Ah is positively homogeneous when h is positively homogeneous, A > 0.
(h) heoL is positively homogeneous when h is positively homogeneous and
the mapping L is linear.
In (e), (f), (g) and (h), the assertions remain true when positive homo-
geneity is replaced by sublinearity, except for the inf case in (e).

F: Cosmic Convexity

Convexity can be introduced in cosmic space, and through that concept the
special role of horizon cones of convex sets can be better understood.

3.41 Definition (convexity in cosmic space). A general subset of csm IR", writ-
ten as C' U dir K for a set C' C IR" and a cone K C IR", is said to be convex if
C and K are convex and C + K C C.

In the case of a subset C' U dir K of csmR" that actually lies in R"
(because K = {0}), this extended definition of convexity agrees with the one
at the beginning of Chapter 2. In general, the condition C'+ K C C means that
for every point * € C and every direction point dirw € dir K, the half-line
{i‘ + Tw ’ T > 0} is included in C, which of course is the property developed
in Theorem 3.6 when C' happens to be a closed, convex set and K = C*=.
This property can be interpreted as generalizing to C'Udir K the line segment
criterion for convexity: half-lines are viewed as infinite line segments joining
ordinary points with direction points. The idea is depicted in Figure 3-10. A
similar interpretation can be made of the convexity condition on K in Definition
3.41 in terms of ‘horizon line segments’ being included in C' U dir K.

3.42 Exercise (cone characterization of cosmic convexity). A set in csm IR" is
convex if and only if the corresponding cone in the ray space model is convex.

Guide. The cone corresponding to CUdir K in the ray space model of csm IR"
consists of the vectors A(xz, —1) with A > 0, x € C, along with the vectors (x,0)
with x € K. Apply to this cone the convexity criterion in 3.7(b). O

The convexity of a subset C U dir K of csm IR"™ is equivalent also to the
convexity of the corresponding subset of H,, in the hemispherical model, when
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Fig. 3—10. Cosmic convexity.

such convexity is taken in the sense of geodesic segments joining pairs of points
of H,, that are not antipodal, i.e., not just opposite each other on the rim of
H,,. For antipodal pairs of points a geodesic link is not well defined, nor is one
needed for the sake of cosmic convexity. Indeed, a subset of the horizon of IR"
consisting of just two points dir x and dir(—x) is convex by Definition 3.41 and
the criterion in 3.42, since the corresponding cone in the ray space model is the
line {A(z,0)| — oo <A < oo} (aconvex subset of R™1).

3.43 Exercise (extended line segment principle). For a convex set in csm IR",
written as C U dir K for a set C C IR" and a cone K C IR", one has for any
point T € int C' and vector w € K that T + 7w € int C for all T € (0, 00).

Guide. Deduce this from Theorem 2.33 as applied to the cone representing
C Udir K in the ray space model. O

Convex hulls can be investigated in the cosmic framework too. For a set
E C csm IR", con E is defined of course to be the smallest convex set in csm IR"
that includes E. When E happens not to contain any direction points, i.e., F
is merely a subset of IR", con F is the convex hull studied earlier.

3.44 Exercise (cosmic convex hulls). For a general subset of csm IR", written
as C'Udir K for a set C C IR" and a cone K C IR", one has

con(C Udir K) = (conC + con K) U dir(con K).

Guide. Work with the cone in IR"*! corresponding to C' U dir K in the ray
space model for csmIR". The convex hull of this cone corresponds to the
cosmic convex hull of C Udir K. O

3.45 Proposition (extended expression of convex hulls). If D = con C' + con K
for a pointed, closed cone K and a nonempty, closed set C' C IR" with C*>~ C K,
then D is closed and is the smallest closed onvex set that includes C' and whose
horizon cone includes K. In fact D> = con K.

Proof. This can be interpreted through 3.4 as concerning a closed subset
CuUdir K of csm IR". The corresponding cone in the ray space model of csm R"
is not only closed but pointed, because K is pointed, so its convex hull is closed
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by 3.15. The latter cone corresponds to (con C + con K) U dir(con K) by 3.44.
Hence this subset of csm IR" is closed, and the claimed properties follow. O

In the language of subsets of csm IR", this theorem can be summarized
simply by saying that if C' U dir K is cosmically closed and K is pointed, then
con(C Udir K) is cosmically closed as well. The case of K = {0}, where there
aren’t any direction points in £ = C' U dir K, is that of the convex hull of a
compact set, already treated in 2.30.

3.46 Corollary (closures of convex hulls). Let C' C IR"™ be a closed set such that
C* is pointed. Then

cl(conC') = con C + con C™, (clconC)* = con C*=.

Proof. Take K = C* in 3.45. O

3.47 Corollary (convex hulls of coercive functions). Let f : IR"™ — IR be proper,
Isc and coercive. Then con f is proper, Isc and coercive, and for each x in the
set dom(con f) = con(dom f) the infimum in the formula for (con f)(z) in 2.31
is attained.

Proof. Here we apply 3.46 to epi f, which is a closed set having epi f> as its
horizon cone. By the coercivity assumption this horizon cone consists just of
the nonnegative vertical axis in R" x IR, cf. 3.26(b). O

Gt Positive Hulls

Another operation of interest is that of forming the smallest cone containing a
set C C IR"™. This cone, called the positive hull of C, has the formula

posC:{O}U{)\aj’xEC,)\>0}, 3(11)

see Figure 3-11. (If C = (), one has posC' = {0}, but if C # (), one has posC =
{)\:1; } reC,\> O}) Clearly, C' is itself a cone if and only if C' = posC.

Fig.3—11. The positive hull of a set.
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Similarly, one can form the greatest positively homogeneous function ma-
jorized by a given function f : IR™ — IR. This function is called the positive
hull of f. It has the formula

(pos f)(z) = inf {a| (z, ) € pos(epi f)}, 3(12)

because its epigraph must be the smallest cone of epigraphical type in IR" x IR
containing epi f, cf. 3.19. Using the fact that the set Aepi f for A > 0 is the
epigraph of the function A«f : z — Af(A7'z), one can write the formula in
question as

(pos f)(z) = inf (A f)(z) when f # oo. 3(13)
A>0
3.48 Exercise (closures of positive hulls).
(a) Let C C IR" be closed with 0 ¢ C. Then cl(posC) = (posC) U C>=. If
C' is bounded, then pos C' is closed.
(b) Let f : R" — IR be Isc with f # oo and f(0) > 0. Then cl(pos f) =
min{pos f, f>}. If in addition pos f < f*, as is true in particular when f is
coercive or dom f is all of IR", then pos f is Isc.

Guide. In (a) consider the cone that corresponds to C' in the ray space model,
observing that posC' is the image of this cone under the projection mapping
L : (x,8) — z. Apply Theorem 3.10 to L and the closure of this cone. In (b)
apply (a) epigraphically. O

3.49 Exercise (convexity of positive hulls).

(a) For a convex set C, the cone posC' is convex.

(b) For a convex function f, the positively homogeneous function pos f is
convex, hence sublinear.

(¢) For a proper, convex function f on IR", the function

Af(A"1z)  when X > 0,
h(A,z) =< 0 when A\ =0 and v = 0,
o0 otherwise,

is proper and convex with respect to (A, x) € IR x IR", in fact sublinear in these
variables. The lower closure of h, likewise sublinear but also Isc, is expressed
in terms of the lower closure of f by

Al f)(A\1z)  when X > 0,
(clh)(N\,z) = { f~(x) when A = 0,
00 otherwise.

Guide. Derive (b) from (a) from epigraphs. In (c), determine that h = posg
for the function g(\, z) = f(z) when A = 1, but g(A\,z) = oo when A # 1. In
taking lower closures, apply 3.48(b) to g. O

The joint convexity in 3.49(c) in the variables A and z is surprising in many
situations and might be hard to recognize without this insight. For instance,
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for any positive-definite, symmetric matrix A € IR"*" the expression

A\ @) = 5 (, Az)

is convex as a function of (\,z) € (0,00) x IR™. This is the case of f(z) =
5(x, Az). The function in Example 2.38 arises in this way.

3.50 Example (gauge functions). Let C C IR" be closed and convex with 0 € C.
The gauge of C is the function v : IR" — IR defined by

Yeo(z) = inf{A > 0|z € AC}, so 7o = pos(dc + 1).
This function is nonnegative, Isc and sublinear (hence convex) with level sets
C={z|yo(x) <1}, C*={z|yo(x)=0}, posC = {z|yc(z)< oo}

It is actually a norm, having C as its unit ball, if and only if C' is bounded
with nonempty interior and is symmetric: —C' = C.

c / /epivc

Fig. 3—12. The gauge function of a set as a positive hull.

Detail. The fact that C' is convex with 0 € C ensures having A\C C X'C when
A< XN,and C= = [J,.,AC (cf. 3.6). From C being closed, we deduce that
levoxvo = AC for all A € (0, 00), whereas lev_g vy~ = C*. Hence 7, is Isc with
dom .~ = posC. Because v, = pos f for f = dc + 1, which is convex, v is
sublinear by 3.49(b).

Boundedness of C, which is equivalent by 3.5 to C> = {0}, corresponds
to the property that v~ (x) = 0 only for x = 0. Symmetry of C' corresponds to
having vo(—z) = yo(z). The only additional property required for v~ to be
a norm (as described in 2.17) is finiteness, which means that for every = # 0
there exists A € IR, with x € AC, or in other words, posC = IR". Obviously
this is true when 0 € int C'.

Conversely, if posC = IR" consider any simplex neighborhood V =
con{ag, . ..,an,} of 0 (cf. 2.28), and for each a; select \; > 0 such that a; € \;C.
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Let € be the lowest of the values )\i_l. Then ea; € C for all i, so that the set
con{eay, . ..,ca,} =€V is (by the convexity of C') a neighborhood of 0 within
C; thus 0 € int C. When C is symmetric, 0 has to belong to its interior if
that’s nonempty, as is clear from the line segment principle in 2.33 (because 0
is an intermediate point on the line segment joining any point x € int C' with
the point —z, also belonging to int C'). O

3.51 Exercise (entrﬂ)y functions). Under the convention that 0log0 = 0, the
function g : IR" — IR defined for y = (y1,...,Yn) by

o(y) = > i—1yjlogy; wheny; >0, y; =1,
%) otherwise,

is proper, Isc and convex. Furthermore, the function h : IR" — IR defined by

hiy) = 4 =1 ¥3108%5 = (5 45) 108351 ;) when y; 20,
o0 otherwise,

is proper, Isc and sublinear.

Guide. To get the convexity of g, write g(y) as 327, 0(y;) +dg0y (1 =227, y;)
where 6(t) has the value tlogt for ¢t > 0, 0 for ¢ = 0, and oo for ¢ < 0. Then to
get the properties of A show that h = posg. O

The function g in 3.51 will be seen in 11.12 to be dual to the log-exponential
function in the sense of the Legendre-Fenchel transform.

The theory of positive hulls and convex hulls has important implications
for the study of polyhedral sets and convex, piecewise linear functions.

3.52 Theorem (generation of polyhedral cones; Minkowski-Weyl). A cone K is
polyhedral if and only if it can be expressed as con(pos{by,...,b.}) for some
finite collection of vectors by, ..., b,.

Proof. Suppose first that K = con (pos{bl, ey br}). By 3.15, K is the union
of {0} and the finitely many cones K; = con (pos{b; | j € J}) corresponding
to index sets J C {1,...,7} such that the vectors b; for j € J are linearly
independent. Each of the convex cones K is closed, even polyhedral; this is
obvious from the coordinate representation of K ; relative to a basis for IR"
that includes {bj ’ jed } As a convex set expressible as the union of a finite
collection of polyhedral sets, K itself is polyhedral by Lemma 2.50.

Suppose now instead that K is polyhedral. Because K is a cone, any
closed half-space {x ’ (a,xz) < a} that includes K must have a > 0, and then
the half-space {:1: } (a,x) < 0} includes K as well. Therefore, K must actually
have a representation of the form

K = {z|(a;,z) <0 for i=1,...,m}. 3(14)

In particular, K= = K. For the subspace M = K N (—K) (cf. 3.8) we have
K + M = K by 3.6, and therefore in terms of the orthogonal complement
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M+ :={w|(z,w) =0 for all x € M} actually that
K=K +M for K':=KnM™".

Here K’ is a closed, convex cone too, and K’ is pointed, because K'N(—K') C
M N M+ = {0} (cf. 3.14). Moreover K’ is polyhedral: for any basis w, .. ., wq
of M, K’ consists of the vectors z satisfying not only (a;,z) < 0fori=1,...,m
in 3(14), but also (wy,x) <0 for k =1,...,d. If we can find a representation
K' = con (pos{bl, e br}), we will have from K = K’ + M a corresponding
representation K = con (pos{bl, e b Fw, L iwd}).

This argument shows there’s no loss of generality in focusing on polyhedral
cones that are pointed. Thus, we may assume that K N (—K) = {0}, but also,
to avoid triviality, that K # {0}. For each index set I C {1,...,m} in 3(14)
let K; denote the polyhedral cone consisting of the vectors x € K such that
(a;,z) = 0 for all i € I. Obviously, the union of all the cones K is K. Let
K be the union of all the cones K that happen to be single rays, i.e., to have
dimension 1. We’ll demonstrate that if K; has dimension greater than 1, then
any nonzero vector in K; belongs to a sum K + K~ for index sets I’ and I”
properly larger than I. This will establish, through repeated application, that
every nonzero vector in K can be represented as a sum of vectors belonging to
cones K of dimension 1, or in other words, as a sum of vectors in Ky. We'll
know then from 3.15 that K = con Ky; in particular Ky # (). Because Ky is the
union of finitely many rays we’ll have Ky = pos{by,...,b.} for certain vectors
b;j, and the desired representation of K will be achieved.

Suppose therefore that 0 # z € K; and dim K; > 1. Then there’s a vector
Z # 0 in K that isn’t just a scalar multiple of z. Let

T={reR,|t-1icK}), T={rcR,|i-12€K)}.

It’s clear that T is a closed interval containing 0, and the same for T. On the
other hand, T can’t be unbounded , for if it contained a sequence 0 < 7% 00
we would have (1/77)[z — 77Z] € K for all v and consequently in the limit
—Z € K, in contradiction to our knowledge that z € K and K N (—K) = {0}.
Therefore, T has a highest element 7/ > 0. The vector ' = Z — 7/Z must
then be such that the index set I’ := {i|(a;,2’) = 0} is properly larger than

I. Likewise, T has a highest element 7/ > 0, and the vector 2" = & — 7'z

must be such that the index set I” := {z ’ (az, ") = 0} is properly larger than
I. We note that (1/7")z —z € K, so 1/7"" < 7/ by the definition of 7". It’s
impossible that 1/7"” = 7/, because then (1/7")% — Z would be the vector —a/,
and we would have both " and —z’ in K with 2’ # 0 (because & and Z aren’t
multiples of each other), contrary to K N (—K) = {0}. Hence 7/7"” < 1. Let
¥ =[1/1-77"]2" and 2" = [7'/(1 — 7'7")]z". Then ¥’ € K., 7" € K»,
/
1 _ . T (53

¥ +z = ﬁ(l‘—Tl‘)—}-

1l — —
-7 x) = Z.
1—7'71 1—7'rV



104 3. Cones and Cosmic Closure

Thus, we have a representation z € K + Ky~ of the kind sought. O

3.53 Corollary (polyhedral sets as convex hulls). A set C' is polyhedral if and
only if it can be represented as the convex hull of at most finitely many ordinary
points and finitely many direction points, i.e., in the form

C = con{ay,...,am,}+con (pos{amﬂ,...,ar}).

Proof. A nonempty polyhedral set C specified by a finite system of inequal-
ities (c;, ) < ; has csm C corresponding in the ray space model to the cone
given by the inequalities <(cj,'yj),(a:,ﬁ)> < 0 and <(O,—1),(:1;,5)> < 0, and
conversely such cones correspond to polyhedral sets C'. The result is obtained
by applying Theorem 3.52 to these cones in IR"T!. The rays that generate
them can be normalized to the two types (a;, —1) and (a;,0). O

3.54 Exercise (generation of convex, piecewise linear functions). A function
f: R" — IR has epi f polyhedral if and only if, for some collection of vectors
a; and scalars ¢;, f can be expressed in the form

infimum of ticy + -+ tmem +tmt1Cme1 + - - + trcy
f(x) =< subject to tiar + -+ tmam +tmtr10me1 + - +tra, =z
with ¢, >0 for i=1,...,r, Y™ t; =1,

where the infimum is attained when it is not infinite. Thus, among functions
having such a representation, those for which the infimum for at least one x is
finite are the proper, convex, piecewise linear functions f with dom f # ().

Guide. Use 2.49 and 3.53 to identify the class of functions in question with
the ones whose epigraph is the extended convex hull of finitely many ordinary
points in IR™ ™! and direction points in hzn R™™'. Work out the meaning of
such a representation in terms of a formula for f(x). Derive attainment of the
infimum from the closedness of the epigraph. O

3.55 Proposition (polyhedral and piecewise linear operations).

(a) If C is polyhedral, then C* is polyhedral. If C; and Cy are polyhedral,
then so too are C; N Cy and Cy + Co. Furthermore, L(C) and L~Y(D) are
polyhedral when C' and D are polyhedral and L is linear.

(b) If f is proper, convex and piecewise linear, f*° has these properties as
well. If fi and fy are convex and piecewise linear, then so too are max{ f1, fa},
f1 + fo and fi# fo, when proper. Also, foL is convex and piecewise linear
when f is convex and piecewise linear and the mapping L is linear. Finally, if
p(u) = inf, f(x,u) for a function f that is convex and piecewise linear, then p
is convex and piecewise linear unless it has no values other than oo and —oo.

Proof. The polyhedral convexity of C'"* is seen from the special case of 3.24
where the functions f; are affine (or from the proof of 3.53). That of C; N Cs
and Lil(D) follows from considering C7, Cy and D as intersections of finite
collections of closed half-spaces as in the definition of polyhedral sets in 2.10.
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For C;+C5 and L(C) one appeals instead to representations as extended convex
hulls of finitely many elements in the mode of 3.53.

The convex piecewise linearity of f> follows from that of f because this
property corresponds to a polyhedral epigraph; cf. 2.49 and the definition of
f° in 3.17. The convex piecewise linearity of max{fi, fo}, f1 + f2, and foL is
evident from the definition of piecewise linearity and the fact that these oper-
ations preserve convexity. For fi# fo and p one can appeal to the epigraphical
interpretations in 1.18 and 1.28, invoking representations as in 3.54. O

Commentary

Many compactifications of IR have been proposed and put to use. The simplest is the
one-point compactification, in which a single abstract element is added to represent
‘infinity’, but there is also the well known Stone-Cech compactification (making every
bounded continuous function on R™ have a continuous extension to the larger space)
and the compactification of n-dimensional projective geometry, in which a new point
is added for each family of parallel lines in IR". The latter is closest in spirit to
the ‘cosmic’ compactification developed here, but it’s also quite different because it
doesn’t distinguish between directions that are opposite to each other.

For all the importance of ‘directions’ in analysis, it’s surprising that the notion
has been so lacking in mathematical formalization, aside from the one-dimensional
case served by adjoining oo and —oo to IR. Most often, authors have been content
with identifying ‘directions’ with vectors of length one, which works to a degree but
falls short of full potential because of the easy confusion of such vectors with ones in
an ordinary role, and the lack of a single space in which ordinary points and direction
points can be contemplated together. The portrayal of directions as abstract points
corresponding to equivalence classes of half-lines under parallelism, or in other words
as corresponding one-to-one with rays emanating from the origin, was offered in Rock-
afellar [1970a], but only algebraic issues connected with convexity were then pursued.
A similar idea can be glimpsed in the geometric thinking of Bouligand [1932a] much
earlier, but on an informal basis only. Not until here has the concept been developed
fully as a topological compactification with all its ramifications, although a precursor
was the paper of Rockafellar and Wets [1992].

Interest in cosmic compactification ideas has been driven especially by applica-
tions to the behavior of the ‘min’ operation under the epigraphical convergence of
functions studied in Chapter 7 (and the underpinnings of this theory in Chapter 5),
and by the need for a proper understanding of the ‘horizon subgradients’ that are
crucial in the subdifferential analysis of Chapters 8-10.

Many of the properties of the cosmic closure of IR" have been implicit in other
work, of course, especially with regard to convexity. What we have called the ‘horizon
cone’ of a set was introduced as the ‘asymptotic cone’ by Steinitz [1913], [1914], [1916].
For a convexr set C that’s closed, it’s the same as the recession cone of C' defined in
Rockafellar [1970a]. We have preferred the term ‘horizon’ here to ‘asymptotic’ for
several reasons. It better expresses the underlying geometry and motivation for the
compactification: horizon cones represent sets of horizon points lying in the horizon of
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IR™. Tt better lends itself to broader usage in association with functions and mappings,
as well as special kinds of limits in the theory of set convergence in Chapter 4 for
which the term ‘asymptotic’ would be awkward. Also, by being less encumbered than
‘asymptotic’ by other meanings, it helps to make clear how cosmic compactification
ideas enter into variational analysis.

The term ‘recession cone’ was temporarily used by Rockafellar [1981b] in the
present sense of ‘horizon cone’ for nonconvex as well as convex sets, but we reserve
that now for a different concept which better extends the meaning of ‘recession’
beyond the territory of convexity; see 6.33—6.34.

The horizon properties of unbounded convex sets were already well understood
by Steinitz, who can be credited with the facts in Theorem 3.6, in particular. The
corresponding theory of horizon cones was developed further by Stoker [1940]. Such
cones were used by Choquet [1962] in expressing the closures of convex hulls of unions
of convex sets and for closure results in convex analysis more generally by Rockafellar
[1970a] (§8). Some facts, such as the horizon cone criterion for the closedness of the
sum of two sets (specializing the criterion for an arbitrary number of sets in 3.12)
were obtained earlier by Debreu [1959] even for nonconvex sets. The possibility of
inequality in the horizon cone formula for product sets in 3.11 (as demonstrated by
the example following that result) hasn’t previously been noted.

The application of horizon cone theory to epigraphs to generate growth proper-
ties of functions carries forward to the nonconvex case a theme of Rockafellar [1963],
[1966b], [1970a], for convex functions. Growth properties of nonconvex functions,
even on infinite-dimensional spaces, have been analyzed in this manner by Baiocchi,
Buttazzo, Gastaldi and Tomarelli [1988], Zalinescu [1989], and Auslender [1996] for
the purpose of understanding the existence of optimal solutions and the convergence
of methods for finding them.

The coercivity result in 3.26 is new, at least in such detail. We have tried here
to straighten out the terminology of ‘coercivity’ so as to avoid some of the conflicts
and ambiguities that have arisen in what this means for functions f : R™ — IR. For
convex functions f, coercivity was called ‘co-finiteness’ in Rockafellar [1970a] because
of its tie to the finiteness of the conjugate convex function (see 11.8(d)), but that term
isn’t very apt for a general treatment of nonconvex functions. Coercivity concepts
have an important role in nonlinear analysis not just for functions f into IR or IR
but also vector-valued mappings from one linear space into another; cf. Brezis [1968],
[1972], Browder [1968a], [1968b], and Rockafellar [1970c].

The application of coercivity to parametric minimization in Theorem 3.31 ap-
pears for the convex case in Rockafellar [1970a] along with the facts in 3.32. A
generalization to the nonconvex case was presented by Auslender [1996].

The sublinearity fact in 3.20 goes back to the theory of convex bodies (cf. Bon-
nesen and Fenchel [1934]), to which it is related through the notion of ‘support func-
tion’ that will be explained in Chapter 8.

The cancellation rule in 3.35 for sums of convex sets is due to Radstrom [1952]
for compact C7 and C9. The general case with possibly unbounded sets and the
epi-addition version in 3.34 for fi4 g = fo4 g don’t seem to have been observed
before, although Zagrodny [1994] has demonstrated the latter for g strictly convex
and explored the matter further in an infinite-dimensional setting. These cancellation
results will later be easy consequences of the duality correspondence between convex
sets and their ‘support functions’ (in Chapter 8) and the Legendre-Fenchel transform
for convex functions in (Chapter 11), which convert addition of convex sets and epi-
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addition of convex functions into ordinary addition of functions where cancellation
becomes trivial (when the function being canceled is finite). Radstréom approached
the matter abstractly, but the interpretation via support functions was made soon
after by Hérmander [1954].

For convex cones, pointedness has customarily been defined in terms of the prop-
erty in 3.14. The extension of pointedness to general cones through Definition 3.13,
which gives the same concept when the cone is convex, was proposed by Rockafellar
[1981b] for the express purpose of dealing with convex hulls of unbounded sets. But
that paper attended mostly to other issues and didn’t openly develop results corre-
sponding to 3.15, 3.45 and 3.46, although these were to a certain degree implicit.

The concept of convex hulls of sets consisting of both ordinary points and hori-
zon points, or in other words, in the setting of cosmic convexity as in 3.44, stems from
Rockafellar [1970a]. That book also made the first applications of convex hull theory
to functions, including the dual representation for ‘polyhedral’ functions in 3.53. The
basic Minkowski-Weyl result in 3.52, which effectively furnishes a convex hull repre-
sentation of generalized type for any polyhedral convex set, comes from Weyl [1935],
but the proof given here is new.

The importance of convex cones in setting up general vector inequalities (cf. 3.38)
that might be used in describing constraints has long been recognized in optimization
theory, e.g. Duffin [1956]. Matrix inequalities such as in 3.39 were first utilized for
this purpose by Bellman and Fan [1963] and are now popular in the subject called
‘positive-definite programming’; cf. Boyd and Vanderberghe [1995].

The entropy function g(y) described in 3.51 is fundamental to Boltzman-Shannon
entropy in statistical mechanics. The related function A(y) in 3.51 turns out to be
the key to duality theory in log-exponential programming; see Duffin, Peterson and
Zener [1967] and Rockafellar [1970a] (§30).



4. Set Convergence

The precise meaning of such basic concepts in analysis as differentiation, in-
tegration and approximation is dictated by the choice of a notion of limit for
sequences of functions. In the past, pointwise limits have received most of the
attention. Whether ‘uniform’ or invoked in an ‘almost everywhere’ sense, they
underlie the standard definitions of derivatives and integrals as well as the very
meaning of a series expansion. In variational analysis, however, pointwise lim-
its are inadequate for such mathematical purposes. A different approach to
convergence is required in which, on the geometric level, limits of sequences of
sets have the leading role.

Motivation for the development of this geometric approach has come from
optimization, stochastic processes, control systems and many other subjects.
When a problem of optimization is approximated by a simpler problem, or
a sequence of such problems, for instance, it’s of practical interest to know
what might be expected of the behavior of the associated sets of feasible or
optimal solutions. How close will they be to those for the given problem?
Related challenges arise in approximating functions that may be extended-
real-valued and mappings that may be set-valued. The limiting behavior of
a sequence of such functions and mappings, possibly discontinuous and not
having the same effective domains, can’t be well understood in a framework
of pointwise convergence. And this fundamentally affects the question of how
‘differentiation’ might be extended to meet the demands of variational analysis,
since that’s inevitably tied to ideas of local approximation.

The theory of set convergence will provide ways of approximating set-
valued mappings through convergence of graphs (Chapter 5) and extended-real-
valued functions through convergence of epigraphs (Chapter 7). It will lead to
tangent and normal cones to general sets (Chapter 6) and to subderivatives
and subgradients of nonsmooth functions (Chapter 8 and beyond).

When should a sequence of sets C* in IR" be said converge to another such
set C'? For operational reasons in handling statements about sequences, it will
be convenient to work with the following collections of subsets of IV:

N.:={NCIN|IN\N finite }
={ subsequences of IN containing all v beyond some 7},
NZ#:={N C IN| N infinite } = { all subsequences of IN}.
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The set N gives the ‘filter’ of neighborhoods of co that are implicit in the
notation v — oo, and N# is its associated ‘grill’. Obviously, N, C N#. The
subsequences of a sequence {x”},cn have the form {z"},eny with N € N#
while those that are ‘tails’ of {"}, ¢ have this form with N € N .

Subsequences will pervade much of what we do, so an initial investment in
this notation will pay off in simpler formulas and even in bringing analogies to
light that might otherwise be missed. We write lim,, lim, .., or lim,c when
v — o0 as usual in IV, but lim,en or lim, o+ o in the case of convergence of
a subsequence designated by an index set N in N# or N_,. The relations

Nj:{NCJN’VN’eNOO,NﬁN’;é@} )
1
Nw:{NCﬂV)VN’ENj,NﬂN’#Q)} .

express a natural duality between N and N#. An appeal to this duality can
be helpful in arguments involving limit operations.

A. Inner and Outer Limits

The issue of whether a sequence of subsets of IR"™ has a limit can best be
approached through the study of two ‘semilimits’ which always exist.

4.1 Definition (inner and outer limits). For a sequence {C"},en of subsets of
IR"™, the outer limit is the set

limsup C¥ : = {x’EINENj, dz¥ € C¥ (v € N) with x”ﬁx}

V—r 00

= {x’VVGN(x), AN e N Vv e N: C’VOV#@},
while the inner limit is the set

liminf C¥ : = {x’EINE/\/;O, dz¥ € C¥ (v € N) with x”ﬁx}

V—00

- {x)VVGN(x), IN €N, VveN: C”rﬂ/;é(i)}.
The limit of the sequence exists if the outer and inner limit sets are equal:

lim C” :=limsup C” = liminf C”.
V—r00 V—r00 V—r00
The inner and outer limits of a sequence {C"},cn always exist, although

the limit itself might not, but they could sometimes be (). When C" # () for all
v, the set liminf, C” consists of all possible limit points of sequences {x"},cn
with ¥ € CV for all v, whereas limsup, C¥ consists of all possible cluster
points of such sequences. In any case, it’s clear from the inclusion N, C N#
that liminf, C* C limsup, C¥ always.
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Fig. 4-1. Limit concepts. (a) A sequence of sets that converges to a limit set. (b) Inner and
outer limits for a nonconvergent sequence of sets.

Without loss of generality, the neighborhoods V' in Definition 4.1 can be
taken to be of the form B(z,e). Because the condition B(z,e) N CY # ) is
equivalent to x € C¥ 4 1B, the formulas can then be written just as well as

liminf C” = {@| Ve >0, 3N € N, Vv € N: 2 € C” +eB,
limsup C¥ = {x‘ Ve>0,IN e N* YveN: zeC +€B}.
V—r00

Inner and outer limits can also be expressed in terms of distance functions
or operations of intersection and union. Recall that the distance of a point x
from a set C' is denoted by de(z) (cf. 1.20), or alternatively by d(z, C') when
that happens to be more convenient. For C' = (), we have d(z,C) = co. Aside
from that case, not only is the function d¢ finite everywhere and continuous
(as asserted in 1.20), it satisfies

do(z') < do(z) + |2’ — x| for all 2/ and z. 4(3)
This is evident from the fact that |y — /| < |y — z| + |2’ — x| for all y € C.

4.2 Exercise (characterizations of set limits).

(a) liminf C* = {:1;

V—00

limsup d(z,C") = 0},

vV—00

limsup C" = {x

V—00

liminf d(z,C") = O},

V—r 00

(b) liminf C* = ﬂ cl U C”, liirf.;ip CcY = ﬂ cl U c,

v—roo NenN# veEN NeN. veN

(c) liminf C” = ﬂ [Uzozl ﬂ:ozy (cx —i—elB)] .

V—00 e>0
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B. Painlevé-Kuratowski Convergence

When lim, C" exists in the sense of Definition 4.1 and equals C, the sequence
{C"},emw is said to converge to C, written

CcY = C.

Set convergence in this sense is known more specifically as Painlevé- Kuratowski
convergence. It is the basic notion for most purposes, although variants in-
volving the cosmic closure of IR"™ will be developed for some applications. A
competing notion of convergence with respect to ‘Pompeiu-Hausdorff distance’
will be explained later as amounting to the same thing for bounded sequences
of sets (all in some bounded region of IR™), but otherwise being inappropri-
ate in its meaning and unworkable as a tool for dealing with sets like cones,
epigraphs, and the graphs of mappings (see 4.13). Some preliminary examples
of set limits are:

e A sequence of balls B(z", p”) converges to the ball B(x,p) when z¥ — z
and p¥ — p. When p¥ — oo, these balls converge to IR"™ while their
complements converge to ().

e Consider a sequence that alternates between two different closed sets D
and Dy in IR", with C¥ = D; when v is odd but C¥ = Dy when v is even.
Such a sequence fails to converge. Its inner limit is D; N Do, whereas its
outer limit is D7 U Ds.

e For aset D C IR" with clD = R" but D # IR" (for instance D could be
the set of vectors whose coordinates are all rational), the constant sequence
C" = D converges to C' = IR", not to D.

4.3 Exercise (limits of monotone and sandwiched sequences).
(a) lim, C” = cllJ, ¢y C¥ whenever C* ', meaning C* C C**1 C -+ ;
(b) lim, C” =, c1C” whenever C¥ ., meaning C¥ > C**1 > ...;
(¢) CY — C whenever CY C C¥ C C¥ with CY — C and C¥§ — C.

4.4 Proposition (closedness of limits). For any sequence of sets C¥ C IR"™, both
the inner limit set liminf, C¥ and the outer limit set limsup, C" are closed.
Furthermore, they depend only on the closures clC", in the sense that

O = ol DY { liminf,, C¥ = liminf, D

lim sup,, C¥ = limsup,, D".
Thus, whenever lim, CV exists, it is closed. (If C¥ = C, then lim, C¥ = clC.)

Proof. This is obvious from the intersection formulas in 4.2(b). a

The closure facts in Proposition 4.4 identify the natural setting for the
study of set convergence as the space of all closed subsets of IR". Limit sets
of all types are closed, and in passing to the limit of a sequence of sets it’s
only the closures of the sets that matter. The consideration of sets that aren’t
closed is really unnecessary in the context of convergence, and indeed, such
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sets can raise awkward issues, as shown by the last of the examples before 4.3.
On the other hand, from the standpoint of exposition a systematic focus only
on closed sets could be burdensome and might even seem like a restriction; an
extra assumption would have to be added to the statement of every result. We
continue therefore with general sets, as long as it’s expedient to do so.

The next theorem and its corollary provide the major criteria for checking
set convergence.

4.5 Theorem (hit-and-miss criteria). For C¥, C C IR" with C closed, one has

(a) C Climinf, C” if and only if for every open set O C IR" with CNO # ()
there exists N € N, such that C*NO # () for allv € N;

(b) C D limsup, C” if and only if for every compact set B C IR" with
C N B = () there exists N € N such that C"NB = for allv € N;

(a’) C C liminf, C¥ if and only if whenever C' Nint B(x, p) # () for a ball
B(z, p), there exists N € N, such that C* Nint B(x, p) # 0 for all v € N;

(b’) C D limsup, C" if and only if, whenever C N B(x,p) = ) for a ball
B(x, p), there exists N € N, such that C* N B(x,p) = for allv € N.

(c) It suffices in (a’) and (b') to consider the countable collection of all balls
IB(z, p) such that p and the coordinates of x are rational numbers.

Proof. In (a), it’s evident from Definition 4.1 that ‘=’ holds. The condition
in the second half of (a) obviously implies, in turn, the condition in the second
half of (a’). By demonstrating that the special version of the latter in (c¢) (for
rational balls only) guarantees C' C liminf, C”, we’ll establish the equivalences
in both (a) and (a’).

Consider any z € C and rational ¢ > 0. There is a rational point
x' € int B(x,e/2). For such a point 2’ we have C'Nint B(z',£/2) # (0, so by as-
sumption there exists N € N, with C* Nint B(z’,e/2) # 0 for allv € N. Then
in particular ' € C¥ + (¢/2)IB, so that x € C¥ + (¢/2) B+ (¢/2) B = C" + B
for all v € N. Thus, z satisfies the defining condition in 4.1 for membership in
liminf, C”.

Likewise, ‘=" holds in (b) on the basis of Definition 4.1, while the condition
in the second half of (b) implies in turn the condition in the second half of (b’)
and then its rational version in (c). We have to argue from the latter back
to the property that C' D limsup, C”. Thus, in assuming the rational version
of the condition in the second half of (b’) and considering an arbitrary point
x ¢ C, we need to demonstrate that x fails to belong to limsup, C".

Because C' is closed, there’s a rational € > 0 such that C' N B(z,2¢) = 0.
A rational point 2’ can be selected from int IB(z,¢), and we then have = €
int B(2',¢) and C' N B(a',e) = 0. By assumption, there must exist N € N,
such that C*NIB(z',e) = () for all v € N. Since x € int B(2/, ¢), it’s impossible
in this case for = to belong to limsup, C¥, as seen from Definition 4.1. O

4.6 Exercise (index criterion for convergence). The following is sufficient for
lim, C” to exist: whenever the index set N = {V } C"NO # @} for an open set
O belongs to N#, it actually belongs to N_,.
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Guide. Argue from Theorem 4.5. O

The following consequence of Theorem 4.5 provides a bridge to the quan-
tification of set convergence through distance functions.

4.7 Corollary (pointwise convergence of distance functions). For sets C* and
C in R" with C closed, one has C* — C if and only if d(xz,C") — d(x,C) for
every x € IR". In fact

(a) C Climinf, C” if and only if d(z,C) > limsup, d(x,C") for all x,

(b) C D limsup, C¥ if and only if d(x,C) < liminf, d(z,C") for all x.

Proof. Nothing is lost by assuming C” to be closed. For any closed set C’,

d(z,C") <a <= C'Nint B(z,a) # 0,
d(z,C") > <= C'NnB(z,B) =0,

so (a) and (b) are just reformulations of 4.5(a’) and 4.5(b"). O

In applying Corollary 4.7 to the case where actually C' = liminf, C” or
C = limsup,, C”, one obtains a distance function equation in the second case,
but not in the first, as noted next.

4.8 Exercise (equality in distance limits). For a sequence of sets C* in IR"
one always has liminf, d(z,C") = d(z,limsup, C¥), but in general only
limsup, d(z,C") < d(x,liminf, C").

Guide. The specialization of Corollary 4.7(a) and (b) to set limit equalities
doesn’t directly furnish equalities for the limits of the distance functions, just
special inequalities. In the case of limsup, C¥, however, one can argue that
when a > d(x,limsup, C") there must be a sequence {z”},en with N € N7,
x¥ € C" for v € N, such that |[x—2"| < . This leads to the opposite inequality.

An example showing that the inequality in the case of liminf, C* can’t
always be strengthened to an equality is generated by taking C* = (IR,0) C IR?
when v is even, C¥ = (0, IR) when v is odd. O

Set convergence can be described in terms of ‘gap’ measurements, too.
The gap distance between two nonempty sets C' and D in IR" is

gap (C,D) : =inf{|z —y| |z € C,y € D}

= inf.{d(z,C) + d(z, D)}. 4

Observe that gap (C,{z}) = d(z, C) for any singleton {z}; more generally one
has gap (C, B(z, p)) = max [d(z,C) — p, 0] for any p € (0,00). It follows then
from 4.7 that a sequence of sets C” converges to a closed set C' # () if and only
if gap (C%, B(x,p)) — gap (C, B(z, p)) for all x € IR" and p > 0.

Not only distances but also projections (as in 1.20) can be used in charac-
terizing set convergence.
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4.9 Proposition (set convergence through projections). For nonempty, closed
sets C¥ and C in IR", one has C¥ — C' if and only if limsup, d(0,C") < oo
and the projection mappings Prv have the property that

limsup,, Pev (z) C Po(z) for all x.

When the sets C'¥ and C' are also convex, one simply has that C¥ — C' if and
only if Pov(x) — Pco(x) for all x.

Proof. Necessity in general: From C* — C we have d(z,C") — d(z,C) <
oo for all z by 4.7 (in particular x = 0, so that limsup, d(0,C") < o0).
Consider any = € limsup, Pgv(x). There’s an index set N € N# such that
Z = lim,en ¥ for points z¥ € C¥ with |2V — x| = d(z,C"). Taking limits in
this equation we get |z — x| = d(z, C'), but also z € C, so that T € P,(x).

Sufficiency in general: Consider any x € IR"™. It suffices by 4.7 to verify
that d(z,C") — d(z,C). The sets Pqv(x) are nonempty by 1.20, so for each v
we can choose some ¥ € Pov(z), i.e., T € C¥ with |2V — x| = d(z, C"). These
distances form a bounded sequence, because d(z,C") < d(0,C") + |z| and
limsup,, d(0,C") < co. Any cluster point of {d(z,C")},ecn must therefore be
of the form |z —z| for some cluster point  of {Z"},c . But such a cluster point
Z belongs by assumption to P (z) and therefore has |z — z| = d(z, C). Hence
the unique cluster point of the bounded sequence {d(z,C")},cn is d(z,C),
and the desired conclusion is at hand.

The simplified characterization in the convex case comes from the fact
that the projections Pov(x) and P, (z) are singletons then; cf. 2.25. Of course
d(0,C") — d(0,C) when P.v(0) — P-(0). O

The characterization of set convergence in Proposition 4.9 will be extended
in 5.35 to the ‘graphical convergence’ of the associated projection mappings.

R.1(x) Re2(x) Fv(¥) R.(x)

Fig. 4-2. Projections onto converging convex sets.

The next result furnishes clear geometric insight into the ‘closeness’ rela-
tionships between sets that are the hallmark of set convergence.

4.10 Theorem (uniformity of approximation in set convergence). For subsets
C%, C c IR" with C closed, one has

(a) C C liminf, C” if and only if for every p > 0 and € > 0 there is an
index set N € N, with CNplB C CY +¢eIB for all v e N;
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(b) C D limsup, C” if and only if for every p > 0 and € > 0 there is an
index set N € N, with C* NpIB C C +¢eIB for all v € N.

Thus, C' = lim, C” if and only if for every p > 0 and € > 0 there is an
index set N € N_ such that both inclusions hold. The following variants of
the characterizations in (a) and (b) are valid as well:

(a’) C C liminf, CV if and only if for every & € IR", p > 0 and € > 0, there
is an index set N € N, with C N B(z,p) C C” +¢eB for all v € N;

(b") C D limsup, C¥ if and only if for every z € IR", p > 0 and € > 0,
there is an index set N € N, with C* N IB(Z,p) C C +¢eB for all v € N.

In all of these characterizations, it suffices that the inclusions be satisfied
for all p large enough (i.e. for every p > p for some p > 0). In addition, p and
€ can be restricted to be rational.

Proof. Sufficiency in (a): Suppose the inclusion in (a) holds for all p > p for
some p > 0. Consider any x € C' and let p > max {,5, |x\} Then x € C' N pIB,
so for any € > 0 there is an index set N € N, with x € C” +¢IB for all v € N.
This means that x € liminf, C”.

Necessity in (a): Suppose to the contrary that one can find p > 0, >0
and N € N7 such that points z¥ € [C' N pB]\ [C¥ 4 2¢IB] exist for v € N
with ¥ 3 . When v € N is large enough, one has

2% < d(z¥,C") < d(z,C") + |z — 2¥| < d(%,C") +e.

Letting v 7 oo and taking Corollary 4.7(a) into account, one gets 2e <
limsup, d(z,C") + ¢ < d(z,C) + ¢, where d(z,C) = 0 because = € C' N pIB.
Then 2¢ < e, an impossibility.

!

d,(C,C") <e

Fig. 4—-3. Closeness between sets in convergence to a limit.

Sufficiency in (b): Let z¥ + Z for some N € N# with ¥ € C¥ for all
v € N. We think of  as an arbitrary point in limsup, C”. If the inclusion in
(b) is satisfied for all p > p for some p > 0, it follows that for all p > max {p, |z|}
and € > 0,z € C' + B, i.e., T also belongs to C.
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Necessity in (b): Suppose to the contrary that one can find p > 0, > 0
and N € N# such that for all v € N, there exists z € [C* N pB]\ [C + cB].
Let Z be a cluster point of the . Then Z € limsup, C* and z ¢ C + int(cB),
so limsup, C¥ can’t be included in C.

Justification of (a’) and (b’): These are obtained simply by replacing the
ball pIB in the proof of (a) and (b) by IB(Z, p) with Z chosen arbitrarily.

Restriction of p and € to being rational is possible with impunity because
any real number can be bracketed arbitrarily closely by rational numbers, and
this guarantees that every ball can itself be bracketed arbitrarily closely by
balls having rational radius. O

4.11 Corollary (escape to the horizon). The condition C* — () (or equivalently,
lim sup,, C” = () holds for a sequence {C"},en in IR" if and only if for every
p > 0 there is an index set N € N, such that C* N pIB = () for allv € N (or,
in other words, dov(0) — 00). Further, for closed sets C¥ and C' one has

(a) C Climinf, C” if and only if for alle > 0, C\(C¥ 4+ eB) — 0;

(b) C D limsup, C if and only if for alle > 0, C¥\ (C +eB) — 0.
It suffices in these characterizations that the inclusions be satisfied for all p
larger than some p; in addition, p and ¢ can be restricted to be rational.

Proof. The first criterion is obtained by taking C' = () in 4.10(b). Assertions
(a) and (b) reformulate 4.10(a) and 4.10(b) to take advantage of this view in
terms of the convergence of ‘excesses’. O

Clearly both 4.10 and 4.11 could be stated equivalently with an arbitrary
bounded set B replacing the arbitrarily large ball pIB.

Fig.4—4. A sequence of sets escaping to the horizon.

In the situation described in Corollary 4.11, the terminology that the se-
quence {C"},cv escapes to the horizon is appropriate—not only because the
sequence eventually departs from any bounded region of IR", but also in light of
the cosmic closure theory in Chapter 3. Although no ordinary point occurs as
a limit of a subsequence of points ¥ € C¥, and this is the meaning of C* — ),
various direction points in hzn IR"™ may show up as limits in the cosmic sense.
Horizon limit concepts will be essential later in understanding the behavior of
set convergence with respect to operations like set addition.
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Corollary 4.11 can also be exploited to obtain the boundedness of the sets
C" of a sequence converging to a limit set C' that is bounded, provided that
the sets C” are connected.

4.12 Corollary (limits of connected sets). Let C¥ C IR"™ be connected with
limsup, C¥ bounded and no subsequence escaping to the horizon. Then there
is a bounded set B C IR"™ such that C¥ C B for all v in some N € N_,.

Proof. Let C' =limsup, C¥ and B = C +¢IB for some € > 0, these sets being
bounded. Let B’ = pIB for p big enough that B C int B’. From 4.11(b) we
have C¥\ B — (). Then (C¥\ B)N B’ = () eventually by 4.11, but C* \ B # C¥
eventually as well, since no subsequence of {C"} escapes to the horizon. Hence
for all v in some N € N, we have C” = (C* N B)U (C¥\ B’) with C* N B # 0.
But C" is connected and B C int B/, so C*\ B’ =), i.e., C* C B. |

C. Pompeiu-Hausdorff Distance

Closely related to ordinary—Painlevé-Kuratowski—convergence C* — C', but
in some important respects distinct from it, is convergence with respect to
Pompeiu-Hausdorff distance.

4.13 Example (Pompeiu-Hausdorff distance). For C, D C IR" closed and
nonempty, the Pompeiu-Hausdorff distance between C and D is the quantity

d.(C,D):= sup ’dc(x) —dD(x)},
zeR™
where the supremum could equally be taken just over C' U D, yielding the
alternative formula

cﬂw(C,D):inf{nzo’ C c D+, Dcc+nJB}. A(5)

A sequence {C"},ecn Is said to converge with respect to Pompeiu-Hausdorff
distance to C when d ., (C¥, C) — 0 (these sets being closed and nonempty).

This property entails ordinary set convergence C¥ — C' and is equivalent to
it when there is a bounded set X C IR" such that C¥, C' C X. But convergence
with respect to Pompeiu-Hausdorff distance is not equivalent to ordinary set
convergence without this boundedness restriction. Indeed, it is possible to have
CY — C with d . (C", C) = oco. Even for compact sets C¥ and C, it is possible
to have C¥ — C while d . (C",C) — oc.

Detail. Since C' and D are closed, the expression on the right side of 4(5) is the
same as the infimum of all n > 0 such that dp(z) < nforallx € C and de(x) <
n for all z € D. Thus it is the same as the value obtained when the supremum
defining d . (C, D) is restricted x € C'U D. This value can’t be greater than
d..(C,D), but it can’t be less either, for the following reason. If dp < n on C,
we have for any x € R" and 2’ € C that dp(x) < |[x—2'|+dp(2') < |z—2'|+n,
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and consequently (in taking the infimum over 2’ € C) that dp(z) < dc(z) + 1.
Likewise, if do < n on D we have d¢(z) < dp(x) + n for all x € IR". Then
|do(x) — dp(z)| < n for all x € R".

The implication from Pompeiu-Hausdorff convergence to ordinary set con-
vergence is clear from 4.10, as is the equivalence between the two notions under
the boundedness restriction. An example where C¥ — C but d_ (C% C) = oo
is seen by taking the sets C" to be rays that rotate to the ray C'. An ex-
ample of compact sets C¥ — C with d_ (C% C) — oo is obtained by taking
CY = {a% b’} with a¥ — a but |b¥| — oo, and letting C' = {a}. O

| CHlimge

ot c
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\—%
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Fig.4-5. A converging sequence C¥ — C with Pompeiu-Hausdorff distance always co.

The notation d ., (C, D) for Pompeiu-Hausdorff distance conforms to a pat-
tern that will come into view later when expressions d,(C, D) and d »(C,D),
depending on a parameter p > 0, are introduced to quantify ordinary set con-
vergence as reflected by the estimates in 4.10; see 4(11). Note that because
d..(C,D) can have the value co, Pompeiu-Hausdorff distance doesn’t furnish
a metric for the space of nonempty, closed subsets of IR", although it does so
when restricted to the subsets of a bounded set X C IR". (This isn’t just a
peculiarity of IR™ but would arise for the space of closed subsets of any metric
space in which distances can be unbounded, as can be seen from the initial
formula for d .. (C, D).)

Anyway, the convergence shortcomings in Example 4.13 make clear that
Pompeiu-Hausdorff distance is unsuitable for analyzing sequences of unbounded
sets or even unbounded sequences of bounded sets, except perhaps in very
special circumstances. A distance expression d(C, D) that does fully furnish a
metric for set convergence will be provided later, in 4(12).

D. Cones and Convex Sets

For special classes of sets, such as cones and convex sets, special convergence
properties are available.
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4.14 Exercise (limits of cones). For a sequence of cones K" in IR", the inner
and outer limits, as well as the limit if it exists, are cones. If K" # {0} for all
v, or just for all v in some N € N7#, then limsup, K # {0}.

In the presence of convexity, set convergence displays an ‘internal’ unifor-
mity property of approximation which complements the one in 4.10.

4.15 Proposition (limits of convex sets). For a sequence {C"},en of convex
subsets of IR", liminf, C" is convex, and so too, when it exists, is lim, C".
(But limsup, C* need not be convex in general.)

Moreover, if C = liminf, C” and int C # (), for any compact set B C int C
there exists an index set N € N such that B C int C” for allv € N.

Proof. Let C = liminf, C. The convexity of C' is elementary: if zo and z;
belong to C, we can find for all v in some set N € N points zf and zY in
C" such that zf % xo9 and z¥ > x1. Then for arbitrary A € [0, 1] we have for
X = (1= N)zf + Az¥ and zy := (1 — X\)zg + Az that 2§ 3 x5, so z) € C.

Cl

Fig. 4—6. Internal approximation in the convergence of convex sets.

Suppose B is a compact subset of int C'. For small enough € > 0 we have
B+2¢IB C C, as seen from the fact that the distance function associated with
the complement of C' is positive on B and hence by its continuity (in 1.20) has
a positive minimum on B. Choose p large enough so that B+2¢B C pB (i.e.,
p > 2¢ + maxgep |7|), and apply 4.10(a): there exists N € N, such that

B+2cB c CnpB C C”+¢eB forall ve .

From the cancellation law 3.35 we get B +cIB C C" for all v € N. O

Simple examples show that limsup, C¥ need not be convex when every
C" is convex. For instance, let D; and Ds be any two closed, convex sets in
IR"™, and let C¥ = D; for v odd but C¥ = Dy for v even. Then limsup, C” is
the set D1 U Do, which may well be nonconvex.

The internal approximation property in Proposition 4.15 holds in particu-
lar whenever a sequence of convex sets C” converges to a set C with int C' # ().
This agreeable property, illustrated in Figure 4-6, can’t be expected for se-
quences of nonconvex sets, even when they are closed and the limit C' happens
anyway to be convex. The kind of difficulty that may arise is shown in Figure
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4-7. The sets C'” can converge to C' even though they are riddled with holes,
as long as the holes get finer and finer and thus vanish in the limit. Of course,

for sets C' that aren’t closed there’s also the sort of example described just
before 4.3.

cV lim,CY

Fig. 4-7. Nonconvex sets converging to a convex set despite holes.

In the case of convex sets, the convergence criterion of Theorem 4.10 can
be cast in a simpler form involving the Pompeiu-Hausdorff distance between
truncations.

4.16 Exercise (convergence of convex sets through truncations). For convex
sets C%, closed and nonempty, one has C¥ — C' if and only if there exists
po > 0 such that, for all p > pg, the truncations C* N pIB converge to C'N pIB
with respect to Pompeiu-Hausdorff distance, i.e., d..(C* N pB,C N pB) — 0.
(Without convexity, the ‘only if’ part fails.)

For another special result, recall that a set D C IR" is star-shaped (with
respect to q) if there’s a point ¢ € D such that the line segment [q, z] lies in D
for each x € D.

4.17 Exercise (limits of star-shaped sets). If a bounded sequence of star-shaped
sets C¥ converges to a set C, then C' must be star-shaped. (Without the
boundedness, this can fail.)

Guide. Show that if g is a cluster point of a sequence {¢" },en such that C" is
star-shaped at ¢”, then C is star-shaped at q. For a counterexample to C' being
star-shaped in the absence of the boundedness assumption on the sequence of
sets C, consider in IR* the sets C¥ = [(—1,0),(1,1/)} U [(1,0),(—1,y)] for
v=1,2,... O

E. Compactness Properties

A remarkable feature of set convergence is the existence of convergent subse-
quences for any sequence {C"},cn of subsets of IR".

4.18 Theorem (extraction of convergent subsequences). Every sequence of
nonempty sets C* in IR" either escapes to the horizon or has a subsequence
converging to a nonempty set C' in IR".
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Proof. If the sequence doesn’t escape to the horizon, there’s a point Z in its
outer limit. Then for v in some index set N° € N'# one can find points z¥ € C¥
such that ¥ o> Z. Consider the countable collection of open balls in 4.5(c)(a’),
writing it as a sequence {O"},cn. Construct a nest N > N D N2 o ... of
index sets N* € N# by defining

NH — {venwrt ’ C*NO* # (0} if this set of indices is infinite,
{rvenNrt|CYnO* =0} otherwise.

Finally, put together an index set N by taking the first index in N to be the
first index in N° and, step by step, letting the uth element of N be the first
index in N* larger than all indices previously added to N. Then N € N#, and
for each p either C¥N O# # () for all but finitely many v € N or, quite the
opposite, C*NO* = () for all but finitely many v € N. Let C = limsup,, ¢y C".
The set C' contains Z, hence is nonempty. For each of the balls O* meeting
C, it can’t be true that C¥N O* = () for all but finitely many v, so such balls
O" must be in the other category in the construction scheme: we must have
CYN O # ) for all but finitely many v € N. Therefore C' C liminf,cy C¥ by
4.5(c)(a’), so actually C*  C. O

The compactness property in Theorem 4.18 yields yet another way of look-
ing at inner and outer limits.

4.19 Proposition (cluster description of inner and outer limits). For any se-
quence of sets CV in IR", let L be the collection of all sets C' that are cluster
points in the sense of set convergence, i.e., such that C¥  C' for some index

set N € N*. Then

liminf C* = (), C,  limsup C* = Uca C.

v—00 ceL v—00

Proof. Any z € liminf, C¥ is the limit of a sequence {z"},en, selected
with 2 € C” and N, € N_. It’s then also the limit of any subsequence
{z"},en with N C N, and N € N#, so it belongs to the set limit of the
corresponding subsequence {C"},cn if that happens to exist. The fact that
some subsequence of {C"},cn does converge is provided by Theorem 4.18.
Therefore, liminf, C¥ C (g, C.

The opposite inclusion for the lim inf comes from the fact that if x doesn’t
belong to liminf, C¥ there must be an index set N, € N# such that every C¥
for v € N, has empty intersection with a certain neighborhood V' of x. By
selecting a subsequence {C"},cn with N C N,, N € N#, such that C¥ > C,
which is again guaranteed possible by 4.18, we get C' € L but = ¢ C.

In the case of the lim sup the inclusion D is obvious. On the other hand,
any point = belonging to limsup,, C” is the limit of a sequence {z"},cn, chosen
with ¥ € C¥, N, € N#. By 4.18 there’s then a subsequence {C"},cn with
N C N,, N € N#, which converges to a set C. In particular we have 2 3 x,
so x € C'. This gives the opposite inclusion. O
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Observe that in the union describing the outer limit in 4.19 there is no need
to apply the closure operation. Despite the possibility of an infinite collection
L being involved, this union is always closed.

F. Horizon Limits

Set limits can equally well be developed in the context of the cosmic space
csm IR" introduced in Chapter 3, and this is useful for a number of purposes,
such as gaining insight later into what happens to a convergent sequence of
sets when various operations are performed on it. The idea is very simple: in
the formulas in Definition 4.1 consider not only ordinary sequences x¥ % x in
IR™ but also sequences that may converge in the extended sense of Definition
3.1 to a point dirz € hzn IR"; such sequences may consist of ordinary points,
direction points or a mixture. In accordance with the unique representation of
any subset of csm IR" as C U dir K with C a subset of IR" and K a cone in
IR", we may express convergence in this cosmic sense by

C’"UdirK¥ & CuUdirK, or CuUdirK =c-lim, [C’”UdirK”}.

It’s clear from the foundations of Chapter 3 that such convergence in csm IR"
is equivalent to ordinary convergence of the corresponding sets in H,, the
hemispherical model for csm IR", or for that matter, ordinary convergence of
the corresponding cones in JR" " in the ray space model for csm IR". Of course,
cosmic outer and inner limits can be considered along with cosmic limits.

To make this concept easier to work with, it helps to introduce as the
horizon outer limit and the horizon inner limit of a sequence of sets C'V C
IR"™ the cones in IR" representing the sets of direction points in hzn IR"™ that
belong, respectively, to the cosmic outer limit and the cosmic inner limit of this
sequence, namely

limsup,° C” := {0} U {:1; ’ AN e NZ ¥ € C¥, AV N0, \a¥ x},
4(6)
liminf = C¥ == {0} U {:1: ) IN € N, 2% € C% A ~.0, Wz’ — x}

(In these formulas the union with {0} is superfluous when C¥ # (), but it’s
needed for instance to make the limits come out as {0} when C* = ().) We say
that the horizon limit of the sets C¥ exists when these are equal:

lim;y C" = K = limsup,” C” = K = liminf;” C".

4.20 Exercise (cosmic limits through horizon limits). For any sequence of sets
CY C IR"™, the cones limsup,”C" and liminf;° C"” are closed. The cosmic
outer limit of a sequence of sets C¥ U dir K* (for cones KV C IR") is

(limsupy C”) U dir( limsup,® C* U limsup,, K”),
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whereas the cosmic inner limit is
(liminf, C¥) U dir(liminf *(C* U K")).
Thus, C¥ Udir K¥ & C'Udir K if and only if C¥ — C' and
limsup,” C*” Ulimsup,, K C K C liminf;”C" UK".

Guide. Rely on the geometric principles in the foregoing discussion. O

i (oe] vV
IlmsupV C

T LR
AN
c4
liminf > CY

CV—>{0} =C

Fig. 4-8. Horizon outer and inner limits.

4.21 Exercise (properties of horizon limits). For any sequence of sets C¥ C IR",
the horizon limit sets liminf” C¥ and limsup,” C", as well as limj;° C" when
it exists, are closed cones which depend only on the sequence {clC"},cn and
have the following properties:

(a) liminf;* C” C limsup]’ C”,

(b) liminf, [C¥]* C liminf’ C* and limsup, [C¥]>* C limsup;’ C”,
(¢) liminf;° C¥ D C* when liminf, C* D C,

(d) lim;’ C¥ = C>~ when C" = C,

() liminfC” = [ U (J”r, limsupy” ¢ = () [ U (J”r.
NeN# vEN NeNs vEN
Guide. Utilize 4.20 and, for (e), also 4.2(b) as applied cosmically. O

4.22 Example (eventually bounded sequences). A sequence of sets C¥ C IR"
has the property that limsup;’ C* = {0} if and only if it is eventually bounded
in the sense that for some index set N € N the set |J, oy C” is bounded.

Our main interest for now with cosmic convergence ideas lies in applying
them in the context of sequences of sets in IR" itself.
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4.23 Definition (total set convergence). A sequence of sets C¥ C IR" is said to
converge totally to a closed set C C IR", written C¥ 3 O, if csm C” S csm C,
or equivalently C* s csm C, in the context of the cosmic space csm IR".

The equivalence in this definition holds because ‘csm’ is a closure opera-
tion; the principle in 4.4 can be applied in the hemispherical model for csm IR".
Figure 4-8 supplies an example where a sequence of sets converges, but not
totally. Total set convergence C¥ s C' automatically entails ordinary set con-
vergence C¥ — (', and indeed the relationship between these two concepts can
be characterized as follows.

4.24 Proposition (horizon criterion for total convergence). For sets C¥ and C
in IR", one has

cr 5 C — lim, C¥ = C, limsup; C” C C*,
in which case actually lim;; C¥ = C*=.

Proof. Either way, we have C¥ — C'. Hence C'is closed, so csm C' = CUdir C'*
by 3.4. The cosmic outer and inner limits of C'¥ are the same as those of csm C”,
because limits of sets aren’t affected when closures are taken (by 4.4—as applied
cosmically). We now invoke 4.20 with K¥ = {0}, K = C*, and are done. 0O

Total convergence C¥ Y5 C, by making demands on the behavior of un-
bounded sequences of selected points ¥, imposes a requirement on how the sets
converge ‘in the large’, in contrast to ordinary convergence C¥ — (', which is
local in character and at best refers to uniformities relative to bounded regions
as in 4.10. For this reason total convergence is important in situations where
the remote parts of a set can have far-reaching influence on the outcome of a
construction or operation. In such situations ordinary convergence is often too
feeble to ensure the desired properties of limits. Fortunately, some of the most
common cases encountered in dealing with sequences of sets are ones in which
total convergence is an automatic consequence of ordinary convergence.

4.25 Theorem (automatic cases of total convergence). In each of the following
cases, ordinary convergence C¥ — C # () entails total convergence C* % C':
(a) CV is convex for all v;
(b) CV is a cone for all v;
(c) C¥ c C¥*! for all v;
(d) C” C B for all v, where B is bounded;
(e) C" converges to C' with respect to Pompeiu-Hausdorff distance.

Proof. In each case we work from the assumption that C¥ — C and show
that the additional condition is enough to guarantee that limsup;’ C¥ C C*>,
so that actually C¥ ts C. We treat the cases in reverse order.

Case (e) entails that C¥ C C + €”B for a sequence ¢” 0. Then
limsup;’ C¥ C limsup;’ (C + e”B) = C>~. Case (d) has both limsup;’ C¥ =
{0} and C>= = {0}. In (c) the relation C' = cl|J, C” (cf. 4.3(a)) implies that
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any sequence of points ¥ € C" lies in C'. The inclusion limsup; C¥ C C*
is then immediate from the definition of the two sets. In (b) it is elementary
that limsup, C¥ = limsup, C¥ and that C is a cone as well, hence C>~ = C.
But limsup, C¥ = C in consequence of our assumption that C* — C.

For case (a) consider w € limsup;” C”. We must show that w € C*°, and
for that it suffices to show for z € C that C O {Z+7w |7 > 0} (cf. 3.6). For any
7 > 0 the vector 7w belongs to limsup;’ C* (because this set is a cone), so there
exist N € NZ, AV~ 0, and 2¥ € C¥ such that \Yx¥ % T7w. For the index set N
in this condition we have w € liminf;_ C¥ and C' = liminf, ¢y C. Hence for
any * € C' there is a sequence ¥ 7 = with ¥ € C¥. Convexity of C” ensures
that when v is large enough so that \¥ < 1, one has (1 — A\¥)z" + \Ya¥ € CV;
these points converge to £ + 7w € liminf, ey C¥ = C. Thus, T + 7w € C for
arbitrary 7 > 0, as required. O

The criterion in 4.25(d), meaning that sequence {C"},cn is bounded, can
be broadened slightly: eventual boundedness as defined in 4.22 is enough.

G7 Continuity of Operations

With these cosmic notions at our disposal along with the basic ones of set con-
vergence, we turn to questions of continuity of operations. If a set is produced
by operations performed on other sets, will an approximation of it be produced
when the same operations are performed on approximations to these other
sets? Often we’ll see that approximations in the sense of total convergence
rather than ordinary convergence are needed in order to get good answers.
Sometimes conditions of convexity must be imposed.

4.26 Theorem (convergence of images). For sets C* C IR"™ and a continuous
mapping F : IR" — IR™, one always has

F(liminf, C¥) C liminf, F(C"), F (limsup, C*) C limsup, F(C").

The second of these inclusions is an equality if K Nlimsup;’ C¥ = {0} for the
cone K C IR" consisting of the origin and all vectors x # 0 giving directions
dir x that are limits of unbounded sequences on which F' is bounded. Under
this condition, therefore,

C'—-C = F({C") — F).

In particular, the latter holds when the sequence {C"},cn is eventually
bounded, or when F has the property that |F(z)| — oo as |z| — oc.

Proof. The two general inclusions are elementary consequences of the def-
initions of inner and outer limits. Assuming the additional condition, con-
sider now a point u € limsup, F(C"): for some index set Ny € N# we have
u = lim,en, F(x¥) with ¥ € C¥. The sequence {z"},ecn, must be bounded,
for if not there would be an index set N C Ny, N € N#, such that ¥ 3 dirx
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for some z # 0. Then z € limsup;’ C” by definition, and yet {F(z")},en
is bounded, because F(x") w; this has been excluded. The boundedness
of {z"},en, implies the existence of a cluster point z, belonging by defini-
tion to limsup, C¥, and because F is continuous, we have F(z) = u. Thus,
u € F(limsup, C”), and equality in the outer limit inclusion is established.
With this equality we get, in the case of C¥ — (', that

limsup,, F(C") = F(C) C liminf, F(C"),

hence lim, F(C”) = F(C). The condition K Nlimsup;’ C¥ = {0} is satisfied
trivially if the sequence of sets C” is eventually bounded (cf. 4.22) or if K = {0}.
Certainly K = {0} if |F(z)| — oo as |z| — oo. O

In the case of an eventually bounded sequence {C"}, e as in 4.22, the
sequence {F(C")},en is eventually bounded as well (because F' is bounded
on bounded regions of IR"), and the conclusion can be written in the form
C" Y% C = F(C") % F(C), cf. 4.25. Other cases where total convergence is
preserved can be identified as follows.

4.27 Theorem (total convergence of linear images). For a linear mapping L :
R" — R™, if C* % C and L=1(0) N C>= = {0}, then L(C") Xy L(C).
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Fig. 4-9. Converging sets without convergence of their projections.

Proof. From C¥ 2%y C we have limsup C¥ C C*= (by 4.24). On the other
hand, the cone K in 4.26 is L=1(0) in the case of linear F' = L. The condition
L=1(0)NC*>= = {0} therefore implies by 4.26 that L(C") — L(C). It also implies
by 3.10 that L(C>=) C L(C)>, so in order to verify that actually L(C") Ly L(C),
it will suffice (again by 4.24) to show that limsup;’ L(C") C L(C*>).

Suppose u € limsup;’ L(C"). For indices v in some set Ny € N# there
exist ¥ € C¥ and A ~ 0 with AV L(2") &7, w. Then L(Az") & u, because L
is linear. If the sequence {A\"z"},cn, were unbounded, it would have a cluster
point of the form dirx for some = # 0, and then p”\"x" > x for some index
set N C Ny, N € N#, and choice of scalars p” ~ 0. Then z € limsup;’ C¥ C
C=, yet also L(z) = lim,en L(p”"A\2¥) = limyen p” L(A2¥) = 0, because
L(\z") % u. This is impossible because L=1(0) N C>~ = {0}. Hence the
sequence {\"z"},cn, is bounded and has a cluster point x; we have \"z" % x
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for some index set N C Ny, N € N#. Then z € limsup;’ C* C C> and
w = lim,en L(A"z") = L(z). Hence, u € L(C*). O

4.28 Example (convergence of projections of convex sets). Let M be a linear
subspace of IR", and let Py; be the projection mapping onto M. For convex
sets C¥ C R", if C¥ — C # () and M+ N C>= = {0}, then Py (C") — Py (O).

Detail. This applies Theorem 4.27. The mapping Py, is linear with PA}l (0) =
M. For convex sets, convergence and total convergence coincide, cf. 4.26. O

The need for the condition M+ N C> = {0} in this example (and for the
condition on C* more generally in Theorem 4.27) is illustrated in IR? by

CV = {(x]_,.772> ’xQ 2 xl_lv 1 2 V_1}7 C = {(53171'2) ’1.2 2 1.1_17 1 > 0}7

with M taken to be the x;-axis. Then M+ N C= = {0} x R,, and C* — C
but Py (C¥) = [v71,00) 4 Py (C) = (0,00).

4.29 Exercise (convergence of products and sums).
(a) If CY - C;inR",i=1,...,m, then CY x---xCl — Cyx---xXCp,.
If actually C¥ & C; and C5° x -+ x C% = (Cy x -+ x Cp,)™, one has

CY x - xCl & Cpx-xCpp.

(b) If liminf, CY D C; for all i, liminf,(CY +---4+C¥) D C1 + -+ Cp,.

(c) If CY L Oy, C¥ L Cy and CoN(—C5°) = {0}, then CY +CY — C1+Cs.

(d) IfFCY 5 C, cR, i=1,....m,C x - x O% = (O x -+ x Cp)™,
and the only way to choose vectors x; € C;° satisfying x1 + -+ + z,,, = 0 is to
take x; = 0 for all i, then

C{+--+Ch % Ci+--+Cpy.

Guide. Derive (a) and (b) directly. To get the total convergence claim in (d),
combine the total convergence fact in (a) with 4.27, taking L to be the linear
mapping (T1,...,Tm) — 1+ + Ty

To obtain the inclusion limsup, (CY + C%) C Cy + C3 in (c), rely on the
condition C5* N (—C5°) = {0}, and on limsup;’ C¥ = C¢* for i = 1,2, to show
that given any sequence x¥ — Z, the sequence of sets {CY N (x¥ — C%),v € IN}
is eventually bounded. Now let ¥ > T be such that N € N# and for allv € N,
x¥ € CY + C%. In particular, this means that z € limsup, (CY + C¥), and that
there exist No € N#, Ny C N, v’ @ with u” € C{ N (z¥ — C¥) for v € Np.
There only remains to observe that u € C1, and (z — ) € Cs. O

The condition C° x --- x C2 = (C7 X -+ x Cp,)> called for here is
satisfied in particular when the sets C; are nonempty convex sets, or when
no more than one of them is unbounded, cf. 3.11. An example of how total
convergence of products can fail without this condition is provided by CY x C¥
with C¥V = CY = {2,2%,...,2"} U [2¥"!, ). To see that the assumptions in
part (c) do not yield total convergence of the sums, let C; = CY = C' x {0} and
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Co = C¥ = {0} x C with C = {2" |k € IN}. Note that Cf* + C5 = IR%. but
limsupy’ (CY + C%) = (Cy + C2)> # IR%, cf. the example after Exercise 3.11.

4.30 Proposition (convergence of convex hulls).
(a) If K¥ — K for cones K, K¥ C IR" such that K is pointed, then
con KV — con K.

(b) If C¥ — C for sets C¥ that are all contained in some bounded region
of IR", then con C¥ — conC.

(c) If C¥ Y C for sets C, C¥ C IR" with C # () and C* pointed, then
conC” L cl(con C) = con C + con C*.

cit
( \ con C!
\/
— o
cVv con|CY cv

Iimvcon cv

Fig. 4-10. Subsets C¥ of IR? with C¥ — () while conC” — IR x {0}.

Proof. The statement in (a) applies 4.29(d) in the context of con K being
closed and given by the formula con K = K +---+ K (n terms), cf. 3.15. Here
[K X - x K]*=Kx---x K=K>x---x K>~. Pointedness of K ensures
by definition that the only way to get =1 + ---x,, = 0 with z; € K is to take
x; = 0 for all 2. Note that K must then be pointed as well, for all v in some
index set N € N_, so that con K" is also pointed for such v.

Next we address the statement in (c). Define K ¢ R™"! by

K :={\az,~1) |z e C, A>0}U{(z,0) |z € C=},

this being the closure of the cone that represents C' in the ray space model
for csm IR™ in Chapter 3. Similarly define KV for C¥. To say that C* % C
is to say that K¥ — K. The assumption that C'* is pointed guarantees that
K is pointed. Then con K¥ — con K by (a). Furthermore, as noted above,
con KV like con K must be closed for all v sufficiently large. Then con K* and
con K are the cones in the ray space model that correspond to csm(conC")
and csm(con C). Hence cl(conC¥) % cl(conC) = con C + con C*.

Finally, we note that (b) is a case of (¢) where C>~ = {0}. O

4.31 Exercise (convergence of unions). For C¥ C IR",i=1,...,m, one has

e = U o= a

m m
crhe = J_ o o
1=

=1
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Guide. Rely on the definitions and, in the case of total convergence, 4.24. O

In contrast to the convergence of unions, the question of convergence of
intersections is troublesome and can’t be answered without making serious
restrictions. The obvious elementary rule for outer limits, that

limsup,, ﬂnil cy C ﬂnil limsup,, C7, 4(7)

isn’t reflected in anything so simple for inner limits of sets C} in general.

For pairs of convex sets, however, a positive result about convergence of
intersections can be obtained under a mild assumption involving the degree of
overlap of the limit sets. Recall from Chapter 2 that to say two convex sets
Cy and Cs in IR" can’t be separated (even improperly) is to say there is no
hyperplane H such that Cy lies in one of the closed half-spaces associated with
H while C5 lies in the other. This property, already characterized through
Theorem 2.39 (see also 2.45), will be the key to a powerful fact: for convex sets
CY — C; and C§ — Cq, we’ll show that if C; and Cy can’t be separated, then
Cl”ﬂC2” —>01 ﬂCQ.

We'll establish this in the next theorem by embedding it in a broader
statement about convergence of solutions to constraint systems of the form

r€ X and F(z) € D, where X C R", DC R™, F: R" — R™,

which in particular could specialize the constraint system in Example 1.1
through interpretation of the components of F(z) = (fi(),..., fm(z)) as con-
straint functions. When m = n and F is the identity mapping, the solution set
is X N D, so the study of approximations to this kind of constraint system will
cover convergence of set intersections as a particular case.

A background fact in this direction, not requiring convexity, is that for a
continuous mapping F' : IR" — IR™ and sets DY C IR™ one always has

liminf, F~*(D") C F~'(liminf, D),

4(8
limsup, F~*(D") ¢ F~'(limsup, D). (®)

Another general fact, allowing also for the approximation of F', is that
limsup, {z” € X" |F"(2") € D"} C {& € X|F(z) € D} when 4(9)

limsup, X” C X, limsup, D" C D, and F“(z") — F(x),Vz" — z.

To draw a sharper conclusion than 4(9), involving actual convergence of
the set of solutions under the assumption that X* — X and DY — D, special-
ization to the case where all the sets are convex and the mappings are linear
is essential. For linear mappings L” and L from IR" to IR™, pointwise conver-
gence LY — L is equivalent to convergence AY — A of the associated matrices
in R"™*™, where A¥ — A means that each component of A” converges to the
corresponding component of A. (For more about the convergence of matrices
see 9.3 and the comments that follow.) From this matrix characterization it’s
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evident that pointwise convergence L” — L of linear mappings automatically
entails having L”(x¥) — L(x) whenever ¥ — .

4.32 Theorem (convergence of solutions to convex systems). Let
C"={reX"|L"(x) e D'}, C={xzeX|L(z)e D},

for linear mappings L”, L : IR" — IR™ and convex sets X", X C IR" and
D¥, D C IR™, such that L(X) cannot be separated from D. If L¥ — L,
liminf, X¥ D X and liminf, D¥ D D, then liminf, C¥ D C. Indeed,

LY —-L X'—-X D'—-D = 0"—=C.

The following are special cases.

(a) For linear mappings L” — L and convex sets D¥ — D, if D and rge L
cannot be separated, then (L")~*(D") — L~Y(D).

(b) For matrices A — A in R™*™ and vectors b* — b in IR™, if A has full
rank m, then {x } AV x = b”} — {x ’ Ax = b}.

(¢) For convex sets CY and C¥ in IR", the inclusion liminf,(CY N C¥) D
liminf, C7 N liminf, C§ holds if the convex sets liminf, C{ and liminf, C¥
cannot be separated. Indeed,

Cf—)Cl, C2V—>02 — CfﬂCg—)ClﬂCQ
as long as C and Cy cannot be separated.

Proof. From 4(9) we have C' D limsup, C¥ when limsup, X¥ C X and
limsup, D¥ C D, so we concentrate on showing that C' C liminf, C¥ when
liminf, X¥ D X and liminf, D¥ D D. Let & € C'; we must produce ¥ € C”
with ¥ — Z. We have € X and for @ := L(Z) also u € D. Hence there exist
z¥ € XV with z¥ — z and @ € DY with @ — u. For z¥ := L"(z") — u” we
have z¥ — 0.

The nonseparation assumption is equivalent by Theorem 2.39 to having
0 € int (L(X) — D). Then there’s a simplex neighborhood S of 0 in L(X) — D,
cf. 2.28(e); S = con{zo, 21,...,2m} with z; = L(x;) — u; for certain vectors
x; € X and u; € D. Accordingly by 2.28(d) there’s a representation

0= ZZO Az with A > 0, ZZO A\ = 1.

Since X¥ — X and DY — D, we can find z¥ € X" and v} € D” with z} — z;
and u} — u,;. Then for 2} = L¥(z¥) — u} we have 2! — z;, so by 2.28(f) there
exists for v sufficiently large a representation

0= Z:O Az = Z::O A (LY (2)) —wy) with AY >0, ZZO A =1,

where \Y — ;. At the same time, since z¥ — 0, there exists by 2.28(f) for v
sufficiently large a representation
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2= 3" Wy =3 (L) — ) with W >0, 3 =1,

where \Y — \;. With 6 = min{1, \j /A5, ..., A%, /AY } and for v large enough,
0 <6 <1and @ — 1. Then for u¥ = X\ — ”\Y we have 0 < pu¥ — 0
and Y.7" o puY + 0¥ = 1, so that the vectors z¥ = > " uYx? + 6”2 and
u” =Y prul +607a” belong to XV and D by convexity and converge to T
and u. We have 0 = L”(z¥) — u”, so ¥ € C" as desired.

For the special case in (a) take X¥ = IR". For (b), set D¥ = {b"} in (a),
LY (x) = A¥z, L(x) = Ax. For (c), let X¥ =C¥, DV = C¥, and L” = I. O

The convergence in Theorem 4.32 is of course total, because the sets are
convex; cf. 4.25. The proof of the result reveals a broader truth for situations
where it’s not necessarily true that X — X and DY — D:

liminf, X” D X, liminf, D" D D — liminf, C¥ D C

whenever X and D are convex sets such that L(X) and D can’t be separated.

Fig.4-11. An example where C¥ — C and DY — D but C* N DY A CND.

The pairwise intersection result in 4.32(c) can be generalized as follows to
multiple intersections.

4.33 Exercise (convergence of convex intersections). For sequences of convex
sets CY — C; in IR™ one has

cYn---NCY — Cin---NC,

if none of the limit sets C; can be separated from the intersection ﬂ%zl Kot Ch
of the others.

Guide. Apply 4.32 to X” = R", D" =CY x--- x Cy, L"(x) = (v,...,z). O

H? Quantification of Convergence

The properties of distance functions in 4.7 provide the springboard to a de-
scription of set convergence in terms of a metric on a space whose elements are
sets. As background for this development, we need to strengthen the assertion
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in 4.7 about the convergence of distance functions, namely from pointwise con-
vergence to uniform convergence on bounded sets. The following relations will
be utilized.

4.34 Lemma (distance function relations). Let C; and Cs be closed subsets of
IR". Let e >0, p>0, p' >2p+dg, (0). Then

a) CinNpBCCy+eB <= dg, <dg, +¢ on plB,
b) de, <dg, +€ on pB <= CiNp'BCCy+eB,
c) dec, <dg, +c on R" <= C;CCy+ebB,

d) de, > dg, on pB <= 2p+dgs (0) <dg,(0).

If Cy is convex, 2p can be replaced by p in the inequality imposed on p’. If also
0 € C4, then p’ can be replaced simply by p in (b), so that the implications in
(a) and (b) combine to give

CinpBCCy+elB <= dg, <dg +¢ on pB.
This equivalence holds also, even without convexity, when C is a cone.

Proof. Suppose C; # (), since everything is trivial otherwise. If do, < d¢, +¢
on pIB, we have for every z € C1 N pB that d¢,(x) < e (because d¢, () = 0).
As Cs is closed, this means C; N pIB C Cy 4 ¢IB, which gives (a). For (b) and
(c), note that for any = and any set D satisfying D C Cy + €IB, we have

d(z,D) > d(z,Cy+cB) = inf{|(y—|—5z)—x|‘y€(]2,z€B}

> inf{\y—x\—e\z\’yng,zE]B} = d(z,C3) — ¢,

so that do, < dp + ¢ on IR". With D = Cy we get (c). Taking D = Cy N p'B
we can obtain (b) by verifying that d(x,Cy N p'B) = d(x,C) when x € pB
and p’ > 2p+de, (0). (When C is a cone, it’s enough to have p’ > p, because
the projection of any x € pIB on any ray in Cj lies then in p’IB; hence the
special assertion at the end of the lemma.)

To proceed with the verification, suppose |z| < p and consider any z; €
Pc, (x) (this projection being nonempty by 1.20, since C; is closed). It will
suffice to demonstrate that x1 € p'IB when p’ satisfies the inequality specified.
We have |z1| < |z| + |z1 — 2| with |z — 2| = d(z,Cy) < d(x,0) + d(0,C4), so
lz1| < 2|z| +d(0,C1) < 2p+d(0,C1) < p/, as required. In the special case
where (] is convex, more can be gleaned by considering also the point zg € C}
with |zo| = dg, (0). For any 7 € (0,1) the point z, = (1 — 7)xo + 727 lies in
C by convexity, so that

0< \a:T\2 — \3:0\2 = 27(x0, 1 — Xo) +T2\a:1 — xo\z.

On dividing by 7 and taking the limit as 7~ 0 we see that (xg, 1 — ) > 0.
Likewise, from z, —x = (z; — x) — (1 — 7)(x1 — o) we obtain
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0< |z, — 33]2 — |z — 33]2 =21 —7){x1 —x, x1 —z0) + (1 — 7)2\3:1 — x0\2,

from which it follows on dividing by 1 — 7 and taking the limit as 7.71 that
(x —x1, 1 — z9) > 0. In combination with the fact that (xg, 1 —z¢) > 0, we
get (x—x1 +x0, T1 —x0) > 0. This gives |z —x¢|? < (z, 11 —10) < |2||21 — 20,
hence |1 — zg| < [2| < p. Then |z1| < |21 — zg| + |z0| < p +dg, (0), so that
we only need to have p’ > p 4+ dg, (0) in order to conclude that z; € p'IB.

The implication in (d) comes simply from observing that for all z € pIB
one has d(z,Cs) > d(0,Cs) — d(x,0) > d(0,Cs) — p, while similarly d(z, C7) <
d(x,0)+d(0,C1) < p+d(0,Cy). Thus, de, > de, on pIB when p + d(0,Ch)
d(0,C3) — p, which is true when d(0,C3) > 2p + d(0,C).

The relations in Lemma 4.34 give a special role to the origin, but the
generalization to balls centered at any point z is immediate through the device
of applying this lemma to the translates C; — & and C5 — Z instead C; and Cs.
The effect of this is to replace 0 by Z and the balls pIB and p'IB by IB(Z, p)
and B(Z, p’) in the lemma’s statement.

O INA |

4.35 Theorem (uniformity in convergence of distance functions). For subsets
C" and C of IR" with C closed and nonempty, one has C¥ — C if and only
if the distance functions dcv converge uniformly to deo on all bounded sets
B C IR". In more detail with focus on sets B = pIB,

(a) C C liminf, C” if and only if there exists for each p > 0 and ¢ > 0 an
index set N € N, with d(x,C") < d(x,C) + ¢ for all x € pIB when v € N;

(b) C D limsup, C if and only if there exists for each p > 0 and € > 0 an
index set N € N, with d(x,C") > d(x,C) — ¢ for all x € pIB when v € N.

Proof. Corollary 4.7 already tells us that C¥ — C' if and only if dov (z) —
do(x) for all z € IR™. Uniform convergence over all bounded sets is an auto-
matic consequence of convergence at each point when a sequence of functions
is equicontinuous at each point. This is just what we have here. According to
4(3) the inequality do(x1) < deo(z2) + |1 — 22| holds for all pairs of points
x1 and xo, and likewise for each function dcv. Thus, we can concentrate on
the conditions in (a) and (b) in verifying the equivalence with the asserted set
inclusions.

We rely now on Lemma 4.34 and the geometric characterization of set
convergence in 4.10. Taking C; = C and Cy = C” in 4.34(a), we see that if
dov < dc + ¢ on pIB, then C' N pIB C C” + ¢IB. The uniformity condition in
(a) thus implies the condition in 4.10(a). Conversely, if the condition in 4.10(a)
holds, we can take for any p the value p’ = 2p+dc(0) and, by applying 4.10(a)
to p’, obtain through 4.34(b) that dcv < d¢ + € on pIB. Then the uniformity
condition in (a) is satisfied.

The argument for the equivalence between the uniformity condition in (b)
and the condition in 4.10(b) is almost identical, with C; = C* and Cy = C
in 4.34. The twist is that we must, in the converse part, choose p’ so as to
have p’ > 2p + dcv (0) for all v € N such that dev (0) < 2p 4+ de(0). The value
P =4p+ dc(0) definitely suffices. O



134 4. Set Convergence

Theorem 4.35 is valid in the case of C' = () as well, provided only that
the right interpretations are given to the uniform convergence conditions to
accommodate the fact that d(z, C') = oo in that case. The main adjustment is
that in (b) one must consider, instead of arbitrarily small e, an arbitrarily high
real number « and look to having d(z,C") > « for all z € pIB when v € N.
(The assertions in (a) are trivial when C' = ().) The appropriate extension
of uniform convergence notions to sequences of general extended-real-valued
functions will be seen in Chapter 7 (starting with 7.12).

In 4.13 it was observed that the Pompeiu-Hausdorft distance d . fails to
provide a quantification of set convergence except under boundedness restric-
tions. A quantification in terms of a metric is possible nevertheless, as will
soon be seen. An intermediate quantification of set convergence, which we’ll
pass through first and which is valuable for its own sake, involves not a single
metric, but a family of pseudo-metrics. A pseudo-metric, we recall, satisfies the
criteria for a metric (nonnegative real values, symmetry in the two arguments,
and the triangle inequality), except that the distance between two different
elements might in some cases be zero.

Because set convergence doesn’t distinguish between a set and its closure
(cf. 4.4), a full metric space interpretation of set convergence isn’t possible
without restriction to sets that are closed. In the notation

sets(R™) := the space of all subsets of R",
cl-sets(IR™) := the space of all closed subsets of IR", 4(10)

cl-sets_,(IR™) := the space of all nonempty, closed subsets of IR",

#

it’s therefore cl-sets(IR™) rather than sets(/R") that we’ll be turning to in
this context, or actually cl-sets_,(IR") in keeping with our pattern of treating
sequences C” — () alternatively as escaping to the horizon in the sense of 4.11.

Two basic measures of distance between sets will be utilized in tandem.
We define for every choice of the parameter p € IR, = [0,00) and pair of
nonempty sets C' and D the values

d,(C,D) := max ‘dc(x) —dD(x)),
d,(C, D) ::inf{nzo‘ CnpBcC D+nB, DmpJBc(J+nJB},

where in particular do(C, D) = |dc(0) — dp(0)]. Clearly, cﬂAp relates to the
uniform approximation property in 4.10, whereas d, relates to the one in 4.35,
and they take off in different ways from the equivalent formulas for d. (C, D)
in 4.13. We refer to d ,(C, D) as the p-distance between C' and D, although it is
really just a pseudo-distance; the quantity d »(C, D) serves to provide effective
estimates for the p-distance (cf. 4.37(a) below). We don’t insist on applying
these expressions only to closed sets, but the main interest lies in thinking of
d, and cﬂAp as functions on cl-sets_,(IR") x cl-sets_,(IR") with values in IR,.
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4.36 Theorem (quantification of set convergence). For each p > 0, d, is a
pseudo-metric on the space cl-sets_,(IR"), but d, is not. Both families {d,} ,>0
and {cﬂA o} p>0 characterize set convergence: for any p € IR, , one has

C"—=C <= d,(C"C)—0 forall p>p
= cﬂ}(C”,C)—)O for all p > p.

Proof. Theorem 4.35 gives us the characterization of set convergence in terms
of d,, while 4.10 gives it to us for d p- For d,, the pseudo-metric properties of
nonnegativity d,(Cy,Cs) € R, symmetry d,(C1,C2) = d,(C2,C1), and the
triangle inequality d,(Cy,C2) < d,(C1,C) + d,(C,Cy), are obvious from the
definition 4(11) and the inequality

de, (7) — de, (2)] < |de, (z) — do(z)| + |de(z) — de, ()]

The triangle inequality can fail for cﬂAp: take C; = {1} € R, Cy = {-1},
C ={-6/5,6/5} and p =1. Thus d, isn’t a pseudo-metric. O

The distance expressions in 4(11) and Theorem 4.35 utilize origin-centered
balls pIB, but there’s really nothing special about the origin in this. The balls
B(z,p) centered at any point Z could play the same role. More generally
one could work just as well with the collection of all nonempty, bounded sets
B C R", defining d 5 and d 5 in the manner of 4(11) through replacement pIB
by B. The end results would essentially be the same, but freed of a seeming
dependence on the origin. For simplicity, though, d, and d o suffice.

The example in the proof of 4.36, showing that cﬂAp doesn’t satisfy the
triangle inequality, can be supplemented by the following example, which leads
to further insights. Fix any p > 0 and two different vectors a; and as with
la1| = 1 = |az|. Choose any sequence p” ~ p and define

Cij = {Ovpyal}v CY2V = {O,pVCZQ}, CYl = {0,,0@1}, CY2 = {07PG2}7

noting that CY — C; and C¥ — C5. As a matter of fact, cﬂAp(Cl”,Cl) =
d,(C5,Cs) = p* —p — 0. But d,(CY,C¥) = 0 for all v, while d,(C1,Cs2) =
pmin {|ai1], |az|,|a1 — as|} > 0. Hence for large v one has

d,(Cy,Cy) > d,(Cy, CY) + d(CY,C%) + d,(CY, Cy),

which would be impossible if d p enjoyed the triangle inequality.

This example shows how it’s possible to have sequences C7 — C; and
Cy — Cy in cl-sets_,(IR") such that d,(CY,C%) 4 d,(Cy,Cy). Of course
d,(CY,C¥) = d,(Ci,Cy), because this is a consequence of the pseudo-metric
property of d, along with the fact that d,(CY,Ci) — 0 and d,(C¥,Cs) — 0:

d,(C1,C2) < dy(Ch, CY) + d,p(CY,C3) + d,(C3, Ca),
Cﬂp(cly702y) < Cﬂp(cly701) + CﬂP(ChC?) + Cﬂp(c%cg)’
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In short, d, is better behaved than cﬂAp, therefore more convenient for
a number of technical purposes. This doesn’t mean, however, that d, may

be ignored. The important virtue of the d , family of distance expressions is
their direct tie to the set inclusions in 4.10, which are the solid basis for most
geometric thinking about set convergence. Luckily it’s easy to work with the
two families side by side, making use of the following properties.

4.37 Proposition (distance estimates). The distance expressions d ,(C1, C2) and

cﬂAp(Cl,C’g) (for nonempty, closed sets C; and Cy in IR"™) are nondecreasing
functions of p on IR, and d ,(C1,C5) depends continuously on p. One has

(a) d,(C1,C5) < d,(Ch,Cs) < dpy(Ch,Ca)
for :0/ > 2:0 + max {dC1 (0)7 dCz (O)}a
(b) d,(Cy,Cy) = d,(Cy,Ca) = dp (Cy, Ca)
for p > pg if C1UCy C polB,
(c) d,(Cy,Cs) < max {dcl 0), dCQ(o)} s
(d) |d(C1, Cs) — dy (C1, C2)| < 2|p— po| for any po > 0.

If Cy and Cy are convex, 2p can be replaced by p in (a). If they also contain
0, then p’ can be taken to be p in (a), so that

d,(Cy,Cy) = d,(Cy,Cy) forall p>0.

Proof. The monotonicity of d,(Cy,C5) and c[ip(Cl, Cs) in p is evident from
the formulas in 4(11). To verify the continuity of d,(C1, C) with respect to p
we argue from the fact that ’dcl (') — de, (z)] < |2’ — |, cf. 4(3). We obtain

for the function ¢(z }dcl — de, ()] that
’90('77/ } < ’ dcl dCQ( )] - [dcl (:E) - dC2 (.77)”
< ’ —de, (z ’—f— ’dCQ(x')—dCQ(:L‘)’ < 22" — x|

Since for any z'inpIB there exists x € poIB with |z’ — x| < |p — pol, this gives
us in 4(11) that, for any po > 0,

d,(C1, Co) = max p(a') < max o(x) +2|p— po| = d, (C1,C2) +2lp — pol,
so we have not just continuity but also the stronger property claimed in (d).
The inequalities in (a) are immediate from the implications in 4.34(a)(b).
The special feature in the convex case is covered by the last statement of 4.34.
The equalities in (b) come from the fact that when both C; and Cy are within
polB, the inclusions C1 NpIB C Co+nlB and CoNplB C C) +nlB are equivalent
for all p > pg to C1 C Cy +nIB and Cy C Cy + nIB, which by 4.34(c) imply
|de, — de,| < n everywhere. We get (c) from observing that every x € pIB has
by the triangle inequality both d¢, () < d¢, (0) + p and de, (x) < de,(0) + p,
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and therefore }dcl (x) —de, (x)} < maX{d01 (0),dc, (0)} + p. O

Note that 4.37(a) yields for d ,» a triangle inequality of sorts: for all p > 0,
d,(Cy,Co) < dy(Cy,C)+d,(C,C) for p = 2p+max{dc, (0),dc,(0),dc(0)}.

The estimates in 4.37 could be extended to the corresponding distance
expressions based on balls B(Z, p) instead of balls p/B = IB(0, p), but rather
than pursuing the details of this we can merely think of applying the estimates
as they stand to the translates C; —  and Cy — Z in place of C; and Cs.

d p(Clv CZ) f

\& 0(C, C))
/ P

P

Fig.4—-12. Set distance expressions as functions of p when C7 and C2 are bounded.

4.38 Corollary (Pompeiu-Hausdorff distance as a limit). When p — oo, both
d,(C, D) and d ,(C, D) tend to the Pompeiu-Hausdorff distance d.(C, D):
d..(C,D) = lim d,(C,D)= lim d,(C,D).

p—r00 p—r00
Proof. This is evident from 4.13 and the inequalities in 4.37(a). O

The properties of Pompeiu-Hausdorff distance in 4.38 are supplemented in
the case of convex sets by the following fact about truncations, which quantifies
the convergence result in 4.16.

4.39 Proposition (distance between convex truncations). For nonempty, closed,
convex sets Cy and Csy, let py := max{dc, (0),dc,(0)}. Then

d,(C1,C2) < d..(CiNpB, C2NpB) < 4d,(C1,Cz) for p > 2py.

Proof. The first inequality is obvious because Cy N plB C Cy N pBB + B
implies Co N pIB C C7 4+ €IB. To get the second inequality it’s enough to show
that if p > 2pg and Cy N pIB C C) + B, then Co N pIB C C1 N pIB + 4eB.

Take arbitrary zo € CoNpIB. On the basis of our assumptions there exists
x1 € C1 with |z9 — 21| < € along with zg € C; with |zg| < pg. For 7 € [0, 1]
and x, := (1 — 7)xg + 71, a point lying in C by convexity, we estimate

2] < (1= Plol + Tler| < (L= 7)o+ 7(leal +2) < po+7lp — po + <.

Thus, z, € C1NpIB when po+7[p—po+¢] < p, which is equivalent to 7 € [0, 7]
for 7:=(p—po)/(p — po +€). Let 1 := xz. We have
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d(xze, C1NpB) < |xg — Z1| < |xe — 21| + |21 — Z1|
< e+ (A =7(lzo| +]21]) < e+ (1 =7)(po+p+¢)

=2g{1+¢} §25{1+ Po }gzls.
p—pote p— po

This being true for arbitrary x5 € C5 N pIB, the claimed inclusion is valid. O

A sequence {C"}, e is called (equi-)bounded if there’s a bounded set B
such that C¥ C B for all v. Otherwise it’s unbounded, but it’s eventually
bounded as long as there’s an index set N € N_, such that the tail subsequence
{C"},en is bounded. Thus, not only must a bounded sequence consist of
bounded sets, the boundedness must be ‘uniform’. For any set X C IR" we’ll
use the notation

cl-sets(X) := the space of all closed subsets of X,
cl-sets_,(X) := the space of all nonempty, closed subsets of X.

The following facts amplify the assertions in 4.13.

4.40 Exercise (properties of Pompeiu-Hausdorff distance).

(a) For a bounded sequence {C"}, e in cl-sets_,(IR") and a closed set C,
one has C¥ — C if and only if d .. (C*%, C) — 0.

(b) For an unbounded sequence {C"},e in cl-sets_, (IR"), it is impossible
to have d . (C",C) — 0 without having (C")> = C* for all v in some index
set N € N.. Indeed, d . (Cy,Cy) = oo when C° # C5°.

(c) Relative to cl-sets_,(X) for any nonempty, bounded subset X of IR",
the distance d. (Cy,Cs) gives a metric.

Guide. In (a), choose p large enough that | J,.  C¥ C pIB and utilize the last
part of 4.37(b). Derive (b) by arguing that the inclusion C; C C2+nB implies
through 3.12 that C;* C C5°. Part (c) follows from 4.38 and the observation
that sets C, Cy € cl-sets(X) are distinct if and only if d_ (Cy,Cs) # 0. O

I? Hyperspace Metrics

To obtain a metric that fully characterizes convergence in cl-sets_,(IR"), we
have to look elsewhere than the Pompeiu-Hausdorff distance, which, as just
confirmed, only works for the subspaces cl-sets_,(X) of cl-sets_,(/R") that
correspond to bounded sets X C IR". Such a metric can be derived in many
ways from the family of pseudo-metrics d,, but a convenient expression that
eventually will be seen to enjoy some especially attractive properties is

d(C, D) = /O d,(C, D)erdp. 4(12)

This will be called the (integrated) set distance between C' and D. Note that
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d(C,D) < d..(C,D), 4(13)
because d,(C, D) < d..(C, D) for all p, while [~ e *dp = 1.

4.41 Lemma (estimates for the integrated set distance). For any nonempty,
closed subsets C1 and Coy of IR" and any p € IR, , one has

( ) Cﬂ(CbCQ) (1_6 p }dcl ) dCz(O)} +6_p6ﬂp(01702)7
(b) d(Cy,C2) < (1—e *)d,(Ch,Co) + e (max {dc, (0),dc,(0)} + p+1),
¢) |de, (0) — de, (0)] < d(Ch, C2) < max{de, (0),de,(0)} + 1.

Proof. We write
p 9
(ﬂ(C]_,C2) = / CﬂT(Cl,CQ)e_TdT +/ CﬂT(C]_,CQ>€_TdT
0 P

and note from the monotonicity of d,(C4,Cs2) in p (cf. 4.37) that

p p p

Cﬂo(cl,CQ)/e_TdT S /CﬂT(C]_,CQ>e_TdT S cﬂp(Cl,Cg)/e_TdT,
0 0 0

Cﬂp(cl,02>/ €_Td7'§/6ﬂ7—(01,02>6_7—d7'
P

p

§/ max{dc1 dCQ(O)}—f-T}e’TdT,
o

where the last inequality comes from 4.37(c). The lower estimates calculate
out to the inequality in (a), and the upper estimates to the one in (b).

In (c), the inequality on the left comes from the limit as p. oo in (a),
where the term e~?d ,(C1, Cz) tends to 0 because of 4.37(c). The inequality on
the right comes from taking p = 0 in (b). O

4.42 Theorem (metric description of set convergence). The expression d gives
a metric on cl-sets_,(IR") which characterizes ordinary set convergence:

C"—-C <= d(C"C)—0.

Furthermore, (cl—sets _o(IR"), dl) is a complete metric space in which a sequence
{C"},emw escapes to the horizon if and only if for some set C' in this space (and
then for every C) one has d(C",C) — oo.

Proof. We get d(C1,C3) > 0, d(Cy,Cs2) = d(C2,C4), and the triangle
inequality d(Cy,C2) < d(Cy,C) + d(C,Cs) from the corresponding prop-
erties of the pseudo-metrics d,(C1,C2). The estimate in 4.41(c) gives us
d(Cy,Cy) < oco. Since for closed sets C7 and Cy the distance functions dc¢,
and dc, are continuous and vanish only on these sets, respectively, we have
|de, (#)—dc, (x)| positive on some open set unless Cy = Cy. Thus d(Cy, C2) > 0
unless €7 = C5. This proves that d is a metric.

It’s clear from the estimates in 4.41(a) and (b) that d(C% C) — 0 if and
only if d,(C",C) — 0 for every p > 0. In view of Theorem 4.36, we know
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therefore that the metric d on cl-sets_,(IR") characterizes set convergence.

From 4.42, a sequence {C"} in cl-sets_,(IR") escapes to the horizon if and
only if it eventually misses every ball pIB, or equivalently, has dcv (0) — oc.
Since by taking p = 0 in the inequalities in 4.41(a)(b) one has

|dev (0) — de(0)| < d(C”,C) < max{decv(0),dc(0)} + 1,

the sequence escapes to the horizon if and only if d(C" C) — oo for every
C, or for just one C. Because a Cauchy sequence {C"},cn in particular has
the property that, for any fixed vy, the distance sequence {d(C% C")}, e
is bounded, it can’t have any subsequence escaping to the horizon. Hence
by the compactness property in 4.18, every Cauchy sequence in cl-sets_,(IR")
has a subsequence converging to an element of cl-sets_,(/R"), this element
necessarily then being the actual limit of the sequence. Therefore, the metric
space (cl—sets _o(IR"), cﬂ) is complete. O

4.43 Corollary (local compactness in metric spaces of sets). The metric space
(Cl—sets _o(IR™), dl) has the property that for every one of its elements Cy and
every r > 0 the ball {C ’ d(C,Cy) < r} is compact.

Proof. This is a consequence of the compactness in 4.18 and the criterion in
4.42 for escape to the horizon. O

4.44 Example (distances between cones). For closed cones Ky, Ko C IR", the
Pompeiu-Hausdorff distance is always d . (K1, K3) = oo unless K; = Ko,
whereas the integrated set distance is the p-distance for p = 1: one has

d(Ky, Ko) = di (K1, Ko) = dy (K1, Ko) = d .. (Ky N B, KN B) <1,

and on the other hand

~

Cﬂp(Kl,KQ) = Cﬂp(Kl,KQ) = IOCﬂ(Kl,K2> for all P 2 0.
In the metric space (cl—sets _o(IR"), cﬂ), the set of all closed cones is compact.

Detail. If Ky ¢ Ko, there must be a ray R C K; such that R ¢ K,. Then
R ¢ Ko+ nB for all n € IR, so that d(K7, K5) = co. Likewise this has to be
true when Ko ¢ K;. Thus, d_ (K7, K3) = oo unless K; = K.

Because the equivalence at the end of Lemma 4.34 always holds for cones,
regardless of convexity, we have ij(Kl,Kg) = d,(K, K») for all p > 0. It’s
clear also in the cone case that d,(K1, K2) = pd; (K1, K2). Then d (K, K3) =
d; (K1, K1) by definition 4(12), inasmuch as fooo pe Pdp = 1.

We have cﬂAl(Kl,Kg) < 1 because K1NIB C Ko+ B and KoNB C K1+ 1B
when K; and K> contain 0. The equation d (K1, K2) = d.. (K1 N B, K2N IB)
holds on the basis of the definitions of these quantities, since

(K+nB)NB C[KNB|+nB for any closed cone K.

The latter comes from the observation that the projection of any point of IB on
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a ray R belongs to RN IB, which implies that any point of IB within distance
n of K is also within distance n of K N IB. O

To round out the discussion we record an approximation fact and use it
to establish the separability of our metric space of sets.

4.45 Proposition (separability and approximation by finite sets). Every closed
set C' in IR" can be expressed as the limit of a sequence of sets C¥, each of
which consists of just finitely many points.

In fact, the points can be chosen to have rational coordinates. Thus, the
countable collection consisting of all finite sets of rational points in IR" is dense
in the metric space (cl—sets _o(IR"), cﬂ), which therefore is separable.

Proof. Because the collection of subsets of IR" consisting of all finite sets whose
points have rational coordinates is a countable collection, it can be indexed as
a single sequence {C"},cny. We need only show for an arbitrary set C in
cl-sets_,(IR") that C' is a cluster point of this sequence.

For each p € IN the set C' 4+ u~'IB is closed through the fact that BB is
compact (cf. 3.12). Thus C' + p~'IB, like C, belongs to cl-sets ,(IR"). The
nested sequence {C + p~'B},cn is decreasing and has C' as its intersection,
so O+ pu tB — C (cf. 4.3(b)). It will suffice therefore to show for arbitrary
p € IN that C + =1 B is a cluster point of {C”}, e, since by diagonalization
the same will then be true for C itself.

To get an index set N* € N'# such that C¥ 1 C' + p~ ' B, we can simply
choose N* to consist of the indices v such that C¥ C C + p~!IB. This choice
trivially ensures that limsup,cy. C¥ C C + u~ 1B, but also, because points
with rational coordinates are dense in C' + p~1IB (this set being the closure of
the union of all open balls of radius p~! centered at points of C), it ensures
that liminf,cyu O D C+p~1IB. Hence we do in this way have lim, cyu C¥ =
C + p~'IB, as required. O

Cosmic set convergence can likewise be quantified in terms of a metric.
This can be accomplished through the identification of subsets of csm IR"™ with
cones in IR™"! in the ray space model for csm R". Distances between such
cones can be measured with the set metric d already developed.

When a subset of csm R" is designated by C' U dir K (with C, K C IR",
K a cone), the corresponding cone in the ray space model is

pos(C, —1) U (K,0) = {A(z,—1)|A >0, z € C} U {(z,0) |z € K}.
Accordingly, we define the cosmic set metric dcsm by

desm (C1 Udir Ky, Co U dir K») 4(14)
:= d(pos(Cy,—1) U (K1,0), pos(Ca, —1) U (K2,0))

for subsets C7 U dir K; and Cy U dir K3 of csm IR™. Through the formulas
in 4.44 for d as applied to cones, this cosmic distance between C7 U dir Ky
and Cs U dir K5 can alternatively be expressed in other ways. For instance,
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it’s the Pompeiu-Hausdorff distance d., (B;, B2) between the subsets By and
By of R™"! obtained by intersecting the unit ball of IR"*! with the cones
pos(Cy,—1) U (K7,0) and pos(Cq, —1) U (K2,0). No matter how the distance
is expressed, we get at once a characterization of set convergence in csm IR".

4.46 Theorem (metric description of cosmic set convergence). On the space
cl-sets(csm IR"™), dcsm is a metric that characterizes cosmic set convergence:

CY'UdirK” & CUdIrK <= de(CYUdir K%, CUdir K) — 0.

The metric space (cl—sets(csm R"), dlcsm) is separable and compact.

Proof. Because cosmic set convergence is equivalent by definition to the ordi-
nary set convergence of the corresponding cones in the ray space model, this is
immediate from Theorem 4.36 as invoked for cones in IR"*!. The separability
and compactness are seen from 4.45 and 4.18. O

A restriction to nonempty subsets of csm IR" isn’t needed, because the
definition of d gy, in 4(14) uses d only for cones, and cones always contain the
origin. But of course, in the topology of cosmic set convergence, the empty set
is an isolated element; it isn’t the limit of any sequence of nonempty sets, since
any sequence of points in csm IR has a cluster point (cf. 3.2).

The metric d,m can be applied in particular to subsets C7 and Cy of IR"
(with K7 = Ko = {0}, dir K1 = dir K3 = (). One has

Cﬂcsm(C’b CZ) = cﬂ(pos(Cl, _1)7 pOS(CQ, _1))
= d( clpos(Cy, —1), clpos(Ca, —1)) 4(15)
= dosm (c1Cy Udir CF, el Co U dir C5°),

since the closure of the cone representing a set C' C IR"™ in the ray space model
for csm IR" is, by definition, the cone representing cl CUdir C* (see 3.4). This
yields a characterization of total set convergence in IR".

4.47 Corollary (metric description of total set convergence). On the space
cl-sets(IR"), dcsm is a metric that characterizes total set convergence:

C" 5% C <= dew(C",C)— 0.

The metric space (cl—sets(R"), cﬂcsm) is locally compact and separable, and its
completion is (cl—sets(csm R"), cﬂcsm); it forms an open set within the latter.

Proof. All this is clear from Theorem 4.46 and the definition of total conver-
gence in 4.23. The claims of local compactness and openness rest on the fact
that, with respect to cosmic convergence, the space cl-sets(hzn IR") is a closed
subset of cl-sets(csm IR™). (Sequences of direction points can converge only to
direction points.) O

The cosmic set metric dcs, can be interpreted as arising from a special
non-Euclidean metric for measuring distances between points of IR" itself. This
comes out as follows.
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4.48 Exercise (cosmic metric properties). Let 9((1;, a), (y, B)) denote the angle
between two nonzero vectors (z,a) and (y, 8) in IR™ x IR, and let

- sinﬁ((a:, a), (y, 5)) if@((w, a), (y, B)) <m/2,
s((z,0), (4, 9)) := {1 if ((z, ), (y, B)) > m/2.

Define
desm (2, y) := s((a:, —-1), (y, —1)) for x,y € R". 4(16)

Then desy Is a metric on IR™ such that the completion of the space (]R”, dcsm)
is the space (csm R", dcsm) with dcsn, extended by

desm (2, diry) = s((a:, —1), (y, O)),
desm (dir z, diry) = s((z,0), (y,0)).

This point metric desm on csm IR" is compatible with the set metric desy on
cl-sets(csm IR™) in the sense that

dcsm LL‘ y d csm ({m}a{y})a
desm (2, diry) = desm ({2}, {diry}), 4(18)
desm (dir z, diry) = Csm({dira:},{diry}),

4(17)

while on the other hand, dsy, on cl-sets_,(csm IR™) is the Pompeiu-Hausdorff
distance generated by desm: in denoting by desm (z, CUdir K) the distance with
respect to desm from a point x € IR" to a subset C Udir K of c¢sm IR", one has

Cﬂcsm (01U dir Kl, 02 U dir KQ)

= sup }dcsm x,Cy Udir K1) — desm(z, Ca Udier)}.
zeR™

4(19)

Guide. Start by going backwards from the formulas in 4(18); in other words,
begin with the fact that, for points z,y € R", dcsm({z},{y}) is by definition
4(14) equal to d(pos(z, —1),pos(y, —1)). Argue through 4.44 that this has the
value d (B, By), where B, = BBNpos(z, —1) and B, = IBNpos(y, —1), which
calculates out to s((z, —1), (y, —1)). That provides the foundation for getting
everything else. The supremum in 4(19) is adequately taken over IR" instead
of over general elements of csm IR™ because the expression being maximized
has a unique continuous extension to csm IR". O
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Commentary

Up to the mid 1970s, the study of set convergence was carried out almost exclusively
by topologists. A key article by Michael [1951] and the book by Nadler [1978] high-
light their concerns: the description and analysis of a topology compatible with set
convergence on the hyperspace cl-sets(IR™), or more generally on cl-sets(X) where
X is an arbitrary topological space. Ever-expanding applications nowadays to op-
timization problems, random sets, economics, and other topics, have rekindled the
interest in the subject and have refocused the research; the book by Beer [1993] and
the survey articles of Sonntag and Zalinescu [1991] and Lucchetti and Torre [1994]
reflect this shift in emphasis.

The concepts of inner and outer limits for a sequence of sets are due to the French
mathematician-politician Painlevé, who introduced them in 1902 in his lectures on
analysis at the University of Paris; set convergence was defined as the equality of these
two limits. Hausdorff [1927] and Kuratowski [1933] popularized such convergence
by including it in their books, and that’s how Kuratowski’s name ended up to be
associated with it.

In calling the two kinds of set limits ‘inner’ and ‘outer’, we depart from the
terms ‘lower’ and ‘upper’, which until now have commonly been used. Our terminol-
ogy carries over in Chapter 5 to ‘inner semicontinuity’ and ‘outer semicontinuity’ of
set-valued mappings, in contrast to ‘lower semicontinuity’ and ‘upper semicontinu-
ity’. The reasons why we have felt the need for such a change are twofold. ‘Inner’
and ‘outer’ are geometrically more accurate and reflect the nature of the concepts,
whereas ‘lower’ and ‘upper’, words suggesting possible spatial relationships other than
inclusion, can be misleading. More importantly, however, this switch helps later in
getting around a serious difficulty with what ‘upper semicontinuity’ has come to mean
in the literature of set-valued mappings. That term is now incompatible with the no-
tion of continuity naturally demanded in the many applications where boundedness
of the sets and sequences of interest isn’t assured. We are obliged to abandon ‘upper
semicontinuity’ and use different words for the concept that we require. ‘Outer semi-
continuity’ fits, and as long as we are passing from upper to outer it makes sense to
pass at the same time from lower to inner, although that wouldn’t strictly be neces-
sary. This will be explained more fully in Chapter 5; see the Commentary for that
chapter and the discussion in the text itself around Figure 5-7.

Probably because set convergence hasn’t been covered in the standard texts
on topology and hasn’t therefore achieved wide familiarity, despite having been on
the scene for a long time, researchers have often turned to convergence with re-
spect to the Pompeiu-Hausdorff distance as a substitute, even when that might
be inappropriate. In terms of the ezcess of a set C over another set D given by
e(C, D) := sup{d(z, D) } x € C}, Pompeiu [1905], a student of Painlevé, defined the
distance between C' and D, when they are nonempty, by e(C, D) + e(D,C'). Haus-
dorff [1927] converted this to max{e(C, D), e(D,C)}, a distance expression inducing
the same convergence. Our equivalent way of defining this distance in 4.13 has the
advantage of pointing to the modifications that quantify set convergence in general.

The hit-and-miss criteria in Theorem 4.5 originated with the description by Fell
[1962] of the hyperspace topology associated with set convergence. Wijsman [1966]
and Holmes [1966] were responsible for the characterization of set convergence as
pointwise convergence of distance functions (cf. Corollary 4.7); the extension to gap
functions (cf. 4(4)) comes from Beer and Lucchetti [1993]. The observation that con-
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vex sets converge if and only if their projection mappings converge pointwise is due
to Sonntag [1976] (see also Attouch [1984]), but the statement in 4.9 about the con-
vergence of the projections of arbitrary sequences of sets is new. The approximation
results involving e-fattening of sets (in Theorem 4.10 and Corollary 4.11) were first
formulated by Salinetti and Wets [1981]. In an arbitrary metric space, each of these
characterizations leads to a different notion of convergence that has abundantly been
explored in the literature; see e.g. Constantini, Levi and Zieminska [1993], Beer [1993]
and Sonntag and Zalinescu [1991].

Still other convergence notions for sets in IR" aren’t equivalent to Painlevé-
Kuratowski convergence but have significance for certain applications. One of these,
like convergence with respect to the Pompeiu-Hausdorff distance, is more restric-
tive: C" converges to C in the sense of Fisher [1981] when C' C liminf C¥ and
e(C% C) — 0 (the latter referring to the ‘excess’ defined above). Another notion
is convergence in the sense of Vietoris [1921] when C' = liminf, C* and for every
closed set F C IR™ with C N F = () there exists N € Ny such that C*"NF = ()
for all v € N, i.e., when in the hit-and-miss criterion in Theorem 4.5 about missing
compact sets has been switched to missing closed sets. Other such notions aren’t
comparable to Painlevé-Kuratowski convergence at all. An example is ‘rough’ con-
vergence, which was introduced to analyze the convergence of probability measures
(Lucchetti, Salinetti and Wets [1994]) and of packings and tilings (Wicks [1994]); see
Lucchetti, Torre and Wets [1993]. A sequence of sets C” converges roughly to C' when
C = limsup, C” and cl D D limsup, DY, where D = R"\C and D" = R" \ C".

The observation in 4.3 about monotone sequences can be found in Mosco [1969],
at least for convex sets. The criterion in Corollary 4.12 for the connectedness of a
limit set can be traced back to Janiszewski, as recorded by Choquet [1947]. The
convexity of the inner limit associated with a collection of convex sets (Proposition
4.15) is part of the folklore; the generalization in 4.17 to star-shaped sets is due to
Beer and Klee [1987]. The use of truncations to quantify the convergence of convex
sets, as in 4.16, comes from Salinetti and Wets [1979]. The assertion in 4.15, that a
compact set contained in the interior of the inner limit of a sequence must also be
contained in the interior of the approaching sets, can essentially be found in Robert
[1974], but the proof furnished here is new.

Theorem 4.18 on the compactness of the hyperspace cl-sets(IR™) has a long his-
tory starting with Zoretti [1909], another student of Painlevé, who proved a version
of this fact for a bounded sequence of continua in the plane. Developments culmi-
nated in the late 1920s in the version presented here, with proofs provided variously
by Zarankiewicz [1927], Hausdorff [1927], Lubben [1928] and R.L. Moore (1925, un-
published). The cluster description of inner and outer limits (in Proposition 4.19)
can be found in Choquet [1947]. For a sequence of nonempty, convex sets, one can
combine 4.15 with 4.18 to obtain the ‘selection theorem’ of Blaschke [1914]: in R",
any bounded sequence {C"},c v of such sets has a subsequence converging to some
nonempty, compact, convex set C.

Attempts at ascertaining when set convergence is preserved under various oper-
ations (as in 4.27 and 4.30) have furnished the chief motivation for our introduction
of horizon and cosmic limits with their associated cosmic metric. Partial results along
these lines were reported in Rockafellar and Wets [1992], but the full properties of
such limits are brought out here for the first time along with the fundamental role
they play in variational analysis. The concept of ‘total’ convergence and its quantifi-
cation in 4.46 are new as well. The horizon limit formula in 4.21(e) was discovered
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by M. Dong (unpublished).

For sequences of convex sets, McLinden and Bergstrom [1981] obtained forerun-
ners of Theorem 4.27 and Example 4.28. Our introduction of total convergence bears
fruit in enabling us to go beyond convexity in this context. The convergence criteria
for the sums of sets in 4.29 are new, as are the total convergence aspects of 4.30 and
4.31. New too is Theorem 4.32 about the convergence of convex systems, at least
in the way it’s formulated here, but it could essentially be derived from results in
McLinden and Bergstrom [1981] about sequences of convex functions; see also Azé
and Penot [1990].

The metrizability of cl-sets(IR™) in the topology of set convergence has long been
known on the general principles of metric space theory. Here we have specifically
introduced the metric d on cl-sets.p(R™) in 4.42, constructing it from the pseudo-
metrics d,. One of the benefits of this choice, through the cone properties in 4.44
(newly reported here), is the ease with which we are able to go on to provide metric
characterizations of cosmic set convergence and total set convergence in 4.46 and 4.47.

R"

Fig. 4-13. Stereographic images of  and y in IR" on a sphere in IR"!.

An alternative way of quantifying ordinary set convergence would be to use the
stereographic Pompeiu-Hausdorff metric mentioned in Rockafellar and Wets [1984]. It
relies on measuring the distance between two sets by means of the Pompeiu-Hausdorff
distance, but bases the latter not on the Euclidean distance d(x,y) = |z — y| between
points z and y in IR™ but on their stereographic distance d°(z,y) = |z° — y®|, where
z° and y® are the stereographic images of x and y on S, the n-dimensional sphere
of radius 1 in R™! with center at (0,...,0,1), as indicated in Figure 4-13 in terms
of the ‘north pole’ N of S™. (When determining the distance between two subsets
of IR™ in this manner, N is automatically added to the corresponding image subsets
of S™; thus in particular, the empty set corresponds to {IN}, and its stereographic
distance to other sets is finite.) This metric isn’t convenient operationally, however,
and by its association with the one-point compactification of IR" it deviates from the
cosmic framework we are keen on maintaining.

The use of Jp to measure the distance between sets was proposed by Walkup
and Wets [1967] for convex cones and by Mosco [1969] for convex sets in general.
However, it was not until Attouch and Wets [1991] that these distance expressions
where studied in depth, and not merely for convex sets. The pseudo-metrics d,
come from the specialization to indicator functions of pseudo-metrics introduced in
Attouch and Wets [1986] to measure the distance between (arbitrary) functions. The
investigation of the relationship between ij and d, and of the ‘uniformities’ that
they induce was carried out in Attouch, Lucchetti and Wets [1991].
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The inequalities in Lemma 4.34 are slightly sharper than the ones in those papers,
and the same holds for Proposition 4.37. The much smaller value for p’ in the convex
case in 4.37(a) is recorded here for the first time. The particular expression used
in 4(12) for the metric d on cl-setsy(/R") is new, as are the resulting inequalities
in Lemma 4.41. So too is the recognition that Pompeiu-Hausdorff distance is the
common limit of d p and d,. The distance estimate for truncated convex sets in 4.39
comes from a lemma of Loewen and Rockafellar [1994] sharpening an earlier one of
Clarke [1983].

The local compactness of the metric space (cl-sets_y(IR"), d) in 4.43 is mentioned
in Fell [1962]. The separability property in 4.45 can be traced back to Kuratowski
[1933]. The ‘constructive’ proof of it provided here is inspired by a related result for
set-valued mappings of Salinetti and Wets [1981].



5. Set-Valued Mappings

The concept of a variable set is of great importance. Abstractly we can think
of two spaces X and U and the assignment to each z € X of a set S(z) C U,
i.e., an element of the space

sets(U) := collection of all subsets of U.

It is natural to speak then of a set-valued mapping S, but in so doing we must
be careful to interpret the terminology in the manner most favorable for our
purposes. A variable set can often be viewed with advantage as generalizing
a variable point, especially in situations where the set might often have only
one element. It is preferable therefore to identify as the graph of S a subset of
X x U, namely

gph S == {(z,u) |u € S(z)},

rather than a subset of X x sets(U) as might literally seem to be dictated
by the words ‘set-valued mapping’. To emphasize this we write S : X = U
instead of S : X — sets(U). The emphasis could further be conveyed when
deemed necessary by speaking of S as a multifunction or correspondence, but
the simpler language of set-valuedness will be used in what follows.

Obviously S is fully described by gph S, and every set G C X x U is the
graph of a uniquely determined set-valued mapping S : X = U:

S(x):{u}(ac,u)EG}, G = gph S.

It will be useful to work with this pairing as an extension of the familiar one
between functions from X to U and their graphs in X x U, and even to think
of functions as special cases of set-valued mappings. In effect, a mapping
S : X — U and the associated mapping from X to singletons {u} in sets(U)
are to be regarded as the same mathematical object seen from two different
angles.

More than one interpretation will therefore be possible in strict terms when
we speak of a set-valued mapping, but the appropriate meaning will always be
clear from the context. In general we allow ourselves to refer to S : X = U just
as a mapping and say that S is empty-valued, single-valued or multivalued at
x according to whether S(z) is the empty set, a singleton, or a set containing
more than one element. The case of S being single-valued everywhere on X is
specified by the notation S : X — U. We say S is compact-valued or convex-
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valued when S(x) is compact or convex, and so forth. (Although ‘mapping’
will have wider reference, ‘function’ will always entail single-valuedness.)

A. Domains, Ranges and Inverses

In line with this broad view, the domain and range of S : X = U are taken to
be the sets

dom S := {z | S(z) # 0}, rge S :={u |3z with u e S(z)},
which are the images of gph .S under the projections (z,u) — x and (z, u) ,

H
see Figure 5-1. The inverse mapping S~! : U =% X is defined by S~1(u) :=
{z|u € S(z)}; obviously (S7')~1 = S. The image of a set C under S is

S(C) = Uxec S(z) = {u]| S~ (u)NC # 0},
while the inverse image of a set D is
S~YD) := UUGD S~ u) = {z | S(z) N D # 0}.

Note that dom S = rge S = S(X), whereas rge S~! = dom S = S~1(U).

IRM

rgeS

IR"

Fig. 5—1. Notational scheme for set-valued mappings.

For the most part we’ll be concerned with the case where X and U are
subsets of finite-dimensional real vector spaces, say IR" and IR™. Notation can
then be streamlined very conveniently because any mapping S : X = U is at
the same time a mapping S : IR" = IR™. One merely has S(z) = () for « ¢ X.
Note that because we follow the pattern of identifying S with a subset of X x U
as its graph, this is not actually a matter of extending S from X to the rest of
IR", since gph S is unaffected. We merely choose to regard this graph set as
lying in IR"™ x IR™ rather than just X x U. Images and inverse images under
S stay the same, as do the sets dom S and rge .S, but now also

dom S = S~H(IR™), rgeS = S(IR").
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To illustrate some of these ideas, a single-valued mapping F' : X — R™
given on a set X C IR" can be treated in terms of S : IR" =2 IR™ defined by
S(z) = {F(z)} when x € X, but S(z) = ) when z ¢ X. Then domS = X.
Although S isn’t multivalued anywhere, the notation S : R" — R™ wouldn’t
be correct, because S isn’t single-valued except on X; as an alternative to
introducing S one could think of F' itself as a mapping IR" = IR™ with dom F' =
X. Anyway, the inverse mapping S~!, which is identical to F~!, may well be
multivalued. The range of this inverse is X.

Important examples of set-valued mappings that we’ve already been deal-
ing with, in addition to the inverses of single-valued mappings, are the projec-
tion mappings P onto sets C' C IR™ and the proximal mappings P, f associated
with functions f : IR™ — IR; cf. 1.20 and 1.22. The study of how the feasible
set and optimal set in a problem of optimization can depend on the problem’s
parameters leads to such mappings too.

5.1 Example (constraint systems). Consider a set X C IR" and a mapping
F:X — R"™, F(z) = (fi(2),..., fm(z)). For each u = (uy,...,uy) € R™ as
a parameter vector, F~'(u) is the set of all solutions z = (1, ...,2,) to the
equation system

filxy,...,zy) =wu; for i=1,...,m with (z1,...,2,) =z € X.

For a box D = Dy X -+ x D, in IR™, the set F~(D) consists of all vectors =
satisfying the constraint system

filx1,...,xy) € D; for i=1,....m with (z1,...,2,) =x € X.

When m = n in this example, the number of equations matches the number
of unknowns, and hopes rise that F~! might be single-valued on its effective
domain, F'(X). Beyond the issue of single-valuedness it may be important to
understand ‘continuity’ properties in the dependence of F~!(u) on u. This
may be a concern even when m # n and the study of solutions lies fully in the
context of a set-valued mapping F~!: R™ = R".

5.2 Example (generalized equations and implicit mappings). Beyond an equa-
tion system written as F'(x) = u for a single-valued mapping F', one may wish
to solve a problem of the type

determine % such that S(Z) > u

for some kind of mapping S : IR" = IR™. The desired solution set is then
S~(uw). Perturbations could be studied in terms of replacing i by u, with
emphasis on the behavior of S~ (u) when u is near 4. Or, parameter vectors
u could be introduced more broadly. Starting from S : IR" x IR™ = IR?, the
analysis could target properties of the mapping T : IR™ = IR" defined by

T(w) = {z|S(z,w) > u}
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and thus concern set-valued analogs of the implicit mapping theorem rather
than of the inverse mapping theorem. As a special case, one could have, for
mappings F : R" x R* — R™ and N : R" = R™,

T(w)={z| — F(z,w) € N(z)}.

Generalized equations like S(z) > 0 or —F(z) € N(Z), the latter corre-
sponding to S(x) = F(z) + N(x), will later be seen to arise from characteriza-
tions of optimality in problems of constrained minimization (see 6.13 and 10.1).
The implicit mapping 7" in Example 5.2 suggests the convenience of being able
to treat single-valuedness, multivaluedness and empty-valuedness as properties
that can temporarily be left in the background, if desired, without holding up
the study of other features like continuity.

Set-valued mappings can be combined in a number of ways to get new
mappings. Addition and scalar multiplication are defined by

(S1+ 52)(x) := S1(x) + Sa(x), (AS)(z) = AS(x),

where the right sides use Minkowski addition and scalar multiplication of sets

as introduced in Chapter 1; similarly for S; — S and —S. Composition of
S:R" = R™ with T : R™ = IRP is defined by

(ToS)(z) :=T(S(z)) = Uues(x) T(u) = {w|Sx)NT H(w) #0}

to get a mapping TS : IR" = IRP. In the case of single-valued S and T, this
reduces to the usual notion of composition. Clearly (T=S)~! = S~toT 1

Many problems of applied mathematics can be solved by computing a fixed
point of a possibly multivalued mapping from IR™ into itself, and this generates
interest in continuity and convergence properties of such mappings.

5.3 Example (algorithmic mappings and fixed points). For a mapping S :
R" = IR", a fized point is a point T such that £ € S(Z). An approach to
finding such a point T is to generate a sequence {z"},c v from a starting point
20 by the rule ¥ € S(z¥~!). This implies that

vt e S(a), 2% € (88)(2°), ..., z¥ € (So---08)(x").

More generally, a numerical procedure may be built out of a sequence of algo-
rithmic mappings T" : IR"™ = IR" through the rule z¥ € T"(x*~1), where T"
is some kind of approximation to S at V7.

In the framework of Example 5.3, not only are the continuity notions im-
portant, but also the ways in which a sequence of set-valued mappings might
be said to converge to another set-valued mapping. Questions of local approx-
imation, perhaps through some form of generalized differentiation, also pose a
challenge. A central aim of the theory of set-valued mappings is to provide the
concepts and results that support these needs of analysis. Continuity will be
studied here and generalized differentiability in Chapter 8.
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B. Continuity and Semicontinuity

Continuity properties of mappings S : IR" = IR™ can be developed in terms of
outer and inner limits like those in 4.1:

limsup S(z) : = U lim sup S(x")

T—T V7T V—00
= {u Ja¥ — &, Ju” — u with u”ES(m”)},
5(1)
liminf S(x) : = liminf S(z")
T—T oV > v—00

- {u
5.4 Definition (continuity and semicontinuity). A set-valued mapping S :
R" = IR™ is outer semicontinuous (osc) at T if

Va¥ -z, AN e N, v’ 5 u with u” € S(m”)}.

limsup S(z) C S(z),

T—T
or equivalently limsup,_,. S(z) = S(Z), but inner semicontinuous (isc) at T if

liminf S(z) D S(z),
T—T
or equivalently when S is closed-valued, liminf, ,z S(z) = S(z). It is called
continuous at Z if both conditions hold, i.e., if S(z) — S(z) as x — Z.
These terms are invoked relative to X, a subset of IR" containing Z, when
the properties hold in restriction to convergence x — & with x € X (in which
case the sequences x¥ — x in the limit formulas are required to lie in X ).

The equivalences follow from the fact that the constant sequence ¥ = T is
among those considered in 5(1). For this reason S(Z) must be a closed set when
S is outer semicontinuous at &, whether in the main sense or merely relative to
some subset X. Note further that when S is inner semicontinuous at a point
Z € dom S relative to X, there must be a neighborhood V' € N(Z) such that
XNV CdomsS. When X = IR" this requires Z € int(dom S).

Clearly, a single-valued mapping F' : X — IR™ is continuous in the usual
sense at T relative to X if and only if it is continuous at T relative to X as a
mapping IR" = IR handled under Definition 5.4.

5.5 Example (profile mappings). For a function f : IR" — IR, the epigraphical
profile mapping Ey : R" = IR, defined by Es(x) = {a €eRR ’ o > f(:(:)}, has
gph Ef = epi f, dom Ey = dom f, and E; () = lev, f.

Furthermore, E¢ is osc at x if and only if f is Isc at Z, whereas it is isc at
z if and only if f is usc at . Thus too, E; is continuous at Z if and only if f
is continuous at T. On the other hand, the level-set mapping o — lev.,, f is
osc everywhere if and only if f is Isc everywhere.
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Analogous properties hold for the hypographical profile mapping Hy :
R" = R" with Hy(z) = {a € R|a < f(z)}, gph Hy = hypo f.

IR gph E, =|epi f

\
i
i
1
|

.

X RN

Fig. 5—2. The epigraphical profile mapping associated with a function f.

As a further illustration of the meaning of Definition 5.4, Figure 5-3(a)
displays a mapping that fails to be inner semicontinuous at x despite being
outer semicontinuous at x and in fact continuous at every z’ # z. In Figure
5-3(b) the mapping S is isc at x but fails to be osc at that point.

RM (a) RM (b)
(x, S() (x, S(x))
7 L
gph S 7/ _gphS
24 £4 ;
X IRN X RN

Fig.5-3. (a) An osc mapping that fails to be isc at z. (b) An isc mapping.

5.6 Exercise (criteria for semicontinuity at a point). Consider a mapping S :
R" = IR™, aset X C IR", and any point T € X.

(a) S is osc at T relative to X if and only if for every u ¢ S(Z) there are
neighborhoods W € N (u) and V € N(Z) such that X NV N S™HW) = 0.

(b) S isiscat Z relative to X if and only if for every u € S(Z) and W € N (u)
there is a neighborhood V € N(z) such that X NV C S™YW).

(c) Sisoscat  relative to X if and only if ¥ € X, ¥ — & and S(z¥) — D
imply D C S(Z).

(d) S isiscat z relative to X if and only if ¥ € X, ¥ — & and S(z¥) — D
imply D D S(Z).
Guide. For (a) and (b) use the hit-and-miss criteria for set convergence in

Theorem 4.5. For (¢) and (d) appeal to the cluster description of inner and
outer limits in Proposition 4.19. O
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5.7 Theorem (characterizations of semicontinuity). For S : R" = R"™,

(a) S is osc (everywhere) if and only if gph S is closed in R" x IR™; more-
over, S is osc if and only if S™1 is osc;

(b) when S closed-valued, S is osc relative to a set X C IR"™ if and only if
S—1(B) is closed relative to X for every compact set B C IR™;

(c) S is isc relative to a set X C IR" if and only if S~1(O) is open relative
to X for every open set O C IR™.

Proof. The claims in (a) are obvious from the definition of outer semicontinu-
ity. Every sequence in a compact set B C IR™ has a convergent subsequence,
and on the other hand, a set consisting of a convergent sequence and its limit
is a compact set. Therefore, the image condition in (b) is equivalent to the
condition that whenever u” — @, ¥ € S™!(u”) and z” — Z with 2¥ € X and
T € X, one has € S71(u). Since z¥ € S~!(u”) is the same as u” € S(zV),
this is precisely the condition for S to be osc relative to X.

Failure of the condition in (c) means the existence of an open set O and
a sequence ¥ — T in X such that z € S71(O) but z¥ ¢ S71(0); in other
words, S(Z) N O # 0 yet S(z¥) N O = (0 for all v. This property says that
liminf, S(z¥) 2 S(z). Thus, the condition in (c) fails if and only if S fails to
be isc relative to X at some point = € X. O

Although gph S is closed when S is osc, and S is closed-valued in that

case (the sets S(z) are all closed), the sets dom S and rge S don’t have to be
closed then. For example, the set-valued mapping S : R' = R' defined by

gph S = {(z,u) € R*|z #0, u>1/2}

is osc but has dom S = IR'\ {0} and rge S = (0, o), neither of which is closed.

5.8 Example (feasible-set mappings). Suppose T : IR* = IR" is defined relative
to a set W C IR® by T(w) = 0 for w ¢ W, but otherwise

T(w) ={z € X| fi(z,w) <0 for i € Iy and fi(z,w)=0 for i € I},

where X is a closed subset of IR" and each f; is a continuous real-valued
function on X x W. (Here W could be all of R?, and X all of IR"™.)

If W is closed, then T is osc. Even if W is not closed, T is osc at any
point w € int W. Moreover domT' is the set of vectors w € W for which the
constraints in x that define T'(w) are consistent.

Detail. @ When W is closed, gphT is closed—because it is the intersec-
tion of X x W with the various sets {(z,w) | fi(z,w) < 0} for i € I; and
{(a:, w) ’ filz,w) = 0} for ¢ € I, which are closed by the continuity of the f;’s.
This is why 7' is osc then. The assertion when W isn’t itself closed comes from
replacing W by a closed neighborhood of w within W. O

It’s useful to observe that outer semicontinuity is a constructive property in
the sense that it can be created by passing, if necessary, from a given mapping
S :R" = IR™ to the mapping clS : IR" = IR™ defined by
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gph(clS) := cl(gph S). 5(2)
This mapping is called the closure of S, or its osc hull, and it has the formula

(c1S)(x) = limsup S(z’) for all =. 5(3)
/' —x

Inner semicontinuity of a given mapping is typically harder to verify than
outer semicontinuity, and it isn’t constructive in such an easy sense. (The
mapping defined as in 5(3), but with liminf on the right, isn’t necessarily isc.)
But an effective calculus of ‘strict’ continuity, a Lipschitzian property of map-
pings introduced in Chapter 9 which entails continuity and in particular inner
semicontinuity, will be developed in Chapter 10. For now, we content ourselves
with special criteria for inner semicontinuity that depend on convexity.

As already noted, a mapping S : IR" = IR™ is called convex-valued when
S(z) is a convex set for all . A stronger property, implying this, is of interest
as well: S is called graph-convex when the set gph S is convex in IR"™ x IR™, cf.
Figure 5-4, in which case dom S and rgeS are convex too. Graph-convexity
of S is equivalent to having

S((1=7)zo+721) D (1—7)S(z0) +7S(21) for 7€ (0,1). 5(4)

5.9 Theorem (inner semicontinuity from convexity). Consider a mapping S :
IR" = IR™ and a point T € IR".

(a) If S is convex-valued and int S(Z) # ), then a necessary and sufficient
condition for S to be isc relative to dom S at Z is that for all u € int S(Z) there
exists W € N (Z,u) such that W N (dom S x IR™) C gph S; in particular, S is
isc at T if and only if (Z,u) € int(gph S) for every u € int S(Z).

(b) If S is graph-convex and & € int(dom S), then S is isc at Z.

(c) If S is isc at T, then so is the convex hull mapping T : x +— con S(z).

int S(x)

Fig. 5—4. Inner semicontinuity through graph-convexity.

Proof. In (a), the assumption that there exists (V x U) € N (Z) x N (@) such
that (V NdomS) x U C gph S implies that every sequence {z"},cn C dom S
converging to z will eventually enter and stay in V N dom .S, and for those z”
one can find v¥ € U C S(z") converging to u. This clearly yields the inner
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semicontinuity of S relative to dom S. For the converse, suppose that S is
isc relative to dom S at z and let B be a compact neighborhood of % within
int S(z). For any sequence ¥ — T in dom S, we eventually have B C int S(z")
by 4.15. Tt follows that for some neighborhood V' € N (Z), one has B C int S(x)
for all x € V. NdomS. Then V x B is a neighborhood of (Z, %) such that
(VxBNndomS x R™) C gph S.

In (b), denote the convex set gph S by G and the linear mapping (z, u) —
x by L. To say that S(x) depends inner semicontinuously on z is to say
that L~=!(z) N G has this property. But that’s true by 4.32(c) at any point
Z € int(dom S), because the convex sets {Z} and L(G) = dom S can’t be
separated.

If w € T(Z) = conS(7), then = Y ;"  Aul with \F >0, 37" (AP =1,
and u* € S(z) (2.27). Inner semicontinuity of S means that when z¥ — Z, one
can find u* — ¥ such that u* € S(x"). The sequence u” = Y ", A*u*" con-
verges to w and for all v, v¥ € S(z”). This implies that T(z) C liminf, T'(z")
for all ¥ — x, i.e., T is isc at T as claimed in (c). O

Automatic continuity properties of graph-convex mappings that go farther
than the one in 5.9(b) will be developed in Chapter 9 (see 9.33, 9.34, 9.35).

5.10 Example (parameterized convex constraints). Suppose
T(w) = {a:’fi(x,w) <0 for i=1,...,m}

for finite, continuous functions f; on IR™ x IR® such that f;(x,w) is convex in
x for each w. If for w there is a point & such that f;(z,w) < 0 fori=1,...,m,
then T is continuous not only at w but at every w in some neighborhood of w.

Detail. Let f(z,w) = max{fi(z,w),..., fm(z,w)}. Then f is continuous in
(z,w) (by 1.26(c)) and convex in z (by 2.9(b)), with levo f = gphT. The
level set lev_g f is closed in IR™ x IR?, hence T is osc by 5.7(a). For each w,
T'(w) is the level set lev g f(-,w) in IR"™, which is convex (by 2.7). For z and
w as postulated we have f(Z,w) < 0, and then by continuity f(Z,w) < 0 for
all w in some open set O containing w. According to 2.34 this implies

int T(w) = {z | f(z,w) <0} #0 for all we O.

For any @ € O and any & € int T'(w), the continuity of f and the fact that
f(z,w) < 0yield a neighborhood W C O xint T'(w) of (%, w) which is contained
in gph T and such that f < 0 on W. Then certainly £ belongs to the inner
limit of T'(w) as w — . This inner limit, which is a closed set, therefore
includes int T'(w), so it also includes cl (int T'(@)), which is T'(w) by Theorem
2.33 because T'(w) is a closed, convex set and int T'(w) # (). This tells us that
T is isc at w. O

5.11 Proposition (continuity of distances). For a closed-valued mapping S :
IR" = IR™ and a point T in a set X C IR",
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(a) S is osc at T relative to X if and only if for every u € IR™ the function
z > d(u, S(z)) is Isc at T relative to X.

(b) S is isc at T relative to X if and only if for every v € IR™ the function
u— d(u, S(x)) is usc at T relative to X.

(c) S is continuous at T relative to X if and only if for every u € IR™ the
function x — d(u, S(x)) is continuous at T relative to X.

Proof. This is immediate from the criteria for set convergence in 4.7. O

5.12 Proposition (uniformity of approximation in semicontinuity). For a closed-
valued mapping S : IR" = IR™ and a point T in a set X C IR":

(a) S is osc at T relative to X if and only if for every p > 0 and € > 0 there
is a neighborhood V' € N (Z) such that

S(x)NpB C S(z)+eB forall e XNV.

(b) S isisc at T relative to X if and only if for every p > 0 and € > 0 there
is a neighborhood V' € N (Z) such that

S(@)NpB C S(x)+ecB forall x€ XNV.

Proof. This just adapts of 4.10 to the language of set-valued mappings. O

5.13 Exercise (uniform continuity). Consider a closed-valued mapping S :
IR" = IR™ and a compact set X C domS. If S is continuous relative to
X, then for any p > 0 and € > 0 there exists § > 0 such that

Sx'yNpB C S(z)+eB for all 2,0 € X with |2/ — x| <4.

Guide. Apply 5.12(a) and 5.12(b) simultaneously at each point Z of X to get
an open neighborhood of that point for which both of the inclusions in 5.12
hold simultaneously. Invoking compactness, cover B by finitely many such
neighborhoods. Choose § small enough that for every closed ball IB(Z, ) with
z € X, the set B(Z,6) N X must lie within at least one of these covering
neighborhoods. O

Both 5.12 and 5.13 obviously continue to hold when the balls pIB are
replaced by the collection of all bounded sets B C IR™. Likewise, the balls ¢IB
can be replaced by the collection of all neighborhoods U of the origin in IR™.

C. Local Boundedness

A continuous single-valued mapping carries bounded sets into bounded sets. In
understanding the connections between continuity and boundedness properties
of potentially multivalued mappings, the following concept is the key.

5.14 Definition (local boundedness). A mapping S : R" = IR™ is locally
bounded at a point ¥ € IR" if for some neighborhood V. € N (Z) the set
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S(V) € IR™ is bounded. It is called locally bounded on IR"™ if this holds
at every T € IR". It is bounded on IR" if rge S is a bounded subset of IR™.

Local boundedness at a point Z requires S(Z) to be a bounded set, but
more, namely that for all z in some neighborhood V' of Z, the sets S(z) all lie
within a single bounded set B, cf. Figure 5-5. This property can equally well
be stated as follows: there exist § > 0 and p > 0 such that if |z — Z| < 6 and
u € S(x), then |u| < p. In the notation for closed Euclidean balls this means
that S(B(z,48)) C B(0, p).

In particular, S is locally bounded at any point Z ¢ cl (dom S). This fits
trivially with the definition, because for such a point z there is a neighborhood
V € N(Z) that misses dom S and therefore has S(V) = (). (The empty set is,
of course, regarded as bounded.)

R™

Fig. 5—5. Local boundedness.

5.15 Proposition (boundedness of images). A mapping S : IR" = IR™ is locally
bounded if and only if S(B) is bounded for every bounded set B. This is
equivalent to the property that whenever v” € S(z") and the sequence {x"},c N
is bounded, then the sequence {u"},cpn is bounded.

Proof. The condition is sufficient, since for any point = we can select a bounded
neighborhood V' € N (z) and conclude that S(V') is bounded. To show that it
is necessary, consider any bounded set B C IR", and for each x € cl B use the
local boundedness to select an open V, € N (z) such that S(V,) is bounded.
The set cl B is compact, so it is covered by a finite collection of the sets V,
say Viyy..+, Va,. Denote the union of these by V. Then S(B) C S(V) =
S(Ve,)U...US(V,, ), where the set on the right, being the union of a finite
collection of bounded sets, is bounded. Thus S(B) is bounded. The sequential
version of the condition is apparent. O

5.16 Exercise (local boundedness of inverses). The inverse S™! of a mapping
S : IR" = IR™ is locally bounded if and only if

|z¥| = 00, u” € S(z¥) = |u’| — 0.

It should be remembered in 5.16 that the condition holds—vacuously—
when there are no sequences {z"},en and {u”}, ey with u” € S(z”) such
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that |z”| — oo. This is the case where the set dom S = rge S~ is bounded, so
S~ is a bounded mapping, not just locally bounded.

5.17 Example (level boundedness as local boundedness).

(a) For a function f : IR™ — IR, the mapping o + lev_, f is locally
bounded if and only if f is level-bounded.

(b) For a function f : R" x IR™ — IR, one has f(z,u) level-bounded in
x locally uniformly in w if and only if, for each o € IR, the mapping u —
{af; } flz,u) < Oé} is locally bounded. The mapping (u,«) — {af; } flz,u) < Oé}
is then locally bounded too.

Fig. 5—6. A mapping S and the associated horizon mapping S°.

A useful criterion for the local boundedness of S : IR™ = IR™ can be stated
in terms of the horizon mapping S= : IR™ = IR™, which is specified by

gph S~ := (gph 5)~. 5(5)
This graphical definition means that
S=(z) = {u=lim, \u” |u” € S(z"), A" = z, AV ~0}. 5(6)

Note that since the graph of S* is a closed cone in IR" x IR"™, S* is osc with
0 € §~(0). Also, S~ (Ax) = AS>=(z) for A > 0; in other words, S is positively
homogeneous. If S is graph-convex, so is $<. Clearly (S71)* = (S§=)~1.

When S is a linear mapping L, one has S> = L because the set gph S =
gph L is a linear subspace of IR" x IR™ and thus is its own horizon cone. An
affine mapping S(z) = L(x) 4+ b has S~ = L.

5.18 Theorem (horizon criterion for local boundedness). A sufficient condition
for a mapping S : IR" = IR™ to be locally bounded is S><(0) = {0}, and then
the horizon mapping S is locally bounded as well.

When S is graph-convex and osc, this criterion is fulfilled if there exists a
point T such that S(Z) is nonempty and bounded.

Proof. If S is not locally bounded at a point Z, there exist by 5.15 sequences
x¥ — Z and u” € S(z¥) with 0 < |[u”’| — oo. Then the sequence of points
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(x¥,u”) in gphS is unbounded, but for \¥ = 1/|u”| the sequence of points
A (2%, u") is bounded and has a cluster point (0, ) with |u| = 1. Then (0,u) €
(gphS)> and 0 # u € S>(0), so the condition is violated.

Because (gph S)> is a closed cone, we have ((gph S)>~)>~ = (gphS)>= and
consequently (S*°)>~ = S>. Thus, when S*=(0) = {0}, the mapping 7" = 5>
has T*°(0) = {0} and, by the argument already given, is locally bounded.

When S is graph-convex and osc, gph .S is convex and closed. Then for any
pair (Z,u) € gph S, a vector u € S>(0) if and only if (,u) + 7(0,u) € gph S
for all 7 > 0, or in other words, u + 7u € S(z) for all 7 > 0 (cf. 3.6). This can
only hold for u = 0 when S(Z) is bounded. O

Theorem 5.18 opens the way to establishing the local boundedness of a
mapping S by applying to gphS the horizon cone formulas in Chapter 3.
The fact that the condition isn’t necessary for S to be locally bounded, merely
sufficient, is seen from examples like S : IR — IR with S(u) = u?. This mapping
is locally bounded, yet S>*(0) = [0, 00). The condition in 5.18 is helpful anyway
because of the convenient calculus that can be built around it.

5.19 Theorem (outer semicontinuity under local boundedness). Suppose that
S : IR" = IR™ is locally bounded at the point Z. Then the following condition
is equivalent to S being osc at Z: the set S(z) is closed, and for every open set
O D S(Z) there is a neighborhood V' € N(Z) such that S(V) C O.

Proof. Suppose S is osc at Z; then S(Z) is closed. Consider any open set O D
S(Z). If there were no V' € N (Z) such that S(V') C O, a sequence ¥ — Z would
exist with S(z¥) ¢ O. Then for each v we could choose u” € S(z”)\O and
get a sequence that’s bounded, by virtue of the local boundedness assumption
on S, cf. 5.14, yet lies entirely in the complement of O, which is closed. This
sequence would have a cluster point u, likewise in the complement of O and
not, therefore, in S(z). Thus, for some index set N € N# we would have
¥ T, v’ 3 u, v’ € S(z¥) but u ¢ S(z), in contradiction of the supposed
outer semicontinuity of S at . Hence the condition is necessary.

For the sufficiency, assume that the proposed condition holds. Consider
arbitrary sequences ¥ — Z and v’ — w with v” € S(z¥). We must verify
that w € S(z). If this were not the case, then, since S(Z) is closed, there would
be a closed ball B(u,d) having empty intersection with S(z). Let O be the
complement of this ball. Then O is an open set which includes S(z) and is
such that eventually u” lies outside of O, in contradiction to the assumption
that S(z") C O once z¥ comes within a certain neighborhood V € N(z). 0O

5.20 Corollary (continuity of single-valued mappings). For any single-valued
mapping F : IR" — IR™, viewed as a special case of a set-valued mapping, the
following properties are equivalent:

(a) F is continuous at T;
(b) F is osc at T and locally bounded at Z;
(c) F isisc at T.
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A single-valued mapping F': IR" — IR™ that isn’t continuous at a point &
can be osc at T as a set-valued mapping without being locally bounded there.
This is illustrated by the case of F : IR' — IR' defined by F(0) = 0 but
F(z) =1/x for z # 0. Local boundedness fails at z = 0.

The neighborhood property in 5.19 need not hold for a set-valued mapping
S for which S(z) may be unbounded, even if S is continuous. That’s just as well,
because the property is incompatible with intuitive notions of an unbounded
set varying continuously with parameters, despite its formal appeal. This is
evident in Figure 5-7, which depicts a ray rotating at a uniform rate about the
origin in IR®. The ray is S(t), and we consider what happens to it as t — to.
A particular choice of open set O D S(#p) is indicated. No matter how near
t is to tg, as long as t # tg, the set S(¢) is never included in O. Thus, if we
were to demand that the neighborhood property in 5.19 be fulfilled as part of a
general definition of continuity for set-valued mappings, unbounded as well as
bounded, we would be unable to say that the rotating ray moves ‘continuously’,
which would be a highly unsatisfactory state of affairs. The ray does rotate
continuously in the sense of Definition 5.4.

IR S(ty)

Fig. 5—7. A rotating ray.

The appropriately weaker version of the neighborhood property in 5.19
that corresponds precisely to outer semicontinuity is easily obtained through
consideration of truncations of S, i.e., mappings of the form

Snp :x+— S(x)N B.

Clearly S is osc if and only if all its truncations Snp for compact sets B are
osc; hence S is osc if and only if all such truncations (which themselves are
locally bounded mappings) satisfy the neighborhood property in question.

Theorem 5.19 helps to clarify the extent to which continuity can be char-
acterized using the Pompeiu-Hausdorff distance d.(C, D) between sets C' and
D, as defined in 4.13. The fact that a bounded sequence of nonempty, closed
sets C" converges to a nonempty, closed set C' if and only if d.. (C",C) — 0
(cf. 4.40) gives the following.

5.21 Corollary (continuity of locally bounded mappings). Let S : R" = R™
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be locally bounded at T with S(z) nonempty and closed for all x in some
neighborhood of . Then S is continuous at x if and only if the Pompeiu-
Hausdorff distance d..(S(x), S(z)) tends to 0 as x — Z.

When local boundedness is absent, Pompeiu-Hausdorff distance is no guide
to continuity, since one can have S(z) — S(z) while d (S(z), S(Z)) — oo, even
in some cases where S(x) is nonempty and compact for all z; cf. 4.13. To get
a distance description of continuity under all circumstances, one has to appeal
to a metric such as d(S(z), S(z)); cf. 4.36. Alternatively, one can work with
the family of pseudo-metrics d, and their estimates d, as in 4(11); cf. 4.35.

Local boundedness of a mapping .S, like outer semicontinuity, can be con-
sidered relative to a set X by replacing the neighborhood V' in Definition 5.14
by V' N X. Such local boundedness at a point £ € X is nothing more than the
ordinary local boundedness of the mapping S } + that ‘restricts’ S to X,

S ifzrxeX,
which can also be viewed as an inverse truncation: S } x = (Sg)lf)_l. All

the results that have been stated about local boundedness, in particular 5.19
and 5.20, carry over to such relativization in the obvious manner, through
application to S } + in place of S. This is useful in situations like the following.
5.22 Example (optimal-set mappings). Suppose P(u) := argmin, f(x,u) for a
proper, Isc function f : R" x IR™ — IR with f(x,u) level-bounded in x locally
uniformly in u. Let p(u) := inf, f(z,u), and consider a set U C dom p.

The mapping P : IR™ = IR" is locally bounded relative to U if p is locally
bounded from above relative to U. It is osc relative to U in addition, if p is
actually continuous relative to U.

In particular, P is continuous relative to U at any point u € U where it is
single-valued and p is continuous relative to U.

Detail. This restates part of 1.17 in the terminology now available. O

5.23 Example (proximal mappings and projections).

(a) For any nonempty set C' C IR", the projection mapping P is every-
where osc and locally bounded.

(b) For any proper, Isc function f : IR"™ — IR that is proximally bounded
with threshold Ay, and any A € (0, \y), the proximal mapping P, f is every-
where osc and locally bounded.

Detail. This specializes 5.22 to the mappings in 1.20 and 1.22; cf. 1.25. O

5.24 Exercise (continuity of perturbed mappings). Suppose S = Sy + T for
mappings Sy, T : IR™ = IR™, and let T be a point where T is continuous and
locally bounded. If Sy is osc, isc, or continuous at &, then that property holds
also for S at z.
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In particular, if S : IR" x IR™ has the form S(z) = C + F(x) for a closed
set C C IR™ and a continuous mapping F : IR" — IR™, then S is continuous.

The outer semicontinuity of a mapping S : IR" = IR™ doesn’t entail
necessarily that S(C) and S~1(D) are closed sets when C and D are closed,
as we've already seen in the case of S(IR") and S™!(IR™). Other assumptions
have to be added for such conclusions, and again local boundedness has a role.

5.25 Theorem (closedness of images). Let S : R™ = IR™ be osc, C a closed
subset of IR", and D a closed subset of IR™. Then,

(a) S(C) is closed if C' is compact or S~ is locally bounded (implying that
rge S is closed).

(b) S7Y(D) is closed if D is compact or S is locally bounded (implying that
dom S is closed).

Proof. In (b), the first assertion applies 5.7(b) with X = IR". For the sec-
ond assertion, suppose S is locally bounded as well as osc, and consider any
closed set D C IR™; we wish to verify that S~1(D) is closed. It’s enough to
demonstrate that S=!(D) is locally closed everywhere, or equivalently, that
S=1(D) N B is closed for every compact set B C IR". But S™}(D) N B is
the image of (gphS) N (B x D) under the projection (z,u) — x. The set
(gph S) N (B x D) is closed because gphS, B and D are all closed, and it
is bounded because it’s included in B x S(B), which is bounded (by 5.15);
hence it is compact. The image of a compact set under a continuous map-
ping is compact, so we conclude that S~™!(D) N B is compact, hence closed, as
required.

Now (a) follows by symmetry, since the outer semicontinuity of S is equiv-
alent to that of S~ cf. 5.7(a). O

5.26 Exercise (horizon criterion for a closed image). Let S : IR" = IR™ be osc.
(a) S(C) is closed when C is closed and (S=)~1(0) N C*> = {0} (as is true
if (8)~1(0) = {0} or if C~ ={0}). Then S(C)> C S=(C>).
(b) S~Y(D) is closed when D is closed and S (0) N D> = {0} (as is true if
S><(0) = {0} or if D> ={0}). Then S~1(D)> C (S=)"1(D>).

Guide. By 5.7(a), it suffices to verify (b). The closedness of S™1(D) can be
established by showing that the mapping Sp : u +— S(u)N D is locally bounded
when the horizon assumption is fulfilled. This yields S35 (0) = {0}. O

A counterexample to the inclusion S(C)>* C S*~(C*) holding without
some extra assumption is furnished by the single-valued mapping S : R* — IR'
with S(u) = /[u| and the set C' = [0,00). A case in which S(C)> C S=(C*)
but S(C)> # §=(C*) is encountered in the mapping S : R' — R' with
S(u) = usinu and the set C' = {O,iw, +27, ... }
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D. Total Continuity

The notion of continuity in Definition 5.4 for set-valued mappings S is powerful
and apt for many purposes, and it makes topological sense in corresponding
to the continuity of the single-valued mapping which assigns to each point x
a set S(x) as an element of a space of sets, this ‘hyperspace’ being endowed
with the topology induced by Painlevé-Kuratowski convergence (as developed
near the end of Chapter 4). Yet this notion of continuity has shortcomings as
well. Figure 5-8 depicts a mapping S : R' = R' which is continuous at 0
according to 5.4, despite the appearance of a feature looking very much like a
‘discontinuity’. Here S(z) = {1+ 271, 1} for z # 0, while S(0) = {1}, so that
S(z) does tend to S(0) as z tends to 0, just as continuity requires. Note that
S isn’t locally bounded at 0.

This example clashes with our geometric intuition because convergence of
unbounded sequences to direction points isn’t taken into account by Definition
5.4. If we think of the sets S(z) as lying in the one-dimensional cosmic space
csm R', identified with IR in letting oo <+ dirl and —oo < dir(—1), we see
that S(x) < {1, 00} as z tends to 0 from the right, whereas S(z) % {1, —oo} as
x tends to 0 from the left. These cosmic limits differ from each other and from
S(0) = {1}, and that’s the source of our feeling of ‘discontinuity’, even though
S(z) — S(0) from both sides in the Painlevé-Kuratowski context. Intuitively,
therefore, we find it hard in some situations to accept the version of continuity
dictated by ordinary set convergence and may wish to have at our disposal an
alternative version that utilizes cosmic limits.

Fig. 5—8. An everywhere continuous set-valued mapping: S(z) — S(0) as z — 0.

Such thinking leads us to introduce continuity concepts that appeal to the
framework of mappings S : IR" = csm IR in order to quantify the behavior of
unbounded sequences of elements u” € S(z¥) in terms of convergence to points
of hzn IR™. Hardly any additional effort is needed, beyond a straightforward
translation of the conditions in Definition 5.4 along the same lines that were
followed for the corresponding extension of set convergence in Chapter 4.
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Thus, cosmic continuity at & € IR" for a mapping S : R" = csm R™
is taken to mean that S(z%) S S(z) whenever ¥ — Z; similarly for cosmic
outer and inner semicontinuity. Cosmic outer semicontinuity at every point
Z corresponds to gph.S being closed as a subset of IR" x csm IR™. The defi-
nition of ‘subgradients’ in Chapter 8 will draw on the notion of cosmic outer
semicontinuity (cf. 8.7), and the following fact will then be helpful. Here we
employ horizon limits in the same extended sense that was introduced in 5(1)
for ordinary set limits.

5.27 Proposition (cosmic semicontinuity). A mapping S : R" = csm R™,
written as S(x) = C(x) Udir K (x) with C(x) a set in IR™ and K (z) a cone in
IR™, is cosmically outer semicontinuous at Z if and only if

C(z) D limsup C(x), K(z) D limsup™C(x) Ulimsup K(x),

T—T T—T T—T

whereas the corresponding condition for cosmic inner semicontinuity is

C(z) C liminf C(z), K(z) C liminf* C(z) Uliminf K(z).

T—T T—T T—T

Proof. This is obvious from 4.20. O

Note that the mapping in Figure 5-8 isn’t cosmically osc at 0, much less
cosmically continuous there, although it’s continuous at 0 in the ordinary, non-
cosmic sense, as already observed. This highlights very well the distinction
between ordinary and cosmic continuity and the reasons why, in some situa-
tions, it might be desirable to insist on the latter. Actually, for most purposes
it’s not necessary to pass to the full cosmic setting, because the concept of total
convergence introduced in 4.23 can serve the same ends in R" itself.

5.28 Definition (total continuity). A mapping S : IR" = IR™ is said to be
totally continuous at T if S(x) Ly S(z) whenever x — Z, or equivalently if

lim S(x) = S(2), lim> S(z) = S(z)>.

T—T T—T

It is totally outer semicontinuous at x if at least

limsup S(z) C S(z), limsup™ S(z) C S(z)>.
T—T T—T
Total inner semicontinuity at a point £ € dom S could likewise be defined
as meaning that
liminf S(x) D S(@), liminf> S(z) D S(z)>,
T—T T—T
but this would be superfluous because the first of these inclusions always entails

the second (cf. 4.21(c)). Total inner semicontinuity therefore wouldn’t be any
stronger than ordinary inner semicontinuity.

5.29 Proposition (criteria for total continuity). A mapping S : R" = IR™ is
totally continuous at x if and only if it is continuous at & and has
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limsup™ S(z) C S(z)>.
T—T
Total continuity at x is automatic from continuity when S is convex-valued or
cone-valued on a neighborhood of z, or when S is locally bounded at .

Proof. These facts are obvious from 4.24 and 4.25. O

5.30 Exercise (images of converging sets). Consider a mapping S : R" = R™
and sets C¥ C IR".

(a) If S is isc, one has liminf, S(C”) D S(liminf, C").

(b) If S is osc, one has limsup, S(C”) C S(limsup, C") provided that S~!
is locally bounded, or alternatively that (S*)~1(0) N limsup;’ C* = {0}.

(c) IfS is continuous, one has S(C¥) — S(C) whenever C* — C and S~! is
locally bounded, or alternatively, whenever C* £ C' and (S=)~1(0)NC*> = {0}.

(d) If S is totally continuous, one has S(C") Ly S(C) whenever C* X5 C,
(S=)~1(0)NC>= = {0} and (S=)(C*=) C S(C)*=.

Guide. Extend the argument for 4.26, also utilizing ideas in 5.26. O

Some results about the preservation of continuity when mappings are
added or composed together will be provided in 5.51 and 5.52.

E. Pointwise and Graphical Convergence

The ‘convergence’ of a sequence of mappings can have a number of meanings.
Let’s start with pointwise convergence.

5.31 Definition (pointwise limits of mappings). For a sequence of mappings
SY . IR" = IR™, the pointwise outer limit and the pointwise inner limit are
the mappings p-limsup, S¥ and p-liminf, S” defined at each point x by

(p-limsup, S%)(z) := limsup, S (z),
(p-liminf, $¥)(z) := liminf, S”(z).

When the pointwise outer and inner limits agree, the pointwise limit p-lim, S”
is said to exist; thus, S = p-lim, S if and only if S D p-limsup, S¥ and
S C p-liminf, S¥. In this case the notation S¥ B S is also used, and the
mappings S¥ are said to converge pointwise to S. Thus,

SYR S «— SYx)— S(z) for all x.

Obviously p-limsup, S¥ D p-liminf, S¥ always. Here we use ‘C’” and ‘D’
in the sense of the natural ordering among mappings R" = R™:

S1 C S2 when gphS; C gph S, S1 D S2 when gphS; D gphSs.

Definition 5.31 focuses on whole mappings, but it’s convenient sometimes to
say S¥ converges pointwise to S at a point T when S”(z) — S(Z).
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Pointwise convergence of mappings S” : IR" = IR™ is an attractive notion
because it reduces in the single-valued case to something very familiar. It has
many important applications, but it only provides one part of the essential
picture of what convergence can signify. For many purposes it’s necessary
instead, or as well, to consider a different kind of convergence, obtained by
applying the theory of set convergence to the sets gph S in R" x IR™.

5.32 Definition (graphical limits of mappings). For a sequence of mappings
SY . R™ = IR™, the graphical outer limit, denoted by g-limsup, S”, is the
mapping having as its graph the set limsup,, (gph S ”):

gph (g—lim sup,, S”) = limsup, (gph S”),
(g—limsupy S”)(x) = {u ’ AN e NZ# 2% 5 z, v’ 3 u, u” € S”(af;”)}.

The graphical inner limit, denoted by g-liminf, S, is the mapping having as
its graph the set liminf, (gph S”):

gph (g—lim inf, S”) = liminf, (gph SY),
(g-liminf, S¥)(z) = {u|3IN € N, 2" % =, v’ 5 u, v’ € S¥(z")}.

If these outer and inner limits agree, the graphical limit g-lim, S¥ exists; thus,
S = g-lim, S if and only if S D g-limsup,S¥ and S C g-liminf, S¥. In
this case the notation S” & S is also used, and the mappings S* are said to
converge graphically to S. Thus,

SV & S <= gphS” — gphS.

The mappings g-limsup, S¥ and g-liminf, S are always osc, and so too
is g-lim, S¥ when it exists. This is evident from the fact that their graphs,
as certain set limits, are closed (by 4.4). These limit mappings need not be
isc, however, even when every S* is isc. But g-liminf, S” is graph-convex
when every S” is graph-convex, and then g-liminf, S is isc on the interior of
dom (g-liminf, S*) by 5.9(b).

5.33 Proposition (graphical limit formulas at a point). For any sequence of
mappings S” : IR" = IR™ one has

(g-liminf, §%)(z) = U liminf S¥(z") = lim {liminf S"(m—f—(SB)],
{2V =z} V—00 O\ 0 V—00

(g-limsup,, S¥) (z) = U limsup S¥(z") = lim llimsup S (x + 0B) ],
{2V —a} V—00 SN0 V—00

where the unions are taken over all sequences x¥ — x. Thus, S¥ converges

graphically to S if and only if, at each point & € IR", one has

lJ limsup $¥(2*) ¢ S(@)c |J liminf $¥(z"). 5(7)
V—r00 V—r00

{zv—z} {zv—z}
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Proof. Let S = g-limsup, S” and S = g-liminf, S¥. The expressions of S(x)
and S(x) as unions over all sequences x¥ — z merely restate the formulas in
Definition 5.32.

Because gph S = limsup,, gph S”, we also have through 4.1 that u € S(z
if and only if, for all e > 0 and ¢ > 0, there exists N € N# such that B(x,d) x
B(u, ) meets gphS” for all v € N, or in other words

(u+eB)NSY(x+0B) # D for all v e N. 5(8)

This means that u 4+ B meets limsup, S”(z + 0IB) for all ¢ > 0 and 6 > 0.
Since this outer limit set decreases if anything as  decreases, we conclude that
u € S(x) if and only if u € lims «, ¢ limsup, S¥(z + 61B).

Similarly, because gphS = liminf, gph S¥ we obtain through 4.1 that
u € S(z) if and only if, for all ¢ > 0 and ¢ > 0, there is an index set N € N
(instead of N#) such that 5(8) holds. Then u + B meets liminf, S (x +
0B) for all € > 0 and 6 > 0, which is equivalent to the condition that u €
limg ., g liminf, S”(x + dB). O

The characterization of graphical convergence in 5.33 prompts us to define
graphical convergence of S¥ to S at a point T as meaning that 5(7) holds at z.
In this sense, S* converges graphically to S if and only if it does so at every
point. More generally, we say that S” converges graphically to S relative to
a set X if 5(7), with ¥ constrained to X, holds for every z € X. For closed

X, this is the same as saying that the restrictions S ”} + converge graphically

to the restriction S ’ < (this being the mapping that agrees with S on X but is
empty-valued everywhere else).
The expression for graphical outer limits in 5.33 says that
(g-limsup, S”)(z) = limsup S”(z) = limsup S”(Z + 6B). 5(9)
a4 510

The expression for graphical inner limits doesn’t have such a simple bivariate
interpretation, however. For instance, graphical convergence at z is generally
weaker than the assertion that S¥(z 4+ 6B) — S(Z) as v — oo and ¢ ~ 0. The
relationship between this property and graphical convergence of S” to S will be
clarified later through the discussion of ‘continuous convergence’ of mappings
(see 5.43 and 5.44).

5.34 Exercise (uniformity in graphical convergence). Let S, S : R" = IR™.
(a) Suppose the mapping S is closed-valued. Then g-lim, S¥ = S if and
only if, for every € > 0 and p > 0, there exists N € N, such that

S(x)npB C SY(B(zx,e)) +cB

h < d veN.
§¥(@)NplB S(B(x,s>>+ezg} when |o| < p and v

(b) Suppose the mappings S” are connected-valued (e.g., convex-valued),
S = g-limsup,, S¥, S(¥) is bounded and limsup,_,; , ., d(0,S"(x)) < co; this
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last condition is certainly satisfied when S = glim, S and S(z) # (). Then,
there exist N € N, V € N(Z) and a bounded set B such that

S(z) C B and S”(x) C B for all x € V, v € N.

Guide. Derive (a) from the uniformity of approximation in set convergence
in 4.10. Note incidentally that the balls pIB could be replaced by arbitrary
bounded sets B C IR™, while the balls eIB could be replaced by arbitrary
neighborhoods U of the origin in R™.

For (b) rely on the formula for the graphical outer limit in 5(9) and then
appeal to 4.12. O

5.35 Example (graphical convergence of projection mappings). For closed sets
Cv,C C IR", one has Pgov & Pg if and only if C¥ — C.

Detail. The case where C = (), gph Po = 0, is trivial, so attention can
be concentrated on the case where C' is nonempty and dom Po = IR"; then
either side of the proposed equivalence entails the nonemptiness of C” for all
v sufficiently large. We may as well assume C¥ # () for all v.

Invoking the characterization of set convergence in 4.9, we see, with a
minor extension of the argument developed there, that the convergence of C”
to C is equivalent to having

{hmsupy d(0,C") < o0, 5(12)

limsup, Pov(2”) C Po(z) when z¥ — z,

the latter being the same as g-limsup, Pov C Pc. From knowing not only that
g-limsup, Pcv C Pe but also g-liminf, Pov D Pe, we readily conclude 5(12),
since the convergence of points (z,z") € gph Pev to (x,z) € gph Po implies
that d(0,C") < |2¥]| — |Z| < o0.

Conversely, suppose 5(12) holds and consider any z¢ and Zy € Po(xg). We
must verify that (zg, Zo) € liminf, gph Pov. The fact that g € Po(z) implies
for arbitrary e € (0,1) that for x. = (1 — €)xg + exo that Po(x.) = {Zo}.
For each v, choose any z¥ € Pcv(x.). On the basis of 5(12), the sequence
{z"} e is bounded and has all its cluster points in Pg(z.); hence it has
Zo as its only cluster point. Thus the points (z.,2") € gph Pov converge to
(xe,Zo) € gph Po, so that (z.,Zp) € liminf, gph Pov. This being true for
arbitrary € > 0, we must have (z¢, Zo) € liminf, gph Pov. O

An important property of graphical limits, which isn’t enjoyed by pointwise
limits, is their stability under taking inverses. The geometry of the definition
yields at once that

SY8 S = (SM)t& ST 5(10)

and similarly for outer and inner limits.
Another special feature of graphical limits is the possibility always of se-
lecting graphically convergent subsequences. To state this property, we use
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the terminology that a sequence of mappings S” : IR" = IR™ escapes to the
horizon if for every choice of bounded sets C C IR" and D C IR™, an index set
N € N_, exists such that

SY(x)ND =1 forall v€ N when z € C.

5.36 Theorem (extraction of graphically convergent subsequences). A sequence
of mappings S” : IR™ =% IR™ either escapes to the horizon or has a subsequence
converging graphically to a mapping S : IR™ = IR™ with dom S # ().

Proof. This is evident from 4.18, the corresponding compactness result for set
convergence, as applied to the sequence of sets gph S” in IR" x IR™. O

Graphical convergence doesn’t generally imply pointwise convergence, and
pointwise convergence doesn’t generally imply graphical convergence. A se-
quence of mappings S can even be such that both its graphical limit and its
pointwise limit exist, but the two are different! An example of this phenomenon
is displayed in Figure 5-9. Nevertheless, certain basic relations between graph-
ical and pointwise convergence follow from 5.33 and the definitions:

o g-liminf,, S¥ )
p-liminf, S C . C glimsup, S”. 5(11)
p-limsup,, S¥

In particular, it’s always true that p-lim, S¥ C g-lim, S” when both limits exist.

Fig. 5-9. Possible distinctness of pointwise and graphical limits.

Later we’ll arrive at a complete answer to the question of what circum-
stances induce graphical convergence and pointwise convergence to be the same,
cf. Theorem 5.40. More important for now is the question of what features of
graphical convergence make it interesting in circumstances where it doesn’t
agree with pointwise convergence, or where pointwise limits might not even
exist. One such feature, certainly, is the compactness property in 5.36. Others
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are suggested by the ability of graphical convergence to make sense of situa-
tions where a sequence of single-valued mappings might appropriately have a

multivalued limit.
e
/F2 {w g-lim, F¥
e~ —T1

A
\

Fig. 5-10. Convergence of rapidly oscillating functions.

For example, in models of phenomena with rapidly oscillating states the
graphical limit of a sequence of single-valued mappings may well be multival-
ued at certain points which represent instability or turbulence. A suggestive
illustration is furnished in Figure 5-10, where F¥(z) = sin(1/vz). In this
case (g-lim, F")(0) = [-1, 1], while (g-lim, F")(z) = {0} for all x # 0. For
F¥(x) = sin(vx) instead, (g-lim, F")(z) = [—1, 1] for all .

Probability theory provides other insights into the potential advantages of
working with graphical convergence. Some of these come up in the analysis of
convergence of distribution functions on IR, these being nondecreasing functions
F : R — IR such that F(z) - 0 as x~ — o0, and F(z) — 1 as ¢ — oo.
Traditionally such functions are normalized by taking them to be continuous
on the right, and the analysis proceeds through attempts to rely on pointwise
convergence in special, restricted ways. But distribution functions have limits
everywhere from the left as well as from the right, and instead of normalizing
them through right continuity, or for that matter left continuity, it’s possible
to identify them with the special mappings S : IR = IR obtained by inserting
a vertical interval to fill in the graph whenever there would otherwise be a gap
due to a jump.

0 1w IR

Fig. 5-11. Convergence of probability distribution functions with jumps.
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Then, instead of pointwise convergence properties of F¥ to F, one can
turn to graphical convergence of S¥ to S as the key. This is demonstrated in
Figure 5-11 for the distribution functions

Py = { (9GP ez
0 for x < v,

where the corresponding SV is single-valued at points x # v~!, agreeing there
with F¥(z), but S¥(z) = [0, F(z)] at # = v~*. The bounded, osc mappings
S¥ converge graphically to the mapping S : IR = IR having the single value
1 — e % when 2 > 0 and the single value 0 when z < 0, but S(0) = [0, %}

This mapping S corresponds to a distribution function F' with a jump at 0.
The ways graphical convergence might come up in nonclassical approaches
to differentiation, which will be explored in depth later, can be appreciated

from the case of the convex functions f” : IR — IR defined by

v~y | (v/2)2? for x € [—v~1, v,
() = { lz| — (1/2v) otherwise.

These converge pointwise to the convex function f(x) = |z|. The derivative
functions

(fy)l(l‘) =< vz for —v1<ax<yt
1 forxz>v!
have both a pointwise limit and a graphical limit; both have the single value
1 on the positive axis and the single value —1 on the negative axis, but the
pointwise limit has the value 0 at the origin, whereas the graphical limit has the
interval [—1, 1] there. The graphical limit makes more sense than the pointwise
limit as a possible candidate for a generalized kind of derivative for the limit
function f, and indeed this will eventually fit the pattern adopted.

{ —1 forxz < —v71,

R

/;ph ()
R
gph [grlim, ()]’

Fig. 5—12. Graphical convergence of derivatives of convex functions.

The critical role played by graphical convergence stems in large part from
the following theorem, which virtually stands as a characterization of the con-
cept. This role has often been obscured in the past by ad hoc efforts aimed at
skirting issues of multivaluedness.
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5.37 Theorem (approximation of generalized equations). For closed-valued
mappings S, S¥ : IR" = IR™ and vectors u, u”¥ € IR™, consider the gener-
alized equation S”(x) > u” as an approximation to the generalized equation
S(x) > @, the respective solution sets being (S¥)~!(u") and S~'(u), with the
elements of the former referred to as approximate solutions and the elements
of the latter as true solutions.

(a) As long as g-limsup, S¥ C S, one has for every choice of u*¥ —
that limsup, (S¥)~!(@¥) C S™'(u). Thus, any cluster point of a sequence of
approximate solutions is a true solution.

(b) If g-liminf, S > S, one has S~*(u) C .. liminf, ($¥) ™' (B(4,¢)).
In this case, therefore, every true solution is the limit of approximate solutions
corresponding to some choice of u¥ — u.

(¢) When S” & S, both conclusions hold.

Proof. In (a) the definition of the graphical outer limit is applied directly.
In (b) the representation of the inner limit in 5.33 is applied to the mappings
(S¥)~! and S |

For the wealth of applications covered by this theorem, see Example 5.2
and the surrounding discussion. In particular the condition S(z) 3 b could be
an equation F'(x) = b for a mapping F : R" — R™.

F. Equicontinuity of Sequences

In order to understand graphical convergence further, not only in its relation to
pointwise convergence but other convergence concepts for set-valued mappings,
properties of equicontinuity will be helpful.

5.38 Definition (equicontinuity properties). A sequence of set-valued mappings
SY . R" = IR™ is equi-osc at T relative to X (a set containing z) if for every
e >0 and p > 0 there exists V € N(z) such that

SY(x)NpB C SY(z)+eB forall ve N when x € VNX.

It is asymptotically equi-osc if, instead of necessarily for all v € IN, this holds
for all v in an index set N € N, which, like V', can depend on € and p.

On the other hand, a sequence is equi-isc at T relative to X if for every
e >0 and p > 0 there exists V € N () such that

SY(z)NpB C SY(x)+eB forall ve N when x € VNX.

It is asymptotically equi-isc if, instead of necessarily for all v € IN, this holds

for all v in an index set N € N, which, like V', can depend on e and p.
Finally, a sequence of set-valued mappings S¥ : IR" = IR™ is equicon-

tinuous at T relative to X if it is both equi-isc and equi-osc at T relative to
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X. Likewise, it is asymptotically equicontinuous when it is both asymptotically
equi-isc and asymptotically equi-osc.

Any sequence of mappings that is equicontinuous at Z is in particular
asymptotically equicontinuous at z, of course. But equicontinuity is a consid-
erably more restrictive property. In particular it entails all of the mappings
being continuous, whereas a sequence can be asymptotically equicontinuous at
Z without any of the mappings themselves being continuous there. For instance,
the sequence of mappings S* : IR — IR defined by

{1/v} if z >0,
SY(x) =< [-1/v,1/v] ifz =0,
{-1/v} if z <0,

has this character at £ = 0. The same can be said about sequences that are
asymptotically equi-osc or asymptotically equi-isc.

5.39 Exercise (equicontinuity of single-valued mappings). A sequence of con-
tinuous single-valued mappings F¥ : IR" — IR™ is equicontinuous at T if and
only if it is equi-osc at x. Moreover, this means that for all e > 0 and p > 0
there exist V € N(z) and N € N, such that

’F”(af;) — F”(i’)} <e forall ve N and x € V having ’F”(af;)} < p.

The mention of p can be dropped when the sequence {F"},c v is eventually
locally bounded at T, in the sense that there exist V € N(Z), N € N, and a
bounded set B such that F¥(x) € B for allx € V when v € N.

Similarly, a sequence of single-valued mappings is asymptotically equicon-
tinuous at x if and only if it is asymptotically equi-osc at T.

The traditional definition of equicontinuity in the case of single-valued
mappings doesn’t involve p along with ¢, as in 5.39, but traditional applica-
tions are limited anyway to collections of mappings that are uniformly bounded,
where the p feature makes no difference. Thus, 5.39 identifies the correct ex-
tension that equicontinuity should have for collections that aren’t uniformly
bounded. This view is obviously important in maintaining a theory of conti-
nuity of set-valued mappings that specializes appropriately in the single-valued
case, because statements in which a bounded set pIB enters in the image space
are essential in set convergence.

5.40 Theorem (graphical versus pointwise convergence). If a sequence of closed-
valued mappings S” : IR" = IR™ is asymptotically equi-osc at T, then

(g-liminf, S)(Z) = (p-liminf, S)(Z),
(g-limsup,, S*)(z) = (p-limsup,, S”)(Z).

Thus in particular, if the sequence is asymptotically equi-osc everywhere, one
has S” & S if and only if S* B S.



G. Continuous and Uniform Convergence 175

More generally for a set X C IR" and a point ¥ € X, any two of the
following conditions implies the third:
(a) the sequence is asymptotically equi-osc at T relative to X ;
(b) S¥ converges graphically to S at T relative to X;
(c) SY converges pointwise to S at T relative to X.

Proof. To obtain the first equation it will suffice in view of 5(11) to show that
G = (g-liminf, S¥)(z) C (p-liminf, S¥)(z). For any @ € G there’s a sequence
(¥, u”) — (Z,u) with u” € S(x¥). Take p > |u”| for all v and consider any
e > 0. Equi-outer semicontinuity at Z implies the existence of V' € N (z) and
Ny € N, such that S¥(z¥) N pB C S¥(z) + eB when ¥ € V and v € Ny, or
equivalently (since ¥ — ), for all v € N C Ny for some index set N € N,
such that ¥ € V when v € N. This means that u” € S¥(z)+eB for allv € N.
Since such a N € N_ exists for every € > 0, we may conclude, from the inner
limit formula in 4(2), that u € liminf, S¥(Z).

The proof of the second equation is identical, except NN is taken to belong
to N# rather than NV_.

For the rest, we can redefine S”(z) to be empty outside of X if necessary
in order to reduce without loss of generality to the case of X = IR". Then
the implication (a)4(b) = (c) and the implication (a)+(c) = (b) both follow
directly from the identities just established. There remains only to show that
(b)+(c) = (a). Suppose this isn’t true, i.e., that despite both (b) and (c)
holding the sequence fails to be asymptotically equi-osc at z: there exist € > 0,
p>0, N e N* and ¥ 7 T such that

SY(z")NpB ¢ S”(z)+eB when v e N.

In this case, for each v € N we can choose u” € S¥(x¥) with |[u”| < p but
u’ ¢ SY(z) + eB. The sequence {u"},cn then has a cluster point @, which
by virtue of (b) must belong to S(Z). Yet u” + B doesn’t meet S”(z), which
converges to S(Z) under (c). Hence u ¢ S(Z), a contradiction. O

G. Continuous and Uniform Convergence

Two other concepts of convergence, which are closely related, will further light
up the picture of graphical convergence.

5.41 Definition (continuous and uniform limits of mappings). A sequence of
mappings S : IR" = IR™ is said to converge continuously to a mapping S at
z if S¥(z¥) — S(z) for all sequences x¥ — Z. If this holds at all & € IR", the
sequence S” converges continuously to S. It does so relative to a set X C IR"
if this holds at all T € X when ¥ € X.

The mappings S* converge uniformly to S on a subset X if for every ¢ > 0
and p > 0 there exists N € N, such that
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SY(z)NpB C S(z)+eB

} for all x € X when v € N.
S(x)npB C S”(x) +eB

The inclusion property for uniform convergence should be compared to
the one automatically present by virtue of Theorem 4.10 when S* converges to
S pointwise at an individual point Zz: for every € > 0 and p > 0 there exists
N € N_ such that

SY(z)yNnpB C S(z)+eB

h € N.
S(:?:)mchS”(a‘c)JreJB} when v

By the same token, continuous convergence of S¥ to S at ¥ can be identified
with the condition that for every e > 0 and p > 0 there exists N € N_, along
with a neighborhood V' € N (z) such that

SY(x)NpB C S(z)+eB

f Il €V wh € N.
S(a‘c)ﬂp]BCS”(x)+e]B} oral aEl when v

For continuous convergence relative to X, x must of course be restricted to X.
Another way of looking at these notions is through distance functions.

5.42 Exercise (distance function descriptions of convergence). For mappings
S, S” : IR" = IR™ with S closed-valued, one has

(a) S” converges pointwise to S at a point T if and only if, for each wu,
d(u, 5*(z)) — d(u, S(z)) as v — oo;

(b) S¥ converges continuously to S at a point  if and only if, for each u,
d(u, 8" (z)) — d(u, S(z)) as v — co and © — Z;

(c) SY converges uniformly to S on a set X if and only if, for each u € IR"™
and 1 > 0 the sequence of functions h”(z) = min{d(u,S"(z)),n} converges
uniformly on X to h(z) = min{d(u, S(z)),n}.

Guide. The relationship between set convergence and pointwise convergence
of distance functions in 4.7 easily yields (a), (b) and the necessity of the func-
tion convergence in (c). For the sufficiency in (c¢) one has to appeal also to
the continuity of distance functions (in 1.20). The role of 7 is to handle the
possibility of S¥(x) or S(x) being empty. O

It’s easy to extend 5.42(b) to continuous convergence relative to a set X:
simply restrict x to X in taking limits x — .

Beyond the characterizations of convergence in 5.42, there are others that
can be based on the distance expressions d, and d p introduced in 4(11). In-
deed, the pair of inclusions used above in defining uniform convergence can
be written as d »(S”(z),S(z)) < e, whereas the ones used in defining contin-
uous convergence correspond to having d, (8”(z),S(z)) < e. Here d, could

substitute for d » by virtue of the inequalities in 4.55(a), which bracket these
expressions relative to each other as p varies.



G. Continuous and Uniform Convergence 177

Continuous convergence is the ‘pointwise localization of uniform conver-
gence’. This is made precise in the next theorem, which extends to the context
of set-valued mappings some facts that are well known for functions.

5.43 Theorem (continuous versus uniform convergence). For mappings S, S" :
R" = IR™ and a set X C IR", the following conditions are equivalent:

(a) S¥ converges continuously to S relative to X;

(b) S¥ converges uniformly to S on all compact subsets of X, and S is
continuous relative to X. Here the continuity of S is automatic from the
uniform convergence if each S is continuous relative to X and each x € X has
a compact neighborhood relative to X.

In general, whenever S¥ converges continuously to S relative to a set X
at * € X and at the same time converges pointwise to S on a neighborhood of
T relative to X, S must be continuous at T relative to X.

Proof. Through 5.42, the entire argument can be translated to the setting
of a bounded sequence of functions h” converging in one way or another to a
function h. Specifically, uniform convergence of S¥ to S on X is characterized
in 5.42(c) as meaning that for each v € IR™ and p € IR, the sequence of
functions h” defined in 5.42(c) converges uniformly on X to the function h
defined in 5.42(c). On the other hand, continuous convergence of S¥ to S at =
relative to X is equivalent through 5.42(b) to the property that, again for each
u € IR™ and p € IR, , h” converges continuously to the function h at T relative
to X. Next, S is continuous relative to X at z if and only if, for all u € IR™
and p € IR, the function h in 5.42(c) is continuous at Z relative to X. Finally,
SY converges pointwise to S on a set V' N X if and only if, in the same context,
h" converges pointwise to h on V N X.

Proceeding to the task as translated, we consider h, h¥ : X — [0, p].
Suppose h” converges continuously to h at x relative to X at x and at the
same time pointwise on V' N X for a neighborhood V' € N (z). We’ll prove that
h must be continuous at . Consider any € > 0. By continuous convergence
there exist V' € N(z) and N € N such that |h”(z) — h(Z)| < & when z € V'
and v € N. Then because h”(x) — h(z) on V N X we have |h(z) — h(Z)| < ¢
forz € VNV NX and v € N. Since V' NV € N(Z), this establishes the claim.

Suppose now that h” converges continuously to A relative to X. In partic-
ular, h” converges pointwise to h on X, so by the argument just given, h must
be continuous relative to X. Let B be any compact subset of X. We’'ll verify
that h” converges uniformly to A on B. If not,

Je >0, Ny € N# such that {z € B||h"(z) — h(z)| > e} # 0 for all v € Np.

Choosing for each v € Ny an element x¥ of this set we would get a sequence in
B, which by compactness would have a cluster point & € B. There would be
an index set N € N# within Ny such that ¥  Z. Then h”(z") 3> h(Z) by the
assumed continuous convergence, while also h(z”) + h(z) by the continuity of
h, in contradiction to ¥ having been selected with |h”(z") — h(z")| > €.
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Conversely, suppose now instead that h is continuous relative to X and
that A" converges to h uniformly on every compact subset B of X. We’ll prove
that h” converges continuously to h relative to X. Consider any point z € X
and any sequence z¥ — T in X. Let B be the compact subset of X consisting
of z and all the points z”. Consider any € > 0. By the continuity of A relative
to X there exists V € N(Z) such that

|h(z) — h(Z)| < €/2 forall x € VN B.
Next, from the uniform convergence, there exists N € N_ such that

n¥ () — h(x)| < g for all z € B when v € N.

In combination we obtain |h”(z) — h(z)| < e for all z € VN B when v € N,
which signals continuous convergence on B, hence h”(x") — h(Z).

Finally, suppose that the functions h” are continuous and that they con-
verge uniformly to h on all compact subsets of X, and consider any z € X. We
need to demonstrate that A is continuous at = relative to X, provided that x
has a compact neighborhood B relative to X. On such a neighborhood B, the
functions h” converge uniformly to h: for any € > 0 there’s an index v € IN
such that ’hﬁ(af;) — h(x)} < ¢/3 for all x € B. But also by the continuity of
h” relative to X there’s a § > 0 such that |h”(z) — h”(Z)| < e/3 for all z € B
with |x —Z| < . We can choose § small enough that all the points x € X with
|z — Z| < 0 belong to B. For such points x we then have

|h(z) — h(z)| < |h(z) —h"(x)] + |h7(x) — 7 (Z)| + |h¥ (Z) — h(T)|
< (¢/3)+(¢/3)+ (¢/3) =e.

Since we were able to get this for any € > 0 by taking 6 > 0 sufficiently small,
we conclude that h is continuous at  relative to X. O

5.44 Theorem (graphical versus continuous convergence). For mappings S, S :
R" = IR™ and a set X C IR", the following properties at T € X are equivalent:
(a) S converges continuously to S at T relative to X;
(b) S¥ converges graphically to S at T relative to X, and the sequence is
asymptotically equicontinuous at T relative to X.

Proof. Suppose first that (a) holds. Obviously this condition implies that S”
converges both pointwise and graphically to S at z relative to X, and therefore
by 5.40 that the sequence is asymptotically equi-osc relative to X. We must
show that the sequence is also asymptotically equi-isc relative to X. If not,
there would exist ¢ > 0, p > 0, N € N# and ¥ > Z in X such that

SY(z)npB ¢ SY(z")+eB when v e N.

It would be possible then to choose for each v € N an element v’ € S¥(Z)
with |u”| < p and ¥ ¢ S”(z") + eB. Such a sequence would have a cluster
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point u, necessarily in S(Z) because S¥(zZ) — S(Z), yet this is impossible when
u” +eB doesn’t meet S” ("), which also converges to S(z). The contradiction
establishes the required equicontinuity.

Now suppose that (b) holds. Consider any sequence 2 — z in X. Graphi-
cal convergence yields that limsup, S¥(z") C S(Z), so the burden of our effort
is to show for arbitrary @ € S(Z) that u € liminf, S¥(z"). Because the se-
quence of mappings is asymptotically equi-osc, we have S”(z) — S(z) by 5.40,
so for indices v in some set Ny € N, we can find v € SY(z) with u” 3 @.
Take p large enough that u¥ € pIB for all v € N. Let ¢ > 0. Because the
sequence is asymptotically equi-isc, there exist V € N (Z) and N; € N, with
the property that

SY(z)NpB C SY(x)+eB forall z € V when v € Ny.

Then for some N € N with N C Ng N Ny we have u” € S”(z") + B for all
v € N. We have shown that for arbitrary € > 0 there exists N € N, with this
property, and therefore through 4(2) that @ € liminf, S¥(z"). O

5.45 Corollary (graphical convergence of single-valued mappings). For single-
valued mappings F, F" : IR" — IR, the following conditions are equivalent:
(a) F¥ converges continuously to F at Z;
(b) F¥ converges graphically to F at Z, and the sequence is eventually
locally bounded at Z, i.e., there exist V € N (Z), N € N, and a bounded set
B such that F¥(z) € B for allx € V when v € N.

Proof. It’s evident from 5.44 and the definition of continuous convergence
that (a) implies (b). On the other hand, the local boundedness in (b) implies
that every sequence F”(z”) with ¥ — Z is bounded, while the graphical
convergence in (b) along with the single-valuedness of F' ensures that the only
possible cluster point of such a sequence is F'(Z). Hence in (b), F¥(x¥) — F ()
whenever ¥ — 7. O

5.46 Proposition (graphical convergence from uniform convergence). Consider
SY.S:IR"= IR™ and a set X C IR".

(a) If the mappings SY are osc relative to X and converge uniformly to S
on X, then S is osc relative to X and S¥ & S relative to X.

(b) If the mappings S” are continuous relative to X and converge uniformly
to S on all compact subsets of X, and if each point of X has a compact
neighborhood relative to X (as is true when X is closed or open), then S
converges graphically to S relative to X. In particular, this holds when S* and
S are single-valued on X.

Proof. 1In (a), let’s begin by verifying that S is osc relative to X. Suppose
lim, o0 (2", u") = (Z,u) with 27,2 € X and u* € S(z"). We have to show
that w € S(x). Pick p large enough that u”, @ € int pIB and fix € > 0. The
uniform convergence of S to S on X gives us the existence of N € N_, such
that (through the second inclusion in Definition 5.41):
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u® e S")NpB C SY(x")+eB for all kK € IN when v € N.
Taking the limsup with respect to x for each fixed v € N, we get
u € limsup,, [S”(z") +eB] = [limsup, S”(z")] +eB C S¥(z) + eIB;

here the equality follows from eIB being compact, while the inclusion follows
from S” being osc relative to X. Because |u| < p, this allows us to conclude that
d(ﬂ, S (a_c)) < 2¢, since by the first inclusion in Definition 5.41 we necessarily
have, for v sufficiently large, that S¥(z) N pIB C S(Z) 4+ ¢IB. This implies that
u € S(Z), inasmuch as € > 0 can be chosen arbitrarily small.

To get S & S relative to X, we must show for G := (X x R™)NgphS
and G := (X x IR™)NgphS” that

(X x R™) Nlimsup, G¥ C G C liminf, G”. 5(13)

For the first inclusion, suppose (z”,u”) — (Z,u) with z € X and (z¥,u”) € G¥
for all v in some Ny € N_. Choose p large enough that u”, @ € int pIB. The
uniform convergence of S¥ to S on X yields for any € > 0 the existence of
N € N, such that N C Ny and (through the first inclusion in Definition 5.41):

u’ € SY(x¥)NpB C S(x¥)+eB for all v e N.

Since S is osc relative to X, as just demonstrated, we obtain on taking limsup
with respect to v that @ € S(Z) + eIB, where again limsup, [S(z") + eB] =
[limsup, S(z")] + eIB. The choice of £ > 0 being arbitrary, we get u € S(z),
hence (z,u) € G. Thus, the first inclusion in 5(13) is correct.

For the second inclusion in 5(13), consider any (u,z) € G and any p > |u|.
The uniform convergence provides for any x € IN a set N,, € N_ such that
(through the second inclusion in Definition 5.41):

ue Sx)NpB C SY(x)+ (1/k)B for all v € Ny.

Then d(a, S¥(z)) < 1/k for v € Ny, hence limsup,, d(a, S¥(z)) = 0. It follows
that we can find v” € S¥(z) with v — u. Setting x¥ = z for all v € IN, we
obtain (z¥,u”) € G¥ with (z¥,u") — (Z,u), as required.

Part (b) is obtained immediately from the combination of Theorem 5.44
with Theorem 5.43. O

The next two convergence theorems extend well known facts about single-
valued mappings to the framework of set-valued mappings.

5.47 Theorem (Arzela-Ascoli, set-valued version). If a sequence of mappings
SY . IR"™ = IR™ is asymptotically equicontinuous relative to a set X, it admits
a subsequence converging uniformly on all compact subsets of X to a mapping
S : IR" = IR™ that is continuous relative to X .

Proof. This combines 5.44 with the compactness property in 5.36 and the
characterization of continuous convergence in 5.43. O
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In the following we write S¥(z) ~S(z) to mean that S¥(x) — S(z) with
SY(z) € S¥*1(z) C - -+, and similarly we write S¥(z) ~ S(z) when the opposite
inclusions hold; see 4.3 for such monotone set convergence.

5.48 Theorem (uniform convergence of monotone sequences). Consider set-
valued mappings S, S¥ : IR" = IR"™ and a set X C dom S. Suppose either

(a) S¥(x) ~S(z) for all x € X, with S osc and S isc relative to X, or

(b) S¥(x)~ S(x) for all x € X, with S isc and S osc relative to X.
Then S must actually be continuous relative to X, and the mappings S¥ must
converge uniformly to S on every compact subset of X.

Proof. 1t suffices by Theorem 5.43 to demonstrate that, under either of these
hypotheses, S converges continuously to S relative to X. For each x € X,
S(z) has to be closed, and there’s no loss of generality in assuming S”(x) to
be closed too. The distance characterizations of semicontinuity in 5.11 and
continuous convergence in 5.42(b) then provide a bridge to a simpler context.

For (a), fix any u € R™ and let d”(z) = d(u, S”(z)) and d(z) = d(u, S(z)).
By assumption we have d”(z) ~ d(x) for all x € X, with d Isc and d” usc relative
to X. We must show that d"(z") — d(Z) whenever ¥ — z in X. For any
e > 0 there’s an index vy such that d¥(z) < d(Z) + ¢ when v > 1. Further,
there’s a neighborhood V' of Z relative to X such that d(z) > d(z) — ¢ and
d"(z) < d"(z) + ¢ when = € V. Next, there’s an index 11 > vy such that
x¥ € V when v > v;. Putting these properties together, we see for v > 14
that d”(z”) > d(z¥) > d(Z) — ¢, and on the other hand, d”(z") < d"(z¥) <
d"(z) + € < d(Z) + 2¢. Hence }d”(w”) — d(f)} < 2e when v > vy.

For (b), the argument is the same but the inequalities are reversed because,
instead, d¥(z) ~d(z) for x € X, with d usc and d” lsc relative to X. O

When the mappings S and S” are assumed to be continuous relative to X
in Theorem 5.48, cases (a) and (b) coalesce, and the conclusion that S* con-
verges uniformly to S on compact subsets of X is analogous to Dini’s theorem
on the convergence of monotone sequences of continuous real-valued functions.

H?* Metric Descriptions of Convergence

Continuous convergence and uniform convergence of set-valued mappings can
also be characterized with the metric for set convergence that was developed
in the last part of Chapter 4.

5.49 Proposition (metric version of continuous and uniform convergence).

(a) A sequence of mappings S¥ : IR" = IR™ converges continuously at
to a mapping S if and only if, for all € > 0, there exist V € N (z) and N € N,
such that, for all x € V and v € N, one has cﬂ(S”(m), S(f)) <e.

(b) A sequence of mappings S” : R" = IR™ converges uniformly on a set
X C IR" to a mapping S if and only if, for all ¢ > 0, there exist N € N, such
that, for all v € N and x € X, one has d(S”(z), S(z)) <e.
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Proof. We confine ourselves to proving (b); the proof of (a) proceeds on the
same lines. We appeal to estimates in terms of d, and what they say for d,.

From the definition of d 0, it’s immediate that the sequence {S"},cn converges
uniformly to S on X if and only if

Ve>0,Vp>0,3NeN,: d,(S(x),S(z))<e VzeX,VveN.

The relationship between d , and d, recorded in 4.37(a) allows us to rewrite
this condition as

Ve>0,Vp>0,3INeN: d,(S"(z),S(x) <e VzeX,VveN.
It remains to be shown that this latter condition is equivalent to

Ve>0,INeN,: d(S"(z),S(z))<e VzeX,VveN.

Let’s begin with ‘«<’; suppose it’s false. Then for some z € X, ¢ >
0, p > 0and N € N#, we have d,(S”(z),S(z)) > ¢ for all v € N. The
inequality in 4.41(a) implies then that d(S¥(z),S(z)) > ¢ = e *e for all
v € N, thus invalidating the assumption that for &’ there is N’ € N such that
d(S¥(z),S(z)) <& forall v e N’

For the ‘=’ part we likewise proceed by contradiction. Suppose that
for some = € X, there are ¢ > 0 and N € N# such that for all v € N,
d(5”(z),S(z)) > e. The inequality in 4.41(b) for d implies that, for any
p€ IR, and v € N, we have

(1—e?)d,(S"(z),S(z)) +e (B +p+1) >d(S"(z),S(x)) > e,

where ¥ = ma,x{d(O, S”(a})),d(O, S(:l:))} By assumption, dg (S”(af:), S(a:)) is
arbitrarily small for v large enough, say less than ¢; without loss of generality,
this may be taken to be the case for all v € N. Then, with § = d(O, S(m)),
since ¥ < B+ ¢ for any p € IR, and all v € N, we have
e—eP(B+et+p+1)

d,(S"(z),S(x)) > e, = T :

In fixing p > 0 arbitrarily and taking ¢’ = ¢, it follows that there couldn’t be
an index set N’ € N such that d,(S”(x),S(z)) <&’ for all v € N’ O

Graphical convergence of mappings can be quantified as well. Such conver-
gence is identified with set convergence of graphs, so one can rely on a metric
for set convergence in the space cl-sets_,(/R" x IR™) to secure a metric for
graph convergence in the space

osc-maps_ (IR",IR™):={S:R" = IR™|S osc, domS #{D}.
Z0

It’s enough to introduce for any two mappings S, T" € osc-maps_ JR", IR™) the
graph distance
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d(T,S) := d(gphS,gphT)

along with, for p > 0, the expressions

~ ~

d,(T,S) :=d,(gphS,gphT), d,(T,S):=d,(gphS,gphT).

All the estimates and relationships involving d, d, and d p in the context of
set convergence in 4.37-4.45 carry over immediately then to the context of
graphical convergence.

5.50 Theorem (quantification of graphical convergence). The graph distance d
is a metric on the space osc-maps 5éw(]R”, IR™), whereas d, is a pseudo-metric

for each p > 0 (but d p is not). They all characterize graphical convergence:

S =S «— d(S",S)—0
< d,(5",5)— 0 for all p greater than some p
— d,(5",8) =0 forall p greater than some p.

Moreover, (osc—ma,ps . SR IR™), dl) is a separable, complete metric space that
is locally compact.

Proof. This merely translates 4.36, 4.42, 4.43 and 4.45 to the case where the
sets involved are the graphs of osc mappings. O

In the quantification of set distances in Chapter 4, it was observed that the
expressions could also be utilized without requiring sets to be closed. Similarly
here, one can invoke d,(S,T") and d p(S,T) even when S and T aren’t osc, but
of course these values are the same as d,(clS, c1T) and d,(clS, c1T). In this
sense we can speak of the graph distance between any two elements of

maps(R", R™) := the space of all S: R" = R™.

For this larger space, however, d is not a metric but just a pseudo-metric.

Graph-distances can be used to obtain estimates between the solutions of
generalized equations like those in Theorem 5.37, although we won’t take this
up here. For more about solution estimates in that setting, see Theorem 9.43
and its sequel.

I? Operations on Mappings

Various operations can be used in constructing set-valued mappings, and ques-
tions arise about the extent to which these operations preserve properties of
continuity and local boundedness. We now look into such matters systemati-
cally. First are some results about sums of mappings, which augment the ones
in 5.24.
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5.51 Proposition (addition of set-valued mappings). Let Sy, So : R" = IR™.
(a) Sy + S9 is locally bounded if both Sy and Sy are locally bounded.

(b) S1 + S is osc if the mappings S; and Sy are osc and the mapping
(z,y) — S1(x) N [y — S2(x)] is locally bounded, the latter being true certainly
if either Sy or Sy is locally bounded.

(c) S1+ 82 is totally continuous at T if Sy and Sy are totally continuous at
T with [Sl(i‘) X Sg(f)]oo = Sl(i‘)w X Sg(i‘)oo, and Sl(.i_?)oo N [—52(.2_7)00] = {0}
Both of these conditions are satisfied if either Sy or Sy is locally bounded at T,
whereas the first is satisfied if S1(z) and S2(Z) are convex sets.

Proof. In (a), the local boundedness of S; and Sy is equivalent to having
S1(B) and S2(B) bounded whenever B is bounded (by 5.15). The elementary
fact that (57 + S2)(B) C S1(B) + S2(B) then gives us (51 + S2)(B) bounded
whenever B is bounded.

In (b), the mapping T : (x,y) — Si(z) N [y — S2(x)] has domT =
gph(S; + S3). This mapping is osc: its graph is the intersection of the set
{(a:,y,ul) } (z,u1) € gph Sl} with the set {(x,y,y — Usg) ’ (z,u2) € gph Sg},
both being closed since S; and S5 are osc. When T is also locally bounded,
dom T has to be closed, and this means that S; + S is osc.

Similar reasoning establishes that the mapping 7" in the argument for (a)
is locally bounded when either S; or Ss is locally bounded, because T'(B, B’) C
S1(B) N (B’ — S2(B)) for any bounded sets B C IR" and B’ C IR™.

In (c), we simply invoke the result in 4.29 on convergence of sums of sets,
but do so in the context of total continuity in 5.28. Then we make use of the
facts in 3.12 about the closure of a sum of sets. O

5.52 Propeosition (composition of set-valued mappings). Consider the mapping
ToS:R"=IRP for S: R" =2 R™ and T : R™ = IR".

(a) ToS is locally bounded if both S and T are locally bounded.

(b) TeS is osc if S and T are osc and the mapping (x,w) — S(z)NT ! (w)
is locally bounded, as is true when either S or T~ is locally bounded.

(c) ToS is continuous if S and T are continuous and S is locally bounded.

(d) ToS is continuous at Z if S is continuous at & and T is continuous with
T~ locally bounded, or alternatively, if S it totally continuous at & and T is
continuous with (T>=)~1(0) N S(z)> = {0}.

(e) TS is totally continuous at Z if S is totally continuous at z, T is totally
continuous, (T>)~*(0) N S(z)> = {0}, and (T)(S(z)>=) C T(S(z))"~.

Proof. For (a), we can rely on the criterion in 5.15: If S and 7" are both locally
bounded, we know for every bounded set B C IR" that S(B) is bounded in
IR™ and therefore that T'(S(B)) = (T=S)(B) is bounded in IRP.

For (b), denote the set-valued mapping (z,w) — S(z) N T~ (w) by R.
The graph of R is closed, because it consists of all (z,w,u) such that (z,u,w)
belongs to [(gphS) x IRP] N [IR™ x gphT]; the latter is closed by the outer
semicontinuity of S and 7. Thus, R is osc. Under the assumption that R is
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locally bounded as well, dom R is closed by 5.25(a). But dom R = gph(TS5).
Therefore, TS is osc under this assumption.

Assertions (d) and (e) are immediate from 5.30(c) and (d) and the defini-
tions of continuity and total continuity, while (c) is a special case of the second
version of (d) applied at every point z. O

As a special case in 5.52, either S or T" might be single-valued, of course.
Continuity in the usual sense could then be substituted for continuity or outer
semicontinuity as a set-valued mapping, cf. 5.20.

Other results can similarly be derived from the ones in Chapter 4 on the
calculus of convergent sets. For example, if S(x) = S1(x)NS2(x) for continuous,
convex-valued mappings S; and So, and if Z is a point where S1(Z) and S2(Z)
can’t be separated, then S is continuous at . This is clear from 4.32(c).

In a similar vein are results about the preservation of continuity of set-
valued mappings under various forms of convergence of mappings.

Let’s now turn to the convergence of images and the preservation of graph-
ical convergence under various operations. The conditions we’ll need involve
restrictions on how sequences of points and sets can escape to the horizon, and
consequently they will draw on the concept of total set convergence (cf. Defini-
tion 4.23). By total graph convergence SV £y S one means that gph S* 5 gph S.
By appealing to horizon limits and to S*, the horizon mapping associated
with S, this mode of convergence is supplied with a characterization that is
well suited to various manipulations. Namely, it follows from the description
of total set convergence in 4.24 that

Sv it S — S” & S, limsup,’ gphS” C gph S*=. 5(14)

From the criteria collected in Proposition 4.25, one has that S¥ & S entails
the stronger property S¥ Y5 S whenever the graphs gph S” are convex sets or
cones, or are nondecreasing or uniformly bounded. Moreover, again from the
developments in Chapter 4, one has

Sl’“i>5'1, SS%SQ — STUSSL)S]_USQ,
and provided that (S7 x S2)> = S5° x 55°,
Sy Ly 81, SY L Sy = Sy x S¥ L 51 x Ss.

It should be noted that total convergence S¥ s S is not ensured by S”
converging continuously to S. A counterexample is provided by the mappings
S¥ : R' = R' defined by S¥(x) = {0,v} when z = 1/v but S¥(x) = {0} for all
other x. Taking S(z) = {0} for all x we get S”(z”) — S(z) whenever z¥ — z,
yet it’s not true that gph S¥ y gphS.

A series of criteria (4.21-4.28) have already been provided for the preser-
vation of set limits under certain mappings (linear, addition, etc.). We now
consider the images of sets under an arbitrary mapping S : IR = IR™ as well
as the images of sets under converging sequences of mappings.
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5.53 Theorem (images of converging mappings). Let S,S5” : R" = R® be
mappings and C, C" subsets of IR".

(a) liminf, S¥(C¥) D S(C) whenever liminf, C¥ > C and SY converges
continuously to S.

(b) limsup, S*(C¥) C S(C) whenever limsup, C* C C, limsup; C* C
C>=,S" % S, and (S=)~1(0) N C= = {0}.

(¢) Further, limsup;’ S¥(C¥) C S(C)> if in addition, (S>)(C>~) C S(C)>=
and limsup,” gph S¥ C gph S*>.

In particular, S¥(C") — S(C) when S” converges continuously to S,

CY" Y C and (S<)~1(0) N C> = {0}, or when S” converges both continuously
and totally to S, C¥ — C and (S=)~1(0) = {0}.

Proof. Statement (a) is a direct consequence of the definitions of the inner
limit (in 4.1) and continuous convergence; recall from 5.44 that continuous
convergence of S¥ to S implies the continuity of S.

For (b) we need to show that u € S(C) when u” > u for some N € N#
with u” € S¥(C¥) for all v € N. Pick ¥ € (S¥)~!(u”) N C”. If the sequence
{z"},en clusters at a point z, then z € C' (because C' D limsup, C"), and
since S¥ Y5 S one has u € S(x) C S(C). Otherwise, the x* cluster at a point
in the horizon of R", say dirz (with z # 0). Since (z”,u”) € gphS”, this
would imply that (z,0) € limsup:® gph S¥ C gph S, i.e., z € (S=)~1(0), but
the assumption (S=)~1(0) U C= = {0} excludes such a possibility.

For (c) one shows that limsup;’ S*(C") C S(C)> when limsup;’ gph S¥ C
gph S, i.e., u € S(C)*> whenever u” 3> dir u for some index set N € N# with
u? € S¥(CV) for v € N. Pick z¥ € (8¥)~Y(u”) N C¥. If the points =¥ cluster
at x € R", then x € C' (which includes limsup C"¥) and since by assumption
lim sup;’ gph S¥ C gph S, it follows that u € S=(0) C S=(C=) C S(C)>.
Otherwise, there exist Ny C N, Ny € NZ%, x # 0 such that x” ~, dirz; note
that then z € C* D limsup;’ C”. Since for v € Ny, (z”,u”) C gph S and
|u”| 7 oo, |x¥| /oo, there exists AY ~ 0, v € Ny such that \” (2, u”) clusters at
a point of the type (ax, fu) # (0,0) with a >0, 8> 0. If 5 =0, then 0 # x €
(S=)~1(0)NC* and that is ruled out by the assumption that (S=)~}(0)NC> =
{0}. Thus 8 > 0, and u € (S=)(af~tz) C (S=)(C=) C S(C)= where the
second inclusion comes from the last assumption in (c).

The two remaining statements are just a rephrasing of the consequences
of (a) and (b) when limits or total limits exists, making use of the properties
of the inner and outer horizon limits recorded in 4.20. O

5.54 Exercise (convergence of positive hulls). Let C¥,C C IR"™ be such that
Cv Y O with C compact, and 0 ¢ C. Then posC” X5 posC.

Guide. Let V be an open neighborhood of 0 such that V N C = (). Let
S be the mapping define by S(z) := pos{z} on its domain R"\V. Observe
that S is continuous relative to dom .S, and that’s enough to guarantee that
S(C") — S(C) under the conditions C* £ C and C*> = {0}. Finally, use the
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fact that the sets posC” and posC' are cones in order to pass from ordinary
convergence to total convergence by the criterion in 4.25(b). O

J? Generic Continuity and Selections

Semicontinuous mappings are ‘mostly’ continuous. The next theorem makes
this precise. It employs the following terminology. A subset A of a set X C IR"
is called nowhere dense in X if no point z € X NclA has a neighborhood
V e N(z) with X NV C cl A, or in other words if

cly denotes closure relative to X,

it (clx A) =0, where {int + denotes interior relative to X.

It’s called meager in X if it’s the union of countably many sets that are nowhere
dense in X. Any subset of a meager set is itself meager, inasmuch as any subset
of a nowhere dense set is nowhere dense. Elementary examples of sets A that
are nowhere dense in X are sets the form A = Y\ (intx V) for Y C X with
Y = clx Y, or of the foorm A = (clx Y)\Y for Y € X with Y = intx Y.
It’s known that when X is closed in R" (e.g., when X = IR" itself), or for
that matter when X is open in IR", every meager subset A of X has dense
complement: cl[X\A] D X.

5.55 Theorem (generic continuity from semicontinuity). For S : R" = R™
closed-valued, if S is osc relative to X C IR", or isc relative to X, then the set
of points x € X where S fails to be continuous relative to X is meager in X.

Proof. Let B be the collection of all rational closed balls in R™ (i.e., balls
B = B(u,p) for which p and the coordinates of u are rational). This is a
countable collection which suffices in generating neighborhoods in IR™: for
every 4 € IR™ and W € N (u) there exists B € B with u € int B and B C W.

Let’s first deal with the case where S is osc relative to X. Let X consist
of the points of X where § fails to be isc relative to X. We must demonstrate
that Xy can be covered by a union of countably many nowhere dense subsets
of X. To know that S is isc relative to X at a point = € X, it suffices by 5.6(b)
to know that whenever @ € S(z) and B € N (@) N B, there’s a neighborhood
V € N(z) with X NV C S71(B). In other words, the points Z € X \ X; are
characterized by the property that

VBeRB: €S ' (intB) = zeinty[SY(B)NX].

Thus, each point of Xy belongs to [S™!(int B)NX]\ intx[S™1(B)NX] for some
B € B. Therefore

XoC |J {¥B\ (intx Yp)} with Yp:=S""(B)nX.
BeB
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Each of the sets Y \ (int y Y5) in this countable union is nowhere dense in X,
because Y is closed relative to X by 5.7(b).

We turn now to the claim under the alternative assumption that S is isc
relative to X. This time, let X, consist of the points of X where S is osc
relative to X. Again the task is to demonstrate that Xy can be covered by
a union of countably many nowhere dense subsets of X. For any z € X and
u ¢ S(z), there’s a neighborhood B € N (u) N B such that B N S(z) = 0; here
we utilize the assumption that S is closed-valued at Z. Hence in view of 5.6(a),
for S to be osc relative to X at such a point Z, it’s necessary and sufficient
that, whenever B € B and S(Z) N B = (), there should exist V' € N (Z) yielding
S(z)Nint B = () for all x € X NV. Equivalently, the points Z € X \ X, are
characterized by the property that

VBeB: ¢S ' (B) = z¢cy[S ! (intB)NX].

Thus, each point of Xy belongs to clx[S™!(int B) N X]\[S™(B)N X] for some
B € B. Therefore

Xo € |J {(clx YB)\Yp} with Yp:=S"(int B) N X.
BeB

Each of the sets (cly Y5)\Yp in this countable union is nowhere dense in X,
because Yp is open relative to X by 5.7(c). O

5.56 Corollary (generic continuity of extended-real-valued functions). If a func-
tion f : IR™ — IR is Isc relative to X, or usc relative to X, then the set of points
x € X where f fails to be continuous relative to X is meager in X.

Proof. This applies Theorem 5.55 to the profile mappings in 5.5. O

The continuity properties we’ve been studying for set-valued mappings
have an interesting connection with selection properties. A selection of S :
R" = IR™ is a single-valued mapping s : domS — IR™ such that s(z) €
S(z) for each z € dom S. It’s important for various purposes to know the
circumstances under which there must exist selections s that are continuous
relative to dom S.

Set-valued mappings that are merely osc can’t be expected to admit con-
tinuous selections, but if a mapping S : IR" = IR™ is isc at T relative to
dom S, there exists for each u € S(Z) a selection s : dom .S — IR™ such that s
is continuous at Z relative to dom S and s(Z) = @. This follows from the
observation through 5.11(b) that limsup,_;d(a,S(z)) < d(u,S(z)) = 0;
for each z € dom S one can choose s(z) to be any point u of S(z) with
lu — u| < d(u,S(x)) + |z — z|. However, it doesn’t follow from S being isc
on a neighborhood of Z that a selection s can be found that is continuous on a
neighborhood of . Something more must usually be demanded of S besides a
continuity property in order to get selections that are continuous at more than
just a single point. The ‘something’ is convex-valuedness.
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The picture is much simpler when the mapping is continuous rather than
just isc, so we look at that case first.

5.57 Example (projections as continuous selections). Let S : IR" = IR™ be
continuous relative to dom S and convex-valued. For each uw € IR™ define
sy : IR" — IR™ by taking s,(x) to be the projection Pg,(u) of u on S(x).
Then s, is a selection of S that is continuous relative to dom S.

Furthermore, for any choice of U C IR™ such that clU D rge S the family
of continuous selections {sy }vey fully determines S, in the sense that

S(z) = c{su(z) |[u € U} for every x € domS.

Detail. The continuity of S relative to dom S ensures that S is closed-valued.
Thus S(z) is a nonempty, closed, convex set for each z € dom S, and the
projection mapping Pg,) is accordingly single-valued and continuous (cf. 2.25);
in fact Pg(,(u) depends continuously on z for each u (cf. 4.9). In other words,
su(x) is a well defined, uniquely determined element of S(x), and the mapping
Sy 1s continuous. If clU D rge S, there exists for each z € dom S and u € S(x)
a sequence of points u” € U with u” — u, and for this we have s, (z) — s;(z)
by the continuity of Pg(,(u) with respect to u. This yields the closure formula
claimed for S(x). O

Fig. 5-13. A continuous selection s from an isc mapping S.

Let’s note in 5.57 that U could be taken to be all of IR™, and then actually
S(z) = {su(z) |u € U}, since s, (x) = u when u € S(z). On the other hand, U
could be taken to be any countable, dense subset of IR™ (such as the set of all
vectors with rational coordinates), and we would then have a countable family
of continuous selections that fully determines S.

The main theorem on continuous selections asserts the existence of such a
countable family even when the continuity of S is relaxed to inner semicontinu-
ity, as long as dom S exhibits o-compactness. Recall that a set X is o-compact
if it can be expressed as a countable union of compact sets, and note that in
IR™ all closed sets and all open sets are o-compact.

5.58 Theorem (Michael representations of isc mappings). Suppose the mapping
S : IR" = IR™ is isc relative to dom S as well as closed-convex-valued, and that
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dom S is o-compact. Then S has a continuous selection and in fact admits a
Michael representation: there exists a countable collection {s;};c of selections
s; for S that are continuous relative to dom S and such that

S(z) =cl{si(z)|i €I} forevery x € domS§.

Proof. Part 1. Let’s begin by showing that if X is a compact set such that
int S(z) # () for all x € X, then there is a continuous mapping s : X — IR™
with s(z) € int S(x) for allxz € X. For each x € X choose any u, € int S(z). By
Theorem 5.9(a) there’s an open neighborhood V. of x such that u, € int S(z’)
for all 2’ € V Ndom S. The family {V,}.cx is an open covering of X, so by
the compactness of X, one can extract a finite subcovering, say {V;};c; with I
finite. Associated with each V; is a point u; such that

u; € int S(x) forall =z € V;NdomS.

Define on X the functions 6;(x) := min{l, d(z, X\ Vi)}, which are continuous
(since distance functions are continuous, see 1.20). Let 6(x) := .., 0s(z) >0
and \;(z) := 0;(x)/0(z), noting that these expressions are continuous relative
to z € X with A\j(z) >0 and ), ; Ai(z) = 1. Then take

s(z) := Z)\Z(x)uz forall ze€ X.
icl

Since A\;(z) = 0 when = ¢ V;, only points u; € int S(z) play a role in the sum
defining s(z). Hence s(z) € int S(x) by the convexity of int S(z) (which comes
from 2.33).

Part 2. Next we argue that for any compact set X C dom S and any n > 0,
it’s possible to find a continuous mapping s : X — IR™ with d(s(x),S(z)) <n
for all x € dom S. We apply Part 1 to the mapping S, : X = IR™ defined by
Sy(x) := S(x) + nB. To see that S, fits the assumptions there, note that it’s
closed-convex-valued (by 3.12 and 2.23) with int S, (z) # 0 for all x € X (by
2.45(b)). Moreover S, is isc relative to X by virtue of 5.24.

Part 3. We pass now to the higher challenge of showing that for any
compact set X C dom S there’s a continuous mapping s : X — IR™ with
s(z) € S(x) for all x € X. From Part 2 with n = 1, we first get a continuous
mapping s” with d(s°(z), S(z)) < 1 for all z € X. This initializes the following
‘algorithm’. Having obtained a continuous mapping s” with d(s”(z), S(x)) <
27" for all x € X, form the convex-valued mapping S” : X = IR™ by

SY(x) = S(z) N [s¥(x) + 27" B]

and observe that it is isc relative to dom S = X by 4.32 (and 5.24). Applying
Part 2, get a continuous mapping s¥*! : X — IR™ with the property that
d(s**t1(x), S¥(x)) < 2=¥+D for all z € X. Then in particular

d(s"TH(x), S(x)) <27+ forall z e X,
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but also d(s*T!(z), s"(x)) < 2~¥+) 4 27¥ < 2=(*=1 By induction, one gets
d(su—i—n(l_), SV(Q?)) < 2—(1/—}—/{—2) NS 2—(1/—1—1) +27V 4 2—(1/—1) < 2—(1/—2),

so that for each x € X the sequence {s”(m)}y IV has the Cauchy property.
For each x the limit of this sequence exists; denote it by s(z). It follows from
d(s¥*t(z), S(x)) < 27+ that s(z) € S(x). Since the convergence of the
functions s” is uniform on X, the limit function s is also continuous (cf. 5.43).

Part 4. To pass from the case in Part 3 where X is compact to the case
where X is merely o-compact, so that we can take X = dom .S, we note that
the argument in Part 1 yields in the more general setting a countable (instead
of finite) index set I giving a locally finite covering of X by open sets V;: each
x belongs to only finitely many of these sets V;, so that in the sums defining
Ai(x) and s(z) only finitely many nonzero terms are involved.

Part 5. So far we have established the existence of at least one continuous
selection s for S, but we must go on now to the existence of a Michael represen-
tation for S. Let @ stand for the rational numbers and @, for the nonnegative
rational numbers. Let

Q= {(u,p) € Q" x Q. | (rge S) Nint B(u, p) # 0}.

For any (u,p) the set S™!(int IB(u, p)) is open relative to dom S (cf. 5.7(c)),
hence o-compact because dom S is o-compact. For each (u,p) € @, the
mapping Sy, : R" = R™ with S, ,(z) := cl[S(z) N int B(y,p)], has
dom S, , = S~ !(int B(u, p)), and it is isc relative to this set (by 4.32(c)).
Also, Sy, is convex-valued (by 2.9, 2.40). Hence by Part 4 it has a continuous
selection s, , : S~ (int B(u, p)) — R™.

Let Z denote the integers. For each k € IN and (u, p) € Q let CF | be the
union of all the balls of the form

1 1 1
B C S™!(int B(u, p)) with B = ]B(Ea:, <% - W)) for some x € Z".
Observe that Cf | is closed and [ J;—, Ck ) = S~!(int B(u, p)). For each k € IV
and (u, p) € @ the mapping S{f’p : IR" = IR™ defined by

gk _ {su,p(x)} ifxeC’S’p,
e S(x) otherwise,

is isc relative to the set dom Sfj’p = dom S (because the set domS\C{fip is

open relative to dom S). Also, 557 , 1s convex-valued. Again by Part 4, we get

k

the existence of a continuous selection: s¥ , - dom S — IR™. In particular, sy ,

is a continuous selection for S itself.

This countable collection of continuous selections {sﬁ oY (up)eQ, ken fur-
nishes a Michael representation of S. To establish this, we have to show that

cl{sﬁyp(a:) | (u,p) €Q, ke N} = 5(x).
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This will follow from the construction of the selections. It suffices to demon-
strate that for any given ¢ > 0 and u € S(&) there exists (u,p) with
|a— sl ,(Z)| <e. But one can always find v € @" and p € @, with p < & such
that u € S(z) Nint B(u, p) and then pick k sufficiently large that z belongs to
C% .. In that case si (Z) has the desired property. O

5.59 Corollary (extensions of continuous selections). Suppose S : R" = IR™ is
isc relative to dom S as well as convex-valued, and that dom S is o-compact.
Let 5 be a continuous selection for S relative to a closed set X C dom S (i.e.,
5(x) € S(z) for x € X, and § is continuous relative to X ). Then there exists
a continuous selection s for S that agrees with § on X (i.e., s(xz) € S(z) for
x € dom S with s(z) = 5(x) if x € X, and s is continuous relative to dom S).

Proof. Define S(x) = {5(z)} for € X but S(x) = S(x) otherwise. Then
dom .S = dom S, and the requirements are met for applying Theorem 5.58 to
S. Any continuous selection s for S has the properties demanded. O

Commentary

Vasilesco [1925], a student of Lebesgue, initiated the study of the topological prop-
erties of set-valued mappings, but he only looked at the special case of mappings
S : IR = IR with bounded values. His definitions of continuity and semicontinuity
were based on expressions akin to what we now call Pompeiu-Hausdorff distance. For
his continuous mappings he obtained results on continuous extensions, a theorem on
approximate covering by piecewise linear functions, an implicit function theorem and,
by relying on what he termed quasi-uniform continuity, a generalization of Arzeld’s
theorem on the continuity of the pointwise limit of a sequence of continuous mappings.
It was not until the early 1930s that notions of continuity and semicontinuity were
systematically investigated for mappings S : IR" = IR™, or more generally from one
metric space into another. The way was led by Bouligand [1932a], [1933], Kuratowski
[1932], [1933], and Blanc [1933].

Advances in the 1940s and 1950s paralleled those in the theory of set convergence
because of the close relationship to limits of sequences of sets. This period also
produced some fundamental results that make essential use of semicontinuity at more
than just one point. In this category are the fixed point theorem of Kakutani [1941],
the genericity theorem of Kuratowski [1932] and Fort [1951], and the selection theorem
of Michael [1956]. The book by Berge [1959] was instrumental in disseminating the
theory to a wide range of potential users. More recently the books of Klein and
Thompson [1984] and Aubin and Frankowska [1990] have helped in furthering access.

With burgeoning applications in optimal control theory (Filippov [1959]), statis-
tics (Kudo [1954], Richter [1963]), and mathematical economics (Debreu [1967],
Hildenbrand [1974]), the 1960s saw the development of a measurability and integra-
tion theory for set-valued mappings (for expositions see Castaing and Valadier [1977]
and our Chapter 14), which in turn stimulated additional interest in continuity and
semicontinuity in such mappings as a special case. The theory of maximal monotone
operators (Minty [1962], Brezis [1973], Browder [1976]), manifested in particular by
subgradient mappings associated with convex functions (Rockafellar [1970d]), as will
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be taken up in Chapter 12, focused further attention on multivaluedness and also the
concept of local boundedness (Rockafellar [1969b]). Strong incentive came too from
the study of differential inclusions (Wazewski [1961a] [1962], Filippov [1967], Olech
[1968], Aubin and Cellina [1984], Aubin [1991]).

Convergence theory for set-valued mappings originated in the 1970s, the moti-
vation arising mostly from approximation questions in dynamical systems and partial
differential equations (Brezis [1973], Sbordone [1974], Spagnolo [1976], Attouch [1977],
De Giorgi [1977]), stochastic optimization (Salinetti and Wets [1981]), and classical
approximation theory (Deutsch and Kenderov [1983], Sendov [1990]).

The terminology of ‘inner’ and ‘outer’ semicontinuity, instead of ‘lower’ and
‘upper’, has been forced on us by the fact that the prevailing definition of ‘upper
semicontinuity’ in the literature is out of step with developments in set convergence
and the scope of applications that must be handled, now that mappings S with
unbounded range and even unbounded value sets S(z) are so important. In the way
the subject has widely come to be understood, S is upper semicontinuous at T if
S(z) is closed and for each open set O with S(Z) C O the set {z|S(z) C O} is a
neighborhood of Z. On the other hand, S is lower semicontinuous at  if S(Z) is
closed and for each open set O with S(Z) N O # 0 the set {z|S(x)NO # 0} is a
neighborhood of . These definitions have the mathematically appealing feature that
upper semicontinuity everywhere corresponds to S _1(0) being closed whenever C is
closed, whereas lower semicontinuity everywhere corresponds to 571(0) being open
whenever O is open. Lower semicontinuity agrees with our inner semicontinuity (cf.
5.7(c)), but upper semicontinuity differs from our outer semicontinuity (cf. 5.7(b))
and is seriously troublesome in its narrowness.

When the framework is one of mappings into compact spaces, as authors pri-
marily concerned with abstract topology have especially found attractive, upper
semicontinuity is indeed equivalent to outer semicontinuity (cf. Theorem 5.19), but
beyond that, in situations where S isn’t locally bounded, it’s easy to find ex-
amples where S fails to meet the test of upper semicontinuity at * even though
S(z) = limsup,_,z S(z). In consequence, if one goes on to define continuity as
the combination of upper and lower semicontinuity, one ends up with a notion that
doesn’t correspond to having S(z) — S(z) as © — T, and thus is at odds with what
continuity really ought to mean in many applications, as we have explained in the
text around Figure 5-7. In applications to functional analysis the mismatch can be
even more bizarre; for instance in an infinite-dimensional Hilbert space the mapping
that associates with each point x the closed ball of radius 1 around z fails to be
upper semicontinuous even though it’s ‘Lipschitz continuous’ (in the usual sense of
that term—see 9.26); see cf. p. 28 of Yuan [1999)].

The literature is replete with ad hoc remedies for this difficulty, which often
confuse and mislead the hurried, and sometimes the not-so-hurried, reader. For ex-
ample, what we call outer semicontinuous mappings were called ‘closed’ by Berge
[1959], but upper semicontinuous by Choquet [1969], whereas those that Berge refers
to as upper semicontinuous were called upper semicontinuous ‘in the strong sense’
by Choquet. Although closedness is descriptive as a global property of a graph, it
doesn’t work very well as a term for signaling that S(z) = limsup,_,; S(z) at an
individual point Z. More recent authors, such as Klein and Thompson [1984], and
Aubin and Frankowska [1990], have reflected the terminology of Berge. Choquet’s
usage, however, is that of Bouligand, who in his pioneering efforts did define upper
semicontinuity instead by set convergence and specifically thought of it in that way
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when dealing with unboundedness; cf. Bouligand [1935, p. 12], for instance. Yet in
contrast to Bouligand, Choquet didn’t take ‘continuity’ to be the combination of
Bouligand’s upper semicontinuity with lower semicontinuity, but that of upper semi-
continuity ‘in the strong sense’ with lower semicontinuity. This idea of ‘continuity’
does have topological content—it corresponds to the topology developed for general
spaces of sets by Vietoris (see the Commentary for Chapter 4)—but, again, it’s based
on pure-mathematical considerations which have somehow gotten divorced from the
kinds of examples that should have served as a guide.

Despite the historical justification, the tide can no longer be turned in the mean-
ing of ‘upper semicontinuity’, yet the concept of ‘continuity’ is too crucial for applica-
tions to be left in the poorly usable form that rests on such an unfortunately restrictive
property. We adopt the position that continuity of S at & must be identified with
having both S(z) = limsup,_,z S(z) and S(z) = liminf, 7 S(z). To maintain this
while trying to keep conflicts with other terminology at bay, we speak of the two
equations in this formulation as signaling outer semicontinuity and inner semiconti-
nuity. There is the side benefit then too from the fact that ‘outer’ and ‘inner’ better
convey the attendant geometry; cf. Figure 5-3. For clarity in contrasting this osc+isc
notion of continuity in the Bouligand sense with the restrictive usc+lsc notion, it’s
appropriate to refer to the latter as Vietoris-Berge continuity.

The diverse descriptions of semicontinuity listed between 5.7 and 5.12 are essen-
tially classical, except for those in Propositions 5.11 and 5.12, which follow directly
from related characterizations of set convergence. Theorem 5.7(a), that closed graphs
characterize osc mappings, appears in Choquet [1969]. Theorem 5.7(c), that a map-
ping is isc if and only if the inverse images of open sets are open, is already in Ku-
ratowski [1932]. Dantzig, Folkman and Shapiro [1967] and Walkup and Wets [1968]
in the case of linear constraints, and Walkup and Wets [1969b] and Evans and Gould
[1970] in the case of nonlinear constraints, were probably among the first to rely on
the properties of feasible-set mappings (Example 5.8) to obtain stability results for
the solutions of optimization problems; cf. also Hogan [1973]. The fact that certain
convexity properties yield inner semicontinuity comes from Rockafellar [1971b] in the
case of convex-valued mappings (Theorem 5.9(a)). The fact that inner semicontinuity
is preserved when taking convex hulls can be traced to Michael [1951].

Proposition 5.15 and Theorem 5.18 are new, as is the concept of an horizon
mapping 5(6). The characterization of outer semicontinuity under local boundedness
in Theorem 5.19 was of course the basis for the definition of upper semicontinuity
in the period when the study of set-valued mappings was confined to mappings into
compact spaces. A substantial part of the statements in Example 5.22 can be found
in Berge [1959]. Theorem 5.25 is new, at least in this formulation. All the results
5.27-5.30 dealing with cosmic or total (semi)continuity appear here for the first time.

The systematic study of pointwise convergence of set-valued mappings was initi-
ated in the context of measurable mappings, Salinetti and Wets [1981]. The origin of
graphical convergence, a more important convergence concept for variational analysis,
is more diffuse. One could trace it to a definition for the convergence of elliptic dif-
ferential operators in terms of their resolvants (Kato [1966]). But it was not until the
work of Spagnolo [1976], Attouch [1977], De Giorgi [1977] and Moreau [1978] that its
pivotal importance was fully recognized. The expressions for graphical convergence
at a point in Proposition 5.33 are new, as are those in 5.34(a); the uniformity result in
5.34(b) for connected-valued mappings stems from Bagh and Wets [1996]. Theorem
5.37 has not been stated explicitly in the literature, but, except possibly for 5.37(b),



Commentary 195

has been part of the folklore.

The concept of equi-outer semicontinuity, as well as the results that follow,
up to the generalized Arzela-Ascoli Theorem 5.47, were developed in the process
of writing this book; extensions of these results to mappings defined on a topological
space and whose values are subsets of an arbitrary metric space appear in Bagh and
Wets [1996]. Dolecki [1982] introduced a notion related to equi-osc, which he called
quasi equi-semicontinuity. His definition, however, works well only when dealing with
collections of mappings that all have their ranges contained within a fixed bounded set.
Kowalczyk [1994] defines equi-isc, which he calls lower equicontinuity and introduces
a notion related to equi-osc and, even more closely to Dolecki’s quasi equicontinuity,
which he calls upper equicontinuity. It refers to upper semicontinuity, as defined
above, which lead to Vietoris-Berge continuity. Equicontinuity in Kowalczyk’s sense
is the combination of equi-isc and upper equicontinuity.

Hahn [1932] came up with the notion of continuous convergence for real-valued
functions. Del Prete, Dolecki and Lignola [1986] proposed a definition of continu-
ous convergence for set-valued mappings, but in the context of mappings that are
continuous in the Vietoris-Berge sense, discussed above, and this resulted in a more
restrictive condition. The definition of uniform convergence in 5.41 is equivalent to
that in Salinetti and Wets [1981]. The fact in 5.48 that a decreasing sequence of map-
pings converges uniformly on compact sets is an extension of a result of Del Prete
and Lignola [1983].

The use of set distances between graphs as a measure of the distance between
mappings goes back to Attouch and Wets [1991]. Theorem 5.50 renders the implica-
tions more explicit.

The results in 5.51-5.52 about the preservation of semicontinuity under various
operations are new, as are those about the images of converging mappings in 5.53—
5.54.

The generic continuity result in Theorem 5.55 is new in its applicability to ar-
bitrary semicontinuous mappings S from a set X C IR" into IR™. Kuratowski [1932]
and Fort [1951] established such properties for mappings into compact spaces, but in-
voking those results in this context would require assuming that S is locally bounded.

Theorem 5.58, on the existence of Michael representations (dense covering of
isc mappings by continuous selections), is due to Michael [1956], [1959]; our proof is
essentially the one found in Aubin and Cellina [1984]. Example 5.57, finding selections
by projection, is already mentioned in Ekeland and Valadier [1971]. For osc mappings
S, Olech [1968] and Cellina [1969] were the first to obtain approximate continuous
selections. Olech was concerned with a continuous selection that is close in a pointwise
sense, whereas Cellina focused on a selection that is close in the graphical sense, of
which the more inclusive version that follows is due to Beer [1983]: Let S : R" = R™
be osc, convex-valued and with rgeS bounded. Then for all € > 0 there exists a
continuous function s : dom S — R™ such that d(gph s, gph S) < e.



6. Variational Geometry

In the study of ‘variations’, constraints can present a major complication. Be-
fore the effects of variations can be ascertained it may be necessary to determine
the directions in which something can be varied at all. This may be difficult,
whether the variations are aimed at tests of optimality or stability, or arise in
trying to understand the consequences of perturbations in the data parameters
on which a mathematical model might depend.

In maximizing or minimizing a function over a set C' C IR", for instance,
properties of the boundary of C' can be crucial in characterizing a solution.
When C'is specified by a system of constraints such as inequalities, however, the
boundary may have all kinds of curvilinear facets, edges and corners. Standard
methods of geometric analysis can’t cope with such a lack of smoothness except
in simple cases where the pieces making up the boundary of C' are neatly laid
out and can be dealt with one by one.

An approach to geometry is needed through which the main variational
properties of a set C' can be identified, characterized and placed in a coordinated
framework despite the possibility of boundary complications. Such an approach
can be worked out in terms of associating with each point of C' certain cones of
tangent vectors and normal vectors, which generalize the tangent and normal
subspaces in classical differential geometry. Several such cones come into play,
but they fit into a tight pattern which eventually emerges in Figure 6-17. The
central developments in this chapter, and the basic choices made in terminology
and notation, are aimed at spotlighting this pattern and making it easy to
appreciate and remember.

A. Tangent Cones

A primitive notion of variation at a point z € IR" is that of taking a vector
w # 0 and replacing & by & + 7w for small values of 7. Directional derivatives
are often defined relative to such variations, for example. When constraints are
present, however, straight-line variations of this sort might not be permitted. It
may be hard even to know which ‘curves’, if any, might serve as feasible paths
of variation away from Z. But sequences that converge to & without violating
the constraints can be viewed as representing modes of variation in reverse,
and the concept of direction can still then be utilized.
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Fig. 6—1. Convergence to a point from a particular direction.

A sequence ¥ — I is said to converge from the direction dirw if for
some sequence of scalars 7%~ 0 the vectors [z¥ — Z]/T" converge to w. Here
the direction dirw of a vector w # 0 has the formal meaning assigned at the
beginning of Chapter 3 and is independent of the scaling of w. An idea closely
related to such directional convergence is that of w being the right derivative

T <G )

70 T

of a vector-valued function € : [0,e] — IR" with £(0) = Z. In this case w is the
limit of [{(7Y) — Z] /7" for every choice of a sequence 77 ~ 0 in [0, ¢].
In considering these notions relative to a set C, it will be useful to have
the notation
' r <= ¥ — 7T with ¥ e C. 6(1)

6.1 Definition (tangent vectors and geometric derivability). A vector w € IR"
is tangent to a set C' C IR" at a point & € C, written w € Tc(Z), if

[ — Z]/T" — w for some ¥ 5 T, TV N0, 6(2)

or in other words if dir w is a direction from which some sequence in C' converges
to x, or if w = 0. Such a tangent vector w is derivable if there actually exists
£:[0,e] = C withe >0, £(0) = Z and & (0) = w. The set C is geometrically
derivable at x if every tangent vector w to C at T is derivable.

The tangent vectors to a relatively nice set C' at a point z are illustrated
in Figure 6-2. These vectors form a cone, namely the one representing the
subset of hzn IR"™ that consists of the directions from which sequences in C
can converge to . In this example C' is geometrically derivable at z. But
tangent vectors aren’t always derivable, even though the condition involving
a function £ : [0,e] — C places no assumptions of continuity, not to speak of
differentiability, on £ except at 0. An example of this will be furnished shortly.

6.2 Proposition (tangent cone properties). At any point Z of a set C' C IR"™, the
set Tc (%) of all tangent vectors is a closed cone expressible as an outer limit:

To(z) = lim\s%pT_l(C—i‘). 6(3)

The subset of Tc(Z) consisting of the derivable tangent vectors is given by the
corresponding inner limit (i.e., with liminf in place of limsup) and is a closed
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cone as well. Thus, C' is geometrically derivable at x if and only if the sets
[C' — z]/7 actually converge as T~ 0, so that the formula for Tc(Z) can be
written as a full limit.

Fig. 6—2. A tangent cone.

We'll refer to T (Z) as the tangent cone to C at . The set of derivable
tangent vectors forms the derivable cone to C at z, but we’ll have less need to
consider it independently and therefore won’t introduce notation for it here.

The geometric derivability of C' at x is, by 6.2, a property of local approx-
imation. Think of z+ (C' —Z)/7 as the image of C' under the one-to-one trans-
formation L, : @ — Z + 7 (2 — Z), which amounts to a global magnification
around Z by the factor 7=1. As 7 \. 0 the scale blows up, but the progressively
magnified images L,(C) =z + (C' — Z)/7 may anyway converge to something.
If so, that limit set must be & + T¢(Z), and C is then geometrically derivable
at z, cf. Figure 6-3.

Fig. 6—3. Geometric derivability: local approximation through infinite magnification.

The convergence theory in Chapter 4 can be applied to glean a great
amount of information about this mode of tangential approximation. For exam-
ple, the uniformity result in 4.10 tells us that when C' is geometrically derivable
at Z there exists for every p > 0 and € > 0 a 7 > 0 such that, for all 7 € (0,7):

7 HC —-z2)NpB C Te(z)+ e, Te(z)NpB C 7 HC —7) +eB.

Here the first inclusion would hold on the basis of the definition of T¢(Z) as
an outer limit, but the second inclusion is crucial to geometric derivability as
combining the outer limit with the corresponding inner limit.
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It’s easy to obtain examples from this of how a set C' can fail to be geo-
metrically derivable. Such an example is shown in Figure 6-4, where C is the
closed subset of IR? consisting of z = (0,0) and all the points z = (1, x5)
with ;7 # 0 and o = x7sin(logxy). The tangent cone T (Z) clearly con-
sists of all w = (wy,ws) with |we| < |w;|, but the derivable cone consists
of just w = (0,0); no nonzero tangent vector w is a derivable tangent vec-
tor. This is true because, no matter what the ‘scale of magnification’, the set
[C — z]/7 = 771C will always have the same wavy appearance and therefore
can’t ever satisfy the conditions of uniform approximation just given.

C
\

=4

Fig.6—4. An example where geometric derivability fails.

B. Normal Cones and Clarke Regularity

A natural counterpart to ‘tangency’ is ‘normality’, which we develop next.
Following traditional patterns, we’ll denote by o(|z — z|) for z € C a term with
the property that o(|z — Z|)/|z — Z| — 0 when z &> T with z # Z.

6.3 Definition (normal vectors). Let C C IR" and z € C. A vector v is normal
to C' at T in the reqular sense, or a regular normal, written v € N¢(Z), if

(v,z—7) < o|lx—z|) for z €C. 6(4)

It is normal to C' at T in the general sense, or simply a normal vector, written
v € N¢(Z), if there are sequences ¥ 5> T and v¥ — v with v € Ngo(xV).

6.4 Definition (Clarke regularity of sets). A set C' C IR" is regular at one of
its points T in the sense of Clarke if it is locally closed at T and every normal
vector to C at T is a regular normal vector, i.e., No(Z) = No(Z).

Note that normal vectors can be of any length, and indeed the zero vector
is technically regarded as a regular normal to C' at every point = € C. The ‘0’
inequality in 6(4) means that
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lim sup w <0, 6(5)
r5r e |v— 7
THAT

since this is equivalent to asserting that maX{O, (v, x —§:>} is a term 0(\:1: —:Y:\)

6.5 Proposition (normal cone properties). At any point T of a set C' C IR", the

set No (&) of all normal vectors is a closed cone, and so too is the set NC( ) of
all regular normal vectors, which in addition is convex and characterized by

vE Ne(z) — (v,w) <0 for all we To(T). 6(6)
Furthermore, N R
Nc(f) = lim_s>up Nc(l‘) D) Nc(.i‘) 6(7)
T o7 T

Proof. The fact that N¢(Z) and Ne(Z) contain 0 has already been noted.
Obviously, when either set contains v it also contains A\v for any A > 0. Thus,
both sets are cones. The closedness of N¢(Z) is immediate from 6(7), which
merely restates the definition of N (Z). The closedness and convexity of N¢ (7)
will follow from establishing 6(6), since that relation expresses Nc(i‘) as the
intersection of a family of closed half-spaces {v } v, w) < 0}

First we’ll verify the implication ‘=" 1in 6(6). Consider any v € NC( ) and
w € Te(Z). By the definition of tangency there exist sequences ¥ = Z and
7%~ 0 such that the vectors w” = [z¥ —Z|/T" converge to w. Because v satisfies
6(4) we have (v, w”) < o(|7"w"]) /7" — 0 and consequently (v, w) < 0.

For the implication ‘<’ in 6(6), suppose v ¢ N¢(Z), so that 6(4) doesn’t
hold. From the equivalence of 6(4) with 6(5), there must be a sequence z” &
with ¥ # & such that

(v, 2" ~2) _
liminf ~————-

e ;x ~ 3|

Let w” = [z#¥ — Z]/|2” — Z| so that liminf, (v, w"”) > 0 with |w”| = 1. Passing
to a subsequence if necessary, we can suppose that w" converges to a vector w.
Then (v,w) > 0, but also w € T () because w is the limit of [z¥ — Z| /7" with

= |#¥ — Z| ~ 0. Thus, the condition on the right of 6(6) fails for v. O

V%
No®) = No(®)

Fig. 6—-5. Normal vectors: a simple case.
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We call No(Z) the normal cone to C at Z and Ng(i’) the cone of regular
normals, or the reqular normal cone.

Some possibilities are shown in Figure 6-5, where as in Figure 6-2 the cone
associated with a point z is displayed under the ‘floating vector’ convention as
emanating from 7 instead of from the origin, as would be required if their
elements were being interpreted as ‘position vectors’. When Z is any point on
a curved boundary of the set C, the two cones N¢(Z) and N¢ (Z) reduce to a ray
which corresponds to the outward normal direction indicated classically. When
Z is an outward corner point at the bottom of C, the two cones still coincide but
constitute more than just a ray; a multiplicity of normal directions is present.
Interior points Z of C' have N¢o(z) = Neo(Z) = {0}; there aren’t any normal
directions at such points.

At all points of the set C' in Figure 6-5 considered so far, C' is regular, so
only one cone is exhibited. But C isn’t regular at the ‘inward corner point’ of C.
There N¢(z) = {0}, while N¢(Z) is comprised of two rays. This phenomenon is
shown in more detail in Figure 6-6, again at an ‘inward corner point’ & where
two solitary rays appear. The directions of these two rays arise as limits in
hzn IR" of the regular normal directions at neighboring boundary points, and
the angle between them depends on the angle at which the boundary segments
meet. In the extreme case of an inward cusp, the two rays would have opposite
directions and the normal cone would be a full line.

AN

N. (%) ={0}

Fig. 6—6. An absence of Clarke regularity.

Nonetheless, in all these cases C' is geometrically derivable at z despite the
absence of regularity. Derivability therefore isn’t equivalent to regularity, but
we'll see later (in 6.30) that it’s a sure consequence of such regularity.

The picture in Figure 6-6 illustrates how normal vectors in the general
sense can, in peculiar situations for certain sets C', actually point into a part of
C'. This possibility causes some linguistic discomfort over ‘normality’, but the
cone of such limiting normal vectors comes to dominate technically in formulas
and proofs, so there are compelling advantages in reserving the simplest name
and notation for it. The limit process in Definition 6.3 is essential, for instance,
in achieving closedness properties like the following. Many key results would
fail if we tried to make do with regular normal vectors alone.
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6.6 Proposition (limits of normal vectors). Ifz¥ & Z, v¥ € No(x¥) and v¥ — v,
then v € N¢(Z). In other words, the set-valued mapping N¢ : x — Ng(x) is
outer semicontinuous at T relative to C.

Proof. The set {(z,v)|v € Nc(z)} is by definition the closure in C' x R" of
{(z,v)|ve Nc(x)} Hence it is closed relative to C' x IR". O

In harmony with the general theory of set-valued mappings, it’s convenient
to think of N and N¢ not just as mappings on C but of type IR" = IR" with

Ne(z) = Ne(z) :=0 when z ¢ C. 6(8)
Then C' = dom N = dom NC, and one has

Ne(z) = limsup Ne(z) for all Z € R™ when C is closed.

T—T

Equivalently gph No = cl(gph NC) in IR" x IR", or No = cl Nec in the sense
of the closure or osc hull of a mapping (cf. 5(2)), as long as C' is closed.

C. Smooth Manifolds and Convex Sets

The concepts of normal vector and tangent vector are of course invariant under
changes of coordinates, whether linear or nonlinear. The effects of such a
change can be expressed by way of a smooth (i.e., continuously differentiable)
mapping F' and its Jacobian at a point z, which we denote by VF(Z). In terms
of F(z) = (fi(x),..., fm(2)) for = (z1,...,2,) the Jacobian is the matrix

ofi
8xj

(JJ)} e R™".

1,j=1

V) = |

The expansion F(z) = F(z) + VF(Z)(z — Z) + o(|z — Z|) summarizes the
m coordinate expansions f;(z) = fi(z) + (Vfi(Z), z — &) + o(|z — z|). The
transpose matrix VF(z)* has the gradients V f;(Z) as its columns, so that

VF@) 'y =nVi@) + -+ ymVim(Z) for y=(y1,...,Ym) 6(9)
6.7 Exercise (change of coordinates). Let C = F~1(D) C IR" for a smooth
mapping F': R" — IR™ and a set D C IR™, and suppose VF(Z) has full rank
m at a point T € C with image u = F(z) € D. Then
Te(z) = {w|VF(@)w e Tp(u)},
Ne(z) = {VF(z)"'y|y € Np(u)},
Ne(z) ={VF(z)'y|y € Np(u)}.
Guide. Consider first the case where m = n. Use the inverse mapping theorem
to show that only a smooth change of local coordinates is involved, and this
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doesn’t affect the normals and tangents in question except for their coordinate
expression. Next tackle the case of m < n by choosing aq,...,a,_,, to be
a basis for the (n — m)-dimensional subspace {w € R" |VF(z)w = 0}, and
defining Fy : R" — R™ x R"™™ by Fy(z) := (F(x),{a1,2),..., {(an—m,x)).
Then C = F; ' (Dy) for Dy = D x IR"™™ ™. The n x n matrix VFy(Z) has rank
n, so the earlier argument can be applied. O

o

m

A

=

Fig. 6—7. Tangent and normal subspaces for a smooth manifold.

On the basis of this fact it’s easy to verify that the general tangent and
normal cones defined here reduce in the case of a smooth manifold in R" to
the tangent and normal spaces associated with such a manifold in classical
differential geometry.

6.8 Example (tangents and normals to smooth manifolds). Let C' be a d-
dimensional smooth manifold in IR" around the point T € C, in the sense
that C' can be represented relative to an open neighborhood O € N (Z) as the
set of solutions to F(x) = 0, where F' : O — IR"™ is a smooth (i.e., C') mapping
with VF(z) of full rank m, where m = n — d. Then C' is regular at T as well
as geometrically derivable at x, and the tangent and normal cones to C' at T
are linear subspaces orthogonally complementary to each other, namely

Te(z) = {we R"|VF(z)w =0},
Ne(z) = {v=VF(z)'y|y e R™}.

Detail. Locally we have C = F~1(0), so the formulas and the regularity follow
from 6.7 with D = {0}. O

Another important case illustrating both Clarke regularity and geometric
derivability is that of a convex subset of IR", which we take up next.

6.9 Theorem (tangents and normals to convex sets). A convex set C C IR" is
geometrically derivable at any point * € C', with
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Ne(2) = Ne(z) = {v

Tc(a’:):cl{w’El)\>O with 7+ w € C},

<v,x—i‘> < 0 for all :L‘EC’},

int Te(z) = {w ) IA> 0 with T+ \w € intc}.

Furthermore, C' is regular at & as long as C' is locally closed at .

Proof. Let K = {w } 3X > 0 with Z+ Mw € C}. Because C includes for
any of its points the entire line segment joining that point with z, the vectors
in K are precisely the ones expressible as positive scalar multiples of vectors
x — & for x € C'. Thus, they are derivable tangent vectors. Not only do we
have K C Te(Z) but also T (Z) C cl K by Definition 6.1, so T¢(Z) = ¢l K and
C' is geometrically derivable at z. The relationship between T (Z) and Ne (Z)
in 6.5 then gives us No(z) = {v|(v,w) <0 forall we K}, and this is the
same as the formula for No () claimed in the theorem.

Consider now a vector v € N¢(z). Fix any x € C. By Definition 6.3 there
are sequences v¥ — v and z¥ &> T with v” € Ne (x¥). According to the formula
just established we have (v¥, x — x¥) < 0, hence in the limit, (v, x — Z) < 0.
This is true for arbitrary x € C, so it follows that x € Nc(i‘) The inclusion
Ne¢ (%) D Ne (%) holds always, so we have Ne(Z) = Ne ().

To deal with int7T¢(z), let Ko = {w|3X > 0 with Z + Aw € intC}.
Obviously K is a open subset of K, but also K C cl Ky when K # (), because
C C cl(int C) when int C' # (), hence Ky = int K = int(cl K); cf. 2.33. Since
cl K = To(Z), we conclude that Ko = int To (Z). O

Fig. 6—8. Variational geometry of a convex set.

The normal cone formula in 6.9 relates to the notion of a supporting half-
space to a convex set C' at a point & € C, this being a closed half-space H D C
having Z on its boundary. The formula says that N¢o(Z) consists of (0 and) all
the vectors v # 0 normal to such half-spaces.

6.10 Example (tangents and normals to boxes). Suppose C = C; x -+ x Cp,
where each C; is a closed interval in IR (not necessarily bounded, perhaps just
consisting of a single number). Then C' is regular and geometrically derivable
at every one of its points & = (Z1,...,ZTy). Its tangent cones have the form
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Tc(.i‘) = T¢, (.i‘l) X xTe, (.i‘n), where

(—o00,0] ifZ; is (only) the right endpoint of Cj,
[0, 00) if z; is (only) the left endpoint of C},
—o00,00) if Z; is an interior point of C},

[0, 0] if C; is a one-point interval,

while its normal cones have the form

Nc(f) = N¢, (.’Z‘l) x -+ x Ng, (.i‘n), where
[0, 00) if z; is (only) the right endpoint of Cj,
Ne () = (—00,0] ifx; is (only) the left endpoint of Cj,
Ci [0, 0] if Z; is an interior point of Cj,
—00,00) if C; is a one-point interval.
j

Detail. In particular, C' is a closed convex set. The formulas in Theorem

6.9 relative to a tangent vector w = (wi,...,w,,) or a normal vector v =
(v1,...,v,) translate directly into the indicated requirements on the signs of
the components w; and v;. O

D. Optimality and Lagrange Multipliers

The nonzero regular normals to any set C' at one of its points Z can always
be interpreted as the normals to the ‘curvilinear supporting half-spaces’ to C'
at z. This description is provided by the following characterization of regular
normals. It echoes the geometry in the convex case, where ‘linear’ supporting
half-spaces were seen to suffice.

6.11 Theorem (gradient characterization of regular normals). A vector v is a
regular normal to C' at z if and only if there is a function h that achieves a
local maximum relative to C' at T and is differentiable there with Vh(z) = v.
In fact h can be taken to be smooth on IR" and such that its global maximum
relative to C is achieved uniquely at .

v =Vh(x)

Fig. 6—9. Regular normals as gradients.

Proof. Sufficiency: If h has a local maximum on C at x and is differentiable
there with VA(Z) = v, we have h(Z) > h(z) = h(Z) + (v, x — ) + o(|]z — Z|)
locally for x € C. Then (v, z—2Z)+o(Jzr—Z|) <0 for z € C, so that v € N ().
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Necessity: If v € ]Vc(a’:), the expression
Oo(r) :==sup{(v, z —Z) |z € C, [z —Z| <1} < rly|

is nondecreasing on [0,00) with 0 = 6¢(0) < 60y(r) < o(r). The function
ho(z) = (v, x —Z) — 0 (|o — Z|) is therefore differentiable at  with Vho(z) = v
and ho(z) <0 = ho(z) for z € C. It has its global maximum over C' at z.

Although hg is known only to be differentiable at z, there exists, as will be
demonstrated next, an everywhere continuously differentiable function h with
Vh(z) = Vho(Z) = v and h(z) = ho(Z), but h(z) < ho(x) for all x # T in
C, so that h achieves its maximum over C uniquely at . This will finish the
proof. We’ll produce h in the form h(z) := (v, x —Z) — (|z — Z|) for a suitable
function 6 on [0, 00). It will suffice to construct € in such a way that 6(0) = 0,
O(r) > Og(r) for r > 0, and € is continuously differentiable on (0,00) with
0'(r) — 0 as r~0 and 0(r)/r — 0 as 7~ 0. Since #(0) = 0, the latter means
that at O the right derivative of 0 exists and equals 0; then certainly 6(r) — 0
as r 0.

As a first step, define 61 by 61(r) := (1/r) ffr 0o(s)ds for r > 0, 6,(0) = 0.
The integral is well defined despite the possible discontinuities of 6y, because
fp is nondecreasing, a property implying further that 6y has right and left
limits Oy(r+) and 6y(r—) at any r € (0,00). The integrand in the definition of
61(r) is bounded below on (r,2r) by 6p(r+) and above by 6y(2r—), so we have
Oo(r+) < 01(r) < bp(2r—) for all r € (0,00). Also, 81(r) = (1/7)[p(2r) — (r)]
for the function ¢(r) := [ fo(s)ds, which is continuous on (0,00) with right
derivative ¢’ (r) = 6Op(r+) and left derivative ¢’ (r) = 6y(r—). Hence 0; is
continuous on (0, co0) with right derivative (1/7)[260(2r+)—60o(r+)—6:1(r)] and
left derivative (1/7)[200(2r—) — 6o(r—) — 61(r)], both of which are nonnegative
(because O (r+) < 61(r) < 0p(2r—) and 6y is nondecreasing); consequently 6 is
nondecreasing. These derivatives and 60, (r) itself approach 0 as r ~ 0. Because
Oo(r+)/r < 01(r)/r < 09(2r—)/r, we have 01 (r)/r — 0 as r~ 0. Thus, 6; has
the crucial properties of 8y but in addition is continuous on [0, 0o) with left and
right derivatives, which agree at points r such that 6y is continuous at both r
and 2r, and which are themselves continuous at such points 7.

Next define 05(r) := (1/7) ffr 01(s)ds for r > 0, 62(0) = 0. We have
0> > 61, hence 65 > 6y. By the reasoning just given, #- inherits from 6; the
crucial properties of 6y, but in addition, because of the continuity of 61, 65
is continuously differentiable on (0, 00) with 65(r) — 0 as r~ 0. Finally, take
0(r) = O2(r) + r2. This function meets all requirements. O

Although a general normal vector v € N¢(Z) that isn’t regular can’t always
be described in the manner of Theorem 6.11 and Figure 6-9 as the gradient
of a function maximized relative to C at Z, it can be viewed as arising from
a sequence of ‘nearby’ situations of such character, since by definition it’s a
limit of regular normals, each corresponding to a maximum of some smooth
function. Obviously out of such considerations, the limits in Definition 6.3 are
indispensable in building up a theory that will eventually be able to take on
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the issues of what happens when optimization problems are perturbed. This
view of what normality signifies is the source of many applications.

The next theorem provides a fundamental connection between variational
geometry and optimality conditions more generally.

6.12 Theorem (basic first-order conditions for optimality). Consider a problem
of minimizing a differentiable function fy over a set C' C IR". A necessary
condition for x to be locally optimal is

(V fo(Z),w) >0 for all we Tc(T), 6(10)
which is the same as —V fo(T) € ]Vc(a’:) and implies
—Vf()(i') € Nc(.f?>, or Vf()(i'> + Nc(.f?) 5 0. 6(11)

When C' is convex, these tangent and normal cone conditions are equivalent
and can be written also in the form

(Vfo(z), z— ) >0 forall z€C, 6(12)

which means that the linearized function l(x) := fo(Z)+(V fo(Z), ©—Z) achieves
its minimum over C at . When f; too is convex, the equivalent conditions are
sufficient for  to be globally optimal.

Proof. Local optimality of Z means that fo(x) — fo(Z) > 0 for all z in a
neighborhood of z in C. But fo(z) — fo(z) = (Vfo(Z), z — Z) + o(|z — Z|).
Therefore, (—V fo(Z), z — Z) < o(|z — Z|) for € C, which by definition is the
condition —V f(Z) € No(Z). This condition is equivalent by 6.5 to 6(10) and
implies 6(11) because N (Z) D ]Vc(a’:) In the convex case, 6(10) and 6(11) are
equivalent to 6(12) through Theorem 6.9. The sufficiency for global optimality
comes then from the inequality fo(z) > fo(Z) + (Vfo(Z), x — Z) in 2.14. O

The normal cone condition 6(11) will later be seen to be equivalent to the
tangent cone condition 6(10) not just in the convex case but whenever C' is
regular at z (cf. 6.29). It’s typically the most versatile first-order expression of
optimality because of its easy modes of specialization and the powerful calculus
that can be built around it. When z € int C, it reduces to Fermat’s rule, the
classical requirement that V fo(Z) = 0, inasmuch as N (z) = {0}. In general,
it reflects the nature of the boundary of C near Zz, as it should.

For a smooth manifold as in 6.8 and Figure 6-7, we see from 6(11) that
V fo(Z) must satisfy an orthogonality condition at any point where f, has a
local minimum. For a convex set C', the necessary condition takes the form
of requiring —V fo(Z) to be normal to a supporting half-space to C' at z, as
observed through the equivalent statement 6(12). For a box as in 6.10, it comes
down to sign restrictions on the components (0fy/0z;)(Z) of V fo(Z).

The first-order conditions in Theorem 6.12 fit into a broader picture in
which the gradient mapping V fy is replaced by any mapping F' : C — IR".
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This format has rich applications beyond the characterization of a minimum
relative to C, for instance in descriptions of ‘equilibrium’.

6.13 Example (variational inequalities and complementarity). For any set C' C
IR" and any mapping F' : C — IR", the relation

F(Z)+ Nc(z) 30

is the variational condition for C' and F', the vector T € C being a solution.
When C' is convex, it is also called the variational inequality for C' and F,
because it can be written equivalently in the form

zeC, <F(§;),x—j>20 for all x € C,

and interpreted as saying that the linear function [(z) = (F(Z),z) achieves its
minimum over C' at T. In the special case where C' = IR" it is known as the
complementarity condition for the mapping F', because it comes out as

I

;=>0, v;,>20, Z;u;=0 for j=1,...n, where
X

= F(z), = (Z1,--,Tpn), U= (V1,...,0n),

]

which can be summarized vectorially by the notation 0 <z L F(z) > 0.

Detail. The reduction in the convex case is seen from 6.9. When C = R"
the condition that v + N¢(Z) 3 0 says that —v; € Ng, (%;) for j = 1,...n, cf.
6.10. This requires v; = 0 when z; > 0 but merely v; > 0 when z; = 0. O

For FF = V fy the complementarity condition in 6.13 is the first-order
optimality condition of Theorem 6.12 for the minimization of fy over IR".

Theorem 6.12 leads to a broad theory of Lagrange multipliers. The most
classical case of Lagrange multipliers, for minimization subject to smooth equal-
ity constraints only, is already at hand in the combination of condition 6(11)
with the formula for N (z) in Example 6.8, where C' is specified by the con-
straints f;(x) = 0,7 = 1,...,m. If the gradients of the constraint functions
are linearly independent at Z, a local minimum of fy at Z relative to these
constraints entails the existence of a vector § = (71,...,Jm) € IR™ such that

Vfo(j)+g1Vf1(j)+"‘+ngfm(j) = 0,

cf. 6(9). The next theorem extends the normal cone formula in Example 6.8
to constraint systems that are far more general, and in so doing it gives rise to
much wider results involving multipliers ;.

6.14 Theorem (normal cones to sets with constraint structure). Let
C={zeX|F(z) e D}

for closed sets X C IR™ and D C IR™ and a C' mapping F : R" — IR™,
written componentwise as F(z) = (f1 (z),..., fm(ac)). At any & € C one has
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No(z) D {Zzl yiV fi(T) + 2

where y = (y1,...,Ym). On the other hand, one has

y € Np(F(z)), 2z € ﬁx(f)},

Ne(@) ¢ {327 wiVii@)+ 2|y € No(F(@), 2 € Nx(@) }
at any x € C satisfying the constraint qualification that
the only vector y € Np(F(z)) for which
{ — 2:1 y:Vfi(Z) € Nx(z) is y=(0,...,0).

If in addition to this constraint qualification the set X is regular at x and D is
regular at F (), then C' is regular at T and

Ne(z) = {Zj; iV fi(T) + 2 ] y € Np(F(z)), z € NX@)}.

Proof. For simplicity we can assume that X is compact, and hence that
C' is compact, since the analysis is local and wouldn’t be affected if X were
replaced by its intersection with some ball IB(z,0). Likewise we can assume D
is compact, since nothing would be lost by intersecting D with a ball IB(F (), ¢)
and taking § small enough that |F(x) — F(Z)| < € when |z — z| < 4.

We'll first verify the inclusion for No(z). The notation in 6(9) will be
convenient. Suppose v = VF(Z)*y + z with y € Np(z) and z € Nx(z). We
have (y, F(z) — F(z)) < o(F(z) — F(z)) when F(z) € D, where

F(z) — F(z) = VF(2)(x — &) + o(|z — z]).

Therefore (y, VF(z)(z—Z)) < o(|z —Z|) when F(z) € D, the inner product on
the left being the same as (VF(Z)*y, ©—), i.e., (v—2z, x—Z). At the same time
we have (z,  — Z) < o(]z — Z|) when z € X, so we get (v, z — Z) < o(|z — Z|)
for 2 € C and conclude that v € N¢ ().

For the sake of deriving the inclusion for N¢(Z), assume from now on that
the constraint qualification holds at z. It must also hold at all points x € C' in
some neighborhood of Z relative to C, for otherwise we could contradict it by
considering a sequence x¥ 5> Z that yields —VF(z")*y” € Nx(z") for nonzero
vectors y¥ € Np(F(z")); such a sequence can be normalized to |y”| = 1, and
then by selecting any cluster point y we would get —VF(Z)*y € Nx(z) through
6.6, yet |y| = 1.

Next, as a transitory step, we demonstrate that the inclusion claimed for
N¢ (%) holds for Ng(Z). Let v € No(Z). By Theorem 6.11 there’s a smooth
function h on IR" such that argmax-h = {Z}, Vh(Z) = v. We take any
sequence of values 7 ~.0 and analyze for each v the problem of minimizing
over X x D the C! function

}F —u}2.

o’ (z,u) == —h(z) +
2TY
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Through our arrangement that X and D are compact, the minimum is attained
at some point (z”,u”) (not necessarily unique). Moreover (z”,u") — (z, F(Z));
cf. 1.21. The optimality condition in Theorem 6.12 gives us

V¥ (2, u”) =: 2¥ € Nx(z"), —Vaup” (2, u”) = y¥ € Np(u”),

inasmuch as argmin .y ¢"(z,u”) = {z¥} and argmin,.p " (2", u) = {u"}.
Differentiating ¢” in u, we see that y¥ = [F(z”) — u”]/7". Differentiating ¢"
next in z, we get

2V =Vh(z") — VF(x")"y"” with VF(2") — VF(z), Vh(z") — v.

By passing to subsequences, we can reduce to having the sequence of vectors
y” € Np(u”) either convergent to some y or such that \Yy¥ — y # 0 for a
choice of scalars A” ~. 0. In both cases we have y € Np(F(z)) by 6.6, because
Np(u”) is a cone and u” — F(Z).

If y¥ — y, we have at the same time that z¥ — z := v — VF(Z)*y with
z € Nx(&), again by virtue of 6.6. This yields the desired representation
v =VF(Z)*y+ z. On the other hand, if \"y” — y # 0, A\¥ ~. 0, we obtain from
NzV = N'Vh(z") — VF(zV)*A\Vy” that \V2¥ — z := —VF(Z)*y, z € Nx (),
which produces a representation 0 = VF(Z)*y + z of the sort forbidden by the
constraint qualification. Therefore, only the first case is viable.

This demonstrates that No(z) C S(Z), where we now denote by S (x) for
any = € C the set of all vectors of the form VF(z)*y + z with y € Np(F(z))
and z € Nx(z). The argument has depended on our assumption that the
constraint qualification is satisfied at z, but we’ve observed that it’s satisfied
then for all z in a neighborhood of T relative to C'. Hence we’ve actually
proved that Ngo(xz) C S(z) for all x in such a neighborhood. In order to get
N¢ (%) € S(&), we can therefore use the fact that N (Z) = limsup, ., No(x)
to reduce the task to verifying that S is osc at x relative to C.

Let ¥ &> = and v¥ — v with v¥ € S(z¥), so that v¥ = VF(z")*y” + 2"
with y¥ € Np(F(z")) and 2¥ € Nx(x¥). We can revert once more to two cases:
either (y¥, z¥) — (y, z) or \¥(y”, 2") — (y, 2) # (0, 0) for some sequence A\” . 0.
In the first case we obtain in the limit that v = VF(Z)*y+2z withy € Np(F(Z))
and z € Nx(z) by 6.6, hence v € S(z) as desired. But the second case is
impossible, because it would give us A¥v¥ = VF(2¥)*\y” + A\”z” and in the
limit 0 = VF(Z)*y + z in contradiction to the constraint qualification. This
confirms that N¢(z) C S(Z).

All that remains is the theorem’s assertion when X is regular at T and
D is regular at F(z). Then Np(F(z)) = Np(F(z)) and Nx(Z) = Nx(Z), so
the inclusions already developed for Nc(i‘) and N¢(Z), along with the general
inclusion N¢(Z) C Ne(z), imply that these cones coincide and equal S(z).
Since C' is closed (because X and D are closed and F' is continuous), this tells
us also that C' is regular at . O

A result for tangent cones, parallel to Theorem 6.14, will emerge in 6.31.
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It’s notable that the normal vector representation for smooth manifolds in
Example 6.8 is established independently by 6.14 as the case of D = {0}. This
is interesting technically because it sidesteps the usual appeal to the classical
inverse mapping theorem through a change of coordinates as in 6.7, which was
the justification of Example 6.8 that we resorted to earlier.

The case of Theorem 6.14 where C' is defined by inequalities f;(xz) < 0
for i = 1,...,m corresponds to D = IR" and is shown in Figure 6-10. Then
N¢(Z) is the convex cone generated by the gradients V f;(Z) of the constraints
that are active at .

Fig. 6-10. Normals to a set defined by inequality constraints.

This idea carries forward to situations where f; is constrained to lie in a
closed interval D;, which may place an upper bound, a lower bound, or both
on f;(x), or represent an equality constraint when D; is a one-point interval.
Then D is a general box, and when the normal vector representation formula
in 6.10 is combined with the optimality condition 6(11) we obtain a powerful
Lagrange multiplier rule.

6.15 Corollary (Lagrange multipliers). Consider the problem
minimize fo(x) subject to v € X and f;i(x) € D; for i=1,...,m,

where X is a closed set in IR"™, D; is a closed interval in IR, and the functions f;
are of class C'. Let & be locally optimal, and suppose the following constraint
qualification holds at Z: no vector y = (y1,...,Ym) # (0,...,0) satisfies

—[y1Vf1 (.@) +---+ ymem(i‘)] € Nx(i'>
and meets the sign restrictions that

y; =0  if f;(Z) lies in the interior of D,

y; >0  if f;(Z) is (only) the right endpoint of D,
y; <0  if f;(Z) is (only) the left endpoint of D;,
y; free if D; is a one-point interval.

Then there is a vector § = (41, - .., Jm) meeting these sign restrictions with

—[Vfo(Z) + WV fL(E) + -+ GV f(Z)] € Nx(Z).
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Proof. This is the case of 6.14 with D = Dy X -+ X D,,, as applied to 6(11).
For normal vectors to boxes, see 6.10. O

The four cases of sign restriction in this Lagrange multiplier rule corre-
spond to the constraint f;(xz) € D; being inactive, upper active, lower active,
or doubly active—an equality constraint. When X = IR", the cone Nx(Z)
reduces to {0} and the gradient relations turn into simple equations. When X
is a box, on the other hand, these relations take the form of sign restrictions
on the partial derivatives of these gradient combinations, cf. 6.10.

E. Proximal Normals and Polarity
The basic optimality condition in Theorem 6.12 is useful not only as a foun-

dation for such multiplier rules but for theoretical purposes. This is illustrated
in the following analysis of a special kind of normal vector.

Fig. 6—11. Proximal normals from nearest-point projections.

6.16 Example (proximal normals). Consider a set C' C IR" and its projection
mapping Po (which assigns to each x € IR" the point, or points, of C' nearest
to x). For any x € R",

Z€Po(r) = z—2¢€Ng(x), so Mz —1z) € Ne(z) for all A> 0.

Any such vector v = ANz — Z) is called a proximal normal to C at . The
proximal normals to C at & are thus the vectors v such that & € Po(Z + Tv)
for some T > 0. Then actually Po(Z + 7'v) = {Z} for every 7" € (0, 7).

Detail. For any point & € IR", we have Pc(Z) = argmin, . fo(x) with fo(z) =
Lo — &2, Vfo(z) = & — . Hence by 6.12, € Po(&) implies # — Z € No(Z).
Here we apply these relationships to cases where T = & + 7v, see Figure 6-11.
It’s elementary from the triangle inequality that when Z is one of the points of
C nearest to z, then for all intermediate points x on the line segment joining
T with Z, the unique nearest point of C' to z is . O

In essence, a vector v # 0 is a proximal normal to C' at T when v points from
Z toward the center of a closed ball that touches C only at . This condition is
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more restrictive than one characterizing regular normals in Theorem 6.11 and
amounts to the existence of € > 0 such that

(v, —Z) <elx—z|* forall z€C.

6.17 Proposition (proximality of normals to convex sets). For a convex set C,
every normal vector is a proximal normal vector. The normal cone mapping
N¢ and the projection mapping Po are thus related by

Ne=P5' =1, Po=(I+Ng)™

Proof. For any vector v € N¢o(Z), the convex function f(z) = %}x —(z+ v)}2
has gradient V f(Z) = —v and thus satisfies the first-order optimality condition
—Vf(Z) € No(z). When C is convex, this condition is not only necessary by
6.12 for  to minimize f over C but sufficient, so that we have v € N¢ () if
and only if z € Po(Z+v), in fact Po(Z+v) = {Z} because f is strictly convex.
Hence every normal is a proximal normal, and the graph of Po consists of the
pairs (z,x) such that z — x € Ng(x), or equivalently z € (I + N¢)(z). This
means that Po = (I + Nc)*l, or equivalently No = Pgl — 1. O

For a nonconvex set C, there can be regular normals that aren’t proximal
normals, even when C' is defined by smooth inequalities. This is illustrated by

C = {x: (1, 22) E]RQ}QUQ Zx?/S, To ZO},

where the vector v = (1, 0) is a regular normal vector at £ = (0, 0) but no point
of {Z + v } 7> 0} projects onto z, cf. Figure 6-12(a).

The proximal normals at & always form a cone, and this cone is convex;
these facts are evident from the description of proximal normals just provided.
But in contrast to the cone of regular normals the cone of proximal normals
needn’t be closed—as Figure 6-12(a) likewise makes clear. Nor is it true that
the closure of the cone of proximal normals always equals the cone of regular
normals, as seen from the similar example in Figure 6-12(b), where only the
zero vector is a proximal normal at .

@ \\\\\ (b)

Fig. 6-12. Regular normals versus proximal normals.
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6.18 Exercise (approximation of normals). Let C' be a closed subset of IR", and
let T € C and v € N¢().

(a) For any € > 0 there exist x € B(z,e)NC and v € B(v,e)N N¢(x) such
that v is a proximal normal to C' at .

(b) For any sequence of closed sets C¥ # () such that lim sup, C* = C' there
is a subsequence {C"},ecn (the index set N € N# being identifiable with IN
itself when actually C¥ — C') along with points ¥ € C* and proximal normals
v” € Nev(x¥) such that ¥+ T and v¥ w7 v. Thus in particular, in terms of
graphical convergence of normal cone mappings, one has

Ne C g-limsup, Ngwv.

Guide. In (a), argue from Definition 6.3 that it suffices to treat the case where
v is a regular normal with |o| = 1. For a sequence of values €” ~ 0 consider
the points ¥ := T + €”v and show that their projections Po(Z") yield points
r¥ — T with proximal normals v¥ — v.

In (b) it suffices through a diagonalization argument based on (a) to con-
sider the case where v is a proximal normal to C at z: for some 7 > 0 one
has T € Po(T + 70). By virtue of 4.19 there’s an index set N € N# such that
z € lim, .5y C” =: D. Argue that £ € Py (Z + 70) and invoke the fact in 5.35
that correspondingly g-lim, ., Pov = Pp in order to generate the required
sequences of elements x¥ and v”. O

An example where the graphical convergence inclusion in 6.18(b) is strict
is furnished in JR? by taking C' to be the horizontal axis and C” to be the
graph of zo = v~ !sin(vzy). At each point T = (Z1,0) of C, the cone N¢(Z) is
{0} x IR, whereas the cone [g-limsup, Ncv](Z) is all of IR*. Here, by the way,
every normal to C* or C'is a proximal normal.

6.19 Exercise (characterization of boundary points). For a closed set C' C IR",
a point * € C is a boundary point if and only if there is a vector v # 0 in
N¢(z). On the other hand, x € int C' if and only if N¢(Z) is just the zero cone.
For nonclosed C, one has N¢(Z) C Nejc(Z).

Guide. Argue that a boundary point  can be approached by a sequence of
points ¥ ¢ C, and the projections of those points on C' yield proximal normals
of length 1 at points arbitrarily close to . O

This characterization of boundary and interior points has an important
consequence for closed convex sets, whose nonzero normals correspond to sup-
porting half-spaces.

6.20 Theorem (envelope representation of convex sets). A nonempty, closed,
convex set in IR" is the intersection of its supporting half-spaces. Thus, a set
C' is closed and convex if and only if C' is the intersection of a collection of
closed half-spaces, or equivalently, the set of solutions to some system of linear
inequality constraints. Such a set is regular at every point. (Here IR" is the
intersection of the empty collection of closed half-spaces.)
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For a closed, convex cone, all supporting half-spaces have the origin as a
boundary point. On the other hand the intersection of any collection of closed
half-spaces having the origin as a boundary point is a closed, convex cone.

Fig. 6-13. A closed, convex set as the intersection of its supporting half-spaces.

Proof. If C is the intersection of a collection of closed half-spaces, each of
those being itself a closed, convex set expressible by a single linear inequality,
then certainly C' is closed and convex. On the other hand, if C' is a closed,
convex set, and Z is any point not in C, any point & € Px(Z) (at least one of
which exists, cf. 1.20) gives a proximal normal v =% —z # 0 to C at T as in
6.16. The half-space H = {z ’ (v, z — &) < 0} then supports C at Z (cf. 6.9),
but it doesn’t contain Z, because (v, T — z) = |[v|? > 0.

When C' is a cone, any half-space {x ’ (a,z) < a} D C must have a > 0
(because 0 € C), and then also {z|(a,z) < 0} D C (because otherwise for
some z € C and large A > 0 we would have (a, \z) > « despite \x € C). 0O

Fig. 6—-14. Convex cones polar to each other.

The envelope representation of convex cones in Theorem 6.20 expresses
a form of duality which will be important in understanding the relationships
between tangent vectors and normal vectors, especially in connection with reg-
ularity. For any cone K C IR", the polar of K is defined to be the cone

K*:={v|{v,w) <0 forall we K}. 6(14)

The bipolar is the cone K** = (K*)*. Whenever K; C Ko, one has Ki D K
and K7* C KJ*.



216 6. Variational Geometry

6.21 Corollary (polarity correspondence). For a cone K C IR", the polar cone
K™ is closed and convex, and K** = cl(con K). Thus, in the class of all closed,
convex cones the correspondence K <+ K* is one-to-one, with K** = K.

Proof. By definition, K* is the intersection of a collection of closed half-spaces
H having 0 € bdry H, namely all those of the form H = {v } (v,w) <0} with
w € K. Hence it is a closed, convex cone. But K** is the intersection of all the
half-spaces {w } (v,w) < O} that include K, or equivalently, include cl(con K).
This intersection equals cl(con K) by Theorem 6.20. O

6.22 Exercise (pointedness and polarity). A convex cone K has nonempty in-
terior if and only if its polar cone K* is pointed. In fact

weEntK < <v,w><0 for all nonzero v € K*.

Here if K = K| for some closed cone Ky, not necessarily convex, one can
replace K* by K, in each instance.

Guide. Argue that a convex set containing 0 has empty interior if and only if
it lies in a hyperplane through the origin (e.g., utilize the existence of simplex
neighborhoods, cf. 2.28(e)). Argue next that a closed, convex cone fails to be
pointed if and only if it includes some line through the origin (cf. 3.7 and 3.13).
Then use the fact that at boundary points of cl K a supporting hyperplane
exists (cf. 2.33—or 6.19, 6.9). For a closed cone K such that K* = cl(con Ky),
the pointedness of K* is equivalent to that of Ky (cf. 3.15). O

The polar of the nonnegative orthant IR" is the nonpositive orthant IR",
and vice versa. The zero cone {0} and the full cone IR" likewise furnish an
example of cones that are polar to each other. The polar of a ray {Tw } T > O},

where w # 0, is the half-space {v ’ (v,w) < 0}.

6.23 Example (orthogonal subspaces). Orthogonality of subspaces is a special
case of polarity of cones: for a linear subspace M of IR", one has

M*=M*t={v|(v,w)=0 forall we M}, M** =M+ =M,
{v]{v,w) i

According to this, the relationship in 6.8 and Figure 67 between tangents
and normals to a smooth manifold fits the context of cones that are polar to
each other. But so too does the relationship in 6.9 and Figure 6-8 between
tangents and normals to a convex set.

6.24 Example (polarity of normals and tangents to convex sets). For any convex
set C' C IR" (closed or not), and any point & € C, the cones No(Z) and T¢(Z)
are polar to each other. Moreover, No(T) is pointed if and only if int C' # ().

Detail. This is seen from 6.9. O

In particular from 6.24, the polar relationship holds between N¢(z) and
Teo(z) when C is a box. Then the cones in question are themselves boxes
(typically unbounded) as described in 6.10.
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F. Tangent-Normal Relations

How far does polarity go in general in describing the connections between
normal vectors and tangent vectors? In the pursuit of this question, another
concept of tangent vector, more special in character, will be valuable for its
remarkable properties and eventually its close tie to Clarke regularity.

6.25 Definition (regular tangent vectors). A vector w € IR" is tangent to C at
a point T € C' In the regular sense, or a regular tangent vector, indicated by
w € Te (), if for every sequence 77 ~ 0 and every sequence T" > T there is a
sequence x¥ z> & with (¥ — ")/ — w. In other words,

— X

To(z) := liminf ¢
x?i T
70

6(15)

Often T¢:(Z) coincides with the cone Te () of tangent vectors in the general
sense of Definition 6.1, but not always. Insights are provided by Figure 6-15.
The two kinds of tangent vector are the same at all points of the set C' in that
figure except at the ‘inward corner’. There the regular tangent vectors form a
convex cone smaller than the general tangent cone, which isn’t convex.

Fig. 6-15. Tangent cones in the regular and general sense.

The parallel between this discrepancy in Figure 6-15 and the one in Figure
6-6 for normal cones to the same set is no accident. It will emerge in 6.29 that
when C' is locally closed at Z, not only does regularity correspond to every
normal vector at  being a regular normal vector, but equally well to every
tangent vector there being a regular tangent vector. This, of course, is the
ultimate reason for calling this type of tangent vector ‘regular’.

6.26 Theorem (regular tangent cone properties). For C' C IR" and x € C, every
regular tangent vector w € T¢(Z) is in particular a derivable tangent vector,
and T¢(z) is a closed, convex cone with To(Z) C Te(Z).

When C' is locally closed at T, one has w € T\c(a’:) if and only if, for every
sequence TV &> &, there are vectors w” € T¢(ZV) such that w¥ — w. Thus,
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To(z) = lim inf 7T (). 6(16)
.Ifc xT

Proof. From the definition it’s clear that fc(:?:) contains 0 and for any w all
positive multiples Aw. Hence fc(:?:) is a cone. As an inner limit, it’s closed.
Every w € fc(a_c) can in particular be expressed as a limit of the form in
Definition 6.25 with ” = z for any sequence of values 77 . 0, so it’s a derivable
tangent vector (cf. Definition 6.1). Thus also, To (%) C Te(Z) (cf. 6.2).

Inasmuch as 7T, c(Z) is a cone, we can establish its convexity by demon-
strating for arbitrary wy and w; in TC( ) that wo + wy € Tc( ) (cf. 3.7).
Consider sequences " >  and 7%~ 0. To prove that wy + w; € Tc(i) we
need to show there is a sequence x” > T such that (z¥ — z¥)/7¥ — wo + wy.
We know there exist, by the assumption that wgy € Te (Z), points ¥ &> & with
(2 — 2) /7" — wy. Then, since wy € T (Z), there exist points ¥ > Z with
(x¥ — &¥)/7V — wy. Tt follows that (z¥ — Z")/T¥ — wo + w1, as desired.

Suppose now that C' is locally closed at z. Replacing C' by C' NV for a
closed neighborhood V' € N (Z), we can reduce the verification of 6(16) to the
case where C' is closed. Let K(Z) stand for the set given by the ‘lim inf’ on
the right side of 6(16). Our goal is to demonstrate that w ¢ K(z) if and only
if w & Te(Z). The definition of K (Z) means that

wg K(T) <= J>0, 3" 2z with d(w,Tc(z")) > ¢, 6(17)
while the limit formula 6(15) for T (z) says that

de>0,z"2z, 77 ~0

1
with (2" + 7" B(w,e)) NC = 0. 618)

w ¢ fc(i’) <~ {
If w ¢ K(z), we get from 6(17) the existence of € > 0 and points ¥ & & With
B(w,&)NTe(2%) = (. Then for some 7% > 0 we have B(w,&)NT~1(C—7¥) =
for all 7 € (0,7], which means (2" +7B(w,&))NC = 0. Selectlng ™ € (0,77 ]
in such a way that 7 ~. 0, we conclude through 6(18) that w ¢ Tc ().

If we start instead by supposing w & T¢(Z), we have ¥ and 7 as in 6(18).
The task is to demonstrate from this the existence of a sequence of points 7%
as in 6(17). For this purpose it will suffice to prove the following fact in simpler
notation: under the assumption that Z is a point of the closed set C' such that
for some € > 0 and 7 > 0 the ball & + 7B(w, ) doesn’t meet C, there exists
i€ CNB(&,7(|w|+¢)) such that d(w, Te(E)) > e.

The set of all 7 € [0, 7] such that the ball B(z + Tw,7e) = & + 7B(w,¢)
meets C' is closed, and by assumption it does not contain 7. Let 7 be the
highest number it does contain; then 0 < 7 < 7. The set

D = i+ 7ABwe) = | J{a+r(w+eB)|r €77}

(see Figure 6-16) then meets C, although int D doesn’t; D is compact and
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convex in IR". Let £ € CND and 7 = 7—7 > 0. Suppose therefore that 7 > 0.
From the definition of D, | — &| < 7(Jw| 4 ¢€). For arbitrary € € (0, ) we prove
now that (z + (0,7 B(w,&)) NC =0, so that B(w,&) N7 (C — ) = for all
7 € (0,7). This will establish that d(w,Tc(Z)) > e.

Fig.6—-16. Perturbation argument.

By its selection, & belongs to the ball & + 7B(w,e) and consequently
7e > | — (2 +7w)| = |(T + Tw) — (& + Tw)|. The ball of radius 7¢ — 7¢ = Te
around T + 7w lies therefore in the ball (Z + Tw) 4+ 7e B = & + 7B(w, £) within
D. The ball (Z + Tw) + 7éB = & + 7IB(w, €) lies accordingly in int D. By the
convexity of D, so then do all the line segments joining points of this ball with
Z, except for  itself (cf. 2.33). Thus, (Z + (0, 7] B(w,&)) N C = 0. O

It might be imagined from 6.26 that the mapping T¢ :  — fc(a:) can be
counted on to be isc relative to C'. But that may fail to be true. For example, if
C is the subset of IR formed by the union of the graph of x3 = z1x with that
of x3 = —x1x2, the cone Te(Z) at any point T on the xj-axis or the zo-axis,
except at the origin, is a line, but at the origin it’s a plane.

The regular tangent cone at the inner corner point in Figure 6-15 is the
polar of the normal cone at that point in Figure 6-6. We’ll show that this
relationship always holds when C' is locally closed at the point in question.
The estimate in part (b) of the next proposition will be crucial in this.

6.27 Proposition (normals to tangent cones). Consider a set C C IR" and a
point & € C' where C' is locally closed. For the cone T'= T (Z), one has

(&) Nr(0) = Uyer Nr(w) C Ne(2);

(b) for any vector w ¢ T there is a vector v € N¢(Z) with |v| = 1 such that
dr(w) = (v, w); thus in particular,

min <v,w> < dp(w) < max <v,w> for all w.
UGNc(i)ﬁB UGNc(i)ﬁB

Proof. 1In (a), note first that because T is a cone one has Np(w) = Np(Aw) for
all A\ > 0. This implies that Np(w) C Np(0), since limsup, Np(w”) C Nr(0)
when w” 7 0. Thus, the equation for Nz (0) is correct.
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Consider now any vector v € Np(0). Since T' = limsup,  ([C — ]/,
there exists on the basis of 6.18(b) a sequence 7" ~ 0 along with points w” €
T := [C — z]|/7" and vectors v € Npv(w”) such that w” — 0 and v¥ — v.
But Npv(w”) = Ne(z¥) for ¥ = 4+ 77w” — Z. Hence actually v € N¢(Z) by
the limit property in 6.6. This proves (a).

In (b), choose w in the projection Pr(w). Then |w—w| = dr(w) > 0, while
w — w is a proximal normal to T at w; in particular, w —w € Np(w). Because
7w € T for all 7 > 0, the minimum of ¢(7) := |w — 7w|? over such 7 is attained
at 7=1,800=¢'(0) = —2(w—w,w). Let v := (w—w)/|lw—w|. Then |v|=1
and (v, w) = 0, so that (v,w) = (v, w — w) = |w — w| = dp(w). Furthermore
v € Np(w), which implies by (a) that v € No(z). This establishes the first
assertion of (b) and shows that the double inequality holds when w ¢ T. Tt
holds trivially though when w € T, since No(Z) N IB contains v = 0. O

6.28 Theorem (tangent-normal polarity). For C C IR" and = € C,
(8) Ne(z) = To(@)* always,
(b) T\c(i) = N¢(z)* as long as C' is locally closed at .

Proof. The first polarity relation merely restates 6(6). For the second polarity
relation under the assumption of local closedness, we begin by considering any
w € Te(Z) and v € Ne(Z). The definition of No(Z) gives us sequences =¥ & T
and v” — v with v¥ € Ng(2"). According to 6(16) we can then find a sequence
w” — w with w” € T (z7). We have (v”, w") < 0 by the first polarity relation,
so in the limit we get (v,w) < 0. Thus, every w € Tc(Z) satisfies (v, w) < 0
for all v € No(Z), and the inclusion fg(i) C N¢(Z)* is valid.

Suppose now that w & T¢(Z). We must show that also w ¢ N¢(Z)*, or
in other words, that for some v € N¢o(Z) one has (v, w) > 0. The condition
w & fc(jz) is equivalent through 6(16) to the existence of z¥ 5>z and € > 0
such that d(w,Tc(z")) > €. The tangent-normal relation in 6.27(b) suffices to
finish the proof, because it can be applied to ¥ (where C' is locally closed as
well, once v is sufficiently high) and then yields vectors v¥ € N (z¥) N B with
(v” w) > e. Any cluster point v of such a sequence belongs to N (Z) by 6.6
and satisfies (v, w) > e. O

6.29 Corollary (characterizations of Clarke regularity). At any & € C' where C
is locally closed, the following are equivalent and mean that C is regular at T:

(a) No(z) = ]/\\fc(’), i.e., all normal vectors at T are regular;
(b) Te(z) = Te(Z), i.e., all tangent vectors at T are regular;
(¢) N, a’::{v}vw <0 for all w € Te(z)} = Te(2)*,
(d) T, = {w|(v,w) <0 for all v€ N¢(z)} = Nc(2)*,
(e) <v w) <0 for allw € Te(z) and v € No (),

(f) the mapping N¢ is osc at # relative to C,

(g) the mapping T¢ is isc at & relative to C.

Proof. Property (a) is what we have defined regularity to be (in the presence
of local closedness). Theorem 6.28, along with the basic inclusions N¢(Z) C
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N¢(z) and fg(i}) C Te(Z) in 6.5 and 6.26, yields at once the equivalence of
(b), (¢), (d), and (e). Here we make use of the basic facts about polarity in
6.21. The equivalence of (f) with (a) holds by the limit formula in 6.5, while
that of (g) with (b) holds by limit formula in 6.26. O

6.30 Corollary (consequences of Clarke regularity). If C' is regular at T, the
cones Te(x) and No () are convex and polar to each other. Furthermore, C' is
geometrically derivable at T.

Proof. The convexity comes from the polarity relations, cf. 6.21, while the
geometric derivability comes from 6.29(b) and the fact that regular tangent
vectors are derivable, cf. 6.26. O

The ‘inward corner point’ in Figure 6-15 illustrates how a set can be
geometrically derivable at a point without being regular there, and how the
tangent cone in that case need not be convex.

The basic relationships between tangents and normals that have been es-
tablished so far in the case of C' locally closed at & are shown in Figure 6-17.
When C' is regular at z, the left and right sides of the diagram join up.

lim inf -~
TC TC convex
—
}* T *
-~ lim sup
convex NC NC
—

Fig. 6