VECTOR MECHANICS FOR ENGINEERS:

DYNAMICS

Ferdinand P. Beer
E. Russell Johnston, Jr.

Phillip J. Cornwell
Lecture Notes:
Brian P. Self
Calformiay Polyechnic State Universiby
Sanjeev Sanghi
Indian institute of Technology, Delhi

Plane Motion of Rigid Bodies: Energy and Momentum Methods

Vector Mechanics for Engjneers: Dynamics
Contents

Introduction
Principle of Work and Energy for a Rigid Body
Work of Forces Acting on a Rigid Body
Kinetic Energy of a Rigid Body in Plane Motion
Systems of Rigid Bodies
Conservation of Energy
Power
Sample Problem 17.1
Sample Problem 17.2
Sample Problem 17.3
Sample Problem 17.4
Sample Problem 17.5
Principle of Impulse and Momentum

Systems of Rigid Bodies
Conservation of Angular Momentum
Sample Problem 17.6
Sample Problem 17.7
Sample Problem 17.8
Eccentric Impact
Sample Problem 17.9
Sample Problem 17.10
Sample Problem 17.11

婯 Vector Mechanics for Engineers: Dynamics

Introduction

To predict the launch from a catapult, you must apply the principle of work-energy.

To determine the forces acting on the stopper pin when the catapult reaches its final position, angular impulse momentum equations are used.

Vector Mechanics for Engineers: Dynamics
Introduction

- Method of work and energy and the method of impulse and momentum will be used to analyze the plane motion of rigid bodies and systems of rigid bodies.
- Principle of work and energy is well suited to the solution of problems involving displacements and velocities.

$$
T_{1}+U_{1 \rightarrow 2}=T_{2}
$$

- Principle of impulse and momentum is appropriate for problems involving velocities and time.

$$
\vec{L}_{1}+\sum \int_{t_{1}}^{t_{2}} \vec{F} d t=\vec{L}_{2} \quad\left(\vec{H}_{O}\right)_{1}+\sum \int_{t_{1}}^{t_{2}} \vec{M}_{O} d t=\left(\vec{H}_{O}\right)_{2}
$$

- Problems involving eccentric impact are solved by supplementing the principle of impulse and momentum with the application of the coefficient of restitution.

Introduction
Approaches to Rigid Body Kinetics Problems

$$
\begin{array}{ccc}
\begin{array}{c}
\text { Forces and } \\
\text { Accelerations }
\end{array} & \begin{array}{c}
\text { Velocities and } \\
\text { Displacements }
\end{array} & \begin{array}{c}
\text { Velocities and } \\
\text { Time }
\end{array} \\
\begin{array}{c}
\text { Newton' s Second } \\
\text { Law (last chapter) }
\end{array} & \text { Work-Energy } & \begin{array}{c}
\text { Impulse- } \\
\text { Momentum }
\end{array} \\
\vec{F}=m \vec{a}_{G} & T_{1}+U_{1 \rightarrow 2}=T_{2} & m \vec{v}_{1}+{ }_{t_{1}}^{t_{2}} \vec{F} d t=m \vec{v}_{2} \\
\vec{M}_{G}=\dot{\vec{H}}_{G} & I_{G} \omega_{1}+\int_{t_{1}}^{t_{2}} M_{G} d t=I_{G} \omega_{2}
\end{array}
$$

Vector Mechanics for Engineers: Dynamics Principle of Work and Energy for a Rigid Body

- Work and kinetic energy are scalar quantities.
- Assume that the rigid body is made of a large number of particles.

$$
T_{1}+U_{1 \rightarrow 2}=T_{2}
$$

$T_{1}, T_{2}=$ initial and final total kinetic energy of particles forming body
$U_{1 \rightarrow 2}=$ total work of internal and external forces acting on particles of body.

- Internal forces between particles A and B are equal and opposite.
- Therefore, the net work of internal forces is zero.

Vector Mechanjos for Engjineers: Dynamics Work of Forces Acting on a Rigid Body

- Work of a force during a displacement of its point of application,

$$
U_{1 \rightarrow 2}=\int_{A_{1}}^{A_{2}} \vec{F} \cdot d \vec{r}=\int_{s_{1}}^{s_{2}}(F \cos \alpha) d s
$$

- Consider the net work of two forces \vec{F} and $-\vec{F}$ forming a couple of moment \vec{M} during a displacement of their points of application.

$$
\begin{aligned}
d U & =\vec{F} \cdot d \vec{r}_{1}-\vec{F} \cdot d \vec{r}_{1}+\vec{F} \cdot d \vec{r}_{2} \\
& =F d s_{2}=F r d \theta \\
& =M d \theta \\
U_{1 \rightarrow 2} & =\int_{\theta_{1}}^{\theta_{2}} M d \theta \\
& =M\left(\theta_{2}-\theta_{1}\right) \quad \text { if } M \text { is constant. }
\end{aligned}
$$

Vector Mechanjos for Engjineers: Dynamics Work of Forces Acting on a Rigid Body

Do the pin forces at point A do work?

YES

NO

Does the force \mathbf{P} do work?

YES

NO

Vector Mechanjos for Engjineers: Dynamics Work of Forces Acting on a Rigid Body

Does the normal force \mathbf{N} do work on the disk?

YES

NO

Does the weight \mathbf{W} do work?

YES

NO

If the disk rolls without slip, does the friction force \mathbf{F} do work?

```
YES

NO
\[
d U=F d s_{C}=F\left(v_{c} d t\right)=0
\]



\section*{Vector Mechanjos for Engjineers: Dynamics \\ Kinetic Energy of a Rigid Body in Plane Motion}
- Consider a rigid body of mass \(m\) in plane motion consisting of individual particles \(i\). The kinetic energy of the body can then be expressed as:
\[
\begin{aligned}
T & =\frac{1}{2} m \bar{v}^{2}+\frac{1}{2} \sum \Delta m_{i} v_{i}^{\prime 2} \\
& =\frac{1}{2} m \bar{v}^{2}+\frac{1}{2}\left(\sum r_{i}^{\prime 2} \Delta m_{i}\right) \omega^{2} \\
& =\frac{1}{2} m \bar{v}^{2}+\frac{1}{2} \bar{I} \omega^{2}
\end{aligned}
\]
- Kinetic energy of a rigid body can be separated into:
- the kinetic energy associated with the motion of the mass center \(G\) and
- the kinetic energy associated with the rotation of the body about \(G\).

\[
\begin{gathered}
T=\frac{1}{2} m \bar{v}^{2}+\frac{1}{2} \bar{I} \omega^{2} \\
\text { Translation }+ \text { Rotation }
\end{gathered}
\]

\section*{Vector Mechanjes for Engjineers: Dynamjos Kinetic Energy of a Rigid Body in Plane Motion}
- Consider a rigid body rotating about a fixed axis through \(O\).
\[
\begin{aligned}
T & =\frac{1}{2} \sum \Delta m_{i} v_{i}^{2}=\frac{1}{2} \sum \Delta m_{i}\left(r_{i} \omega\right)^{2}=\frac{1}{2}\left(\sum r_{i}^{2} \Delta m_{i}\right) \omega^{2} \\
& =\frac{1}{2} I_{O} \omega^{2}
\end{aligned}
\]
- This is equivalent to using:
\[
T=\frac{1}{2} m \bar{v}^{2}+\frac{1}{2} \bar{I} \omega^{2}
\]
- Remember to only use
\[
T=\frac{1}{2} I_{O} \omega^{2}
\]
when O is a fixed axis of rotation

\section*{Vector Mechanics for Engineers: Dynamics}

\section*{Concept Quiz}

The solid cylinder A and the pipe B have the same diameter and mass. If they are both released from rest at the top of the hill, which will reach the bottom the fastest?
a) A will reach the bottom first
b) B will reach the bottom first
c) They will reach the bottom at the same time

Which will have the greatest kinetic energy when it reaches the

\[
\beta=\underline{10^{\circ} \hat{\imath}}
\] bottom?
a) Cylinder A
b) Pipe B
c) Same kinetic energy

\section*{Vector Mechanjos for Engjineers: Dynamics \\ Systems of Rigid Bodies}
- For problems involving systems consisting of several rigid bodies, the principle of work and energy can be applied to each body.
- We may also apply the principle of work and energy to the entire system, \(T_{1}+U_{1 \rightarrow 2}=T_{2}\)
\[
\begin{aligned}
T_{1}, T_{2}= & \text { arithmetic sum of the kinetic energies of } \\
& \text { all bodies forming the system } \\
U_{1 \rightarrow 2}= & \text { work of all forces acting on the various } \\
& \text { bodies, whether these forces are internal } \\
& \text { or external to the system as a whole. }
\end{aligned}
\]


\section*{Vector Mechanics for Engineers: Dynamics Systems of Rigid Bodies}
- For problems involving pin connected members, blocks and pulleys connected by inextensible cords, and meshed gears,
- internal forces occur in pairs of equal and opposite forces
- points of application of each pair move through equal distances
- net work of the internal forces is zero
- work on the system reduces to the work of the external forces


\section*{Vector Mechanics for Engjineers: Dynamics}

\section*{Sample Problem 17.1}


For the drum and flywheel, \(\bar{I}=16 \mathrm{~kg} \mathrm{~mm}^{2}\). The bearing friction is equivalent to a couple of \(90 \mathrm{~N} \times \mathrm{m}\). At the instant shown, the block is moving downward at \(2 \mathrm{~m} / \mathrm{s}\).

Determine the velocity of the block after it has moved 1.25 m downward.

\section*{SOLUTION:}
- Consider the system of the flywheel and block. The work done by the internal forces exerted by the cable cancels.
- Note that the velocity of the block and the angular velocity of the drum and flywheel are related by
\[
\bar{v}=r \omega
\]
- Apply the principle of work and kinetic energy to develop an expression for the final velocity.

\section*{Sample Problem 17.1 \\ }


\section*{SOLUTION:}
- Consider the system of the flywheel and block. The work done by the internal forces exerted by the cable cancels.
- Note that the velocity of the block and the angular velocity of the drum and flywheel are related by
\[
\bar{v}=r w \quad w_{1}=\frac{\bar{v}_{1}}{r}=\frac{2 \mathrm{~m} / \mathrm{s}}{0.4 \mathrm{~m}}=5 \mathrm{rad} / \mathrm{s} \quad w_{2}=\frac{\bar{v}_{2}}{r}=\frac{\bar{v}_{2}}{0.4 \mathrm{~m}}
\]
- Apply the principle of work and kinetic energy to develop an expression for the final velocity.
\[
\begin{aligned}
T_{1} & =\frac{1}{2} m v_{1}^{2}+\frac{1}{2} \bar{I} w_{1}^{2} \\
& =\frac{1}{2}(120 \mathrm{~kg})(2 \mathrm{~m} / \mathrm{s})^{2}+\frac{1}{2}\left(16 \mathrm{~kg} \times \mathrm{m}^{2}\right)(5 \mathrm{rad} / \mathrm{s})^{2} \\
& =440 \mathrm{~J} \\
T_{2} & =\frac{1}{2} m \bar{v}_{2}^{2}+\frac{1}{2} \bar{I}{ }_{2}^{2} \\
& =\frac{1}{2}(120) \bar{v}_{2}^{2}+\frac{1}{2}(16) \frac{\bar{v}_{2}}{0.4} \div=110 \bar{v}_{2}^{2}
\end{aligned}
\]

\section*{Vector Mechanics for Engjineers: Dynamics}

\section*{Sample Problem 17.2}


The system is at rest when a moment of \(M=6 \mathrm{~N} \cdot \mathrm{~m}\) is applied to gear \(B\).

Neglecting friction, \(a\) ) determine the number of revolutions of gear \(B\) before its angular velocity reaches 600 rpm , and \(b\) ) tangential force exerted by gear \(B\) on gear \(A\).

\section*{SOLUTION:}
- Consider a system consisting of the two gears. Noting that the gear rotational speeds are related, evaluate the final kinetic energy of the system.
- Apply the principle of work and energy. Calculate the number of revolutions required for the work of the applied moment to equal the final kinetic energy of the system.
- Apply the principle of work and energy to a system consisting of gear \(A\). With the final kinetic energy and number of revolutions known, calculate the moment and tangential force required for the indicated work.

\section*{Vector Mechanics for Engineers: Dynamics Sample Problem 17.2}

- Apply the principle of work and energy. Calculate the number of revolutions required for the work.
\[
\begin{aligned}
& T_{1}+U_{1 \rightarrow 2}=T_{2} \\
& 0+\left(6 \theta_{B}\right) \mathrm{J}=163.9 \mathrm{~J} \\
& \theta_{B}=27.32 \mathrm{rad}
\end{aligned}
\]
\[
\theta_{B}=\frac{27.32}{2 \pi}=4.35 \mathrm{rev}
\]
- Apply the principle of work and energy to a system consisting of gear \(A\). Calculate the moment and tangential force required for the indicated work.
\[
\begin{aligned}
& \theta_{A}=\theta_{B} \frac{r_{B}}{r_{A}}=27.32 \frac{0.100}{0.250}=10.93 \mathrm{rad} \\
& T_{2}=\frac{1}{2} \bar{I}_{A} \omega_{A}^{2}=\frac{1}{2}(0.400)(25.1)^{2}=126.0 \mathrm{~J} \\
& T_{1}+U_{1 \rightarrow 2}=T_{2} \\
& 0+M_{A}(10.93 \mathrm{rad})=126.0 \mathrm{~J} \\
& M_{A}=r_{A} F=11.52 \mathrm{~N} \cdot \mathrm{~m} \\
& F=\frac{11.52}{0.250}=46.2 \mathrm{~N}
\end{aligned}
\]

\section*{Vector Mechanics for Engineers: Dynamics}

\section*{Sample Problem 17.3}


A sphere, cylinder, and hoop, each having the same mass and radius, are released from rest on an incline.
Determine the velocity of each body after it has rolled through a distance corresponding to a change of elevation \(h\).

\section*{SOLUTION:}
- The work done by the weight of the bodies is the same. From the principle of work and energy, it follows that each body will have the same kinetic energy after the change of elevation.
- Because each of the bodies has a different centroidal moment of inertia, the distribution of the total kinetic energy between the linear and rotational components will be different as well.

\section*{Vector Mechanics for Engineers: Dynamics}

\section*{Sample Problem 17.3}

- Because each of the bodies has a different centroidal moment of inertia, the distribution of the total kinetic energy between the linear and rotational components will be different as well.
\(\bar{v}^{2}=\frac{2 g h}{1+\bar{I} / m r^{2}}\) Sphere: \(\quad \bar{I}=\frac{2}{5} m r^{2} \quad \bar{v}=0.845 \sqrt{2 g h}\) Cylinder: \(\bar{I}=\frac{1}{2} m r^{2} \quad \bar{v}=0.816 \sqrt{2 g h}\) Hoop: \(\quad \bar{I}=m r^{2} \quad \bar{v}=0.707 \sqrt{2 g h}\)

\section*{NOTE:}
- For a frictionless block sliding through the same distance, \(\omega=0, \quad \bar{v}=\sqrt{2 g h}\)
- The velocity of the body is independent of its mass and radius.
- The velocity of the body does depend on
\[
\bar{I} / m r^{2}=\bar{k}^{2} / r^{2}
\]

Vector Mechanics for Engineers: Dynamics
Sample Problem 17.4


A \(15-\mathrm{kg}\) slender rod pivots about the point \(O\). The other end is pressed against a spring ( \(k=300 \mathrm{kN} / \mathrm{m}\) ) until the spring is compressed 40 mm and the rod is in a horizontal position.
If the rod is released from this position, determine its angular velocity and the reaction at the pivot as the rod passes through a vertical position.

SOLUTION:
- The weight and spring forces are conservative. The principle of work and energy can be expressed as
\[
T_{1}+V_{1}=T_{2}+V_{2}
\]
- Evaluate the initial and final potential energy.
- Express the final kinetic energy in terms of the final angular velocity of the rod.
- Based on the free-body-diagram equation, solve for the reactions at the pivot.

\section*{Vector Mechanjos for Engineers: Dynamics Sample Problem 17.4}

147.15 N
\[
\begin{aligned}
\bar{I} & =\frac{1}{12} m l^{2} \\
& =\frac{1}{12}(15 \mathrm{~kg})(2.5 \mathrm{~m})^{2} \\
& =7.81 \mathrm{~kg} \mathrm{x}^{2}
\end{aligned}
\]

\section*{SOLUTION:}
- The weight and spring forces are conservative. The principle of work and energy can be expressed as
\[
T_{1}+V_{1}=T_{2}+V_{2}
\]
- Evaluate the initial and final potential energy.
\[
\begin{aligned}
V_{1} & =V_{g}+V_{e}=0+\frac{1}{2} k x_{1}^{2}=\frac{1}{2}(300,000 \mathrm{~N} / \mathrm{m})(0.04 \mathrm{~m})^{2} \\
& =240 \mathrm{~J} \\
V_{2} & =V_{g}+V_{e}=W h+0=(147.15 \mathrm{~N})(0.75 \mathrm{~m}) \\
& =110.4 \mathrm{~J}
\end{aligned}
\]
- Express the final kinetic energy in terms of the angular velocity of the rod.
\[
\begin{aligned}
T_{2} & =\frac{1}{2} m \bar{v}_{2}^{2}+\frac{1}{2} \bar{I} w_{2}^{2}=\frac{1}{2} m\left(r w_{2}\right)^{2}+\frac{1}{2} \bar{I} w_{2}^{2} \\
& =\frac{1}{2}(15)\left(0.75 w_{2}\right)^{2}+\frac{1}{2}(7.81) w_{2}^{2}=8.12 w_{2}^{2}
\end{aligned}
\]

\section*{Vector Mechanjos for Engineers: Dynamics \\ Sample Problem 17.4}


From the principle of work and energy,
\[
\begin{array}{rlr}
T_{1}+V_{1} & =T_{2}+V_{2} & \\
0+240 \mathrm{~J} & =8.12 \mathrm{w}_{2}^{2}+110.4 \mathrm{~J} & w_{2}=3.995 \mathrm{rad} / \mathrm{s} 2
\end{array}
\]
- Based on the free-body-diagram equation, solve for the reactions at the pivot.
\(\bar{a}_{n}=\bar{r} w_{2}^{2}=(0.75 \mathrm{~m})(3.995 \mathrm{rad} / \mathrm{s})^{2}=11.97 \mathrm{~m} / \mathrm{s}^{2} \quad \overrightarrow{\bar{a}}_{n}=11.97 \mathrm{~m} / \mathrm{s}^{2} \downarrow\)
\(\bar{a}_{t}=r a\)
\[
\overrightarrow{\bar{a}}_{t}=r \quad \rightarrow
\]
\(+2 \sum M_{O}=\sum\left(M_{O}\right)_{e f f} \quad 0=\bar{I} \alpha+m(\bar{r} \alpha) \bar{r} \quad \alpha=0\)
\(\xrightarrow{+} \sum F_{x}=\sum\left(F_{x}\right)_{e f f} \quad R_{x}=m(\bar{r} \alpha) \quad R_{x}=0\)
\(+\uparrow \sum F_{y}=\sum\left(F_{y}\right)_{e f f} \quad R_{y}-147.15 \mathrm{~N}=-m a_{n}\)
\(=-(15 \mathrm{~kg})\left(11.97 \mathrm{~m} / \mathrm{s}^{2}\right)\)
\[
R_{y}=-32.4 \mathrm{~N}
\]

\section*{Vector Mechanics for Engineers: Dynamics}

\section*{Sample Problem 17.5}


Each of the two slender rods has a mass of 6 kg . The system is released from rest with \(\beta=60^{\circ}\).

Determine \(a\) ) the angular velocity of \(\operatorname{rod} A B\) when \(\beta=20^{\circ}\), and \(b\) ) the velocity of the point \(D\) at the same instant.

\section*{SOLUTION:}
- Consider a system consisting of the two rods. With the conservative weight force,
\[
T_{1}+V_{1}=T_{2}+V_{2}
\]
- Evaluate the initial and final potential energy.
- Express the final kinetic energy of the system in terms of the angular velocities of the rods.
- Solve the energy equation for the angular velocity, then evaluate the velocity of the point \(D\).

\section*{Vector Mechanics for Engineers: Dynamics \\ Sample Problem 17.5}

- Express the final kinetic energy of the system in terms of the angular velocities of the rods.
\[
\vec{v}_{A B}=(0.375 \mathrm{~m}) \omega \searrow
\]

Since \(\vec{v}_{B}\) is perpendicular to \(A B\) and \(\vec{v}_{D}\) is horizontal, the instantaneous center of rotation for \(\operatorname{rod} B D\) is \(C\).
\[
B C=0.75 \mathrm{~m} \quad C D=2(0.75 \mathrm{~m}) \sin 20^{\circ}=0.513 \mathrm{~m}
\]
and applying the law of cosines to \(C D E, E C=0.522 \mathrm{~m}\)
Consider the velocity of point \(B\)
\[
\begin{aligned}
& v_{B}=(A B) \omega=(B C) \omega_{A B} \quad \vec{\omega}_{B D}=\omega \\
& \vec{v}_{B D}=(0.522 \mathrm{~m}) \omega
\end{aligned}
\]

For the final kinetic energy,
\[
\begin{aligned}
\bar{I}_{A B}=\bar{I}_{B D}=\frac{1}{12} m l^{2}=\frac{1}{12}(6 \mathrm{~kg})(0.75 \mathrm{~m})^{2}=0.281 \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
\begin{aligned}
T_{2} & =\frac{1}{12} m \bar{v}_{A B}^{2}+\frac{1}{2} \bar{I}_{A B} \omega_{A B}^{2}+\frac{1}{12} m \bar{v}_{B D}^{2}+\frac{1}{2} \bar{I}_{B D} \omega_{B D}^{2} \\
& =\frac{1}{12}(6)(0.375 \omega)^{2}+\frac{1}{2}(0.281) \omega^{2}+\frac{1}{12}(6)(0.522 \omega)^{2}+\frac{1}{2}(0.281) \omega^{2} \\
& =1.520 \omega^{2}
\end{aligned}
\end{aligned}
\]

\section*{Vector Mechanjos for Engjineers: Dynamics Team Problem Solving}


A slender 4-kg rod can rotate in a vertical plane about a pivot at B. A spring of constant \(k=400 \mathrm{~N} / \mathrm{m}\) and of unstretched length 150 mm is attached to the rod as shown. Knowing that the rod is released from rest in the position shown, determine its angular velocity after it has rotated through \(90^{\circ}\).

\section*{Vector Mechanics for Engineers: Dynamics}

Draw your diagrams, set your datum and apply the work energy equation
\[
T_{1}+V_{1}+U_{1-2}=T_{2}+V_{2}
\]


Are any of the terms zero?
\[
\not 7_{1}+V_{1}+U / 1-2=T_{2}+V_{2}
\]

\section*{Team Problem Solving}

Vector Mechanics for Engineers: Dynamics

Determine the spring energy at position 1
\[
\begin{aligned}
& x_{1}=C D \quad(\overbrace{150 \mathrm{~mm}}^{\begin{array}{c}
\text { Unstretched } \\
\text { Length }
\end{array}})=370 \quad 150=220 \mathrm{~mm}=0.22 \mathrm{~m} \\
& V_{e}=\frac{1}{2} k x_{1}^{2}=\frac{1}{2}(400 \mathrm{~N} / \mathrm{m})(0.22 \mathrm{~m})^{2}=9.68 \mathrm{~J}
\end{aligned}
\]

Determine the potential energy due to gravity at position 1

\[
V_{g 1}=W h=m g h=(4 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(-0.22 \mathrm{~m})=-7.063 \mathrm{~J}
\]

Determine the spring energy at position 2
\[
\begin{aligned}
x_{2} & =230 \mathrm{~mm}-150 \mathrm{~mm}=80 \mathrm{~mm}=0.08 \mathrm{~m} \\
V_{e 2} & =\frac{1}{2} k x_{2}^{2}=\frac{1}{2}(400 \mathrm{~N} / \mathrm{m})(0.08 \mathrm{~m})^{2}=1.28 \mathrm{~J}
\end{aligned}
\]


Determine the potential energy due to gravity at position 2
\[
V_{g 2}=0
\]

\section*{Vector Mechanics for Engjineers: Dynamics Angular Impulse Momentum}

When two rigid bodies collide, we typically use principles of angular impulse momentum. We often also use linear impulse momentum (like we did for particles).


\section*{Approaches to Rigid Body Kinetics Problems}

Forces and
Accelerations


Newton's Second Law (last chapter)
\[
\begin{aligned}
& \vec{F}=m \vec{a}_{G} \\
& \vec{M}_{G}=\dot{\vec{H}}_{G}
\end{aligned}
\]

Velocities and Displacements

\[
T_{1}+U_{1 \rightarrow 2}=T_{2}
\]

Velocities and Time

ImpulseMomentum
\[
\begin{gathered}
m \stackrel{\rightharpoonup}{v}_{1}+{ }_{t_{1}}^{t_{2}} \stackrel{\rightharpoonup}{F} d t=m \stackrel{\rightharpoonup}{v}_{2} \\
I_{G} \omega_{1}+\int_{t_{1}}^{t_{2}} M_{G} d t=I_{G} \omega_{2}
\end{gathered}
\]

\section*{Vector Mechanics for Engineers: Dynamics Principle of Impulse and Momentum}
- Method of impulse and momentum:
- well suited to the solution of problems involving time and velocity
- the only practicable method for problems involving impulsive motion and impact.




Sys Momenta \({ }_{1}+\) Sys Ext Imp \(_{1-2}=\) Sys Momenta \({ }_{2}\)

\section*{Vector Mechanjos for Engjineers: Dynamics Principle of Impulse and Momentum}
- For plane motion problems, draw out an impulse-momentum diagram, (similar to a free-body diagram)



- This leads to three equations of motion:
- summing and equating momenta and impulses in the \(x\) and \(y\) directions
- summing and equating the moments of the momenta and impulses with respect to any given point (often choose \(G\) )

\section*{Vector Mechanics for Engineers: Dynamics Impulse Momentum Diagrams}

A sphere \(S\) hits a stationary bar AB and sticks to it. Draw the impulse-momentum diagram for the ball and bar separately; time 1 is immediately before the impact and time 2 is immediately after the impact.


\section*{笨 Vector Mechanics for Engineers: Dynamics Impulse Momentum Diagrams}

Momentum of the ball before impact


Momentum of the bar before impact


Momentum of the ball after impact


Momentum of the bar after impact


警 Vector Mechanics for Engineers: Dynamics
Systems of Rigid Bodies
- Motion of several rigid bodies can be analyzed by applying the principle of impulse and momentum to each body separately.
- For problems involving no more than three unknowns, it may be convenient to apply the principle of impulse and momentum to the system as a whole.
- For each moving part of the system, the diagrams of momenta should include a momentum vector and/or a momentum couple.
- Internal forces occur in equal and opposite pairs of vectors and generate impulses that cancel out.

\section*{Vector Mechanics for Engineers: Dynamics} Practice - Diagram for combined system



\section*{Vector Mechanics for Engineers: Dynamics} Conservation of Angular Momentum
The moments acting through the skater's senter of gravity are negligible, so his angular momentum remains constant. He can adjust his spin rate by changing his moment of inertia.
\[
I_{G} \omega_{1}+\sum_{t_{1}}^{t_{2}} M_{G} d t=I_{G} \omega_{2}
\]

\(I_{G} \omega_{1}\)
\(=\)

\[
I_{G} \omega_{2}
\]

\section*{Vector Mechanics for Engjineers: Dynamics} Conservation of Angular Momentum
- When no external force acts on a rigid body or a system of rigid bodies, the system of momenta at \(t_{1}\) is equipollent to the system at \(t_{2}\). The total linear momentum and angular momentum about any point are conserved,
\[
\vec{L}_{1}=\vec{L}_{2} \quad\left(H_{0}\right)_{1}=\left(H_{0}\right)_{2}
\]
- When the sum of the angular impulses pass through \(O\), the linear momentum may not be conserved, yet the angular momentum about \(O\) is conserved,
\[
\left(H_{0}\right)_{1}=\left(H_{0}\right)_{2}
\]
- Two additional equations may be written by summing \(x\) and \(y\) components of momenta and may be used to determine two unknown linear impulses, such as the impulses of the reaction components at a fixed point.

\section*{Sample Problem 17.6}
\[
\begin{array}{ll}
m_{A}=10 \mathrm{~kg} & \bar{k}_{A}=200 \mathrm{~mm} \\
m_{B}=3 \mathrm{~kg} & \bar{k}_{B}=80 \mathrm{~mm}
\end{array}
\]

The system is at rest when a moment of \(M=6 \mathrm{~N} \cdot \mathrm{~m}\) is applied to gear \(B\). Neglecting friction, \(a\) ) determine the time required for gear \(B\) to reach an angular velocity of 600 rpm , and \(b\) ) the tangential force exerted by gear \(B\) on gear \(A\).

\section*{SOLUTION:}
- Considering each gear separately, apply the method of impulse and momentum.
- Solve the angular momentum equations for the two gears simultaneously for the unknown time and tangential force.

\section*{Vector Mechanics for Engjineers: Dynamics \\ Sample Problem 17.6}

\section*{SOLUTION:}
- Considering each gear separately, apply the method of impulse and momentum.

\(+{ }^{\top}\) moments about \(A\) :
\(0-F t r_{A}=-\bar{I}_{A}\left(\omega_{A}\right)_{2}\)
\(F t(0.250 \mathrm{~m})=(0.400 \mathrm{~kg} \cdot \mathrm{~m})(25.1 \mathrm{rad} / \mathrm{s})\)
\(F t=40.2 \mathrm{~N} \cdot \mathrm{~s}\)

\[
\begin{aligned}
& +\dagger \text { moments about } B: \\
& 0+M t-F t r_{B}=\bar{I}_{B}\left(\omega_{B}\right)_{2} \\
& \begin{array}{l}
(6 \mathrm{~N} \cdot \mathrm{~m}) t-F t(0.100 \mathrm{~m}) \\
\quad=\left(0.0192 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)(62.8 \mathrm{rad} / \mathrm{s})
\end{array}
\end{aligned}
\]
- Solve the angular momentum equations for the two gears simultaneously for the unknown time and tangential force.
\[
t=0.871 \mathrm{~s} \quad F=46.2 \mathrm{~N}
\]

\section*{Vector Mechanics for Engineers: Dynamics}

\section*{Sample Problem 17.7}


Uniform sphere of mass \(m\) and radius \(r\) is projected along a rough horizontal surface with a linear velocity \(\bar{v}_{1}\) and no angular velocity. The coefficient of kinetic friction is \(\mu_{k}\).

Determine \(a\) ) the time \(t_{2}\) at which the sphere will start rolling without sliding and \(b\) ) the linear and angular velocities of the sphere at time \(t_{2}\).

\section*{SOLUTION:}
- Apply principle of impulse and momentum to find variation of linear and angular velocities with time.
- Relate the linear and angular velocities when the sphere stops sliding by noting that the velocity of the point of contact is zero at that instant.
- Substitute for the linear and angular velocities and solve for the time at which sliding stops.
- Evaluate the linear and angular velocities at that instant.

\section*{Vector Mechanics for Engineers: Dynamics}

\section*{Sample Problem 17.7}


Sys Momenta \(1+\) Sys Ext Imp \(_{1-2}=\) Sys Momenta \({ }_{2}\)
\(+\uparrow y\) components:
\[
N t-W t=0 \quad N=W=m g
\]
\(\xrightarrow{+} x\) components:
\[
\begin{aligned}
& m \bar{v}_{1}-F t=m \bar{v}_{2} \\
& m \bar{v}_{1}-\mu_{k} m g t=m \bar{v}_{2} \quad \bar{v}_{2}=\bar{v}_{1}-\mu_{k} g t
\end{aligned}
\]

\section*{SOLUTION:}
- Apply principle of impulse and momentum to find variation of linear and angular velocities with time.
- Relate linear and angular velocities when sphere stops sliding by noting that velocity of point of contact is zero at that instant.
- Substitute for the linear and angular velocities and solve for the time at which sliding stops.
\[
\begin{aligned}
\bar{v}_{2} & =r \omega_{2} \\
\bar{v}_{1}-\mu_{k} g t & =r\left(\frac{5}{2} \frac{\mu_{k} g}{r} t\right)
\end{aligned}
\]
moments about \(G\) :
\(F t r=\bar{I} \omega_{2}\)
\[
\omega_{2}=\frac{5}{2} \frac{\mu_{k} g}{r} t
\]
\[
t=\frac{2}{7} \frac{\bar{v}_{1}}{\mu_{k} g}
\]

\section*{Sample Problem 17.8}

Vector Mechanjos for Engjineers: Dynamics


Two solid spheres (radius \(=100 \mathrm{~mm}\), \(m=1 \mathrm{~kg}\) ) are mounted on a spinning horizontal \(\operatorname{rod}\left(\bar{I}_{R}\right.\) of rod and pivot \(=\) \(0.4 \mathrm{~kg} ? \mathrm{~m}^{2}, \omega=6 \mathrm{rad} / \mathrm{sec}\) ) as shown. The balls are held together by a string which is suddenly cut. Determine \(a\) ) angular velocity of the rod after the balls have moved to \(A^{\prime}\) and \(B^{\prime}\), and \(b\) ) the energy lost due to the plastic impact of the spheres and stops.

\section*{SOLUTION:}
- Observing that none of the external forces produce a moment about the \(y\) axis, the angular momentum is conserved.
- Equate the initial and final angular momenta. Solve for the final angular velocity.
- The energy lost due to the plastic impact is equal to the change in kinetic energy of the system.

\section*{Vector Mechanjos for Engineers: Dynamics Sample Problem 17.8}


Sys Momenta \(1+\) Sys Ext Imp \(_{1-2}=\) Sys Momenta \(_{2}\)

\section*{SOLUTION:}
- Observing that none of the external forces produce a moment about the \(y\) axis, the angular momentum is conserved.
- Equate the initial and final angular momenta. Solve for the final angular velocity.
\(2\left[\left(m_{s} \bar{r}_{1} \omega_{1}\right) \bar{r}_{1}+\bar{I}_{S} \omega_{1}\right]+\bar{I}_{R} \omega_{1}=2\left[\left(m_{s} \bar{r}_{2} \omega_{2}\right) \bar{r}_{2}+\bar{I}_{S} \omega_{2}\right]+\bar{I}_{R} \omega_{2}\)
\(\omega_{2}=\omega_{1} \frac{m_{s} \bar{r}_{1}^{2}+\bar{I}_{S}+\bar{I}_{R}}{m_{s} \bar{r}_{2}^{2}+\bar{I}_{S}+\bar{I}_{R}}\)
\(\omega_{1}=6 \mathrm{rad} / \mathrm{s} \quad \bar{I}_{R}=0.25 \mathrm{lb} \cdot \mathrm{ft} \cdot \mathrm{s}^{2}\)
\(\bar{I}_{S}=\frac{2}{5} m a^{2}=\frac{2}{5}(1 \mathrm{~kg})(0.1 \mathrm{~m})^{2}=0.004 \mathrm{~kg} \times \mathrm{m}^{2}\)
\(\left.m_{S} \bar{r}_{1}^{2}=(1 \mathrm{~kg})(0.1 \mathrm{~m})^{2}=0.01 \mathrm{~kg} \times \mathrm{m}^{2} \quad m_{S} \bar{r}_{2}^{2}=(1 \mathrm{~kg})(0.6 \mathrm{~m})^{2}=0.36 \mathrm{~kg} \times \mathrm{m}^{2} \quad w_{2}=2.28 \mathrm{rad} / \mathrm{s}\right)\)

\section*{Vector Mechanics for Engjineers: Dynamics Sample Problem 17.8}


\section*{Team Problem Solving}

Vector Mechanics for Engineers: Dynamics


\section*{SOLUTION:}
- Consider the projectile and bar as a single system. Apply the principle of impulse and momentum.
- The moments about \(C\) of the momenta and impulses provide a relation between the final angular velocity of the rod and velocity of the projectile.
- Use the principle of work-energy to determine the angle through which the bar swings.

A projectile of mass 40 g is fired with a horizontal velocity of \(150 \mathrm{~m} / \mathrm{s}\) into the lower end of a slender \(7.5-\mathrm{kg}\) bar of length \(L=0.75 \mathrm{~m}\). Knowing that \(h=0.3 \mathrm{~m}\) and that the bar is initially at rest, determine the angular velocity of the bar when it reaches the horizontal position.

\section*{Vector Mechanics for Engjineers: Dynamics} Team Problem Solving

Draw position 1 and 2, set your datum (datum set at 2) and apply the conservation of energy equation
\[
T_{1}+V_{1}=T_{2}+\overline{y_{2}}
\]

Find \(T_{1}\)
\[
\begin{aligned}
T_{1}=\frac{1}{2} I_{C} \omega_{1}^{2} & =\frac{1}{2}(0.39375)\left(6.7189^{2}\right) \\
T_{1} & =8.8876 \mathrm{~J}
\end{aligned}
\]

Find \(V_{1}\)
\[
V_{1}=\mathrm{m}_{A B} g \mathrm{~g}_{A B 1}+\mathrm{m}_{O} \mathrm{gy}_{O 1}
\]

\[
\begin{aligned}
V_{1} & =-(7.5)(9.81)\left(\frac{L}{2}-h\right)-(0.04)(9.81)(L-h) \\
& =-(7.5)(9.81)\left(\frac{0.75}{2}-0.3\right)-(0.04)(9.81)(0.75-0.3)=-5.3415 \mathrm{~J}
\end{aligned}
\]

Solve for \(\omega_{3}\)
\[
\begin{aligned}
& T_{2}=\frac{1}{2} I_{C} \omega_{2}^{2}=T_{2}+V_{2} \\
& \frac{1}{2}(0.39375) \omega_{3}^{2}=8.8876-5.3415
\end{aligned}
\]
\[
\omega_{3}=4.24 \mathrm{rad} / \mathrm{s}
\]

\section*{Concept Question}

For the previous problem, what would happen if the coefficient of restitution between the projectile and bar was 1.0 instead of zero?

a) The angular velocity after impact would be bigger
b) The angular velocity after impact would be smaller
c) The angular velocity after impact would be the same
d) Not enough information to tell

\section*{Concept Questions}

Vector Mechanjos for Engjineers: Dynamics

The cars collide, hitting at point
\(P\) as shown. Which of the
following can you use to help analyze the collision?
a) The linear momentum of \(\operatorname{car} A\) is conserved.
b) The linear momentum of the combined two cars is conserved
c) The total kinetic energy before the impact equals the total kinetic energy after the impact
d) The angular momentum about the CG of car B is conserved

Vector Mechanics for Engineers: Dynamics
Sample Problem 17.9


A 25 g bullet is fired into the side of a \(10-\mathrm{kg}\) square panel which is initially at rest.

Determine \(a\) ) the angular velocity of the panel immediately after the bullet becomes embedded and \(b\) ) the impulsive reaction at \(A\), assuming that the bullet becomes embedded in 0.0006 s .

SOLUTION:
- Consider a system consisting of the bullet and panel. Apply the principle of impulse and momentum.
- The final angular velocity is found from the moments of the momenta and impulses about \(A\).
- The reaction at \(A\) is found from the horizontal and vertical momenta and impulses.

\section*{Vector Mechanics for Engineers: Dynamics Sample Problem 17.9}


Syst Momenta \({ }_{1}+\) Syst Ext Imp \(_{1 \rightarrow 2}=\) Syst Momenta \({ }_{2}\)
\(+\rceil\) moments about \(A\) :
\[
m_{B} v_{B}(0.4 \mathrm{~m})+0=m_{P} \bar{v}_{2}(0.25 \mathrm{~m})+\bar{I}_{P} w_{2}
\]
\[
\bar{v}_{2}=(0.25 \mathrm{~m}) w_{2} \quad \bar{I}_{P}=\frac{1}{6} m_{P} b^{2}=\frac{1}{6}(10 \mathrm{~kg})(0.5 \mathrm{~m})^{2}=0.417 \mathrm{~kg} \times \mathrm{m}^{2}
\]
\[
(0.025)(450)(0.4)=(10)\left(0.25 w_{2}\right)(0.25)+0.417 w_{2}
\]
\[
w_{2}=4.32 \mathrm{rad} / \mathrm{s}
\]
\[
\left.w_{2}=4.32 \mathrm{rad} / \mathrm{s}\right)
\]
\[
\bar{v}_{2}=(0.25) w_{2}=1.08 \mathrm{~m} / \mathrm{s}
\]

\section*{Vector Mechanjos for Engjineers: Dynamics Sample Problem 17.9}


Syst Momenta \({ }_{1}+\) Syst Ext Imp \(_{1 \rightarrow 2}=\) Syst Momenta \({ }_{2}\)
\[
w_{2}=4.32 \mathrm{rad} / \mathrm{s} \quad \bar{v}_{2}=(0.25) w_{2}=1.08 \mathrm{~m} / \mathrm{s}
\]
\(\xrightarrow{+} x\) components:
\[
\begin{aligned}
& m_{B} v_{B}+A_{x} \mathrm{D} t=m_{p} \bar{v}_{2} \\
& (0.25)(450)+A_{x}(0.0006)=(10)(1.08)
\end{aligned}
\]
\[
A_{x}=-750 \mathrm{~N}
\]
\[
A_{x}=750 \mathrm{~N} \leftarrow
\]
\(+\uparrow y\) components:
\[
0+A_{y} \Delta t=0
\]
\[
A_{y}=0
\]

\section*{Vector Mechanics f
Sample Problem 17.10}


A 2-kg sphere with an initial velocity of \(5 \mathrm{~m} / \mathrm{s}\) strikes the lower end of an 8\(\mathrm{kg} \operatorname{rod} A B\). The rod is hinged at \(A\) and initially at rest. The coefficient of restitution between the rod and sphere is 0.8 .

Determine the angular velocity of the rod and the velocity of the sphere immediately after impact.

\section*{SOLUTION:}
- Consider the sphere and rod as a single system. Apply the principle of impulse and momentum.
- The moments about \(A\) of the momenta and impulses provide a relation between the final angular velocity of the rod and velocity of the sphere.
- The definition of the coefficient of restitution provides a second relationship between the final angular velocity of the rod and velocity of the sphere.
- Solve the two relations simultaneously for the angular velocity of the rod and velocity of the sphere.

\section*{Sample Problem 17.10}

Vector Mechanjics for Engineers: Dynamics


Syst Momenta \({ }_{1}+\) Syst Ext Imp \(_{1 \rightarrow 2}=\) Syst Momenta \({ }_{2}\)
\(+\mp\) moments about \(A\) :
\[
\begin{aligned}
& m_{s} v_{s}(1.2 \mathrm{~m})=m_{s} v_{s}^{\prime}(1.2 \mathrm{~m})+m_{R} \bar{v}_{R}^{\prime}(0.6 \mathrm{~m})+\bar{I} \omega^{\prime} \\
& \bar{v}_{R}^{\prime}=\bar{r} \omega^{\prime}=(0.6 \mathrm{~m}) \omega^{\prime} \\
& \quad \bar{I}=\frac{1}{12} m L^{2}=\frac{1}{12}(8 \mathrm{~kg})(1.2 \mathrm{~m})^{2}=0.96 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
\]

\section*{SOLUTION:}
- Consider the sphere and rod as a single system. Apply the principle of impulse and momentum.
- The moments about \(A\) of the momenta and impulses provide a relation between the final angular velocity of the rod and velocity of the rod.
\((2 \mathrm{~kg})(5 \mathrm{~m} / \mathrm{s})(1.2 \mathrm{~m})=(2 \mathrm{~kg}) v_{s}^{\prime}(1.2 \mathrm{~m})+(8 \mathrm{~kg})(0.6 \mathrm{~m}) \omega^{\prime}(0.6 \mathrm{~m})\)
\[
+\left(0.96 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right) \omega^{\prime}
\]
\(12=2.4 v_{s}^{\prime}+3.84 \omega^{\prime}\)

\section*{Vector Mechanics for Engineers: Dynamics Sample Problem 17.10}


Syst Momenta \({ }_{1}+\) Syst Ext Imp \(_{1 \rightarrow 2}=\) Syst Momenta \({ }_{2}\)
\(+\Gamma\) Moments about \(A\) :
\[
12=2.4 v_{s}^{\prime}+3.84 \omega^{\prime}
\]
\(\xrightarrow{+}\) Relative velocities:
\[
\begin{aligned}
v_{B}^{\prime}-v_{s}^{\prime} & =e\left(v_{B}-v_{s}\right) \\
(1.2 \mathrm{~m}) \omega^{\prime}-v_{s}^{\prime} & =0.8(5 \mathrm{~m} / \mathrm{s})
\end{aligned}
\]

Solving,
\[
\begin{array}{ll}
\omega^{\prime}=3.21 \mathrm{rad} / \mathrm{s} & \omega^{\prime}=3.21 \mathrm{rad} / \mathrm{s} \zeta \\
v_{s}^{\prime}=-0.143 \mathrm{~m} / \mathrm{s} & v_{s}^{\prime}=0.143 \mathrm{~m} / \mathrm{s}
\end{array}
\]
- The definition of the coefficient of restitution provides a second relationship between the final angular velocity of the rod and velocity of the sphere.
- Solve the two relations simultaneously for the angular velocity of the rod and velocity of the sphere.

Vector Mechanics for Engineers: Dynamics
Sample Problem 17.11


A square package of mass \(m\) moves down conveyor belt \(A\) with constant velocity. At the end of the conveyor, the corner of the package strikes a rigid support at \(B\). The impact is perfectly plastic.
Derive an expression for the minimum velocity of conveyor belt \(A\) for which the package will rotate about \(B\) and reach conveyor belt \(C\).

SOLUTION:
- Apply the principle of impulse and momentum to relate the velocity of the package on conveyor belt \(A\) before the impact at \(B\) to the angular velocity about \(B\) after impact.
- Apply the principle of conservation of energy to determine the minimum initial angular velocity such that the mass center of the package will reach a position directly above \(B\).
- Relate the required angular velocity to the velocity of conveyor belt \(A\).

\section*{Vector Mechanjos for Engineers: Dynamics} Team Problem Solving


\section*{SOLUTION:}
- Consider the sphere and panel as a single system. Apply the principle of impulse and momentum.
- The moments about \(A\) of the momenta and impulses provide a relation between the angular velocity of the panel and velocity of the sphere.
- Use the principle of work-energy to determine the angle through which the panel swings.

An \(8-\mathrm{kg}\) wooden panel \(P\) is suspended from a pin support at \(A\) and is initially at rest. A \(2-\mathrm{kg}\) metal sphere \(S\) is released from rest at \(B^{\prime}\) and falls into a hemispherical cup \(C^{\prime}\) attached to the panel at the same level as the mass center \(G\). Assuming that the impact is perfectly plastic, determine the angular velocity of the panel immediately after the impact.

\section*{Team Problem Solving}

Vector Mechanjos for Engineers: Dynamjos


Draw the impulse momentum diagram


Apply the angular impulse momentum equation about point \(A\)

Given: \(\mathrm{m}_{\mathrm{S}}=2 \mathrm{~kg}, \mathrm{~m}_{\mathrm{P}}=8 \mathrm{~kg}, \quad m_{S}\left(v_{C^{\prime}}\right)_{1}(0.2 \mathrm{~m})+0=m_{S}\left(v_{C^{\prime}}\right)_{2}\left(A C^{\prime}\right)+\bar{I} \omega_{2}+m_{P} \bar{v}_{2}(0.25 \mathrm{~m})\) \(\mathrm{h}_{\mathrm{S}}=0.250 \mathrm{~m}, \mathrm{e}=0\).
Find: Angle \(\theta\) through which the panel and sphere swing after the impact
\[
m_{S}\left(v_{C^{\prime}}\right)_{1}(0.2 \mathrm{~m})+0=m_{S}\left(v_{C^{\prime}}\right)_{2}\left(A C^{\prime}\right)+\bar{I} \omega_{2}+m_{P} \bar{v}_{2}(0.25 \mathrm{~m})
\]

Determine velocity of sphere at impact \(\left(\mathbf{v}_{\mathbf{S}}\right)_{1}\)
You can apply work-energy or kinematics
\[
\begin{aligned}
\left(v_{S}\right)_{1} & =\sqrt{2 g y} \\
& =\sqrt{2\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(0.5 \mathrm{~m})} \\
& =3.1321 \mathrm{~m} / \mathrm{s}
\end{aligned}
\]


Determine velocity of sphere after impact in terms of \(\omega_{2}\)
\[
\begin{gathered}
\left(\mathbf{v}_{S}\right)_{2}=A C^{\prime} \omega_{2} \\
A C^{\prime}=\sqrt{(0.2)^{2}+(0.25)^{2}}=0.32016 \mathrm{~m} \\
\quad \begin{array}{c}
\left(\mathbf{v}_{S}\right)_{2}=0.32016 \omega_{2} \\
\text { (perpendicular to } A C .)
\end{array}
\end{gathered}
\]```

