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Abstract. As limited data photoacoustic tomographic image reconstruction problem is known to be ill-posed,
the iterative reconstruction methods were proven to be effective in terms of providing good quality initial pressure
distribution. Often, these iterative methods require a large number of iterations to converge to a solution, in
turn making the image reconstruction procedure computationally inefficient. In this work, two variants of vector
polynomial extrapolation techniques were deployed to accelerate two standard iterative photoacoustic image
reconstruction algorithms, including regularized steepest descent and total variation regularization methods.
It is shown using numerical and experimental phantom cases that these extrapolation methods that are pro-
posed in this work can provide significant acceleration (as high as 4.7 times) along with added advantage
of improving reconstructed image quality. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO
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1 Introduction
Photoacoustic (PA) imaging is a noninvasive imaging modality,
which gives the advantage of optical contrast at ultrasonic
resolution.1–6 Application of PA imaging ranges from blood ves-
sel imaging, tumor imaging, and biomarkers to gene activities.1

It consists of irradiating the tissue with a nanosecond laser
pulse, which gets absorbed by the tissue and generates ultrasonic
waves due to thermoelastic expansion. The ultrasonic detectors
placed at the boundary of the domain detect these ultrasonic
waves.2 The collected data gets utilized in an inverse framework
resulting in the distribution of initial pressure rise.

Several image reconstruction algorithms exist for the
reconstruction of PA tomographic images, such as filtered back
projection, time-reversal, and Fourier transform methods.7,8

They require sufficiently large amount of data for accurate
reconstruction and may not be useful for quantitative
comparisons.9–11 Acquisition of large amounts of data is often
linked with large data-acquisition time and/or increase in the
instrumentation cost. Moreover, the setups used for recording
the acoustic signals cover an aperture, which may not enclose
the complete object, resulting in incomplete or limited data
scenarios.12–14 Obtaining quantitatively accurate reconstruction
using limited data has been preferred in the recent past.6–8,15

In limited data cases, many iterative image reconstruction
algorithms were proposed, which improve the quantitative
accuracy of the reconstructed images.9–11,15 The direct methods
(noniterative type) often have limitation in terms of not
being robust to noise, and typically in the noisy data cases,
the iterative type algorithms are preferred as they exhibit better
stability.7,8 Moreover, iterative algorithms often provide inherent

regularization in terms of number of iterations, especially for the
ill-posed problems like the one at hand. In terms of computation,
typically, iterative algorithms require matrix–vector computa-
tions [Oðn2Þ operations per iteration with n being the number
of unknowns] and direct reconstruction algorithms that utilize
regularization require matrix–matrix computations [Oðn3Þ oper-
ations]. Above all, the memory requirement for the iterative
algorithms is at least one order less, thus enabling the solving
of large problems.7,8 Even though these iterative reconstruction
methods are preferred for PA image reconstruction, often these
methods require prohibitively large computational time to
converge especially when the initial guess is far away from
the expected one, making them less appealing in the real-time.7,8

In this work, we address this problem by deploying a vector
polynomial extrapolation method, which can accelerate any
iterative scheme, thus, making iterative reconstruction methods
more appealing. Vector polynomial extrapolation approach
relies on finding the limit or antilimit of the initial solutions
of an iterative method. Here, we have used these methods
to accelerate the most widely used iterative reconstruction
methods, namely regularized steepest descent (RSD)16 and
total variation (TV) regularization.17,18 Both numerical and
experimental studies involving regular and irregular objects
were performed to show the efficacy of the proposed method
in comparison to the original iterative methods.

2 Photoacoustic Image Reconstruction
PA wave equation can be written as follows:6

EQ-TARGET;temp:intralink-;e001;326;127∇2Pðx; tÞ − 1

c2
∂2Pðx; tÞ

∂t2
¼ −β

Cp

∂Hðx; tÞ
∂t

; (1)
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where Pðx; tÞ is the pressure at position x and time t, c is the
speed of sound in the medium, β is the thermal expansion coef-
ficient, Cp is the specific heat capacity, and Hðx; tÞ represents
the energy deposited per unit time per unit volume. The PA data
collected at the boundary of the imaging domain can be obtained
by solving Eq. (1) for time t. The reconstruction problem
requires an estimate of the initial pressure [Pðx; tÞ] at t ¼ 0

inside the imaging domain, given the observations at the boun-
dary at time t, making the reconstruction problem equivalent to
initial value problem.

The PA wave propagation model can be written in terms of
linear system of equations and known to provide a simple yet
effective way of solving the PAwave equation (given in Refs. 19
and 20). In this approach, the forward model for PA imaging
can be written as follows:7

EQ-TARGET;temp:intralink-;e002;63;587Ax ¼ b; (2)

where A is the system matrix containing impulse responses of
all pixels in the imaging region as columns, x is the unknown
vector representing the initial pressure rise, and b is the meas-
urement vector. The time varying data representing the impulse
response recorded corresponding to each pixel is stacked as
a long vector accounting for the column of the system matrix.
Thus, the number of columns in the system matrix (A) is equal
to number of pixels in the imaging domain. The computation
time required for building A is improved by calculating the
impulse response for only one corner pixel and using the shifting
and attenuation properties of the PA signal to build the whole
system matrix.19,20 The simple linear back-projected (LBP)
image xbp can be obtained via20,21

EQ-TARGET;temp:intralink-;e003;63;413xbp ¼ ATb; (3)

where T represents the transpose of the matrix. Earlier works
have also introduced filtered back projection as well as
delay-and-sum,22 which are also noniterative as well as analytic
types of reconstruction methods. Since all of them are non-
iterative, they are computationally efficient but only provide
qualitative results along with requirement of having complete
data.7 This xbp is typically used as an initial guess (x0) for
all iterative methods that are discussed in this work, which is
a standard practice.22

Typically, for limited data cases, a least-squares framework
can be utilized along with Tikhonov regularization, resulting in
the cost function:8,22

EQ-TARGET;temp:intralink-;e004;63;249Ω ¼ kAx − bk22 þ αkxk22; (4)

where α is the regularization parameter. The Ω is minimized
with respect to x and as the regularization functional is smooth
in nature, it promotes smooth solution. The direct solution for
this equation can be written as follows:

EQ-TARGET;temp:intralink-;e005;63;173x ¼ ðATAþ αIÞ−1ATb: (5)

The direct solution is prone to numerical instability as in
most cases A tends to be sparse and/or contains small values.
In these scenarios, it is very common to use iterative technique
to minimize the cost function given in Eq. (4).

2.1 Regularized Steepest Descent Method

The simplest of them is the RSD, given in Algorithm 1. First, in
step 2, the residual (rn) is computed, then the direction of ascent
(Lα

n) is computed in step 3, and finally, the step size (kαn) is
computed in step 4. The solution vector xn is updated in step 5.
For all methods discussed in the work, the iterations are stopped
when there is less than 1% change in the relative residual
[for 40-dB signal-to-noise ratio (SNR) case]. The convergence
criteria were varied similarly for different noise levels.

The choice of the regularization parameter (α) is critical
as it effects the reconstructed image quality (trade-off between
the residual and the minimum norm solution). Usually, α is
decreased at every iteration (α0 > α1 > α2 > : : : > αn) for the
RSD methods, which is also known as adaptive regularization
strategy.16

2.2 Total Variation Regularization Method

TV regularization is another popular method used for solving
ill-posed linear inverse problems. In this, the cost-function is
written as follows:17,18

EQ-TARGET;temp:intralink-;e006;326;517Ω ¼ kAx − bk22 þ λkxkTV; (6)

where λ is the regularization parameter, which balances the
data model misfit and variation in x. k:kTV represents the
isotropic TV in this case, which is utilizing the same form,
as in Ref. 23.

A popular method, split augmented Lagrangian shrinkage
algorithm (SALSA),24 was utilized here for the TV regulariza-
tion, which utilizes the alternating direction method of multi-
pliers framework given in Ref. 25, detailed steps are given in
Algorithm 2. The step 2 of the algorithm has a closed form
solution as given below:

EQ-TARGET;temp:intralink-;e007;326;376xkþ1 ¼ ðATAþ λIÞ−1½ATbþ λðvk þ dkÞ�: (7)

The step 3 of the algorithm has a solution of the form:

EQ-TARGET;temp:intralink-;e008;326;333vkþ1 ¼ ψτϕ∕λðxkþ1 − dkÞ; (8)

where ψ denotes the soft thresholding function and ϕ denotes
the TV functional kxkTV. In case of TV, where it does not
have a closed form solution as in Eq. (8) and needs an iterative
solution, the convergence can be guaranteed by Theorem 1 in
Ref. 24.

Algorithm 1 Algorithm for RSD method.

Input: A; b; x0; α

Output: Solution vector: x

1 Repeat 2 to 5 till convergence is satisfied

2 r n ¼ AðxnÞ − b

3 Lαn ¼ ATr n þ αxn

4 kα
n ¼ kLαnk2

kALαnk2þαkLαnk2

5 xnþ1 ¼ xn − kα
nLαn
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2.3 Proposed Vector Extrapolation Methods

The iterative methods refine the current iterate and in an
asymptotic sense, this sequence of iterates produced by these
algorithms converge to the exact solution. Typically, these
required iterations are in the range of few hundred and ideally,
one would like to converge to the solution with few tens of iter-
ations. The acceleration of convergence to achieve this can be
obtained by fast cyclic iterative algorithms,26 which use vector
extrapolation technique. Here, each cycle of the algorithm gen-
erates a finite number of consecutive iterates by the algorithms
discussed above in Algorithm 1 or Algorithm 2. These are used
to obtain an extrapolated estimate of the solution. The estimated
iterates are used as the next guess for the iterative algorithms.
This process is repeated until convergence is achieved.27,28

Among the available methods, minimal polynomial extrapola-
tion (MPE)27 and reduced rank extrapolation (RRE)26,28 are uti-
lized in this work, which are known to be the state-of-the-art
extrapolation methods.

2.3.1 Minimal polynomial extrapolation method

Polynomial extrapolation methods compute the approximation
as a weighted sum of the iterates, where the weights are
determined by the coefficients of the minimal polynomial
PðλÞ of A with respect to u0, where u0 is defined as follows:

EQ-TARGET;temp:intralink-;e009;63;299u0 ¼ ∇x1 ¼ x1 − x0; (9)

where x0; x1; : : : ; xn are the initial iterates, i.e., the unique monic
polynomial will satisfy the following property:

EQ-TARGET;temp:intralink-;e010;63;246PðAÞu0 ¼ 0: (10)

Suppose k is the degree of the minimal polynomial PðλÞ,
where k ≤ N. Here, N denotes the dimension of the solution
vector. Then, minimal polynomial can be written as

EQ-TARGET;temp:intralink-;e011;63;182PðλÞ ¼
Xk
j¼0

cjλj; (11)

where cj are unknown coefficients (to be determined).
Combining Eqs. (10) and (11) results in

EQ-TARGET;temp:intralink-;e012;63;108

Xk
j¼0

cjuj ¼ 0; (12)

which can be written as follows:

EQ-TARGET;temp:intralink-;e013;326;741Uk−1c ¼ −uk; (13)

where c ¼ ðc0; c1; : : : ; ck−1ÞT and ck ¼ 1. Using QR factoriza-
tion of Uk−1, where Q�

k−1Qk−1 ¼ Ik−1×k−1:

EQ-TARGET;temp:intralink-;e014;326;690Qk−1Rk−1c ¼ −uk: (14)

Multiplying both sides by Q�
k−1, it becomes

EQ-TARGET;temp:intralink-;e015;326;647Q�
k−1Qk−1Rk−1c ¼ −Q�

k−1uk; (15)

which reduces to

EQ-TARGET;temp:intralink-;e016;326;604Rk−1c ¼ −Q�
k−1uk; (16)

making Q�
k−1uk ¼ ðr0k; r1k; : : : ; rk−1;kÞ ¼ ρk, simplifies to

EQ-TARGET;temp:intralink-;e017;326;565Rk−1c ¼ −ρk: (17)

Solution to the above linear system of equations will give c,
which are the unknown coefficients of the minimal polynomial.
When U is rank deficient, Eq. (13) reduces to

EQ-TARGET;temp:intralink-;e018;326;496c ¼ −Uþ
k−1uk; (18)

where Uþ
k−1 represents the pseudoinverse of Uk−1.

Suppose, the error at every iteration, en, is defined as

EQ-TARGET;temp:intralink-;e019;326;436en ¼ xn − s; (19)

where s denotes the exact solution of the system and xn is the
current iterate. From the error propagation theory for linear
systems, it is well known that

EQ-TARGET;temp:intralink-;e020;326;366en ¼ Ane0: (20)

Since PðλÞ is the minimal polynomial of A. Therefore,
PðAÞe0 ¼ 0. Combining Eqs. (19) and (20) lead to

EQ-TARGET;temp:intralink-;e021;326;313

Xk
j¼0

cjAjðxo − sÞ ¼
Xk
j¼0

cjðxj − sÞ ¼ 0; (21)

solving for s results in

EQ-TARGET;temp:intralink-;e022;326;246s ¼
P

k
j¼0 cjxjP
k
j¼0 cj

: (22)

To simplify above equation, write γj ¼ cjP
k
i¼0

ci
, where

j ¼ 0;1; : : : ; k with
P

k
j¼0 γj ¼ 1. Multiplying both sides of

Eq. (13) by ðPk
j¼0 cjÞ−1 converts it to

EQ-TARGET;temp:intralink-;e023;326;148Ukγ ¼ 0: (23)

Simplifying Eq. (22), writing it in terms of γj leads to

EQ-TARGET;temp:intralink-;e024;326;106s ¼
Xk
j¼0

γjxj: (24)

Algorithm 2 Algorithm of SALSA.

Input: A; b; λ,k ¼ 0; v0 and d0

Output: Solution vector: x

1 Repeat 2-5 till convergence is satisfied

2 xkþ1 ¼ arg minx kAx − bk22 þ λkx − vk − dkk22
3 vkþ1 ¼ arg minv τϕðvÞ þ ðλ∕2Þkxkþ1 − v − dkk22
4 dkþ1 ¼ dk − ðxkþ1 − vkþ1Þ

5 k ¼ k þ 1
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Since xj ¼ x0 þ
Pj−1

i¼0 ui, Eq. (24) can be rewritten as
follows:

EQ-TARGET;temp:intralink-;e025;63;730s ¼ x0 þ
Xk−1
i¼0

ζiui; (25)

where

EQ-TARGET;temp:intralink-;e026;63;669ζi ¼
Xk
j¼iþ1

γj; (26)

which in the matrix form can be written as

EQ-TARGET;temp:intralink-;e027;63;612s ¼ x0 þ Uk−1ζ: (27)

In MPE, we will define matrix Uk−1 ∈ Rn�k as comprising of
vectors u0; u1; u2; : : : ; uk−1, where ui ∈ Rn. Let c be the least
square solution of Eq. (13). Start with ck ¼ 1 and compute
γ0; γ1; : : : ; γk using

EQ-TARGET;temp:intralink-;e028;63;541γMPE
j ¼ cjP

k
i¼0 ci

; (28)

where j ¼ 0;1; : : : ; k. Thus, the MPE estimate becomes

EQ-TARGET;temp:intralink-;e029;63;488sMPE
k ¼

Xk
j¼0

γMPE
j xj: (29)

The computation of the solution (s) thus requires only
an estimate of γj‘s and followed by simple vector–vector
multiplication.

2.3.2 Reduced rank extrapolation method

In RRE, the definition of U changes to Uk ∈ Rn�ðkþ1Þ as com-
prising of vectors u0; u1; u2; : : : ; uk, where ui ∈ Rn. Similar to
MPE, the RRE estimate becomes

EQ-TARGET;temp:intralink-;e030;63;339sRREk ¼
Xk
j¼0

γRREj xj: (30)

A unified algorithm for implementing MPE and RRE is
given in Algorithm 3.29 It is based on the modified QR
factorization.

Algorithm 3 is called for L cycles with k representing the
order of extrapolation. First, one of the above algorithms
(Algorithm 1 or Algorithm 2) is called for k steps. The generated
k iterates are extrapolated to get the solution (s). This completes
one cycle of the algorithm. The solution obtained becomes
an input to Algorithm 1 or Algorithm 2 as an initial guess
and the process is repeated till the convergence is obtained.
These methods combining vector extrapolation with RSD,
via Algorithm 1, will be called as minimal polynomial extrapo-
lated regularized steepest descent (MPERSD) and reduced
rank extrapolated regularized steepest descent (RRERSD). The
ones where TV regularization, via Algorithm 2, will be called
as minimal polynomial extrapolated total variation (MPETV)
and reduced rank extrapolated total variation (RRETV).

3 Figures of Merit
The figures of merit utilized for effectively comparing the
reconstruction methods introduced in this work were Pearson
correlation (PC), contrast-to-noise ratio (CNR), and SNR.30

3.1 Pearson Correlation

PC is defined as follows:

EQ-TARGET;temp:intralink-;e031;326;303PCðxtarget; ~xÞ ¼ COVðxtarget; ~xÞ
σðxtargetÞσð~xÞ ; (31)

where xtarget is the expected initial pressure distribution and ~x is
the reconstructed initial pressure distribution. Here, σ denotes
standard deviation, and COV is the covariance. It measures
the correlation between the target and the reconstructed image,
ranging from −1 to 1. The higher the value, the closer is the
reconstructed image with the expected image.

3.2 Contrast to Noise Ratio

CNR is defined as follows:

EQ-TARGET;temp:intralink-;e032;326;151CNR ¼ μRoI − μback
ðδ2RoIaRoI þ δ2backabackÞ1∕2

; (32)

where μ and δ represent the mean and the variance correspond-
ing to the region of interest (RoI) and the background
(back) in the reconstructed initial pressure. The aRoI ¼ ARoI

Atot

and aback ¼ Aback

Atot
represent the area ratio. ARoI represents the

Algorithm 3 Algorithm listing important steps for implementing MPE
and RRE.

Input: xn; xnþ1; xnþ2; : : : ; xnþkþ1

Output: Solution vector: sn;k

1 ui ¼ Δx i ¼ x iþ1 − xi where i ¼ n; n þ 1; : : : ; n þ k

2 Uj ¼ ½un junþ1j: : : junþj � where j ¼ 0; 1; : : :

3 Uk ¼ QkRk, QR factorization of Uk, Qk is unitary and Rk is
upper triangular

4 (MPE)

• Rk−1c 0 ¼ −ρk ;ρk ¼ ½r 0k ; r 1k ; : : : ; r k−1;k �T ; c 0 ¼ ½co;c1; : : : ; ck−1�T

• ck ¼ 1; α ¼ Pk
i¼0 ci

• γi ¼ ci∕α where i ¼ 0;1; : : : ; k

(RRE)

• R�
kRkd ¼ e; d ¼ ½do; d1; : : : ; dk �T ; e ¼ ½1;1; : : : ; 1�T ∈ Rkþ1

• λ ¼ ðPk
i¼0 di Þ−1

• γ ¼ λd

(Common steps)

ζ ¼ 1 − γ0; ζi ¼ ζi−1 − γj where j ¼ 1; : : : ; k − 1

sn;k ¼ xn þQk−1ðRk−1ζÞ
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number of pixels with nonzero initial pressure distribution
(here, it is the region in the target image with pixel values
being 1) and Aback represents the number of pixels with zero
initial pressure rise (region containing pixel values as zero in
the target image). Atot is the sum of areas of the region of interest
and the background. aRoI and aback are the noise weights for
the region of interest and the background, respectively.
Higher value of CNR represents the contrast recovery of the
reconstruction technique.

3.3 Signal-to-Noise Ratio

In cases, especially experimental and in-vivo, it may not be pos-
sible to know the target initial pressure distribution to calculate
both PC and CNR. In these cases, the figure of merit that has
been used is SNR of the reconstructed image. It is expressed as
given below:

EQ-TARGET;temp:intralink-;e033;63;568SNRðdBÞ ¼ 20 × log10

�
S
n

�
; (33)

with S denoting the peak-to-peak initial pressure value and
n corresponds to standard deviation. The higher the SNR
represents the lesser noise in the reconstructed image and thus
better performance of the reconstruction method.

4 Numerical and Experimental Phantom
Studies

The acceleration achieved by the proposed vector extrapolation
methods was tested using both numerical and experimental
phantom cases. The measurement of actual initial pressure is
challenging in real experiments. It leads to difficulty in compar-
ing the accuracy of different algorithms. Thus, numerical
phantoms are used for comparing the accuracy of different
reconstructions.

The two-dimensional numerical phantoms have a size of
401 × 401 spanning the imaging region of 20.1 mm × 20.1 mm.
The schematic diagram showing the imaging domain along with
detectors placement is given in Fig. 1. The experimental data

were generated on a high dimensional grid (401 × 401) and
the reconstruction was performed on a lower dimensional
grid (201 × 201). The data generated using the high dimensional
grid was added with a white Gaussian noise, resulting in differ-
ent SNR levels ranging from 20 to 60 dB. An open source tool
box k-WAVE in MATLAB was used for generating the data.31

The computational imaging grid has a size of 501 × 501 pixels

(0.1mm∕pixel) and the detectors were placed on a circle of
radius 22 mm (Fig. 1). The sampling frequency for the data col-
lection is 20MHz with number of time samples for each detector
being 500. The hundred detectors were considered as point
detectors having center frequency of 2.25 MHz and 70%
bandwidth. Thus, the system matrix (A) has a dimension of
50;000 × 40;401. The speed of sound was assumed to be
1500 m∕s and the medium was assumed to be homogeneous
with no absorption or dispersion of sound. In all numerical
experiments conducted here, 100 cycles of second order
extrapolation was utilized.

Initially, two numerical phantoms with a maximum initial
pressure of 1 kPa [blood vessel and Derenzo given in Figs. 3(a)
and 4(a), respectively] for targets were considered for proving
the effectiveness of the proposed method. The numerical
blood vessel phantom [Fig. 3(a)] consisted of thick and thin
blood vessels mimicking the blood vessel structure. The modi-
fied Derenzo phantom [Fig. 4(a)] consisted of circular objects
with varying diameter grouped according to size.

The schematic of the experimental setup for the collection of
the PA data is shown in Fig. 2(a) [similar to Fig. 1(e) of Ref. 32].
A Q-switched Nd:YAG laser was used for delivering 532-nm
wavelength laser of 5-ns duration at 10-Hz repetition rate.
Four right-angle uncoated prisms (PS911, Thorlabs) and one
uncoated planoconcave lens L1 (LC1715, Thorlabs) were
used to deliver the laser pulses to the sample. The laser energy
density on the phantom was ∼9 mJ∕cm2 (<20 mJ∕cm2: ANSI
safety limit33). A triangular shaped horse hair phantom was
utilized for imaging. The side-length and diameter of hair are
∼10 and 0.15 mm, respectively. The hair phantom was glued
to the pipette tips adhered on acrylic slab.34 The PA data
were collected continuously around the hair phantom in full
360 deg using a 2.25-MHz flat ultrasound transducer (Olympus
NDT, V306-SU) with 13 mm diameter active area and 70%
nominal bandwidth. Another experimental phantom was also
used to evaluate the effectiveness of the proposed method. It
was circular in shape and made using low density polyethylene
tubes (5-mm inner diameter), which were filled with black
Indian ink. The tubes were placed at 0 and 15 mm from the scan-
ning center and affixed at the bottom of the acrylic slab. The
acquired PA signals were first amplified and filtered using
a pulse amplifier (Olympus-NDT, 5072PR), and then recorded
using a data acquisition (DAQ) card (GaGe, CompuScope
4227) using a single channel with a sampling frequency of
25 MHz inside a desktop (Intel Xeon 3.7 GHz 64-bit processor,
16 GB RAM, running windows 10 operating system).
Synchronization of data acquisition with laser illumination
was achieved using a sync signal from laser. The reconstructed
PA imaging region has a size of 40 mm × 40 mm containing
200 × 200 pixels.

The data collected have 2400 A-lines averaged over six times
resulting in 400 detected signals collected by the ultrasound
transducers acquiring the data continuously around the hair
phantom in full 360 deg for an acquisition time of 240 s with
a rotational speed of 1.5 deg/s. This averaging of A-lines

Fig. 1 Schematic diagram showing the PA data acquisition geometry
with hundred acoustic detectors (shown by dots) around the imaging
domain. The computational imaging grid size is 50 mm × 50 mm.
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reduced the energy fluctuations during multiple firings of the
laser. The ultrasound transducers and the phantom are immersed
in water to enable ultrasound coupling. The PA data were
acquired with sampling frequency of 25 MHz (1024 samples)
and subsampled at half the rate at 12.5 MHz to result in 512
time samples. The system matrix has a dimension of 51;200 ×
40;000 (51,200: number of detectors is 100 with each collecting
512 time samples, 40,000: dimensions of the imaging domain
being 200 × 200). Determining the actual initial pressure rise
(target values) in these experiments is not plausible, so only
a comparison between the proposed and standard methods
was presented here with SNR being the figure of merit for quan-
titative comparison. Note that a Linux workstation with 32 cores

of Intel Xeon processor having a speed of 3.1 GHz with 128 GB
RAM was used for all computations performed in this work.

5 Results and Discussion
The reconstructed initial pressure distribution for the numerical
blood vessel phantom [Fig. 3(a)] data having SNR of 40 dB
using RSD method is shown in Fig. 3(b). The reconstructions
using MPERSD and RRERSD methods are shown in Figs. 3(c)
and 3(d), respectively. The LBP result is shown in Fig. 3(e).
Even though the required computation time for obtaining
LBP results is only 0.5 s, it can be observed that the LBP per-
formance is poor compared to other methods in terms of both

Fig. 3 (a) The numerical blood vessel (BV) phantom that was considered in this work. The reconstructed
initial pressure rise using hundred detectors data (schematic of data collection geometry is shown in
Fig. 1) with SNR of 40 dB using (b) RSD, (c) MPERSD, (d) RRERSD, (e) LBP, (f) TV, (g) MPETV,
and (h) RRETV methods. The corresponding figures of merit, PC and CNR, are given in Fig. 5. The
computational time corresponding to these methods is presented in fourth column of Tables 1 and 2.

Fig. 2 (a) Schematic of the experimental setup used for PA data acquisition with number of detector
positions being 100 for the horse hair and tube phantom described in this work. RD, rotating disc;
P1, P2, P3, P4, uncoated right-angled prisms; L1, planoconcave lens; R/A/F, receiver, amplifier, and
filter for the PA signal; DAQ, data acquisition card; UST, ultrasound transducer; and SM, stepper
motor. (b) Photograph of triangular-shaped horse hair phantom. (c) Photograph of circular-shaped
tube phantom filled with black Indian ink.
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image quality (streak artifacts are more observable in LBP
image) as well as reconstructed dynamic range of initial pressure
(the maximum value is only going up to 0.1 against expected 1).
The figures of merit, PC and CNR, for these results along with
the results (not shown) for SNR of data being 20 and 60 dB are
shown in Figs. 5(a) and 5(b). The corresponding computational
time (in seconds) is given in Table 1. The reconstruction times
presented here are for smallest order of extrapolation (quad-
ratic). From Table 1, it is evident that the time taken by proposed
extrapolation methods (MPERSD and RRERSD) was always
less as compared to the standard (RSD) method. From
Figs. 5(a) and 5(b), it can be seen that the PC and CNR values
are nearly same for both standard and proposed methods for
SNR values of 40 and 60 dB. For 20 dB, the standard method
performs slightly better in terms of PC and CNR. Note that the
proposed extrapolation methods generally perform well when
the initial iterates are robust to noise and in the case of 20-dB
initial iterates may not be well regularized solutions, thus
causing the convergence to a local minima. In terms of speedup
(top rows corresponding to blood vessel phantom results of
Table 1), for SNR of 60 dB, it is 4.7 for MPERSD and 2.3
for RRERSD. Clearly, for low noise cases (SNR of 60 dB),
there is a significant reduction in the computation time. For
SNR of 40 dB, the speedup is 1.2 for RRERSD, which shows
an improvement over the standard RSD method. For the case of
SNR of 20 dB, the overall computation time was reduced using
extrapolation methods, but these are not significant.

The reconstructed initial pressure distribution for the blood
vessel phantom [Fig. 3(a)] using TV is shown in Fig. 3(f).
The reconstructions using MPETV and RRETV are shown in
Figs. 3(g) and 3(h). The figures of merit for these are shown
in Figs. 5(c) and 5(d), along with results corresponding to
varying SNR values of 20 and 60 dB. The corresponding
computational time (in seconds) is reported in Table 2. From
Table 2, it is evident that the time taken by MPETV and
RRETV is less as compared to the standard TV method for
the 60-dB SNR case. From Figs. 5(c) and 5(d), it is evident
that the PC and CNR values are similar for the methods dis-
cussed in this work. For the case of SNR being 60 dB, the
speedup obtained is 2.9 for MPETV and 2.4 for RRETV.

Similarly for the Derenzo phantom, the reconstructed initial
pressure distribution is shown in Fig. 4(b) for the RSD method.
The reconstructions for MPERSD and RRERSD are shown in

Figs. 4(c) and 4(d) correspondingly. The computational times
reported in Table 1 show that the speedup obtained for
60-dB SNR case is 2.9 for MPERSD and 3.89 for RRERSD.
The same trend of LBP result having poor performance as
observed in blood vessel phantom case was also observed
here [result is presented as Fig. 4(e)]. So, for rest of experimental
phantom cases, the LBP method was not utilized in the compari-
son. The reconstruction result pertaining to TV for Derenzo
phantom case is given in Fig. 4(f). The reconstructions for
MPETV and RRETV are shown in Figs. 4(g) and 4(h).
Similarly, from Table 2, the speedup obtained for 60-dB SNR
is 3.2 for MPETV and 2.7 for RRETV. There could not be any
speed-up achieved by the proposed methods (MPETV and
RRETV) for SNR values of 20 and 40 dB in these numerical
phantom cases. TV has the property of preserving the features
of an image. It finds the solution, which has the total minimal
variation but is not biased toward a smooth or sharp solution.
Thus, the disk boundaries are smooth in case of TV regulariza-
tion. The RSD is equivalent of solving least-squares, which pro-
motes only smooth solutions, does not have any properties of
minimizing the variation and hence, the disk boundaries have
stronger pixel values.

The reconstruction results for the experimental horse hair
phantom are shown in Figs. 6(a) and 6(d) for the standard meth-
ods, RSD and TV correspondingly. The reconstruction results
pertaining to MPERSD and RRERSD methods are shown in
Figs. 6(b) and 6(c) correspondingly. The reconstructions for
the MPETV and RRETV methods are shown in Figs. 6(e)
and 6(f) correspondingly. From the results, it is evident that
the TV-based methods provide better performance compared
to RSD methods. Table 3 provides computational time
needed for computing these results, and it is evident that the
extrapolation methods that are proposed here provide significant
speedup, specifically, it is 1.2 for MPERSD and 1.6 for
RRERSD, whereas it is 3 for MPETV and 3.1 for RRETV.
The extrapolated methods are clearly efficient as compared to
the standard methods in terms of computation and also provide
better SNR in terms of reconstruction results.

The axial resolution that was calculated from the recon-
structed horse hair phantom image (estimated FWHM in Fig. 6)
was found to be 301 μm.35 This resolution matches closely
with the theoretical expected spatial resolution (∼333 μm) for
a 2.25-MHz transducer. As stated earlier, the diameter of the
hair phantom was 150 μm. To resolve such object, one can

Table 1 Computational time (in s) for the results presented in
Figs. 5(a) and 5(b) corresponding to RSD, MPERSD, and RRERSD
methods.

Phantom Method
SNR ¼
20 dB

SNR ¼ 40 dB
(Figs. 3 and 4)

SNR ¼
60 dB

BV [Figs. 5(a)
and 5(b)]

RSD 3.07 89.61 1334.22

MPERSD 2.47 86.16 279.77

RRERSD 2.54 73.02 566.48

Derenzo
[Figs. 5(a)
and 5(b)]

RSD 9.32 115.76 1662.89

MPERSD 6.08 87.61 558.53

RRERSD 6.26 104.66 426.65

Table 2 Computational time (in s) for the results presented
in Figs. 5(c) and 5(d) corresponding to TV, MPETV, and RRETV
methods.

Phantom Method
SNR ¼
20 dB

SNR ¼ 40 dB
(Figs. 3 and 4)

SNR ¼
60 dB

BV [Figs. 5(c)
and 5(d)]

TV 6.11 5.92 39.11

MPETV 7.21 6.99 13.04

RRETV 6.99 6.97 15.79

Derenzo
[Figs. 5(c)
and 5(d)]

TV 5.70 5.47 41.17

MPETV 6.93 6.92 12.78

RRETV 6.88 9.19 15.19
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use higher frequency transducer of 5 MHz36 and as the aim of
this part of the work is to show the real-time utility of the pro-
posed vector extrapolation methods, this was not attempted.

The reconstruction results for the experimental tube phantom
are shown in Figs. 7(a) and 7(d) for the standard methods, RSD
and TV correspondingly. The reconstruction results pertaining

to MPERSD and RRERSD methods are shown in Figs. 7(b) and
7(c) correspondingly. The reconstructions for the MPETV and
RRETV methods are shown in Figs. 7(e) and 7(f) correspond-
ingly. Here, as the expected objects are more circular in nature,
the improvement in terms of SNR is not significant with
TV-based methods showing a marginal improvement compared

Fig. 5 Figures of merit (a) PC coefficient and (b) CNR for RSD, MPERSD, and RRERSD methods for
the blood vessel (BV) and Derenzo phantoms for SNR in the data being 20, 40, and 60 dB (given in
the parenthesis of each caption of bar graph). The computational times corresponding to these results
are presented in Table 1. Similar results of (c) PC and (d) CNR for TV, MPETV, and RRETV.
The computational times corresponding to these results are presented in Table 2. The reconstructed
initial pressure distributions corresponding to SNR of 40 dB was shown in Figs. 3 and 4.

Fig. 4 (a) The numerical Derenzo phantom that was considered in this work. The reconstructed initial
pressure rises using hundred detectors data (schematic of data collection geometry is shown in Fig. 1)
with SNR of 40 dB using (b) RSD, (c) MPERSD, (d) RRERSD, (e) LBP, (f) TV, (g) MPETV, and
(h) RRETV methods. The corresponding figures of merit, PC and CNR, are given in Fig. 5. The com-
putational time corresponding to these methods are presented in fourth column of Tables 1 and 2.
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to its counterparts. Table 3 provides computational time needed
for obtaining these results, and it is evident that the extrapolation
methods that are proposed here provide significant speedup,
specifically, it is 1.5 for MPERSD and 1.9 for RRERSD,
whereas it is 1.9 for MPETV and 1.8 for RRETV.

The postprocessing of reconstructed images using Hilbert
transform can improve the visualization of initial pressure dis-
tributions (currently, they are bipolar, although the expected is
unipolar).37–39 As the main aim of this work is to show the speed
up obtained by vector extrapolation schemes, this postprocess-
ing step was not included to show the raw performance of
proposed methods. The performance of the reconstruction algo-
rithm can also be characterized by the dynamic range of the
reconstructed initial pressure [for example, compare Figs. 4(e)
and 4(f)], normalizing these plots either using Hilbert or
other transformation methods will make the representations
inaccurate.

The work presented here is geared toward accelerating the
image reconstruction procedure in case of limited data. The
definition of limited data here is relative to the state-of-the-art
setups. To be precise, the current clinical PA tomography

scanners with advances in instrumentation acquire large amounts
of data with number of detectors being as high as 512 and num-
ber of time samples for each detector being 2048.40 Note that in
this work, the maximum number of detectors that were utilized
is 100 with number of time samples being 512, thus making
the data available here relatively limited.

It is important to note that the vector extrapolation methods
presented in this work are known to be providing global optima
as they estimate the limit (or antilimit) of the initial solutions of
an iterative method. Thus, the performance of these methods
largely depends on the initial solutions and often regularized
solutions (like the ones obtained using TV) can improve the
performance of these methods (which is also observed here).
Ideally, in noise-free cases, both extrapolation-based iterative
methods and standard iterative methods should converge to
the same solution as long as the stopping criterion is same for
both methods (which is the case here). Unfortunately, noise-free
cases are far away from real-time scenarios, so, this exercise was
not taken up and interested readers can refer to Refs. 26–29 for
detailed mathematical framework.

The important step in the PA tomography is image
reconstruction and developing computationally efficient meth-
ods that can be deployable in real-time is desirable to translate
PA imaging into a clinical imaging modality. Especially, in cases
of limited data, most reconstruction algorithms present in the
literature even though provide better quantitatively accurate
results, often they are prohibitively expensive in terms of com-
putation. In this work, we have deployed extrapolation tech-
niques to accelerate two standard reconstruction methods and
shown using example cases that these methods can be very
effective in reducing the total computation time required espe-
cially in experimental scenarios. It is important to note that

Table 3 Computational time (in s) required for obtaining the results
presented in Figs. 6 and 7 corresponding to experimental horse hair
and the tube phantom.

Phantom RSD MPERSD RRERSD TV MPETV RRETV

Horse hair 150.88 127.19 94.93 70.47 23.16 22.70

Tube 287.45 192.55 153.02 54.82 29.46 30.12

Fig. 6 The reconstructed initial pressure distribution with experimental horse hair phantom data using
(a) RSD, (b) MPERSD, (c) RRERSD, (d) TV, (e) MPETV, and (f) RRETV methods. The figure of merit,
SNR (in dB), corresponding to each reconstructed image is given below. The computational time required
for obtaining these results is presented as second row in Table 3.
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the extrapolation techniques that are presented in this work are
more of universal in nature and can be employed in any iterative
reconstruction method. The results presented here are limited in
nature as the focus is more toward showing the utility of these
extrapolation methods, one could expect the similar speed-up in
other cases as well. The corresponding algorithms along with
necessary code are given as an open-source for enthusiastic
users.41

6 Conclusions
The vector extrapolation methods have been shown to improve
any iterative procedure, where there will be a reduction in the
residual error as the iterations progress (convergence is guaran-
teed). Application of these extrapolation methods in the frame
work of two iterative methods that are commonly used in PA
imaging was presented here. Specifically, the initial iterates
that were calculated using RSD or TV were given as input to
these vector extrapolation methods and was shown to provide
significant speed-up (as high as 4.7 times) especially in numeri-
cal cases. The extrapolation techniques are important in achiev-
ing the limit of the function without iterating through a large
number of steps as frequently performed by many iterative
methods. It is shown using both numerical and experimental
phantom cases, the extrapolation methods (two of such variants
were presented in this work), have a potential in terms of speed-
ing up the reconstruction algorithm along with improving the
reconstructed image quality.
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