
VDBench: A Benchmarking Toolkit for Thin-client
based Virtual Desktop Environments

Alex Berryman, Prasad Calyam, Matthew Honigford, Albert M. Lai

Ohio Supercomputer Center/OARnet, VMware, The Ohio State University,
berryman@oar.net; pcalyam@osc.edu; mhonigford@vmware.com; albert.lai@osumc.edu

Abstract—The recent advances in thin client devices and the
push to transition users’ desktop delivery to cloud environments
will eventually transform how desktop computers are used today.
The ability to measure and adapt the performance of virtual
desktop environments is a major challenge for “virtual desktop
cloud” service providers. In this paper, we present the “VD-
Bench” toolkit that uses a novel methodology and related metrics
to benchmark thin-client based virtual desktop environments in
terms of scalability and reliability. We also describe how we
used a VDBench instance to benchmark the performance of:
(a) popular user applications (Spreadsheet Calculator, Internet
Browser, Media Player, Interactive Visualization), (b) TCP/UDP
based thin client protocols (RDP, RGS, PCoIP), and (c) remote
user experience (interactive response times, perceived video
quality), under a variety of system load and network health con-
ditions. Our results can help service providers to mitigate over-
provisioning in sizing virtual desktop resources, and guesswork
in thin client protocol configurations, and thus obtain significant
cost savings while simultaneously fostering satisfied customers.

I. I NTRODUCTION

Common user applications such as email, photos, videos
and file storage are already being supported at Internet-scale by
“cloud” platforms (e.g., Amazon S3, HP Cloud Assure, Google
Mail, and Microsoft Azure). Even academia is increasingly
adopting cloud infrastructures and related research themes
(e.g., NSF CluE, DOE Magellan) to support various science
communities. The next frontier for these user communities
will be to transition “traditional distributed desktops” that have
dedicated hardware and software installations into “virtual
desktop clouds” that are accessible via thin clients. The
drivers for this transition are obvious and include: (i) desktop
support in terms of operating system, application and security
upgrades will be easier to manage centrally, (ii) the number
of underutilized distributed desktops unnecessarily consuming
power will be reduced, (iii) mobile users will have wider
access to their applications and data, and (iv) data security will
be improved because confidential user data does not physically
reside on thin clients.

The recent advances in thin client devices and the push
to transition users’ desktop delivery to cloud environments
have opened up new challenges and will eventually transform
how we use computers today. One major challenge for a
“virtual desktop cloud” service provider will be to handle
desktop delivery in a scalable manner to provision and adapt
the cloud platform for an increasing number of users. Given

This material is based upon work supported by the Ohio Board of
Regents, VMware, Dell, and IBM.

Fig. 1. Virtual desktop cloud system components

the fact that memory is the most expensive and possibly the
most contended resource in virtual desktop clouds (i.e., users
will idle their CPUs but will keep their applications always
open on a desktop), suitable “overcommitted” memory sizing
for virtual desktops based on user activity profiling is vital.
Another major challenge will be to ensure satisfactory user
experience when accessing desktops from remote sites with
varying end-to-end network path performance.

Figure 1 shows the various system components in a virtual
desktop cloud. At the server-side, a hypervisor framework
(e.g., VMware ESXi, OpenVZ, Xen) is used to create pools of
virtual machines (VMs) that host user desktops with popular
applications (e.g., Excel, Internet Explorer, Media Player) as
well as advanced applications (e.g., Matlab, Moldflow). Users
of a common desktop pool use the same set of applications,
but maintain their distinctive datasets. The VMs share common
physical hardware and attached storage drives. At the client-
side, users connect to a server-side broker via the Internet
using various TCP (e.g., VNC, RDP, RGS) and UDP (e.g.,
PCoIP) based thin client devices. The connection broker
authenticates users by active directory lookups, and allows
users to access their entitled desktops.

Our work is motivated by the fact that service providers
need frameworks and tools today that can enable them to
build and manage virtual desktop clouds at both staging-scale
and Internet-scale. To cope with increasing user workloads,
extensive work has been done to efficiently manage server-
side resources based on CPU and memory measurements [1
- 4]. However, there is surprisingly sparse work [5] [6] on
resource adaptation coupled with measurement of network
health and user experience. It is self-evident that any cloud
platform’s capability to support large user workloads is a

2nd IEEE International Conference on Cloud Computing Technology and Science

978-0-7695-4302-4/10 $26.00 © 2010 IEEE

DOI 10.1109/CloudCom.2010.106

480

function of both the server-side desktop performance as well
as the remote user-perceived quality of experience. Hence,lack
of proper “human-and-network awareness” in cloud platforms
inevitably results in costly guesswork and over-provisioning
while managing physical device and human resources, which
consequently annoys users due to high service cost and unre-
liable quality of experience.

In this paper, we present the “VDBench” toolkit that uses
a novel methodology and related metrics to benchmark thin-
client based virtual desktop environments in terms of scalabil-
ity and reliability. The methodology involves creating realistic
workflows in order to generate synthetic system loads and
network health impairments that affect user-perceived ‘inter-
active response times’ (e.g., application launch time, web-
page download time). In addition, the methodology allows
correlation of thin-client user events with server-side resource
performance events by virtue of ‘marker packets’ that leverage
and extend our earlier research on slow-motion benchmarking
of thin-clients [7] [8]. The marker packets particularly help
in the analysis of network traces to measure and compare
thin-client protocols in terms of transmission times, bandwidth
utilization and video quality. Further, the methodology lends
itself for generation of resource (CPU, memory, network
bandwidth) utilization profiles of different user applications
and user groups. Such profiles can be used by service providers
to optimally categorize applications into desktop pools, allo-
cate system-and-network resources, and configure thin-client
protocols. In addition to describing the VDBench methodology
and related metrics, we also describe how we used a VDBench
instance to benchmark the performance of: (a) popular user
applications (Spreadsheet Calculator, Internet Browser,Media
Player, Interactive Visualization), (b) TCP/UDP based thin
client protocols (RDP, RGS, PCoIP), and (c) remote user ex-
perience (interactive response times, perceived video quality),
under a variety of system load and network health conditions.

The remainder of the paper is organized as follows: Section
II provides a background and describes related work. In
Section III, we present the VDBench methodology and metrics
for user-load simulation based benchmarking and slow-motion
application interaction benchmarking. Section IV presents our
simulation results to validate the VDBench methodology.
Section V concludes the paper.

II. T ECHNICAL BACKGROUND

In this section, we provide the technical background relating
to our implementation of the VDBench toolkit that is based
on memory management capabilities of VMware ESXi Server,
TCP/UDP based thin-client protocols, and slow-motion based
thin-client benchmarking principles.

A. Memory Management

The memory management capability of VMware ESXi
Server optimizes the utilization of physical memory [9]. Each
VM is allocated a specified size of memory, an optional
minimum reservation, and a small amount of virtualization
overhead. The ESXi server attempts to allocate memory to
each VM up to the specified limit. In cases of memory over
commitment, occurring when the sum of the total memory

specified exceeds the amount of physical memory, each VM
is guaranteed at least the reserved amount of memory, and
receives additional memory based on the current load on the
ESXi server. A taxing policy is used to create an additional
cost for inactive memory pages, thus exhausting the VM’s
memory share at a higher rate and triggering the memory
management tools of ESXi sooner than if all the memory pages
were active. The ESXi server must reclaim allocated memory
from a VM that has exceeded its amount of memory shares
in order to redistribute the memory to an under-allocated VM.
This process is accomplished by either invoking a memory
“ballon driver” that is installed on the VM or having the ESXi
server swap the contents of its’ physical memory to a swap
file on the hard disk. The balloon driver is installed on the
guest operating system within a VM as part of the VMware
tools software package. The balloon driver is controlled by
the ESXi Server and forces the guest operating system to
free up the pages using the guest operating system’s native
memory management algorithms and returns them to the ESXi
server for redistribution. The balloon driver reports to the guest
operating system in the VM like a normal program that has
higher and higher memory utilization. The memory usage of
the balloon driver triggers the native memory management
algorithms which uses garbage collection to remove pages,
or swaps them to the VM’s virtual swap disk if the pages are
still being used.

B. Remote Display Protocols

User experience is the dominating factor in determining
the configuration of the underlying remote display protocol.
Remote display protocols are used to transmit the visual
components of the virtual desktop to the client. The remote
display protocols have different methods of determining the
most optimum way to encode and compress the data in order to
transport and render it at the client side. Different protocols are
designed to optimize different display objects like text, images,
video and flash content. Each protocol has a different impact
on the system resources (CPU, memory, I/O bandwidth) that
are used to compress the display data on the server side.
Some protocols handle the compressions of text better than
others whereas, some protocols handle the compression of
multimedia content better. These display protocols also exhibit
different levels of robustness in degrading network conditions;
some are more adaptive than others. This robustness can come
from the underlying transmission protocol (TCP/UDP), or
the protocol’s ability to adapt and scale its compression to
fully utilize all of the available network path. Examples of
TCP/UDP based thin-client protocols include Microsoft Re-
mote Desktop Protocol (RDP via/TCP), HP Remote Graphics
Software (RGS via/TCP), and Teradici PC over IP (PCoIP
via/UDP). The level of compression done on the server side of
the thin-clients must be reversed on the client side in the task
of decompression. High levels of compression on the server
side can cause less network resources to be consumed, but the
client is required to consume additional system resources in
order to rebuild the transmission. A optimal relation between
compression, network availability, and client side computing
power must be set to ensure satisfactory user experience.

481

C. Thin-client Performance Benchmarking

There have been studies of performance measurement using
slow-motion benchmarking for thin-client systems. The slow-
motion benchmarking technique was used to address the
problem of measuring the actual user perceived performanceof
client by Nieh et. al. [8]. This work was focused on measuring
the performance of web and video applications on thin-clients
through remote desktop applications. Lai, et. al. [7] [8] used
slow-motion benchmarking for characterizing and analyzing
the different design choices for thin-client implementation
on wide-area networks. In slow-motion benchmarking, an
artificial delay in between events is introduced, which allows
isolation of visual components of those benchmarks. It is im-
portant to ensure that the objects are completely and correctly
displayed on the client when benchmarking is performed. This
is because the client side rendering is independent of the
server side processing. Existing virtual desktop benchmarking
tools such as “Login VSI” [10] do not take into consideration
this distinction between client side rendering and server side
processing and hence are not relevant when network conditions
degrade. Note that we combine the scripting methodology of
Login VSI that provides controllable and repeatable results
for the execution of synthetic user workloads on the server
side, and the introspection that slow-motion benchmarking
provides into the quality of user experience on the client side.
This combination allows us to correlate thin-client user events
with server-side resource performance events. Earlier works
on thin-client benchmarking toolkits such as [5] and [6] have
several common principles that are used in VDBench, however
they are focused on recording and playback of keyboard
and mouse events on the client-side and do not consider
synchronization with server-side measurements, as well as
user experience measurements for specific applications (e.g.,
Spreadsheet Calculator, Media Player).

III. VDB ENCH METHODOLOGY AND METRICS

In this section, we present the VDBench toolkit methodol-
ogy and metrics for user-load simulation based benchmarking
and slow-motion application interaction benchmarking.

Figure 2 shows the various VDBench physical components
and dataflows. The hypervisor layer is used for infrastructure
management. The hypervisor kernel’s memory management
functions are invoked during the user-load simulations andthe
virtual network switch is employed in the slow-motion appli-
cation interaction measurements. OurVDBench Management
virtual appliance along with a fileserver/database, as wellas
the desktop pools containing individual VMs are provisioned
on top of the hypervisor.

A. User Load Simulation based Benchmarking

The goal of our user load simulation is to increase host
resource utilization levels so as to influence interactive re-
sponse times of applications within guest VMs. In our first
trial, we created synthetic memory loads in a controllable
manner by having a small number of VMs running large
matrix operations that consume host resources. We expected
resources to be starved away by these large matrix operations
from a VM under test. However, we contrarily observed

Fig. 2. Components of VDBench and data flows

Fig. 3. VDBench control logic for benchmarking

that our efforts were superseded by effective implementation
of memory mangement tools in the hypervisor. The inital
application response time results did not exhibit the expected
increasing trend in correlation with increasing system load.

In our subsequent trial, we developed a different load
generation method shown in Figure 3 that models real users’
workflows by concurrent automation of application tasks in
random across multiple VMs. With this approach, we were
able to controllably load the host machine and correspondingly
obtained degrading application response time results.

Figure 3 shows the logical connection between the manage-
ment, data and measurement layers of our VDBench virtual
appliance. Themanagement serviceis responsible for the
provisioning of desktops, launching the load generation scripts
on the VMs, monitoring their progress, and recording results of
the measurements. An experiment begins when the VDBench
management service provisions the first VM, and then spawns
a measurement serviceon the VM, which then starts running
the load generating script in order to establish a baseline of ap-
plication response times. The load generation script automates

482

Fig. 4. Random progression of application tasks

the execution of a sample user workflow ofapplication tasks
as shown in Figure 4. The workflow involves simulating a user
launching applications such as Matlab, Microsoft Excel, and
Internet Explorer in a random sequence. Once all of the the
applications are open, different application tasks are randomly
selected for execution until all of the tasks are completed.
Next, the script closes all of the launched applications in
preparation for the next iteration. A controllable delay to
simulate userthink timeis placed between each of these steps,
as well as the application tasks. An exaggerated user think
time is configured in VDBench in order to incorporate slow-
motion principles into remote display protocol experiments.
This process is repeated 40 times for each test so that a steady
state of resource utilization measurements can be recordedin
the measurement log.

Once the initial baseline is established, an additional VM is
provisioned by the management service and the load genera-
tion script is run concurrently on both VMs while application
response time measurements are collected in the measurement
log. This pattern of provisioning a new VM running the load
generation script, and collecting application response time
data is continued until the response times hit theresponse
time ceiling, representing an unacceptable time increase in
any given task execution (e.g., a user will not wait for more
than 2 seconds for the VM to respond to a mouse click), and
subsequently the experiment is terminated.

The application response times can be grouped into two
categories: (i)atomic, and (ii) aggregate. Atomic response
time is measured as the time taken for an intermediate task
(e.g., “Save As” task time in Microsoft Excel shown in
Figure 4 or web-page download time in Internet Explorer)
to complete while using an application. The atomic response
times can also refer to an application’sactivation time, which
is the time for e.g., taken for the appearance of dialogue boxes
in Excel upon “Alt+Tab” from an Internet Explorer window.
Aggregate response time refers to the overall execution time of
several intermediary atomic tasks. One example of aggregate
response time calculation is the time difference betweent3

and t0 in Figure 4.

Fig. 5. Example traces to illustrate slow-motion benchmarking

B. Slow-motion Application Interaction based Benchmarking

Our aim in VDBench development in terms of application
interaction benchmarking is to employ a methodology that
only requires instrumentation at the server-side and no exe-
cution on the client-side to estimate the quality degradation in
desktop user experience at any given network health condition.
The capability of no-execution on the client-side is critical
because thin-client systems are designed differently fromtra-
ditional desktop systems. In thin client systems, the server does
all the compression and sends only “screen scrapes” for image
rendering at the client. Advanced thin-client protocols also
support screen scraping with multimedia redirection, where
a separate channel is opened between the client and the
server to send multimedia content in its native format. This
content is then rendered in the appropriate screen portion at
the client. The rendered output on the client may be completely
decoupled from the application processing on the server such
that an application runs as fast as possible on the server
without considering whether or not the application output has
been rendered on the client. Frequently this results in display
updates being merged or even discarded. While these optimiza-
tion approaches frequently conserve bandwidth and application
execution time may seem low, this does not accurately reflect
the user perceived performance of the system at the client.
Further, no-execution on the client-side is important because
many thin-client systems are proprietary and closed-source,
and thus are frequently difficult to instrument.

To address these problems and to determine the performance
characteristics of each of the remote desktop protocols (i.e.,
RDP, RGS, PCoIP considered in this paper), we employ the
slow-motion benchmarking technique. This technique employs
two fundamental approaches to obtain an accurate proxy
for the user-perceived performance: monitoring server-side
network activity and using slow-motion versions of on-screen
display events in applications. Figure 5 shows a sample packet
capture of a segment of a slow-motion benchmarking session
with several on-screen display events. We provide a brief
description of our specific implementation of this technique
below. For a more in depth discussion, please refer to [7] [8].

Since the on-screen display events are created by inputs that
are scripted on the server-side, there are several considerations
that must be acknowledged in our benchmarking technique.

483

First, our technique does not include the real-world time
delay from when a client input is made and until the server
receives the input. It also does not include the time from
which a client input is made and the input is sent. Lastly,
it does not include the time from when the client receives
a screen update and to the time the actual image is drawn
on the screen. We approximate the time omitted by the first
limitation in VDBench by adding the network latency time
to the measurements. However, the client input, and display
processing time measurements are beyond the scope of our
current VDBench implementation. Note that we also assume
thin-client protocols do not change the type or amount of
screen update data sent and captured in our tests, and that
any variances in the data sent are due to ensuring reliable
transport of data, either at the transport layer in the case of
TCP-based protocols (RDP, RGS) or at the application layer
in UDP-based protocols (PCoIP).

We now explain our network traces handling to obtain
the performance metrics supported by VDBench. We bench-
marked a range of thin-client protocol traces (RDP, RGS,
PCoIP) to compare their performance under a variety of
conditions. The PCoIP protocol traces exhibited a reluctance
to quickly return to idle traffic conditions. This is most likely
due to monitoring and adaptation algorithms used in the auto-
scaling of the protocol. Judicious filtering process based on the
volume of idle-time data allowed us to successfully distinguish
the data transferred for the pages from the overhead. This
lack of peak definition was exacerbated by the deterioration
of network conditions in case of all the protocols. As latency
and loss increased, the time taken for the network traffic to
return to idle also increased, and correspondingly resulted in
degraded quality of user experience on the remote client-side.
We express this observation astransmission time, which is a
measure of the elapsed time starting from the intiation of a
screen-update and ending when the nework trace has returned
to idle conditions. The initiation and completion of screen-
events are marked in VDBench by the transmission ofmarker
packetsshown in Figure 5 that are sent by the VDBench
automation script. A marker packet is a UDP packet contain-
ing information on the screen-event that is being currently
displayed. Thetransmission timecan be visualized based on
the duration of the peak between marker packets. Over this
transmission timeinterval, the amountdata transmittedis
recorded in order to calculate thebandwidth consumptionfor
an atomic task.

We use these metrics in the context of a variety of workloads
under various network conditions. In our slow-motion bench-
marking of web-page downloads of simple text and mixed
content shown in 5, the initiation and completion of each web-
page download triggers a transmission of a marker packet.
The marker packet contains information that describes the
event (in this case, which web-page is being downloaded), and
a description of the emulated network condition configured.
We start packet captures with the thin-client viewing a blank
desktop. Next, a page containing only a text version of the
US Constitution is displayed. After a 20 second delay, a web
page with mixed graphics and text is displayed. After another
20 second delay, a web page containing only high-resolution

images is displayed. Following another 20 second delay, the
browser is closed and displays a blank desktop. This processis
repeated 3 times for each thin-client benchmarking sessionand
corresponding measurements are recorded in the VDBench
measurement logs.

For the slow-motion benchmarking of video playback work-
loads, a video is first played back at 1 frame per second (fps)
and network trace statistics are captured. The video is then
replayed at full speed a number of times through all of the
remote display protocols, and over various network health
conditions. A challenge in performance comparisons involving
UDP and TCP based thin-client protocols in terms of video
quality is coming up with a normalized metric. The normal-
ized metric should account for fast completion times with
image impairments in UDP based remote display protocols,
in comparison to long completion times in TCP based thin
clients with no impairments. Towards meeting this challenge,
we use the video quality metric shown in Equation (1) that
was originally developed in [7]. This metric relates the slow-
motion playback to the full speed playback to see how many
frames were dropped, merged, or otherwise not transmitted.

Video Quality =

Data Transferred (aggregate fps)
Render Time (aggregate fps)

IdealTransfer(aggregatefps)
Data Transferred (atomic fps)

Render Time (atomic fps)

IdealTransfer(atomicfps)

(1)

IV. PERFORMANCERESULTS

In this section, we present simulation results to validate
the VDBench methodology for user-load simulation based
benchmarking and slow-motion application interaction bench-
marking. In our user benchmarking experiments presented
below, we used a VM testbed environment running VMware
ESXi 4.0, consisting of an IBM HS22 Intel Blade Severs,
installed into IBM Blade Center S chassis. The blade server
has two Intel Xeon E5504 quad-core processors and 32GB
of RAM, with access to a 9TB shared SAS. Each VM ran
Windows XP and was allocated 2GB of RAM. The network
emulation is done using NetEm, which is available on many
2.6 Linux kernel distributions. NetEm uses the traffic control
tc command, which is part of the ‘iproute2’ toolkit. Band-
width limiting is done by implementing the token-bucket filter
queuing discipline on NetEm. Traffic between the client and
server is monitored using a span port configured on a Cisco
2950 switch. The span port sends a duplicate of all the packets
transmitted between the VM and the thin client to a machine
running Wireshark to capture the packet traces and to filter
out non-display protocol traffic.

A. User Load Simulation Results

Figure 6 shows percent of increase of the memory utilization
after the balloon driver has already began to reclaim mem-
ory. Note that theMemory Balloonmeasurements majorly
influence the memory usage statistics. The balloon driver
engaged with 17 VMs running since the amount of memory
allocated to VMs exceeded the amount of physical memory
and preceded to increase by 750% with 46 VMs running. The
value of the balloon size increased with a steady slope as
the number of active VMs increased. TheMemory Granted,

484

Fig. 6. Memory Utilization with increasing system loads

Fig. 7. Application Open Times with increasing system loads

andMemory Activemeasurements have a negative slope since
the memory overhead is increasing with the number of VMs,
thus reducing the total amount of memory available to be
used by the guest operating systems in the VMs. The actual
value of Memory Swappedstarted at 240MB and increased
to 3050MB, corresponding to a 1120% increase. At first the
pages being swapped are inactive pages and are not likely to
affect performance, but as the amount of swapping increases,
the likelihood of active pages being swapped starts to negativly
impact performance.

The time taken to open applications clearly increased with
the increasing load as shown in Figure 7. The loading of
applications is heavily dependent on transferring data from
the hard disks into memory. When the memory granted to a
VM is constricted due to the balloon driver, the VM must
make room for this new application in memory. If the VM
has not exhausted its memory shares in resource pool, the
memory management tools and balloon driver of ESXi Server
will decrease the memory pressure on a VM, thus granting the
VM more memory to use for applications. However, if the VM
has exhausted its share of the memory, the VM must invoke its
own memory management tools and start deleting old memory
pages using a garbage collection process, or swap them to its
own virtual disk. These processes take time to complete, thus
extending the application open times at the load increases.
Excel, Internet Explorer, and Matlab went from 1.3sec, 2.3sec,
and 10.8sec, to 5.9sec, 7.7sec, 38.5seccorresponding to 472%,
301%, 359% increase, respectively.

The time taken for actual tasks to complete within an appli-
cation are shown in Figure 8. The task titled ‘Matlab Graph
spin’ first involved spinning a point-cloud model of a horse,
and then pre-computing the surface visualization of the point-
cloud data. The data sets are precomputed in order to limit
CPU utilization and consume more memory. The task initally
took 34secand grew to take 127sec, corresponding to a 273%
increase. This result highlights the fact that applications such
as Matlab are highly sensitive to resource over-commitment
and need special desktop provisioning considerations.

Fig. 8. Application Task Times with increasing system loads

Fig. 9. Application Activation Times with increasing system loads

The Internet Explorer tasks involved loading a page with
different types of content. The time taken to load a page
of only an image saw the biggest increase starting at .75sec
and grew to 2sec. The other two page types both remained
under .5secto complete, even under the highest system load.
This increase, while statistically significant, is not obviously
perceivable to the user. The task titled ‘Excel Save’ is the time
taken for ‘Save As...’ dialog box to appear. This Excel task
originally took .9secand later took 1.3seconly showing a 44%
increase. Further, this Excel task is not heavily affected by the
load increase and exhibited results very similar to the results
in next section on application ‘activation time’ (illustrated in
Figure 4) measurements.

The activation times taken to switch in-between applications
are shown in Figure 9. The increase in activation times is
on the order of one to two-tenths of a second and did not
exceed one second. This is a very small change and is likely
not perceivable to an user. The large percentage increases are
due to the small timescale. The results are fairly random, but
overall show a marginally increasing trend.

B. Slow-motion Application Interaction Results

Figures 10 - 13 show results from our slow-motion bench-
marking testing of RDP, RGS, and PCoIP under a combination
of both a range of network latencies (0ms, 50ms, and 200ms)
as well as no packet loss and a relatively high packet loss
of 3%. These network were selected because they provide
insights into how these thin client protocols may behave on
actual LAN, WAN and wireless last-mile connections.

Figures 10 and 11 show the total amount of data transmitted
in bytes for each screen update. RDP transports the ‘text only’
web page with very minimal data transmitted and thus has
a higher ‘coding efficiency’ for text. Both RDP and RGS
maintain a relatively constant amount of data transmitted
across increased latency and loss. The UDP-based PCoIP also
in most cases exhibited a significant increase in the amount
of data transmitted as latency and packet loss was increased.
Despite this increase in data transmission, the user experience

485

Fig. 10. Data Transferred for Text page under network emulation

Fig. 11. Data Transferred for Image page under network emulation

subjectively is still very acceptable for PCoIP at relatively
high packet loss rates of 3%. While we are viewing these
thin-client protocols as generally black boxes, because the
user experience remained acceptable at these high packet loss
rates despite increased data transmission, we surmise thatthis
spike in data transmission is most likely due to the addition
of diagnostic data allowing PCoIP to adapt to the degrading
network conditions. In the corresponding transmission time
results, we observed an increase in latency for each of the
protocols as network conditions degraded. While the TCP-
based protocols, RDP and RGS, were affected by both in-
creased latency and loss, the UDP-based PCoIP was largely
unaffected by increases in latency.

Figures 12 and 13 show the bandwidth utilized in Megabits
per second for each screen update. The ratio of the data
transmitted and time taken are used to calculate the ‘data
transmission rate’ or bandwidth consumed. We can also see
that in general, there was a reduction in bandwidth utilizedfor

Fig. 12. Bandwidth consumed by Text page under network emulation

Fig. 13. Bandwidth consumed by Image page under network
emulation

Fig. 14. Video Quality comparison under network emulation

each of the protocols when comparing low-latency, no loss
with low-latency, and high loss network conditions. This is
not surprising as this likely indicates a throttling of bandwidth
utilization as packet loss increased. In addition, the bandwidth
utilization was affected by increased transmission times under
degraded network conditions.

Figure 14 shows the video performance of PCoIP, RDP,
and RGS under a variety of network conditions. PCoIP under
no loss conditions showed relatively stable performance with
respect to increased latency. However, under high loss con-
ditions, PCoIP suffered a severe drop in video quality. This
behavior is most likely due to the display protocol being based
on UDP, with recovery from loss being difficult. While RDP
performed the best under idealized conditions, RDP suffered
dramatically under either loss or high latency conditions.RGS
was not as dramatically affected as RDP by increased latency.
However, under high loss conditions, RGS had significantly
reduced video quality performance.

C. Performance Mapping to User Pool Profiles

Service providers frequently make virtual desktop resource
provisioning decisions based onuser application profilesand
user group profiles. To cater to such a need, we developed a
feature in VDBench that can generate resource (CPU, memory,
network bandwidth) utilization profiles for a sample scenario
of different user applications (Matlab, Microsoft Office, In-
ternet Explorer, Windows Media Player) and user groups
(Engineering Site, Distance Learning Site, Campus Computer
Lab) at sites accessing the virtual desktop cloud resources.
The individual application profiles are combined to form user

486

Fig. 15. User Application resource consumption profiles

Fig. 16. User Group resource consumption profiles

group profiles by identifying the applications the user group
uses, and by averaging the corresponding applications resource
consumption values together.

Figures 15 and 16 show the user application and group
profiles, respectively for our sample scenario. The CPU and
memory usage values reflect true percentages of the VMs
resources that each application used. The bandwidth usage is
relative to each other using the Excel task as the baseline
for the value. The majority of Matlab tasks use only CPU
and memory resources for its’ calculations. The bandwidth
utilization of Matlab is low since most of the processing is
done behind the scenes and results are displayed at the end.
Windows Media Player uses the highest amount of bandwidth
since it is transmitting full screen updates for the duration
of the video. It also sees moderately high CPU usage for
the decoding of high resolution video files, and compression
of screen updates that are sent to client. The Microsoft
Office Suite uses a moderate amount of all of the resources.
Office Suite documents usually contain more rich multimedia
elements such as diagrams or color images, resulting in similar
bandwidth usage to Matlab. With the exclusion of Flash
content, Internet Explorer uses minimal CPU and Memory,
but it can use a notable amount of bandwidth depending on
the richness of the web page content. The Engineering group
see the highest CPU, and memory utilization with their heavy
usage of Matlab and the Office Suite. The Distance Learning
group consumes relatively the most bandwidth because it
makes heavy usage of Windows Media Player to watch videos,
and displays rich content in Internet Explorer and Office Suite.

The application and user group profiles are important to
service providers because they can be used to infer how
resource allocations can be balanced to ensure group profiles
harmoniously share host/cluster resources. In the case of our
sample scenario, theEngineering Sitegroup profile indicates

high CPU and memory utilization with low bandwidth con-
sumption, and could be provisioned on the same host/clusteras
theDistance Learning Sitesince its group profile has low CPU
and memory utilization with high bandwidth consumption.

V. CONCLUSION

In this paper, we presented a virtual desktop performance
benchmarking toolkit viz., “VDBench,” which is used to
simulate thin client user activity profiles and analyzes resource
consumption characteristics. The toolkit uses a combiation of
novel methodologies to automate scalability testing of server
side hardware and reliability measurement of the network
utilization of multiple display protocols using slow-motion
benchmarking at different network health conditions.

Our work is unique as it is one of the few studies inves-
tigating the impact of increasingly constrained memory and
network health conditions on the performance of various appli-
cation tasks in a virtual desktop cloud environment. In contrast
to slow-motion benchmarking studies previously conducted,
we used server-side monitoring of the network to characterize
the level of bandwidth required in order to deliver an optimal
user experience under non-ideal network health conditions. We
also investigated the CPU utilization in a variety of application
tasks. By combining these CPU characterizations with memory
and thin-client bandwidth related metrics, we were able to cir-
cumscribe the kind and amount of resources required to deliver
adequate performance (i.e., satisfied user experience) forboth
individual applications as well as entire user groups. With
the use of these benchmarking methodologies and metrics
developed in the VDBench toolkit, service providers looking
to deploy thin-clients based virtual desktop clouds will beable
to greatly reduce the amount of costly guesswork and over-
provisioning commonly encountered in this domain.

REFERENCES

[1] D. Gmach, S. Krompass, A. Scholz, M. Wimmer, A. Kemper, “Adaptive
Quality of Service Management for Enterprise Services”,ACM Transac-
tions on the Web, Vol. 2, No. 8, Pages 1-46, 2008.

[2] P. Padala, K. Shin, et. al., “Adaptive Control of Virtualized Resources in
Utility Computing Environments”,Proc. of ACM SIGOPS/EuroSys, 2007.

[3] B. Urgaonkar, P. Shenoy, et. al., “Agile Dynamic Provisioning of Multi-
Tier Internet Applications”,ACM Transactions on Autonomous and
Adaptive Systems, Vol. 3, No. 1, Pages 1-39, 2008.

[4] H. Van, F. Tran, J. Menaud, “Autonomic Virtual Resource Management
for Service Hosting Platforms”,Proc. of ICSE Workshop on Software
Engineering Challenges of Cloud Computing, 2009.

[5] N. Zeldovich, R. Chandra, “Interactive Performance Measurement with
VNCplay”, Proc. of USENIX Annual Technical Conference, 2005.

[6] J. Rhee, A. Kochut, K. Beaty, “DeskBench: Flexible Virtual Desktop
Benchmarking Toolkit”,Proc. of Integrated Management (IM), 2009.

[7] A. Lai, J. Nieh, “On The Performance Of Wide-Area Thin-Client Com-
puting”, ACM Transactions on Computer Systems, Vol. 24, No. 2, Pages
175-209, 2006.

[8] J. Nieh, S. Yang, N. Novik, “Measuring thin-client performance using
Slow-motion benchmarking”,ACM Transactions on Computer Systems,
Vol. 21, No. 1, Pages 87-115, 2003.

[9] C. Waldspurger, “Memory Resource Management in VMware ESX
Server”,ACM Operating Systems Review, Vol. 36, Pages 181 - 194, 2002.

[10] R. Spruijt, J. Kamp, S. Huisman, “Login Virtual Session Indexer (VSI)
Benchmarking”,Virtual Reality Check Project - Phase II Whitepaper,
2010. (http://www.projectvrc.com)

487

