
VB Scripting for CATIA V5: Email Course by Emmett Ross
Lesson #1 - Introduction to CATIA Programming

Are you tired of repeating those same time-consuming CATIA processes over and over?
Worn out by thousands of mouse clicks? Don’t you wish there were a better way to do
things? What if you could rid yourself those hundreds of headaches by teaching yourself
how to program macros while impressing your bosses and co-workers in the process? VB
Scripting for CATIA V5 is the ultimate guide to teach you how to write macros for CATIA
V5!

Through a series of example codes and tutorials you’ll learn how to unleash the full power
and potential of CATIA V5. No programming experience is required! There are many CAD
engineers, designers, and technicians who want to write macros but simply don't have the
time or money to go to an expensive third party training class. This text will cover the core
items to help teach beginners important concepts needed to create custom CATIA macros.
More importantly, you’ll learn how to solve problems and what to do when you get stuck.
Once you begin to see the patterns you’ll be flying along on your own in no time.

What is a Macro and why do we use them?

A macro is a series of functions written in a programming language that is grouped in a
single command to perform the requested task automatically. If you perform a task
repeatedly you can take advantage of a macro to automate the task. Why do manual labor
when you can simply press a button instead? Macros are used to save time and reduce the
possibility of human error by automating repetitive processes. Other advantages include
standardization, improving efficiency, expanding CATIA's capabilities, and streamlining
procedures. Macros use programming but you don't need to be a programmer or have
programming knowledge to use them (though it certainly does help).

The application of automation in the design process is virtually unlimited. Some real world
examples of CATIA automation at work:

 Batch script for the conversion of CATDrawing files to PDF
 Batch script to convert CATParts to STP files
 Import of points from an Excel spreadsheet to a 3D CAD model
 Export of data from CATIA model to a bill of material spreadsheet
 Automatic geometry creation from selection
 Automatic drawing creation
 Custom functions
 And so on and so on. The possibilities are nearly limitless.

Terms and Definitions

The following is a list of terms and their definitions which will be used frequently
throughout this text. It is recommended that you become familiar with them if you aren’t
already. A quick reference of acronyms is listed in the appendices of this book as well.

Integrated Development Environment (IDE) is a computer application to help
programmers develop software and typically consists of a source code editor, debugger,
build automation tools, object browser, and a compiler or interpreter. IDEs typically have
built-in syntax checkers, color coded schemes, and automatic code completion. The Visual
Basic Editor in CATIA and Excel is an example of an IDE.

Graphical User Interface (GUI) is a way for humans to interact with computers with
graphical elements such as windows, menus, toolbars, icons, etc. which can be manipulated
by a mouse. The VBA editor is a perfect example.

Command Line Interface (CLI) is a way for humans to interact with computers through
text only and is accessed solely by a keyboard. The most common example is MS-DOS.
Component Application Architecture (CAA, CAA V5, or CNext) is the Application
Programming Interface (API) or technological infrastructure designed to support
Dassault Systèmes products. It is an open development platform enabling programmers to
develop and integrate their own applications for CATIA or other Dassault Systèmes
products. CAA V5 is faster and more powerful than VB. It provides access to interfaces not
available to Visual Basic but is harder to learn. C++ is the primary language. A single source
code is used for both Windows and UNIX. CAA Rapid Application Development
Environment (RADE) provides a workbench to develop PLM applications using the
component object model object oriented programming. CAA is beyond the current scope of
this text.

Object Oriented Programming (OOP) is where programmers define not only the data
type of a data structure, but also the types of operations, or functions, that can be applied to
the data structure. An object in software is a structure that consists of data fields and
subroutines or functions. Everything in CATIA is an object; the data fields are called
Properties and the subroutines and functions are called Methods. All the data and functions
have owners which are the objects to which they belong. A thorough understanding of OOP
is critical to your success in macro programming. More on this later.

Component Object Model (COM) is a Microsoft technology that enables sharing of binary
code across different applications and languages. CATIA V5 is COM enabled software. Codes
for COM objects or components can be called, initiated, or created at any time because they
are stored in DLL files and registered in the Windows registry. If CATIA calls Excel, CATIA is
then the client and Excel is the server, or the one that provides services to the client.

VB talks to CATIA through Dynamic Linked Libraries (DLL). DLLs are compiled files that
contain all of the functions that make CATIA V5 perform an action. For example, when you

select the “point” function in CATIA, the program calls a function inside one of the dll files
that performs the action of creating a point in the V5 database. These files are both
compiled and encrypted (or “mangled”) and are located in the UNLOAD directory for CATIA
V5 (C:\Program Files\Dassault Systemes\B20\intel_1\code\bin). Encryption is a method by
which software companies can ensure that others cannot access the function inside the dlls.
You cannot directly call the dlls from outside applications, therefore extra programming
needs to be done to allow the dlls to be exposed to Windows and the COM object model.
This is done via Type Library Files.

Type Library Files (TLB) are files necessary for exposing functions to Windows by acting
as maps which point to the functions inside of the dll files that make CATIA V5 work. The
TLB files are also located in the UNLOAD directory for V5. Any external application needs
to have access to these files. The complete process is: VB Application -> Type Libraries ->
Dynamic Linked Libraries -> CNext. How to create references to type libraries is shown in
later chapters of this text. To register type libraries in VBA go to Tools>References and
select all the libraries you want to use in the project. For CATIA VB programs all of the
CATIA type libraries should be selected. Type libraries are .TLB files
Universal Unique Identifier (UUID) - Every CATPart and CATProduct contains a UUID.
Basically, CATIA identifies files based on their file name and their UUID. Where problems
occur are when two pieces of data have the same UUID. Compounding the problem, the
UUID can’t be viewed or edited with any current CATIA function. There are cases when two
files may have different names but share the same UUID. This causes a problem when
dealing with Product Data Management (PDM) systems, like SmartTeam. It is
recommended to create new UUIDs whenever possible. Actions which will create new
UUID include:

 File + New
 File + New From
 File + SaveAs - option save as new document
 INSERT New Product
 INSERT New Part
 Document Template Creation

Actions which will keep the same UUID for each include:

 File + Open
 File + Save Management
 File + Save
 File + SaveAs
 Send to directory
 File + CLOSE
 File + Save
 File + Save ALL

CATIA Macro Languages

Just like most countries on this planet have their own native languages, software programs
have their own programming language. Many of these are very similar to each other so
learning elements that are common between all programming languages will help you
transition from one to another if you need to! For example, after learning to program in
CATIA and Excel, I was able (with some help from some tutorials on YouTube) figure out
how to program some basic Android applications in Java. That’s powerful stuff!

CATIA V5 automation was originally designed for VB6, VBA, and VBScript. Microsoft no
longer officially supports VB6 as it has been replaced by VB.net, which is supported by
CATIA V5 R16 and onwards. VB6 is more complex but also more powerful than VBA, as is
VBA over VBScript and CATScript. Macro languages supported by CATIA and discussed in
this text are VBScript, CATScript, and VBA, all derivatives of Visual Basic used in scripting.
CATScript is Dassault Systèmes’ portable version of VBScript and is very similar to it.
CATScript is a sequential programming language and non-GUI oriented. Regular text
editors (like Notepad) can be used for coding. Advantages of writing CATScript macros
include free to use, macro recording, personal time saving operations, and rapid
deployment. The disadvantages of CATScript are limited flexibility and difficult to debug.
The file extension is .CATScript.

CATScript macros CAN run on UNIX systems. For CATIA V5 running on UNIX, emulators
allow for VBScripts to be run with no interface building tools. Some CATScripts from this
text may work under UNIX OS but not all due to differences between the two systems.

VBScript is a subset of the Visual Basic Programming language (VBA). All elements of
VBScript are present in VBA, but some VBA elements are not implemented in VBScript. The
result of the slimming down process is a very small language that is easy to use. VBScript
(officially, "Microsoft Visual Basic Scripting Edition") was originally designed to run in Web
applications such as Internet Explorer. One of the advantages of VBScript (in common with
other scripting languages) is that it's written in plain, ordinary ASCII text. That means that
your 'development environment' can be something as simple as Notepad. CATIA objects
can be called but no type is used as the system tries to dynamically call methods and
properties of objects. It can be used on both Windows and UNIX versions of CATIA. The
disadvantage of VBScript is it’s slow, is limited for interface development, and has the least
functionality. The file extension is .catvbs.

VBScript (MS VBScript) and CATScript are very similar with the major difference being
variable declaration. Many programmers believe it is better to declare all variables As
String, As Integer, etc. to better keep track of each variable type.

Visual Basic (VB or VB6) is the full and complete version. Derived from BASIC, VB6
programs can generate independent programs, can create ActiveX and servers, and can be
compiled. VB programs run in their own memory space.

VBA (Visual Basic for Applications) is another subset of Visual Basic and is hosted in
applications such as CATIA (after V5R8), Microsoft Word, Excel, etc. VBA provides a
complete programming environment with an editor, debugger, and help object viewer.
Declaring the object library used is allowed. In CATIA, VBA has the full VB6 syntax and IDE,
which is similar to VBA in Excel. It is event driven, GUI oriented, and has full IDE yet cannot
run a program WITHOUT the host application running (meaning it runs as a DLL in the
same memory space as the host application). The advantages of using CATvba macros
include using the GUI, building forms, and the debugging ability of the macro editor. The
disadvantage is VBA programs cannot be compiled into executables or DLLs and they do
not run in their own memory space. The extension is .catvba.

Visual Basic.NET (VB.net) is Microsoft’s designated successor to VB6 and has been
supported by Dassault Systèmes since V5R16. VB.net is event driven, has IDE, and is used
for building GUI but is not COM (though it can call COM objects). The syntax is different
from VB6. Code can be compiled into .exe or .asp files. There are many issues encountered
when switching from VB6 to VB.net, such as new syntax, new IDE, new GUI controls, and a
new Install Shield, therefore fully automatic conversions are near impossible. Compiled
languages like VB.net aren’t completely necessary because most automation can be done in
VBA. VB.net will not be discussed in this text.

There are two primary methods a macro communicates with CATIA: in-process or out of
process.

In Process: The first method a macro communicates with CATIA is when the VB
application is ran from within the CATIA process in the computer memory. CATIA
essentially freezes while the macro is running and the allocation memory is wiped clean
after each run of the program so passing data between subsequent runs is impossible. To
access and create in-process macros go to Tools > Macros but please note the only options
are VBScript, CATScript, or VBA. Most of the examples in this text are In Process macros.

Out of Process: The other communication method is called out of process where the
program runs in its own process in the computer memory. The application could be run
from Excel, Word, Windows Explorer, etc. CATIA is fully active while the program is
running. VB.net or VB6 can also be used.

How to Create Macros

Macros within CATIA are created by two primary methods:

1. Using the macro recorder or
2. Writing custom code with the macro editor

Once a macro is created, there are multiple ways to open the macros window to run your
macros:

1. Go to Tools>Macro>Macros
2. CATIA macros window keyboard shortcut: Alt+F8
3. Assign or create your own icon for each macro
4. Visual Basic Editor (VBE) shortcut: Alt+F11

If the macro editor cannot be opened, talk to your system administrator because it may not
have been installed. No extra license is required to run macros, though sometimes licenses
for special workbenches are needed if the code uses a function or method from a particular
workbench.

You can change the default macro editor by going to Tools>Options>Macros>Default Editor.
For example, you could change it from the default to Notepad.exe, as shown in the following
picture:

Macro Libraries

CATIA macros are stored in macro libraries in one of three locations: Folders (vbscript and
CATScript), Project files (catvba), or documents such as CATParts, CATProducts, and
CATDrawings. Only one of these macro libraries can be used at a time. When creating a new
macro library, the folder or path location must already exist. If not you will get an error
message.

 Tutorial 1: Create a new macro library

Use the following steps to create a new macro library or setup an existing one:

1. Go to Tools>Macro>Macros

2. Click "Macro libraries…"

3. Ensure the Library type is set to "Directories" then click "Create new library…"

4. Type in the file location where you are planning on saving all of your CATIA macros
then click OK.

5. Close the macros libraries window. This is where you can create CATScript macros.

If you were setting up an existing library (add existing library versus Create new
library) you would see a list of .CATScript files here. You only need to do this once as
the library should load even after restarting CATIA.

Stay tuned for Lesson #2!

Questions or comments? Email me: Emmett@scripting4v5.com
Can’t wait for the next lesson? Purchase VB Scripting for CATIA V5 and continue learning today.

mailto:Emmett@scripting4v5.com
http://www.vbpdf.website/

	VB Scripting for CATIA V5: Email Course by Emmett Ross
	Lesson #1 - Introduction to CATIA Programming
	What is a Macro and why do we use them?
	Terms and Definitions
	Component Application Architecture (CAA, CAA V5, or CNext) is the Application

	CATIA Macro Languages
	How to Create Macros
	Macro Libraries

