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Abstract

We discuss Vassiliev type invariants of braids from a rational homotopy point of view. We get a

detailed construction of the Malcev completion of Pn and point out how to extend it to the whole braid

group Bn.
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CHAPTER 0

Introduction

This paper is the first one in a series of papers on Vassiliev invariants and we are dealing here only

with braid groups. The present article is a fairly detailed account starting with Chen’s theory of iterated

integrals and Kontsevich’s approach for the universal Vassiliev invariant. We get the geometric construction

of Malcev’s completion (over Q) of a discrete group in order to apply it for the case of pure braid groups Pn.

Our first main ingredient in reconstructing Vassiliev invariants is the canonical arrow

Pn −→ U(Pn ⊗ Q)

which we further identify with the universal Vassiliev invariant for pure braids. This is certainly transparent,

even if never explicitly stated, in previous work of Stanford [St], Bar-Natan [BN2], Cartier [Car] and Kohno

[Kohno1].

An immediate consequence is that Vassiliev invariants classify pure braids, and therefore usual braids.

This was first noticed by Bar-Natan [BN3] and Kohno [Kohno3], and other proofs and applications were

considered by Stanford [St], Lin [Lin] (see also [BN1,2]). The stronger result that the weight systems coming

from the linear groups suffice to separate braids is obtained in [BN4].

The extension of this morphism to the whole braid group Bn cannot be a homomorphism. The reason

is that Bn has not a cohomology group large enough (to inject into its completion). This is equivalent to

saying that only multiplicative Vassiliev invariants do not suffice to classify braids, as was the case with the

pure braids. We notice however that we can build up a representation of Bn related to Vassiliev invariants
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using the formulas of Drinfeld (see [Drin]) as is done in [Piu]. Anyway we may extend the previous morphism

to a map

Bn −→ V (n) = U(Pn ⊗ Q) n Sn

whose failure to be a morphism might be explicitly computed in terms of Drinfeld’s associator.

We shall only discuss some points about regularizing singular integrals following Le and Murakami in

order to explain the multiplication law. A detailed construction will be given in the second paper in this

series.

In this setting the chord diagram algebras will be a sort of Malcev completions for the semi-group of

knots, revealing the rational homotopic nature of Vassiliev invariants. The same conclusions were obtained by

Kassel and Turaev in [KT], Lin [Lin] and Kohno [Kohno3]. The novelty in this paper is just the emphasing

of this relationship which will be exploited further. We already notice that Malcev’s completion has an

universality property: any multiplicative universal Vassiliev (for pure braids) taking values in a graded

algebra An factors through Pn ⊗ Q. This is the case for the graded algebra APn from [BN2] of chinese

character diagrams. This means that up to an automorphism of Pn ⊗ Q any universal invariant of pure

braids has in its expansion only horizontal and Lie polynomial chord diagrams, supporting the conjecture of

Bar-Natan [BN2].

Acknowledgements. — I would like to thanks Valentin Poénaru, Stefan Papadima, Gregor Masbaum

for the stimulating discussions we had about Vassiliev invariants, Dror Bar-Natan, Simon Willerton for their

comments on the first version of this paper, and Xiao-Song Lin for sending me his preprint [Lin]. The

participants of the topology seminar at Grenoble were sufficiently patient to listen me, their critics and

suggestions being an impulse to write this introduction to Vassiliev invariants from a rational homotopic

perspective. I thanks them all. Nevertheless I’am indebted to Arlette Guttin-Lombard for typing this text.

CHAPTER 1

Review of Chen’s theory

1. Setup.

(1.0) Let X be a connected C∞-manifold having H∗(X) and π1X finite generated. Chen ([Chen1])

constructed a series of simply-connected nilpotent Lie groups

· · · G(r) −→ G(r − 1) −→ · · · −→ G(1)

and a sequence of locally flat connections on X which lead to holonomy homomorphisms

π1(X) −→ G(r), r ≥ 1.

If π1X is torsion free nilpotent then G(r) stabilizes for large r and the corresponding holonomy homomor-

phism sends π1X isomorphically into G(r) as an uniform discrete subgroup so that G(r) may be identified

with Malcev’s completion of π1X .
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(1.1) If the De Rham complex Λ∗(X) of X is equipped with a direct sum decomposition of the type

Λp(X) = Hp ⊕ dAp−1 ⊕ Ap

such that Hp consists in closed p-forms and Ap contains no non-zero closed p-form then the locally flat

connections mentioned above are uniquely determined. For a compact Riemann manifold there is a canonical

decomposition of this type, namely the Hodge decomposition.

(1.2) Let V be the graded vector space with

Vq = Hp+1(X ;k), k being a fixed field,

and T (V ) be the completion of the tensor algebra on V . Then every direct sum decomposition as above

gives rise to a canonical differential mapping

∂ : T (V ) −→ T (V )

having the degree -1, and a canonical T (V )-valued formal power series connection ω which is a twisting

cochain i.e.

∂ω + K(ω) = 0

where K denotes the curvature of the connection. The holonomy homomorphism is a chain map from the

smooth chain complex C∗(ΩX), of the loop space ΩX , to T (V ), which induces an isomorphism

H∗(ΩX ;k) ' H∗(T (V ))

in the case where X is 1-connected. In the non simply-connected case there is an induced morphism

kπ1X = H0(ΩX ;k) −→ H0(T (V ))
not
= U .

Let J denotes the augmentation ideal of the group algebra kπ1X and Us denotes the quotient of U

by the s-th power of its augmentation ideal.

Theorem 1. — The following sequences

0 −→ J s+1 −→ kπ1X −→ Us −→ 0

0 −→
⋂

s

J s −→ kπ1X −→ U −→ 0

are exact sequences for any s ≥ 1.

Remark 2. — Let G(r) = {g; g − 1 ∈ J r
G} where JG is the augmentation ideal of kG and let G∗

denotes the lower central series of the group G (defined by G0 = G, Gr+1 = [Gr, G]). Then a general result

states that

Gr ⊆ G(r) for any r

hence G/G(r) is torsion free nilpotent. It is true that
⋂

r

J r
G = 0 if and only if

⋂

r

Gr = 0

or, equivalently G is residually torsion free nilpotent. As a consequence.

Corollary 3. — If π1X is residually torsion free nilpotent then the map kπ1X → U is injective.
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2. Some definitions and technicalities.

(2.0) Let V∗ be a graded vector space, X1, X2, . . . be a basis for V∗ so that X1, . . . , Xm form a basis

for V0, Xm+1, . . . , Xm+` form a basis for V1, etc. Let T (V ) be the completion of the graded tensor algebra

on V∗; regard X1, X2, . . . as non-commutative variables and write Xi1Xi2 · · ·Xip
for Xi1 ⊗ Xi2 ⊗ · · · ⊗ Xip

.

Then every element of T (V ) is a formal power series a = a0 +
∑
i

aiXi +
∑
i,j

aijXiXj + · · ·. The augmentation

map is

T (V ) −→ k, a 7−→ a0

so

J r = {a; ai1···is
= 0 if s < r}.

We topologize T (V ) using the system of neighborhoods {J r; r = 1, 2, . . .} of 0 so that T (V ) is Hausdorff.

A derivation ∂ of T (V ) is a linear endomorphism of degree -1 satisfying the usual Leibniz rule

∂(uv) = (∂u)v + (−1)deg uu∂v

and also

∂ is continuous and ∂T (V ) ⊂ J .

(2.1) We come back to the case when V∗ is the graded homology vector space of a C∞-manifold X .

Consider the endomorphism J : Λ∗X → Λ∗X of the De Rham complex, given by

Jw = (−1)deg ww.

Let us denote by TΛ(X)(V )) the algebra of T (V )-valued forms on X .

A formal connection on X is an element ω ∈ TΛ(X)(V )

ω =
∑

wiWi +
∑

wijXiXj + · · ·

such that

wi1···ir
is a form on X of degree 1 + deg Xi1 + · · · + deg Xir

.

The curvature of the connection ω is defined as

K(ω) = dω − Jω ∧ ω ∈ TΛ(X)(V )

where
dω =

∑
dwiXi +

∑
dwijXiXj + · · ·

Jω =
∑

JwiXi +
∑

JwijXiXj + · · ·

Suppose a decomposition as in (1.1) is fixed:

Λ∗(X) = H∗ ⊕ dA∗−1 ⊕ A∗.

Choose a basis X1X2, . . . of V∗ = H∗+1(X ;k) and the forms wi in Λ∗(X) so that their cohomology classes

[wi] in H∗(X) are representing a dual basis of Xi in H∗(X). We can furthermore choose wi in H∗ ⊂ Λ∗(X).

Then the element

β =
∑

wiXi ∈ TΛ(X)(V )

is independent on the choices of bases we have done, being uniquely determined by the decomposition.
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Theorem 4. — There exists uniquely a formal connection

ω =
∑

wiXi +
∑

wijXiXj + · · ·

and a derivation ∂ of T (V ) such that

(1) the initial term
∑

wiXi is β.

(2) wij , wijk , . . . belong to A∗.

(3) ∂ω + K(ω) = 0 (the flatness of ω).

Remark 5. — The cup-product on H∗(X) determines the first stage of ∂ in the following way: assume

that [Jwi ∧ wj ] =
∑

ck
ij [wk ]. Then

∂Xλ =
∑

cλ
ijXiXj + · · ·

(2.2) Observe that T (V0) = T (V )0 is an (ungraded) algebra and

J0 = J ∩ T (V )0.

Let N be the closure of the ideal generated by ∂V1 ⊂ T (V )0. Then N = ∂(T (V )1) since ∂V0 = 0 and we

have

U = H0(T (V ), ∂) = T (V0)/N .

The augmentation ideal of U , JU = J0/N . Then the algebras

Us = U/J s+1
U

are finite dimensional. Set νr : T (V0) −→ Ur for the natural projections, NΛ(X) = Λ∗(X) ⊗N ⊂ TΛ(X)(V ),

νr : TΛ(X)(V ) −→ Λ∗(X) ⊗ Ur for the natural extension of νr. Let L(V ) be the graded free Lie algebra

generated by X1, X2, . . . and L(V ) its topological closure in T (V ), and LΛ(X)(V ) the space of L(V )-valued

forms on X . Lets define

JUr
= νr(L(V0)) ⊂ Ur.

Since JUr
is nilpotent it follows that gr ⊂ JUr

is a nilpotent Lie algebra hence G(r) = exp gr is a simply-

connected Lie group. This is the tower of Lie groups from (1.0).

Example 6. — N ⊂ J 2
0 and U1 = T (V0)/J 2

0 so g1 is the abelian Lie algebra having as basis Xi +J 2
0 ,

and G(1) is the abelian Lie group {1 +
∑

aiXi + J 2
0 ; ai ∈ k}.

CHAPTER 2

Review of Vassiliev invariants
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1. Combinatorics.

(1.0) Any k-valued invariant V of oriented knots in S3 (or, more generally in a 3-manifold M 3) can

be extended canonically to be an invariant of immersed circles in S3 which have only ordinary double points

using the following resolution of a local singularity

V
( )

= V
( )

− V
( )

.

As usually such a skein relation means that · or are parts of bigger graphs which are identical

outside a small sphere, inside of which they look as in the figures.

(1.1) Let m ∈ Z+. An invariant V of oriented knots is called an invariant of type m (or a Vassiliev

invariant of degree m) if V vanishes on singular knots that have more than m double points:

V


 · · ·︸ ︷︷ ︸

>m


 = 0.

The k-space of Vassiliev invariants V is the space of invariants of finite degree and has a natural filtration

by the degree V∗.

(1.2) A chord diagram is an oriented circle with finitely many chords marked on it regarded up to

orientation preserving diffeomorphisms of the circle. Denote by D the collection of all chord diagrams graded

by the number of chords.

Now a k-weight system of degree m is a function

W : Dm −→ k

which fulfills :

(1) If d ∈ Dm has an isolated chord (which does not intersect the other chords of d) then

W (d) = 0.

(2) Whenever four diagrams d1, d2, d3, d4 differ only as shown in the figure below, their weights

satisfy the 4T -relation

W (d1) − W (d2) = W (d3) − W (d4)

- = -

d d d d
1 2 3 4

Let W∗ denotes the graded space of weight systems, and gr∗V = (V∗/V∗+1) be the graded k-space of

Vassiliev invariants obtained from its natural filtration.

(1.3) Let N be the set of isotopy classes of oriented knots and N = kN be the k-space generated by

N . The recursive use of the formula

= −

enables us to consider Jk(N ) the ideal generated by the images of singular knots having fewer than k self-

crossings, under repeated use of the desingularisation. Then J∗(N ) is an ascending filtration whose graded

space gr∗N = (J∗(N ))/J∗+1(N ))∗ is isomorphic with gr∗V .
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(1.4) The main theorem in Vassiliev theory is ([BN1], [Konts], [Vass], [Bir-Lin]).

Theorem 1. — We have an isomorphism of graded k-spaces

W∗ ' gr∗V

for k = R.

Actually this result was improved at k = Q by Le-Murakami ([Le-Mu]). The main feature of Vassiliev

invariants over R is that via Theorem 1 they are algorithmically computable using the so-called actuality

tables (see [Bir], [Bir-Lin]).

2. The algebra of diagrams.

(2.0) Set D = kD for the k-space spanned by chord diagrams and

A = D/k(4T -relations)

the k-algebra of diagrams, and set for the algebra of reduced diagrams Ar,

Ar = A/(d having isolated chords).

It is clear that the weight system are actually functionals on Ar .

(2.1) The multiplication of two diagrams in D is obtained by connected sum of diagrams in two

points not lying on any chord. The ambiguity is cancelled when passing to the quotient A and gives rise to

a multiplication A×A → A.

We have a co-multiplication ∆ : A → A⊗A by

∆(d) =
∑

d′ ⊗ d′′

where d′ is obtained from d by deleting some chords, d′′ by deleting the chords of d′ and the sum being taken

over all possibilities.

Remark that a natural multiplication and co-multiplication may be defined in a similar vein for N .

(2.2) The interest in having much structure on A is to derive a simpler algebraic description of it.

In fact

Theorem 2. — (A, ·, ∆) is a commutative and co-commutative Hopf algebra over k.

Therefore by the structure of Hopf algebras we know that A is the symmetric algebra generated by

the primitive elements of A:

A = S(P (A)), P (A) = {a ∈ A; ∆(a) = a ⊗ 1 + 1 ⊗ a}.

If A∗ is the dual Hopf algebra and P ′(A∗) is the set of primitive elements of degree greater than 1 then we

can identify the k-space of weight systems as

W ≈ S(P ′(A∗)).

Notice that the above isomorphism is a graded isomorphism, and for k = R using Theorem 1, the weight sys-

tems in P ′(A∗) correspond to Vassiliev invariants which are additive under the operation of taking connected

sum of knots.
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(2.3) A computer search gave for the number dn of primitive elements in degree n the values (see

[BN1]):

d1 = 1, d2 = 1, d3 = 1, d4 = 2, d5 = 3, d6 = 5, d7 = 8, d8 = 12.

We set PA,k for the Hilbert series of A, which is

PA,k(t) =
∞∏

i=1

(1 − ti)−di

because A is a polynomial algebra.

3. Kontsevich’s universal invariant.

(3.0) We outline below the construction of the isomorphism of Theorem 1. The easy part is to start

with a Vassiliev invariant of degree m, say V and to derive a weight system.

Let d ∈ Dm be a chord diagram. an embedding of in R3 is an immersion id : S′ → R3 whose

singularities are ordinary double points and satisfies:

id(a) = id(b) iff a = b or else a and b are the endpoints of a chord in d.

There exists an unique regular homotopy class of such immersions for a fixed chord diagram hence any two

embeddings id and ĩd are connected by a sequence of flips in which an over-crossing changes into an

under-crossing .

(3.1) Example:

d  = i     =
d

(3.2) Let us define

w(d) = V (id), for d ∈ Dm, V ∈ Vm.

A flip does not change the value of V (id) since

V (id) − V (̃id) = V ( a singular knot with m + 1 double points) = 0,

so V (id) is well-defined. It remains to see that w is actually a weight system.

Firstly we have

V
(

A B

)
= 0

because A B and A B are isotopic, which implies that w(d) = 0 if d contains an isolated

chord.

Further consider K0 and K1 be two knots with m−1 double points which are identical outside a small

sphere, inside which they look as in figure below:
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K K

z z x

y

x

y
o

o

0 1

We can pass from K0 to K1 in two ways: by moving the strand z to cross x and then y, or to cross y firstly

and further x. But each time z cross x or y we can compute the change in V (K0) using the values of V

on knots with n double points. The two ways to get V (K1) − V (K0) must give the same answer hence we

derive a four term relation on w which is exactly (4T ).

(3.3) The inverse homomorphism W → V is provided by using the Knizhnik-Zamolodchikov equation

and is due to Kontsevich. It gives a sort of universal link invariant taking values in W .

(3.4) Recall that Chen [Chen2] gives an effective method to compute the holonomy of a flat con-

nection Ω on a C∞-manifold X , taking values in a topological algebra A over k, with unit 1. The parallel

transport along the smooth curve γ : I → X is the map

hΩ(γ) : I −→ A, I = [0, 1]

which satisfies

hΩ(0) = 1,
∂

∂t
hΩ(t) = Ω(γ̇(t))hΩ(t), t ∈ I

if such a function exists and it is unique.

If Ω is flat then this holonomy map hΩ(γ) is invariant under homotopies of γ which preserve its

endpoints, and it can be calculated by means of iterated path integrals as:

hΩ(γ) = 1 +

∞∑

m=1

∫

0≤t1<t2<···<tm≤1

γ∗Ω(t1) ∧ · · · ∧ γ∗Ω(tm)

where γ∗Ω(t1) ∧ · · · ∧ γ∗Ω(tm) is a top form on the simplex ∆m.

(3.5) Let Xn be the configuration space of n distinct points in C,

Xn = {(z1, . . . , zn) ∈ Cn, zi 6= zj , ∀i 6= j} ⊂ Cn

and ωij ∈ Λ1(Xn) defined by

ωij =
dzi − dzj

zi − zj
.

Let DKZ
n be the collection of all diagrams made by n ordered downward pointing arrows and arcs connecting

them (with eventually 3-valent cyclically orientations around vertices):
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and set

AKZ
n = k(DKZ

n )/(STU -relations)

where the STU relations are

= -

S T U

This definition is reminiscent to the identification of A with the algebra of 3-valent diagrams At where

the 4T -relation is replaced by the STU -relation, due to Kontsevich and Bar-Natan. We refer to [BN1] for

more details. Remark only that AKZ
n has a multiplication by putting diagrams one above the other.

Set

Ωij =
y

y · · ·
y · · ·

y · · ·
y

i j

∈ AKZ
n

and form the formal Knizhnik-Zamolodchikov connection on Xn

Ωn =
∑

1≤i<j≤n

Ωijωij ∈ Λ1(Xn) ⊗AKZ
n .

Then the STU -relation gives the flatness of Ωn.

(3.6) The connection Ωn has a simple generalization to the case when the underlying algebra is AKZ
n,n

generated by diagrams having 2n arrows whose n arrows point upward and whose remaining n arrows point

downward. Then one defines

Ωn,n =
∑

i<j

sisjΩijωij ∈ AKZ
n,n ⊗ Λ1(Xn)

where si =

{
1 if the ith arrow points downward

−1 otherwise
.

In general we can specify the signature of arrows as ε : {1, . . . , 2n} → {±1} and identifying AKZ
n,n with

a specific AKZ
n,n (ε).

(3.7) Choose a decomposition R3 = C × R and let K : S1 → R3 be a parametrized knot whose

projection on R is a Morse function. Consider the series

Z(K) =

∞∑

m=0

1

(2πi)m

∫

tmin≤t1<···<tm≤tmax

∑

P pairing {(zi,z′

i
)}

(−1)#P↓DP

m∧

i=1

dzi − dz′i
zi − z′i

∈ Ar
C

where

(1) the projection of K on R is [tmin, tmax];

(2) a pairing P is a choice of unordered pairs (zi, z
′
i), 1 ≤ i ≤ m for which (zi, ti) and (z′i, ti) are

distinct points of K;

(3) #P ↓ is the number of points in the pairing P where the orientation of K points downward with

respect to the projection on R;
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(4) Ar
C

is Ar for k = C;

(5) DP is the diagram associated to the m pairs of points in S1.

We defer to [BN1] for a complete proof that Zn(K) is well-defined and invariant ot homotopies which preserve

the number of critical points. Let the symbol ∞ states for the embedding

and notice that Z(∞) = 1+ (higher order terms) hence Z(∞) is invertible in Ar
C
. For K an embedded Morse

knot with c critical points we set

Z̃(K) = Z(∞)1−
c
2 Z(K) ∈ Ar

C

which is an isotopy invariant, called the universal Kontsevich invariant. It is simply to check that Z̃ provides

the inverse morphism W∗ → gr∗V . Observe that t → −t, z → z̄ maps a knot into an equivalent one while

Ωn,n → −Ωn,n. This proves that Z̃(K) ∈ Ar
R
.

CHAPTER 3

The Malcev completion of the group of pure braids

1. Configuration spaces.

(1.0) We come back to Chen’s theory from the first chapter. We want to carry out this general

theory in the specific case of configuration spaces. It is known that

π1Xn = Pn

is the group of pure braids in n strings. Its cohomology ring was computed by Arnold ([Arnold]) and it is

H∗(Pn; Z) = 〈eij , 1≤i<j≤n, deg eij = 1; eijejk = eikejk + eijeik, 1≤i<j<k≤n〉.

Under the natural map H∗(Pn; Z) ↪→ H∗(Xn, C) ≈ H∗DR(Xn) the generators eij correspond to the 1-forms

ωij ∈ Λ1(Xn).

From this description, or directly by using the fact that Pn is an amalgamation of free groups Fn−1 n

Fn−2 n · · · n F1 we derive that the Hilbert polynomial is

PXn,k(t) = (1 + t)(1 + 2t) · · · (1 + (n − 1)t)

over any field k.

(1.1) Let An,` = {{(i1, j1), (i2, j2), . . . , (i`, j`)}} lexicographically ordered, to avoid permutations,

where is, js ∈ {1, . . . , n} satisfy

(1) is < js;

(2) {i1, . . . , i`} ∩ {j1, . . . , j`} = ∅.
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For a multi-index I ∈ An,` we set eI = ei1j1ei2j2 · · · ei`j`
. It follows easily that {eI ; I ∈ An,`} is a k-basis

for H`(Xn; Z). Our first task is to define a flat formal connection (ω, ∂) on Xn.

We set then

ω =
∑

I

wIZI

where wI is the form
∧`

s=1 ωisjs
dual to eI , and ZI are formal non-commutative indeterminates with deg ZI =

|I | − 1.

Proposition 1. — There exists an unique formal homological connection (ω, ∂).

Proof. — The quadratic formal connection is given by the cohomology cup-product. We have (see

Remark 5, chap. 1)

∂ZI =
∑

cJK
I ZJZK

where [JwJ ∧ wK ] =
∑

cJK
I [wI ] in H∗(Xn). Also we can write

Jω =
∑

(−1)|I|−1wIZI

Jω ∧ ω =
∑

(−1)|I|−1wI ∧ wJZIZJ

dω =
∑

dwIZI = 0 since the forms wI are closed

∂ω =
∑

I

wI


∑

J,K

cJK
I ZJZK


 =

∑

J,K

(
∑

I

cJK
I wI

)
ZJZK

=
∑

J,K

(−1)|J|−1wJ ∧ wKZJZK .

The last equality follows from the very pleasant fact that cJK
I are determined for Xn directly at the form

level i.e.

JwJ ∧ wk =
∑

cI
JKwI , I, J, K ∈

⋃

`

An,`.

We derive

dπ + ∂ω − Jω ∧ ω = 0

hence the flatness of (π, ∂).

Remark this proposition is equivalent to the fact that the spaces Xn are formal (see [DGMS]).

(1.2) Now, with the notations of Chapter 1, the degree 0 component of T (V ) is therefore a quotient

of k[[Z(ij), 1 ≤ i < j ≤ n]] (the double brackets states for the series in non-commutative variables), and it

remains to compute effectively ∂ on Z(ij)(k`) for obtaining H0(T (V ), ∂). These computations are giving in

fact the Lie algebra of Pn (see [Kohno2], [FR]) but we carry them out for the sake of completeness. It is

immediate that
c
{(u,v)}{(r,s)}
{(i,j),(k,`)} = 0, if {i, j} ∩ {k, `} = ∅

c
{(u,v)}{(r,s)}
{(i,j),(k,`)} = δuv

ik δrs
jk + δuv

ij δrs
ik

and cJK
I = −cKJ

I . We obtain then

∂Z(i,j)(k,`) = ZijZk` − Zk`Zij if {i, j} ∩ {k, `} = ∅

∂Z(i,j)(i,k) = ZijZjk + ZijZik − ZjkZij − ZikZij

∂Z(i,k)(j,k) = ZijZjk + ZikZjk − ZjkZij − ZjkZik.

12



Then the universal algebra U(n) = H0(T (V ), ∂) can be presented as

U(n) = k[[Zij , 1≤i<j≤n]]
/
[Zij , Zk`] = 0 if {i, j} ∩ {k, `} = ∅

[Zij + Zjk, Zik] = 0 if 1≤i<j<k≤n

[Zik + Zij , Zjk] = 0.

Its augmentation ideal JU(n) = (Zij ; 1≤i<j≤n) ⊂ U(n).

(1.3) Remark that this algebra is well-understood object. Again we can use fairly general results of

Kohno, Falk and Randell, see also Berceanu ([Kohno2], [FR], [Ber]), or else to use the semi-direct product

decomposition of Pn into free groups (and to use that at algebra level the semi-direct product transforms

into a direct product) to derive the Hilbert series of the graded algebra U(n) is

PU(n),k(t) =

n−1∏

j=1

1

1 − jt
.

Remark that the graded structure on U(n) is given by the degree of the polynomial in Zij ’s. This means

that we computed actually the series of gr∗U(n) =
⊕
r
J r
U(n)/J

r+1
U(n).

Observe that PU(n),k does not depend on the characteristic of k. If we set U(n)Z for the algebra

defined over Z we deduce (see [Ber]):

Corollary 2. — The algebra U(n)Z is torsion-free, or equivalently, the graduation gr∗Pn =
⊕

(Pn)(r)/(Pn)(r+1)

is torsion-free.

We have also a holonomy homomorphism

Z : Pn −→ U(n).

Corollary 3.

1) The holonomy Z is injective.

2) Let consider

Zνr : Pn −→ U(n)r = U(n)/J r+1
U(n).

Then kerZνr = (Pn)r = (Pn)(r), (see [FR2], [St]).

This follows directly from Chen’s work and the fact that Pn is a residually torsion free nilpotent group.

We can be more precise on the image of Pn under Z. Let g(n) be the free Lie algebra on Zij quotiened

by the ideal defining U(n). We can view g(n) ⊂ U(n) and U(n) is identified this way with the enveloping

algebra of g(n). Then G(n) = exp g(n) ⊂ U(n) is the set

closure of {exp(x); x ∈ g(n)} ⊂ U(n)

endowed with the multiplication induced by Campbell-Hausdorff formula. Then, according to Chen Pn is

an uniform discrete subgroup of the infinite dimensional formal Lie group G(n). Remark that we may define

analogously G(n)r ⊂ U(n)r which are nilpotent simply-connected Lie groups and G(n) = lim
←

G(n)r so it

inherits a natural topology as a closed Lie group. When k = Q, g(n) is the Malcev Lie algebra of Pn (see

[Kohno2]).
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2. Vassiliev invariants for pure braids.

(2.0) We can regard pure braids as isotopy classes of n strings in R2×[0, 1] having nowhere horizontal

tangent vectors and fixed endpoints. Therefore every invariant for braids V can be uniquely extended to

singular braids (where several self-crossings which are ordinary double points are allowed) by means of the

skein relation we encountered in Chapter 2, namely

V
( )

= V
( )

− V
( )

,

where we supposed all strings are oriented downward for the moment. Let consider a similar theory as in

Chapter 2 for pure braids, so define V∗(Pn) the k-space of Vassiliev invariants of finite type, where Vm is

spanned by those invariants vanishing on singular braids having more than m double points.

(2.1) There is a natural candidate for the analog diagrams: we denote by Dn = D
(
|||| · · · |︸ ︷︷ ︸

n

)
the span

of diagrams consisting in n arrows which are labeled 1, . . . , n and points downward and several horizontal

arcs whose endpoints are on the arrows. We can multiply these diagrams by putting them one above the

other. Consider further the algebra

Tn = T
(yy · · ·

y
︸ ︷︷ ︸

n

)
= Dn

/
k (relations (1) and (2))

where

(1)

i j k l i j k l

=

so horizontal arcs having distinct sets of endpoints commute, and

(2)

i j k i j k i j k i j k i j k  j      ki

-- =  - + =

In a similar vein we can define the k-space of weight systems W∗(Pn) as functionals on Dn which pass to

the quotient Tn. Notice the natural grading on Tn is that given by the number of horizontal arcs.

Proposition 4. — We have an isomorphism W∗(Pn) ≈ gr∗V∗(Pn).

It suffices to reread the proof of Theorem 1, chap. 2 to see that all constructions can be carried out

in this simpler setting.

(2.2) Proposition 5. — We have an isomorphism of graded k-algebras

U(n) ≈ Tn.
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Proof. — It suffices to observe that the map

Zij ∈ U(n) 7−→
y · · ·

y · · ·
y · · ·

y
i j

∈ Tn

is well-defined on generators. But the relations in U(n) translate into (1) and (2).

It remains to identify now the universal Kontsevich invariant in this setting. A comparison of the

considered flat connections gives:

Corollary 6.

1) The homomorphism Z : Pn → U(n) is the universal Kontsevich invariant for pure braids.

2) There is a 1:1 correspondence between Vassiliev invariants of degree r and maps

f : Pn −→ k

obtained as follows:

f factors as Pn
Zνr−→ J r

U(n)/J
r+1
U(n) −→ k.

It follows from 1.3 that

Corollary 7 (Stanford).

1) Even for k = Q Vassiliev invariants classify pure braids.

2) V (x) = V (y) for all Vassiliev invariants of degree m if and only if xy−1 ∈ (Pn)(r), or, equivalently

x ≡ y in the quotient Pn/(Pn)(r) of the lower central series.

Observe that the invariant Z(K) of Morse link behaves multiplicatively with respect to connected

sums. Let us be more precise: assume that in the interval [t− ε, t + ε] of values there are not critical values.

We tie the knot K by a plane R2 × t

x

K

K

+

-

K x

and insert a box where the strands (up and bottom ones) are connected using some pure braid x. We say

that K was modified by x. We have Vassiliev invariants for tangles (see [Le-Mu], [BN2]) and if we denote

K+ and K− the two tangles in which K is splitted by R2 × t we have a multiplicativity

Z(K) = Z(K+)Z(K−)

Z(Kx) = Z(K+)Z(x)Z(K−)

where Kx is the new obtained knot. Notice that the various Z(K+−) lie in different algebras and multipli-

cation has sense when restricted on a quotient of both. Since we can write

Z(K) =

∞∑

m=0

Zm(K)
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where Zm(K) is the universal Vassiliev invariant of degree m, we see that

Z(x) = 1 + Zm+1(x) + Zm+2(x) + · · · , if x ∈ (Pn)(m).

Therefore we obtain

Corollary 8 ([St]). — Assume we modified the knot K by some pure braid x ∈ (Pn)(m). Therefore

all Vassiliev invariants of degree less than m + 1 of K and Kx coincide.

(2.3) We have natural product operations which are a sort of exterior composition laws

Pn × Pk −→ Pn+k

obtained by simply putting the strands together. On the other hand we have also

U(n) × U(k) −→ U(n + k)

given by:

(Zij , Zuv) −→ ZijZu+n v+n.

With regard to the isomorphism of Proposition 5 this amounts to put then vertical arrows on the right of

the nth arrow of the first element.

x y x y

Remember we have natural injections Pn → U(n), Pk → U(k) which are the universal Kontsevich-Vassiliev

invariants for pure braids.

Proposition 9 (Product formula). — We have a commutative diagram

Pn × Pk −→ Pn+ky y
U(n) ⊗ U(k) −→ U(n + k)

Proof. — This follows immediately from the functoriality of Malcev completion and the easy fact

that the Malcev completion of the product of two groups is the product of their Malcev completions.

Let’s provide a simple geometric proof also. We have seen that Z comes as a monodromy representation

of a flat bundle over the configuration spaces. We have also Xn+k ⊃ Xn × Xk. If Ωn+k, Ωn, Ωk are the

corresponding flat connections we have

Ωn+k = Ωn ⊕ Ωk + Ω⊥,

where

Ω⊥ =

n∑

i=1

k∑

α=n+1

Ωiαd log zi − zα.

Let consider γ : [0, 1] → Xn+k which is the composition of γ1 : [0, 1] → Xn and γ2 : [0, 1] → Xk. We have

γ∗Ωn+k = γ∗1Ωn ⊕ γ∗2Ωk + γ∗Ω⊥.
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Finally the rth iterated integral of Chen reads
∫

0≤t1<···<tr≤1

γ∗Ωn+k(t1) ∧ · · · ∧ γ∗Ωn+k(tr) =
r∑

`=0

∫

0≤t1<···<t`≤1

γ∗1Ωn(t1) ∧ · · ·

∧γ∗1Ωn(t`)

∫

0≤t1<···<tr−`≤1

γ∗2Ωk(t1) ∧ · · · ∧ γ∗2Ωk(tr−`) + (integrals containing γ∗Ω⊥).

We claim that each integral from above containing γ∗Ω⊥ vanishes.

In fact the local picture of γ contains the strands ith and sth which are not braided. We deform γ to

γε as in the picture below.

1

i s

ε

The flatness of Ωn+k implies the total integrand is the same under the deformation. An integrand containing

s times γ∗Ω⊥ has its modulus ∼ constant 1
εs . Taking ε approach 0 we find the constant be 0. Notice that

in the deformation γε the tangent vectors point downward. This ends the proof of Proposition 9.

Corollary 10. — We can compute some values of Z : Pn → U(n) as:

Z(b2
i ) = exp(Zi i+1) ∈ G(n) ⊂ U(n).

Proof. — It follows from the easy calculation of Z(b2
1) in U(2) and Proposi-

tion 9.

3. Vassiliev invariants for braids.

(3.0) One can define the Vassiliev (or finite type) invariants for ordinary braids by requiring that

their extensions to singular braids vanish on singular braids having more than m + 1 double points, where

m is the degree of the invariant. Since the pure braids are distinguished by finite type invariants it follows

by a straightforward argument that ordinary braids are also classified.

(3.1) However there is an important difference in the case of ordinary braids. The same approach

as in the previous section fails because Bn has not a cohomology ring large enough hence the holonomy

morphism provided by Chen’s theory is not injective. This may be rephrased by saying that multiplicative

Vassiliev invariants do not classify ordinary braids.

(3.2) We shall use however the previous construction for defining a larger algebra V (Bn) – which we

call the Vassiliev algebra for Bn – as the crossed product U(n) n Sn, where Sn is the group of permutations

in n letters. The extension of the homomorphism Z : Pn → U(n) is a mapping Z : Bn → V (Bn) whose

failure to be a group representation may be described by a sort of 2-cocycle. This 2-cocycle furnish not a

representation of a group extension of Bn but one of a groupoid extension.
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(3.3) Remark first that Sn acts on Xn by permutations of the coordinates and π1(Xn/Sn) = Bn.

Unfortunately the universal flat connection Ω is not Sn-invariant.

On the other hand the Sn-action in the homology of Xn induces a Sn-action at the tensor algebra

T (H∗(Xn)) level. Specifically this action pass to the quotient U(n) and one may compute

Sn × F pU(n) −→ F pU(n)

(σ, Zi1j1Zi2j2 · · ·Zipjp
) −→ Zσ(i1)σ(j1)Zσ(i2)σ(j2) · · ·Zσ(ip)σ(jp),

where F ∗ is the graduation by degree of U(n). This provides U(n) with a Sn-module structure.

We define now the Vassiliev algebra

V (Bn) = U(n) n Sn.

Specifically as k-module V (Bn) is U(n) ⊗ k[Sn]. The product is given by

(ZI , σ) · (ZJ , τ) = (ZI
σ(ZJ), τσ)

for multi-indices I and J .

(3.4) Let now P (x, y) denote the set of homotopy classes of smooth paths in Xn from x to y. The

collection {P (x, y), x, y ∈ Xn} forms the fundamental groupoid of Xn, being endowed with a multiplication

map

P (x, y) × P (y, z) −→ P (x, z)

and a “taking the inverse” map

P (x, y) −→ P (y, x).

The parallel transport induced by the flat connection Ω furnish a series of mappings

Zxy : P (x, y) −→ U(n)

which is an anti-representation of the fundamental groupoid. This means that

Zxz(uv) = Zxy(u)Zyz(v) if u ∈ P (x, y), v ∈ P (y, z)

Zux(u−1)Zxy(u) = Zxy(u)Zyx(u−1) = 1 ∈ U(n).

It is clear that Zxy may be computed also by iterated integrals.

(3.5) We describe now the first variant to derive the universal Kontsevich-Vassiliev invariant Z :

Bn → V (Bn).

Consider z ∈ Xn be a fixed base point and (σ, x) → σx denote the Sn-action on Xn. We consider the

fundamental groupoid with the set of base points Snz, i.e.

G =
⋃

σ,τ∈Sn

P (σz, τz).

Then G contains several copies of Bn. Recall that we have an exact sequence

0 −→ Pn −→ Bn
σ

−→ Sn −→ 0.

Choose some u ∈ Bn and γ some loop in Xn/Sn representing u based on Snz ∈ Xn/Sn. Then there is an

unique up to homotopy lift of γ to a curve γ̃ in Xn joining z and σ(u)z so defining an element ū ∈ P (z, σ(u)z).

We define furthermore

Z(u) =
(
Zz σ(u)z(ū), σ(u)

)
∈ V (Bn).

18



(3.6) We have natural morphisms Bn ×Bk → Bn+k obtained by putting the strands together and a

morphism V (Bn) × V (Bk) → V (Bn+k) extending the corresponding morphisms at the U(n)-level.

Proposition 11 (Product formula for Bn). — We have a commutative diagram

Bn × Bk −→ Bn+k

Z×CZC−1
y yZ

V (Bn) × V (Bk) −→ V (Bn+k).

where C = Z(ω) which acts by conjugation, is image of the braid of Bn+k sending the last k strands into

the first k strands.

Proof. — The geometric proof in Proposition 9 works as well in this setting.

(3.7) For a complete description of Z we need to know its behavior with respect to the multiplication

in Bn. A first step towards this is provided by:

Proposition 12. — Assume that σ(u)σ(v) = σ(v)σ(u). Then we have

Z(uv) = Z(u)Z(v).

Proof. — We choose γ1 and γ2 two loops in Xn/Sn representing u and v. Let γ̃1 and γ̃2 be their

respective lifts in Xn starting at z. Let γ3 be the lift of γ2 starting at σ(ω)z. Therefore γ̃1γ3 is a lift of γ1γ2

starting at z and we have

Z(uv) =
(
Zz σ(vu)z(γ̃1γ3), σ(v)σ(u)

)
=
(
Zz σ(u)z(γ̃1), σ(u)

)(
Zσ(u)z σ(vu)z(γ3), σ(v)

)
.

Remark that we have an induced Sn-action on the fundamental groupoid σ : P (x, y) → P (σx, σy). From

the homotopy uniqueness of the lift we derive that σ(u)γ̃2 = γ3 in P
(
σ(u)z σ(uv)z

)
under the assumption

that σ(u) and σ(v) commutes with each other. This implies that Z(uv) = Z(u)Z(v) and we are done.

In particular we recover that Z|Pn
is a group representation, whose image lies in a copy of U(n) in

V (Bn).

4. Braids and regularization of singular integrals.

(4.0) We wish to relate now Z(uv), Z(u) and Z(v) in the general case of not necessary commuting

σ(u) and σ(v). The strategy consists in pushing-off the base points through infinity. Equivalent statements

were obtained by Le and Murakami, Bar-Natan, Cartier (see [Le-Mu], [BN2], [Car]). We shall skip over

the details which will be considered in the second paper of this series. Our aim is to explain a subtle point

around the multiplicativity of iterated integrals and their regularizations.

(4.1) A point is said to be at infinity if it sits on Cn r Xn = ∆n. This corresponds to a n-string

whose points become close to each other depending on the strata of ∆n where the limit sits. Incorporating

points at infinity would have the effect of replacing the various base points Snz by an unique base point z0

lying in {z1 = z2 = · · · = zn} ⊂ Cn. This of course implies the iterated integrals computing the holonomy

become singular and regularizations are needed. Such a singular curve has the shape pictured below and

usual regularization are those
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=   lim
0ε ε

ε
(regularization term in  ε )

provided by an ε-approximation (see the figure). Now the planar picture of the strings contains always some

additional information: the jth string corresponds to the jth coordinate zj ∈ C. But the role of singularities

is just the interchange of two strings. This means that the trajectories in Cn are like in the picture bellow

(z   , z   ) ( z   , z  )

u v

u

v

1 2 2 1

A: real trajectory B: what the regularized term computes

n n

ε

ε
λ

∆∆

As for example in the case u = b1, v = b2 we are computing a limit by inserting some ε-approximations, and

the curve corresponding

2

in Cn has the shape B. So that it is not at all clear (but true!) that the two limits A and B when suitably

renormalized should be the same; on the right hand side we may apply the multiplicativity of the holonomy

to get a closed formula for Z(uv) as Z(u)Z(λ)Z(v) (properly renormalized).

(4.2) To overcome this difficulty it is suitably to work with compactifications of configuration spaces.

We recall that, with the notations of §3, the general situation is summarized in the picture below and so

the endpoints of σ(u)γ̃2 and γ3

z

z
z

z

(uv)

(vu)

( u )

( v )

2 ( u )

2

1 3

σ

σ

σ

σ

σ

γ

γ γ

γ

z

do not coincide. It is for this reason that z is pushed to infinity.

Compactifications of configuration spaces Xn were considered by Fulton and Mac Pherson, Kontsevich
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and Axelrod and Singer in both algebraic geometric and differential geometric variants. We consider the

differential-geometric compactification described in [AS]. We shall add to Xn a boundary over the Xk ⊂ ∆n.

We are interested to the strata over the line {x1 = · · · = xn} ⊂ ∆n; they correspond to binary trees with n

labeled leaves. Any real analytic curve γ : [0, 1) → Xn which comes from γ : [0, 1] → Cn, γ(1) ∈ ∆n has a

proper lift γ̂ : [0, 1] → X̂n (X̂n is the compactification) so that γ̂
∣∣
[0,1)

is γ when int X̂n is identified to Xn.

Notice that γ̂(1) is not uniquely defined by γ(1) but also information of how faster |zi+1 − zi| tend to zero

is needed. As for example the curves γi pictured have the endpoints γ̂i(1) for their lifts in the two strata

corresponding to the two binary trees of level 2.

stratum 

stratum 

1 2 3

2 31

γ

γ

ε ε

ε ε

γ

γ

( 1 )

( 1 )
~

~

1

2

2

2

1

2

The Sn action extends to X̂n, and at the level of strata it changes the labeling of the leaves.

The regularization of the holonomy map is provided by residue theory since the flat connection extends

to X̂n with regular singularities on the compactification divisors. Now it is easy to see that the singular

curves in Xn may have distinct endpoints when lifted to X̂n, according to the labeling of strings. However

we may pass from one stratum to the other using the intermediary curves λ.

λ

ε ε

ε ε

2

2

It is for this reason that Le and Murakami’s procedure gives the right answer, and the modified (renormalized)

integrals provide a representation of their pre-q-tangle category.

This type of intermediary curves permit to change the binary trees by fusing moves F , and it is easy

to see that

ba ca b c

F

the fusing moves act transitively on the set of binary trees. A more interesting fact is that, once we pass
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from the tree T to the tree S by a sequence of fusings and compute the holonomy (properly regularized),

the result does not depend upon the particular choice of the sequence of fusings we used but only on S and

T . This is a consequence of the pentagon relation for fusing and is reminiscent to conformal field theory (see

[Drin], [BN2]). It follows from the flatness of the connection on Xn, and we notice that it is basically the

only data which permits to construct link invariants solely (see [BN2]).

(4.3) Finally the regularization of singular integrals is done in [Le-Mu] and is in some sense canonical:

let γ : [0, 1) → Xn be a real analytic curve, whose lift γ̂ has the endpoint γ̂(1) in the stratum corresponding

to the labeled tree T . We represent γ as a n-string in C × R.

εε ε ε ε
1 2 3 n-2 n-1

We read from the binary tree T the order in which neighbor points become closer to each other, say

ετ(1), . . . , ετ(n−1), where τ is a permutation of {1, 2, . . . , n − 1}.

We set after [Le-Mu]

ε(T ) =

n−1∏

k=1

ε
Z(T,k)
k

Z(T, k) =
1

2πi

∑

`1≤p≤ik

∑

ik+1≤q≤`2

Zpq

where
`1 = max{p; p < k and τ−1(p) < k}+ 1,

`2 = min{q; q ≥ k + 1 and τ−1(q) < k} − 1.

All the terms Z(T, k) are commuting with each other. Then the regularization term needed for Z(γ) is ε(T ):

the limit lim
t→1

Z(γ
∣∣
[0,t]

)ε(T ) is finite, and we denote it by Ẑ(γ).

Now if both endpoints of γ are at infinity then we have left and right regularization terms as

lim
t→0

ε−1(S)Z(γ
∣∣
[t,1−t]

)ε(T ) according to the trees S, T associated to γ̂(0) and γ̂(1). These renormaliza-

tions are further compatible to the λ curves which we insert. The homogeneity of fusing moves permits to

compute Ẑ(λ) in terms solely of a particular λ-curve. It is this way Drinfeld’s associator φ appears.

(4.4) We recall from [Drin] that the differential equation

G′(x) =
(A

x
+

B

1 − x

)
G(x), x ∈ (0, 1)

where G is real analytic on x, whose coefficients are formal series in two non-

commutating variables A and B, has unique solutions G1, G2 having prescribed asymptotics

G1(x) ∼ xA/2πi around x ∼ 0,

G2(x) ∼ (1 − x)B/2πi around x ∼ 1.

Further φ(A, B) is defined as the formal series G−1
1 (x)G2(x), and is called Drinfeld’s associator. It turns out

that the simplest λ-curve in 3 strings has the regularized holonomy φ(Z12, Z13), just from the definition. In
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fact the half monodromy, as a function on ε is a solution of the previous stated equation. Now for a general

fusing move F like in the picture, the regularization is φ
(∑

p∈a

q∈b

Zpq ,
∑
p∈b

q∈c

Zp,q

)
, where a, b, c are viewed as the

sets of labels of leaves issued from the respective vertices.

(4.5) Now in order to find Ẑ(u), u ∈ Bn we need to fix a tree T0 as initial point. Each u induces a

change of this binary tree: in order to be more precise we assume that all the endpoints of the braid drawn

in C×R lie on the two lines R×{0} and R×{1} so that only the |zi − zi+1| are taking into account. Then

the tree T0 changes into a tree T1 = σ(u)T0, depending only on σ(u) ∈ Sn. Let φ(u) be the product of

fusings we need to pass from T0 to σ(u)T0. This may be explicitly computed from φ and σ(u), as a product

of Drinfeld’s associators.

We may state now:

Theorem 13 (Multiplication law). — The regularized invariant Ẑ has the following multiplication

law

Ẑ(uv) = Ẑ(u)Ẑ(v)
(
φ([σ(u), σ(v)], 1

)

where φ : Sn → U(n) is the homomorphism defined above.

Notice we may derive similar relations with φ inserted between Ẑ(u) and Ẑ(v) or before them.

5. Geometric interpretation for V (n).

(5.0) We have a similar result as in Proposition 5, for the algebras V (n). Consider the Sn-diagrams

constructed like D
(
| | · · · |︸ ︷︷ ︸

n

)
but in a more general context:

(1) the vertical arrows can cross each other transversely, this time, and are numbered 1, 2, . . . , n;

(2) we have a finite set of horizontal chords whose endpoints are on the vertical arrows;

(3) the multiplication low is induced from D
(
| | · · · |︸ ︷︷ ︸

n

)
by putting the diagrams one above the other;

(4) the isotopy condition: one can move the vertical arrows by preserving the horizontal chord

endpoints like in the two moves describes bellow (and coming from the presentation of Sn):

= =

(5) the usual 4T relations as in Section 2.

Then the free k-module on Sn-diagrams quotiened by the equivalence relations (4) and (5) form the

algebra of Sn-diagrams TSn extending Jn.

Proposition 14. — The map V (n) → TSn given on generators by
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(Zij , 1) −→

i j

(1, (i, i + 1)) −→

i i+1

(where (i, i+1) stands for the transposition interchanging i and i+1) is an isomorphism of graded algebras.

Proof. — This map has an obvious inverse, and the 4T relations correspond to relations in U(n), and

isotopy moves to the relations in Sn.
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47 (), 99–178.

[Chen1] K.T. Chen, Iterated path integrals. Bull. A.M.S. 83 (), 831–878.

[Chen2] K.T. Chen, Extension of C∞ function algebra by integrals and Malcev completion of π1. Adv. Math. 23 (),
181–210.

[Car] P. Cartier, Construction combinatoire des invariants de Vassiliev-Kontsevich. C. R. Acad. Sci. Paris Sér. I Math.
316 (), 1205–1210.

[Drin] V. Drinfeld, On quasi-triangular quasi-Hopf algebras and a group closely connected to Gal(Q;Q). Leningrad Math.
J. 2 (), 829–860.

[DGMS] P. Deligne, Ph. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds. Invent. Math. 29

(), 245–274.

[FR] M. Falk and R. Randell, Pure braid groups and products of free groups. Contemp. Math. 78 (), .

[KV] C. Kassel and V. Turaev, Chord diagram invariants of tangles and graphs. Preprint Strasbourg 15 (), .

[Kohno1] T. Kohno, Monodromy representations of braid groups and Yang-Baxter equations. Ann. Inst. Fourier (Greno-
ble) 37 (), 139–160.
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