## Vascular System

- The heart can be thought of 2 separate pumps
  - from the right ventricle, blood is pumped at a low pressure to the lungs and then back to the left atria
  - from the left ventricle, blood is pumped at a high pressure to the rest of the body and then back to the right atria
- There are 3 main types of vessels that carry blood around the body
  - Arteries and arterioles (small arteries)
    - carry blood away from the heart
  - Capillaries
    - allow for <u>exchange</u> of materials between the blood and the cells of the body
  - Veins and venules (small veins)
    - carry blood back to the heart



## Vascular Pathways

- Arteries and arterioles are characterized by a divergent pattern of blood flow
  - blood leaves each ventricle via a single artery but split into numerous and smaller diameter vessels
- Arterioles branch into capillaries
  - capillaries are the most numerous blood vessel with the smallest diameter
- Venules and veins are characterized by a convergent pattern of blood flow
  - blood flows out of many capillaries into a single venule with a larger diameter
  - from the venules, blood flows into veins that are larger in diameter which merge into a single vessel to deliver blood to the atria
  - ~60% of the blood volume at rest is in the veins

#### Vascular Walls

- All blood vessels are lined with a thin layer of endothelium, a type of epithelium which is supported by a basement membrane
  - called the tunica intima (or tunica interna)
  - only layer of capillary walls
- The walls of most arteries and veins have layers of smooth muscle and/or elastic connective tissue called the tunica media and fibrous connective tissue called the tunica externa, surrounding the endothelium
  - the thickness of the tunica media and externa vary in different vessels depending on their function or the amount of internal (blood) pressure that they encounter

|           | Mean diameter  | Mean<br>Wall thickness | Endothelium Elastic tissue Smooth muscle Fibrous tissue |
|-----------|----------------|------------------------|---------------------------------------------------------|
| Artery    | 4.0 mm         | 1.0 mm                 |                                                         |
| Arteriole | 30.0 μm        | 6.0 μm                 |                                                         |
| Capillary | 8.0 μm         | 0.5 μm                 |                                                         |
| Venule    | <b>20.0</b> μm | 1.0 μm                 |                                                         |
| Vein      | 5.0 mm         | 0.5 mm                 |                                                         |

#### **Smooth Muscle**

- Most blood vessels contain vascular smooth muscle arranged in circular layers which is partially contracted at all times creating a condition known as muscle tone
- Additional contraction of the smooth muscle results in vasoconstriction which narrows the diameter of the vessel lumen
- Relaxation of the smooth muscle results in vasodilation which widens the diameter of the vessel lumen
- Neurotransmitters, hormones and paracrine signals influence vascular smooth muscle tone which in turn will affect blood pressure and blood flow throughout the cardiovascular system

## Blood Flow Through Vascular System

- Total blood flow through any level of the circulation is equal to the cardiac output
  - if cardiac output is 5 <sup>L</sup>/<sub>min</sub>, the blood flow through all systemic capillaries is also 5 <sup>L</sup>/<sub>min</sub>
  - blood flow through the pulmonary side is equal to blood flow through the systemic circulation
    - prevents blood from accumulating in either the systemic or pulmonary loop

#### Distribution of Blood Flow

- The distribution of systemic blood varies according to the metabolic needs of individual organs and is governed by homeostatic reflexes
  - skeletal muscles at rest receive 21% of cardiac output, but during exercise when they use more O<sub>2</sub> and nutrients and produce more CO<sub>2</sub> and wastes receive as much as 85% of cardiac output
    - accomplished through the vasoconstriction and vasodilation of arterioles supplying blood to various regions, organs or tissues of the body
- The ability to selectively alter blood flow to organs is an important aspect of cardiovascular regulation



#### What Determines Blood Flow?

- Blood flow (F) through the vascular system is directly proportional to the pressure gradient ( $\Delta P$ ) between to points within the system: F  $\propto \Delta P$ 
  - if the pressure gradient increases, flow increases
  - if the pressure gradient decreases, flow decreases
  - blood pressure is the amount of force blood exerts outwardly on the wall of a vessel
- The tendency of the vascular system to oppose blood flow is called its resistance (R) and is inversely proportional to flow:  $F \propto ^{1}/_{R}$ 
  - if the resistance increases, flow decreases
  - if the resistance decreases, flow increases
- Combining the equations above results in: F ∞ ΔP/R



#### **Blood Pressure**

- Aortic pressure reaches an average high of 120 mmHg during ventricular systole (systolic pressure) and falls steadily to a low of 80 mmHg during ventricular diastole (diastolic pressure)
  - systolic pressure > 120 is called hypertension
  - systolic pressure < 100 is called hypotension</p>
- The highly elastic walls of the arteries allows them to capture and store the energy of ventricular ejection
  - note that the pressure in the aorta drops only to 80 mmHg (not to 0mmHg as observed in the ventricle) which keeps blood constantly moving (never stops)
  - energy stored by the arteries can be felt as a pulse
- Blood pressure decreases as it flows downstream
- A similar blood pressure profile (albeit lower) is observed on the pulmonary side of circulation





- Ventricle contracts.
- Semilunar valve opens.
- Aorta and arteries expand and store pressure in elastic walls.

#### (a) Ventricular contraction



(b) Ventricular relaxation occurs.

- Isovolumic ventricular relaxation
  - 2 Semilunar valve shuts, preventing flow back into ventricle.
- 3 Elastic recoil of arteries sends blood forward into rest of circulatory system.

#### What Determines Arterial BP?

- Arterial blood pressure is directly proportional to the amount of blood found in an artery
  - more blood in an artery = higher pressure
  - less blood in an artery = lower pressure
- Since arterial pressure is pulsatile, the mean arterial pressure (MAP) is used to represent the driving pressure of blood through the vascular system
  - MAP = diastolic + 1/3 (systolic diastolic)
  - -MAP = 80 + 1/3 (120 80) = 93 mmHg in the aorta





- Mean arterial pressure is a balance between blood flow into the arteries and blood flow out of the arteries
  - if flow in exceeds flow out, pressure increasesif flow out exceeds flow in, pressure decreases
- Blood flow in is equal to the cardiac output
- Blood flow out is influenced primarily by the vascular resistance offered by the arterioles determined mainly by their diameter
- MAP ∞ CO X Resistance<sub>arterioles</sub>

## Regulation of Mean Arterial Blood Pressure

- The central nervous system coordinates the reflex control of blood pressure
- The main integrating center is a cluster of neurons in the medulla oblongata called the cardiovascular control center
- Sensory input to the integrating center comes from a variety of peripheral sensory receptors stretch sensitive mechanoreceptors known as baroreceptors in the walls of the aorta and carotid arteries travel to the cardiovascular center via sensory neurons
- Responses by the cardiovascular center is carried via both sympathetic and parasympathetic neurons and include changes in cardiac output and peripheral resistance which occur within 2 heartbeats of the stimulus



## Baroreceptor Reflex

- The baroreceptors are tonically active stretch receptors that fire action potentials continuously at normal blood pressures
- When blood pressure increases in the arteries stretches the baroreceptor cell membrane, the firing rate of the receptor increases
  - in response, the cardiovascular center increases parasympathetic activity and decrease sympathetic activity to slow down the heart
  - decreased sympathetic outflow to arterioles causes dilation allowing more blood to flow out of the arteries
- When blood pressure decreases in the arteries, the cardiovascular center increases sympathetic activity and decreases parasympathetic activity creating opposite responses in the effectors to increase blood pressure



#### What Else Determines Mean Arterial BP?

- Although the volume of blood is usually relatively constant, changes in blood volume can affect mean arterial blood pressure
  - if blood volume increases, blood pressure increases
    - fluid intake
  - if blood volume decreases, blood pressure decreases
    - fluid loss
- Relative distribution of blood between the venous and arterial sides of circulation is an important factor in regulating arterial blood pressure
  - when arterial blood pressure falls, vasoconstriction of the veins redistributes blood to the arterial side

## Systemic Venous Blood Pressure

- As blood moves through the vessels, pressure is lost due to friction between the blood and the vessel walls
- The low pressure blood in veins inferior to the heart (arms, abdominopelvic cavity and legs) must flow against gravity to return to the heart
- To assist venous flow, these veins have internal one way valves to ensure that blood passing the valve cannot flow backward
- The movement of blood through veins is also assisted by the contraction of <u>skeletal muscle</u>
- Veins located between skeletal muscles are squeezed during contraction
- This increases the venous pressure enough to move the blood through the valves, back towards the heart



#### What Determines Resistance in the Vessels?

- For fluid flowing through a tube, resistance is influenced by 3 parameters:
  - the radius (r) of the tube (half of the diameter)
  - the length (L) of the tube
  - the viscosity (η) or thickness of the fluid
- Poiseuille's Law relates these factors to resistance:
  - $-R \propto L\eta/r^4$ 
    - if the tube length increases, resistance increases
    - if the viscosity increases, resistance increases
    - if the tube's radius increases, resistance decreases
  - Since blood viscosity remains relatively constant and blood vessel lengths can't change, <u>vessel</u> diameter is the major determinant of resistance



- Arteriolar constriction reduces blood flow through that arteriole and redirects the flow through all arterioles with a lower resistance
  - total blood flow through all the arterioles of the body always equals cardiac output

## Local and Systemic Control of Arteriolar Diameter

- Local control is accomplished by paracrines secreted by the vascular endothelium or by tissues to which the arterioles are supplying blood
  - low O<sub>2</sub> and high CO<sub>2</sub> dilate arterioles which increase blood flow into the tissue bringing additional O<sub>2</sub> while removing excess CO<sub>2</sub>
    - can be caused by an increase in metabolic activity (active hyperemia) or by a period of low perfusion (reactive hyperemia)
- Systemic control occurs by sympathetic innervation
  - tonic release of norepinephrine which binds to αadrenergic receptors on vascular smooth muscle helps maintain tone of arterioles
  - if sympathetic release of norepinephrine decreases, the arterioles dilate, if the release of norepinephrine increases, arterioles constrict



(a) Active hyperemia

(b) Reactive hyperemia



## Capillary Wall Promotes Exchange

- Most cells are located within 0.1 mm of the nearest capillary over which diffusion occurs rapidly
- The most common type are continuous capillaries
  - endothelial cells are joined by leaky junctions
- Less common type are fenestrated capillaries
  - endothelial cells have large pores (fenestrations) that allow high volumes of fluid to pass quickly between the plasma and interstitial fluid
- Exchange occurs either by:
  - movement of substances through the gaps between adjacent endothelial cells (paracellular movement)
  - movement of substances through/across the cell membrane of endothelial cells (transcellular movement)



(a) Continuous capillaries have leaky junctions.

(b) Fenestrated capillaries have large pores.

# Capillary Exchange

- Paracellular exchange occurs through endothelial cell junctions or fenestrations
  - solutes can move by diffusion
  - solutes can move by bulk flow which refers to the mass movement of a solvent as a net result of hydrostatic and or osmotic pressure gradients across the capillary wall
    - if the direction of bulk flow is out of the capillary the fluid movement is called filtration
    - if the direction of bulk flow is into the capillary the fluid movement is called absorption
- Transcellular exchange occurs through the cell membrane of endothelial cells
  - nonpolar gasses and solutes can move by diffusion
  - large polar solutes can move by vesicular transport

## Capillary Exchange by Bulk Flow

- 2 forces regulate bulk flow in capillaries
  - hydrostatic pressure (P<sub>cap</sub>)
    - lateral pressure component of blood flow that pushes plasma out through the capillary pores
    - decreases along the length of the capillary as energy is lost to friction
  - osmotic pressure  $(\pi_{cap})$ 
    - pressure exerted by solutes within the plasma
    - the main solute difference between plasma and interstitial fluid is due to proteins (present in plasma, but mostly absent in interstitial fluid)
      - -the osmotic pressure created by plasma proteins is called colloid osmotic pressure
    - favors water movement by osmosis from interstitial fluid into plasma
    - is constant along the length of the capillary



- Net Pressure =  $P_{cap} \pi_{cap}$
- Net Pressure<sub>arterial end</sub> = 32mmHg 25mmHg = 7mmHg
  - favors filtration
- Net Pressure<sub>venous end</sub> = 15mmHg 25mmHg = -10mmHg
  - favors absorption



(b) Relationship between capillaries and lymph vessels

- In most capillaries there is more <u>filtration than absorption</u>
- 90% the volume of fluid filtered out at the arterial end is absorbed back into the capillary at the venous end
  - the other 10% enters lymphatic vessels where it is returned back into circulation as the lymph vessels empty lymph fluid into blood at the right atrium