
Jim Lambers
MAT 610

Summer Session 2009-10
Lecture 2 Notes

These notes correspond to Sections 2.2-2.4 in the text.

Vector Norms

Given vectors x and y of length one, which are simply scalars x and y, the most natural notion of
distance between x and y is obtained from the absolute value; we define the distance to be ∣x− y∣.
We therefore define a distance function for vectors that has similar properties.

A function ∥ ⋅ ∥ : ℝn → ℝ is called a vector norm if it has the following properties:

1. ∥x∥ ≥ 0 for any vector x ∈ ℝn, and ∥x∥ = 0 if and only if x = 0

2. ∥�x∥ = ∣�∣∥x∥ for any vector x ∈ ℝn and any scalar � ∈ ℝ

3. ∥x + y∥ ≤ ∥x∥+ ∥y∥ for any vectors x, y ∈ ℝn.

The last property is called the triangle inequality. It should be noted that when n = 1, the absolute
value function is a vector norm.

The most commonly used vector norms belong to the family of p-norms, or ℓp-norms, which
are defined by

∥x∥p =

(
n∑
i=1

∣xi∣p
)1/p

.

It can be shown that for any p > 0, ∥ ⋅ ∥p defines a vector norm. The following p-norms are of
particular interest:

∙ p = 1: The ℓ1-norm
∥x∥1 = ∣x1∣+ ∣x2∣+ ⋅ ⋅ ⋅+ ∣xn∣

∙ p = 2: The ℓ2-norm or Euclidean norm

∥x∥2 =
√
x21 + x22 + ⋅ ⋅ ⋅+ x2n =

√
xTx

∙ p =∞: The ℓ∞-norm
∥x∥∞ = max

1≤i≤n
∣xi∣

1



It can be shown that the ℓ2-norm satisfies the Cauchy-Bunyakovsky-Schwarz inequality

∣xTy∣ ≤ ∥x∥2∥y∥2

for any vectors x, y ∈ ℝn. This inequality is useful for showing that the ℓ2-norm satisfies the
triangle inequality. It is a special case of the Holder inequality

∣xTy∣ ≤ ∥x∥p∥y∥q,
1

p
+

1

q
= 1.

Now that we have defined various notions of the size, or magnitude, of a vector, we can discuss
distance and convergence. Given a vector norm ∥ ⋅ ∥, and vectors x,y ∈ ℝn, we define the distance
between x and y, with respect to this norm, by ∥x−y∥. Then, we say that a sequence of n-vectors
{x(k)}∞k=0 converges to a vector x if

lim
k→∞

∥x(k) − x∥ = 0.

That is, the distance between x(k) and x must approach zero. It can be shown that regardless of
the choice of norm, x(k) → x if and only if

x
(k)
i → xi, i = 1, 2, . . . , n.

That is, each component of x(k) must converge to the corresponding component of x. This is due
to the fact that for any vector norm ∥ ⋅ ∥, ∥x∥ = 0 if and only if x is the zero vector.

Because we have defined convergence with respect to an arbitrary norm, it is important to know
whether a sequence can converge to a limit with respect to one norm, while converging to a different
limit in another norm, or perhaps not converging at all. Fortunately, for p-norms, this is never the
case. We say that two vector norms ∥ ⋅ ∥� and ∥ ⋅ ∥� are equivalent if there exists constants C1 and
C2, that are independent of x, such that for any vector x ∈ ℝn,

C1∥x∥� ≤ ∥x∥� ≤ C2∥x∥�.

It follows that if two norms are equivalent, then a sequence of vectors that converges to a limit
with respect to one norm will converge to the same limit in the other. It can be shown that all
ℓp-norms are equivalent. In particular, if x ∈ ℝn, then

∥x∥2 ≤ ∥x∥1 ≤
√
n∥x∥2,

∥x∥∞ ≤ ∥x∥2 ≤
√
n∥x∥∞,

∥x∥∞ ≤ ∥x∥1 ≤ n∥x∥∞.

2



Matrix Norms

It is also very useful to be able to measure the magnitude of a matrix, or the distance between
matrices. However, it is not sufficient to simply define the norm of an m×n matrix A as the norm
of an mn-vector x whose components are the entries of A. We instead define a matrix norm to be
a function ∥ ⋅ ∥ : ℝm×n → ℝ that has the following properties:

∙ ∥A∥ ≥ 0 for any A ∈ ℝm×n, and ∥A∥ = 0 if and only if A = 0

∙ ∥�A∥ = ∣�∣∥A∥ for any m× n matrix A and scalar �

∙ ∥A+B∥ ≤ ∥A∥+ ∥B∥ for any m× n matrices A and B

Another property that is often, but not always, included in the definition of a matrix norm is the
submultiplicative property: if A is m× n and B is n× p, we require that

∥AB∥ ≤ ∥A∥∥B∥.

This is particularly useful when A and B are square matrices.
Any vector norm induces a matrix norm. It can be shown that given a vector norm, defined

appropriately for m-vectors and n-vectors, the function ∥ ⋅ ∥ : ℝm×n → ℝ defined by

∥A∥ = sup
x ∕=0

∥Ax∥
∥x∥

= max
∥x∥=1

∥Ax∥

is a matrix norm. It is called the natural, or induced, matrix norm. Furthermore, if the vector
norm is a ℓp-norm, then the induced matrix norm satisfies the submultiplicative property.

The following matrix norms are of particular interest:

∙ The ℓ1-norm:

∥A∥1 = max
∥x∥1=1

∥Ax∥1 = max
1≤j≤n

m∑
i=1

∣aij ∣.

That is, the ℓ1-norm of a matrix is its maximum column sum.

∙ The ℓ∞-norm:

∥A∥∞ = max
∥x∥∞=1

∥Ax∥∞ = max
1≤i≤m

n∑
j=1

∣aij ∣.

That is, the ℓ∞-norm of a matrix is its maximum row sum.

∙ The ℓ2-norm:
∥A∥2 = max

∥x∥2=1
∥Ax∥2.

3



To obtain a formula for this norm, we note that the function

g(x) =
∥Ax∥22
∥x∥22

has a local maximium or minimum whenever x is a unit ℓ2-norm vector (that is, ∥x∥2 = 1)
that satisfies

ATAx = ∥Ax∥22x,

as can be shown by differentiation of g(x). That is, x is an eigenvector of ATA, with corre-
sponding eigenvalue ∥Ax∥22 = g(x). We conclude that

∥A∥2 = max
1≤i≤n

√
�i(ATA).

That is, the ℓ2-norm of a matrix is the square root of the largest eigenvalue of ATA, which is
guaranteed to be nonnegative, as can be shown using the vector 2-norm. We see that unlike
the vector ℓ2-norm, the matrix ℓ2-norm is much more difficult to compute than the matrix
ℓ1-norm or ℓ∞-norm.

∙ The Frobenius norm:

∥A∥F =

⎛⎝ m∑
i=1

n∑
j=1

a2ij

⎞⎠1/2

.

It should be noted that the Frobenius norm is not induced by any vector ℓp-norm, but it
is equivalent to the vector ℓ2-norm in the sense that ∥A∥F = ∥x∥2 where x is obtained by
reshaping A into a vector.

Like vector norms, matrix norms are equivalent. For example, if A is an m× n matrix, we have

∥A∥2 ≤ ∥A∥F ≤
√
n∥A∥2,

1√
n
∥A∥∞ ≤ ∥A∥2 ≤

√
m∥A∥∞,

1√
m
∥A∥1 ≤ ∥A∥2 ≤

√
n∥A∥∞.

Eigenvalues and Eigenvectors

We have learned what it means for a sequence of vectors to converge to a limit. However, using
the definition alone, it may still be difficult to determine, conclusively, whether a given sequence of

4



vectors converges. For example, suppose a sequence of vectors is defined as follows: we choose the
initial vector x(0) arbitrarily, and then define the rest of the sequence by

x(k+1) = Ax(k), k = 0, 1, 2, . . .

for some matrix A. Such a sequence actually arises in the study of the convergence of various
iterative methods for solving systems of linear equations.

An important question is whether a sequence of this form converges to the zero vector. This
will be the case if

lim
k→∞

∥x(k)∥ = 0

in some vector norm. From the definition of x(k), we must have

lim
k→∞

∥Akx(0)∥ = 0.

From the submultiplicative property of matrix norms,

∥Akx(0)∥ ≤ ∥A∥k∥x(0)∥,

from which it follows that the sequence will converge to the zero vector if ∥A∥ < 1. However, this
is only a sufficient condition; it is not necessary.

To obtain a sufficient and necessary condition, it is necessary to achieve a better understanding
of the effect of matrix-vector multiplication on the magnitude of a vector. However, because
matrix-vector multiplication is a complicated operation, this understanding can be difficult to
acquire. Therefore, it is helpful to identify circumstances under which this operation can be simply
described.

To that end, we say that a nonzero vector x is an eigenvector of an n × n matrix A if there
exists a scalar � such that

Ax = �x.

The scalar � is called an eigenvalue of A corresponding to x. Note that although x is required to
be nonzero, it is possible that � can be zero. It can also be complex, even if A is a real matrix.

If we rearrange the above equation, we have

(A− �I)x = 0.

That is, if � is an eigenvalue of A, then A−�I is a singular matrix, and therefore det(A−�I) = 0.
This equation is actually a polynomial in �, which is called the characteristic polynomial of A. If
A is an n× n matrix, then the characteristic polynomial is of degree n, which means that A has n
eigenvalues, which may repeat.

The following properties of eigenvalues and eigenvectors are helpful to know:

∙ If � is an eigenvalue of A, then there is at least one eigenvector of A corresponding to �

5



∙ If there exists an invertible matrix P such that B = PAP−1, then A and B have the same
eigenvalues. We say that A and B are similar, and the transformation PAP−1 is called a
similarity transformation.

∙ If A is a symmetric matrix, then its eigenvalues are real.

∙ If A is a skew-symmetric matrix, meaning that AT = −A, then its eigenvalues are either equal
to zero, or are purely imaginary.

∙ If A is a real matrix, and � = u+ iv is a complex eigenvalue of A, then �̄ = u− iv is also an
eigenvalue of A.

∙ If A is a triangular matrix, then its diagonal entries are the eigenvalues of A.

∙ det(A) is equal to the product of the eigenvalues of A.

∙ tr(A), the sum of the diagonal entries of A, is also equal to the sum of the eigenvalues of A.

It follows that any method for computing the roots of a polynomial can be used to obtain the
eigenvalues of a matrix A. However, in practice, eigenvalues are normally computed using iterative
methods that employ orthogonal similarity transformations to reduce A to upper triangular form,
thus revealing the eigenvalues of A. In practice, such methods for computing eigenvalues are used
to compute roots of polynomials, rather than using polynomial root-finding methods to compute
eigenvalues, because they are much more robust with respect to roundoff error.

It can be shown that if each eigenvalue � of a matrix A satisfies ∣�∣ < 1, then, for any vector x,

lim
k→∞

Akx = 0.

Furthermore, the converse of this statement is also true: if there exists a vector x such that Akx
does not approach 0 as k →∞, then at least one eigenvalue � of A must satisfy ∣�∣ ≥ 1.

Therefore, it is through the eigenvalues of A that we can describe a necessary and sufficient
condition for a sequence of vectors of the form x(k) = Akx(0) to converge to the zero vector.
Specifically, we need only check if the magnitude of the largest eigenvalue is less than 1. For
convenience, we define the spectral radius of A, denoted by �(A), to be max ∣�∣, where � is an
eigenvalue of A. We can then conclude that the sequence x(k) = Akx(0) converges to the zero
vector if and only if �(A) < 1.

The spectral radius is closely related to natural (induced) matrix norms. Let � be the largest
eigenvalue of A, with x being a corresponding eigenvector. Then, for any natural matrix norm ∥ ⋅∥,
we have

�(A)∥x∥ = ∣�∣∥x∥ = ∥�x∥ = ∥Ax∥ ≤ ∥A∥∥x∥.

Therefore, we have �(A) ≤ ∥A∥. When A is symmetric, we also have

∥A∥2 = �(A).

6



For a general matrix A, we have
∥A∥2 = [�(ATA)]1/2,

which can be seen to reduce to �(A) when AT = A, since, in general, �(Ak) = �(A)k.
Because the condition �(A) < 1 is necessary and sufficient to ensure that limk→∞A

kx = 0, it
is possible that such convergence may occur even if ∥A∥ ≥ 1 for some natural norm ∥ ⋅ ∥. However,
if �(A) < 1, we can conclude that

lim
k→∞

∥Ak∥ = 0,

even though limk→∞ ∥A∥k may not even exist.
In view of the definition of a matrix norm, that ∥A∥ = 0 if and only if A = 0, we can conclude

that if �(A) < 1, then Ak converges to the zero matrix as k → ∞. In summary, the following
statements are all equivalent:

1. �(A) < 1

2. limk→∞ ∥Ak∥ = 0, for any natural norm ∥ ⋅ ∥

3. limk→∞(Ak)ij = 0, i, j = 1, 2, . . . , n

4. limk→∞A
kx = 0

We will see that these results are very useful for analyzing the convergence behavior of various
iterative methods for solving systems of linear equations.

Perturbations and the Inverse

Using what we have learned about matrix norms and convergence of sequences of matrices, we can
quantify the change in the inverse of a matrix A in terms of the change in A. Suppose that an n×n
matrix F satisfies ∥F∥p < 1, for some p. Then, from our previous discussion, limk→∞ F

k = 0. It
follows that, by convergence of telescoping series,(

lim
k→∞

k∑
i=0

F i

)
(I − F ) = lim

k→∞
I − F k+1 = I,

and therefore (I−F ) is nonsingular, with inverse (I−F )−1 =
∑∞

i=0 F
i. By the properties of matrix

norms, and convergence of geometric series, we then obtain

∥(I − F )−1∥p ≤
∞∑
i=0

∥F∥ip =
1

1− ∥F∥p
.

7



Now, let A be a nonsingular matrix, and let E be a perturbation of A such that r ≡ ∥A−1E∥p <
1. Because A + E = A(I − F ) where F = −A−1E, with ∥F∥p = r < 1, I − F is nonsingular, and
therefore so is A+ E. We then have

∥(A+ E)−1 −A−1∥p = ∥ −A−1E(A+ E)−1∥p
= ∥ −A−1E(I − F )−1A−1∥p
≤ ∥A−1∥2p∥E∥p∥(I − F )−1∥p

≤
∥A−1∥2p∥E∥p

1− r
,

from the formula for the difference of inverses, and the submultiplicative property of matrix norms.

Roundoff Errors and Computer Arithmetic

In computing the solution to any mathematical problem, there are many sources of error that can
impair the accuracy of the computed solution. The study of these sources of error is called error
analysis, which will be discussed later in this lecture. First, we will focus on one type of error that
occurs in all computation, whether performed by hand or on a computer: roundoff error.

This error is due to the fact that in computation, real numbers can only be represented using
a finite number of digits. In general, it is not possible to represent real numbers exactly with this
limitation, and therefore they must be approximated by real numbers that can be represented using
a fixed number of digits, which is called the precision. Furthermore, as we shall see, arithmetic
operations applied to numbers that can be represented exactly using a given precision do not
necessarily produce a result that can be represented using the same precision. It follows that if a
fixed precision is used, then every arithmetic operation introduces error into a computation.

Given that scientific computations can have several sources of error, one would think that it
would be foolish to compound the problem by performing arithmetic using fixed precision. However,
using a fixed precision is actually far more practical than other options, and, as long as computations
are performed carefully, sufficient accuracy can still be achieved.

Floating-Point Numbers

We now describe a typical system for representing real numbers on a computer.

Definition (Floating-point Number System) Given integers � > 1, p ≥ 1, L, and U ≥ L, a
floating-point number system F is defined to be the set of all real numbers of the form

x = ±m�E .

8



The number m is the mantissa of x, and has the form

m =

⎛⎝p−1∑
j=0

dj�
−j

⎞⎠ ,

where each digit dj, j = 0, . . . , p−1 is an integer satisfying 0 ≤ di ≤ �−1. The number E is called
the exponent or the characteristic of x, and it is an integer satisfying L ≤ E ≤ U . The integer
p is called the precision of F, and � is called the base of F.

The term “floating-point” comes from the fact that as a number x ∈ F is multiplied by or divided
by a power of �, the mantissa does not change, only the exponent. As a result, the decimal point
shifts, or “floats,” to account for the changing exponent.

Nearly all computers use a binary floating-point system, in which � = 2. In fact, most computers
conform to the IEEE standard for floating-point arithmetic. The standard specifies, among other
things, how floating-point numbers are to be represented in memory. Two representations are
given, one for single-precision and one for double-precision. Under the standard, single-precision
floating-point numbers occupy 4 bytes in memory, with 23 bits used for the mantissa, 8 for the
exponent, and one for the sign. IEEE double-precision floating-point numbers occupy eight bytes
in memory, with 52 bits used for the mantissa, 11 for the exponent, and one for the sign.

Example Let x = −117. Then, in a floating-point number system with base � = 10, x is repre-
sented as

x = −(1.17)102,

where 1.17 is the mantissa and 2 is the exponent. If the base � = 2, then we have

x = −(1.110101)26,

where 1.110101 is the mantissa and 6 is the exponent. The mantissa should be interpreted as a
string of binary digits, rather than decimal digits; that is,

1.110101 = 1 ⋅ 20 + 1 ⋅ 2−1 + 1 ⋅ 2−2 + 0 ⋅ 2−3 + 1 ⋅ 2−4 + 0 ⋅ 2−5 + 1 ⋅ 2−6

= 1 +
1

2
+

1

4
+

1

16
+

1

64

=
117

64

=
117

26
.

□

9



Properties of Floating-Point Systems

A floating-point system F can only represent a finite subset of the real numbers. As such, it is
important to know how large in magnitude a number can be and still be represented, at least
approximately, by a number in F. Similarly, it is important to know how small in magnitude a
number can be and still be represented by a nonzero number in F; if its magnitude is too small,
then it is most accurately represented by zero.

Definition (Underflow, Overflow) Let F be a floating-point number system. The smallest positive
number in F is called the underflow level, and it has the value

UFL = mmin �
L,

where L is the smallest valid exponent and mmin is the smallest mantissa. The largest positive
number in F is called the overflow level, and it has the value

OFL = �U+1(1− �−p).

The value of mmin depends on whether floating-point numbers are normalized in F; this point
will be discussed later. The overflow level is the value obtained by setting each digit in the mantissa
to � − 1 and using the largest possible value, U , for the exponent.

It is important to note that the real numbers that can be represented in F are not equally
spaced along the real line. Numbers having the same exponent are equally spaced, and the spacing
between numbers in F decreases as their magnitude decreases.

Normalization

It is common to normalize floating-point numbers by specifying that the leading digit d0 of the
mantissa be nonzero. In a binary system, with � = 2, this implies that the leading digit is equal
to 1, and therefore need not be stored. Therefore, in the IEEE floating-point standard, p = 24 for
single precision, and p = 53 for double precision, even though only 23 and 52 bits, respectively,
are used to store mantissas. In addition to the benefit of gaining one additional bit of precision,
normalization also ensures that each floating-point number has a unique representation.

One drawback of normalization is that fewer numbers near zero can be represented exactly than
if normalization is not used. Therefore, the IEEE standard provides for a practice called gradual
underflow, in which the leading digit of the mantissa is allowed to be zero when the exponent is
equal to L, thus allowing smaller values of the mantissa. In such a system, the number UFL is
equal to �L−p+1, whereas in a normalized system, UFL = �L.

Rounding

A number that can be represented exactly in a floating-point system is called a machine number.
Since only finitely many real numbers are machine numbers, it is necessary to determine how non-

10



machine numbers are to be approximated by machine numbers. The process of choosing a machine
number to approximate a non-machine number is called rounding, and the error introduced by such
an approximation is called roundoff error. Given a real number x, the machine number obtained
by rounding x is denoted by fl(x).

In most floating-point systems, rounding is achieved by one of two strategies:

∙ chopping, or rounding to zero, is the simplest strategy, in which the base-� expansion of a
number is truncated after the first p digits. As a result, fl(x) is the unique machine number
between 0 and x that is nearest to x.

∙ rounding to nearest sets fl(x) to be the machine number that is closest to x in absolute value;
if two numbers satisfy this property, then an appropriate tie-breaking rule must be used, such
as setting fl(x) equal to the choice whose last digit is even.

Example Suppose we are using a floating-point system with � = 10 (decimal), with p = 4 signifi-
cant digits. Then, if we use chopping, or rounding to zero, we have fl(2/3) = 0.6666, whereas if we
use rounding to nearest, then we have fl(2/3) = 0.6667. □

Machine Precision

In error analysis, it is necessary to estimate error incurred in each step of a computation. As such,
it is desirable to know an upper bound for the relative error introduced by rounding. This leads to
the following definition.

Definition (Machine Precision) Let F be a floating-point number system. The unit roundoff or
machine precision, denoted by u, is the real number that satisfies∣∣∣∣fl(x)− x

x

∣∣∣∣ ≤ u

for any real number x such that UFL < x < OFL.

An intuitive definition of u is that it is the smallest positive number such that

fl (1 + u) > 1.

The value of u depends on the rounding strategy that is used. If rounding toward zero is used,
then u = �1−p, whereas if rounding to nearest is used, u = 1

2�
1−p.

It is important to avoid confusing u with the underflow level UFL. The unit roundoff is deter-
mined by the number of digits in the mantissa, whereas the underflow level is determined by the
range of allowed exponents. However, we do have the relation that 0 < UFL < u.

Example The following table summarizes the main aspects of a general floating-point system and
a double-precision floating-point system that uses a 52-bit mantissa and 11-bit exponent. For both
systems, we assume that rounding to nearest is used, and that normalization is used. □

11



General Double Precision

Form of machine number ±m�E ±1.d1d2 ⋅ ⋅ ⋅ d522E
Precision p 53

Exponent range L ≤ E ≤ U −1023 ≤ E ≤ 1024

UFL (Underflow Level) �L 2−1023

OFL (Overflow Level) �U+1(1− �−p) 21025(1− 2−53)

u 1
2�

1−p 2−53

Floating-Point Arithmetic

We now discuss the various issues that arise when performing floating-point arithmetic, or finite-
precision arithmetic, which approximates arithmetic operations on real numbers.

When adding or subtracting floating-point numbers, it is necessary to shift one of the operands
so that both operands have the same exponent, before adding or subtracting the mantissas. As a
result, digits of precision are lost in the operand that is smaller in magnitude, and the result of the
operation cannot be represented using a machine number. In fact, if x is the smaller operand and
y is the larger operand, and ∣x∣ < ∣y∣u, then the result of the operation will simply be y (or −y, if
y is to be subtracted from x), since the entire value of x is lost in rounding the result.

In multiplication or division, the operands need not be shifted, but the mantissas, when mul-
tiplied or divided, cannot necessarily be represented using only p digits of precision. The product
of two mantissas requires 2p digits to be represented exactly, while the quotient of two mantissas
could conceivably require infinitely many digits. Furthermore, overflow or underflow may occur
depending on the exponents of the operands, since their sum or difference may lie outside of the
interval [L,U ].

Because floating-point arithmetic operations are not exact, they do not follow all of the laws of
real arithmetic. In particular, floating-point arithmetic is not associative; i.e., x+(y+z) ∕= (x+y)+z
in floating-point arithmetic.

Cancellation

Subtraction of floating-point numbers presents a unique difficulty, in addition to the rounding error
previously discussed. If the operands, after shifting exponents as needed, have leading digits in
common, then these digits cancel and the first digit in which the operands do not match becomes
the leading digit. However, since each operand is represented using only p digits, it follows that
the result contains only p−m correct digits, where m is the number of leading digits that cancel.

In an extreme case, if the two operands differ by less than u, then the result contains no
correct digits; it consists entirely of roundoff error from previous computations. This phenomenon
is known as catastrophic cancellation. Because of the highly detrimental effect of this cancellation,
it is important to ensure that no steps in a computation compute small values from relatively large
operands. Often, computations can be rearranged to avoid this risky practice.

12



Example Consider the quadratic equation

ax2 + bx+ c = 0,

which has the solutions

x1 =
−b+

√
b2 − 4ac

2a
, x2 =

−b−
√
b2 − 4ac

2a
.

Suppose that b > 0. Then, in computing x1, we encounter catastrophic cancellation if b is much
larger than a and c, because this implies that

√
b2 − 4ac ≈ b and as a result we are subtracting

two numbers that are nearly equal in computing the numerator. On the other hand, if b < 0, we
encounter this same difficulty in computing x2.

Suppose that we use 4-digit rounding arithmetic to compute the roots of the equation

x2 + 10, 000x+ 1 = 0.

Then, we obtain x1 = 0 and x2 = −10, 000. Clearly, x1 is incorrect because if we substitute x = 0
into the equation then we obtain the contradiction 1 = 0. In fact, if we use 7-digit rounding
arithmetic then we obtain the same result. Only if we use at least 8 digits of precision do we obtain
roots that are reasonably correct,

x1 ≈ −1× 10−4, x2 ≈ −9.9999999× 103.

A similar result is obtained if we use 4-digit rounding arithmetic but compute x1 using the
formula

x1 =
−2c

b+
√
b2 − 4ac

,

which can be obtained by multiplying and dividing the original formula for x1 by the conjugate of the
numerator, −b−

√
b2 − 4ac. The resulting formula is not susceptible to catastrophic cancellation,

because an addition is performed instead of a subtraction. □

Basics of Error Analysis

Intuitively, it is not difficult to conclude that any scientific computation can include several ap-
proximations, each of which introduces error in the computed solution. Therefore, it is necessary
to understand the effects of these approximations on accuracy. The study of these effects is known
as error analysis.

Error analysis will be a recurring theme in this course. For this reason, we will introduce some
basic concepts that will play a role in error analyses of specific algorithms in later lectures.

13



Absolute Error and Relative Error

Now that we have been introduced to some specific errors that can occur during computation,
we introduce useful terminology for discussing such errors. Suppose that a real number ŷ is an
approximation to some real number y. For instance, ŷ may be the closest number to y that can
be represented using finite precision, or ŷ may be the result of a sequence of arithmetic operations
performed using finite-precision arithmetic, where y is the result of the same operations performed
using exact arithmetic.

Definition (Absolute Error, Relative Error) Let ŷ be a real number that is an approximation to
the real number y. The absolute error in ŷ is

Eabs = ŷ − y.

The relative error in ŷ is

Erel =
ŷ − y
y

,

provided that y is nonzero.

The absolute error is the most natural measure of the accuracy of an approximation, but it can
be misleading. Even if the absolute error is small in magnitude, the approximation may still be
grossly inaccurate if the exact value y is even smaller in magnitude. For this reason, it is preferable
to measure accuracy in terms of the relative error.

The magnitude of the relative error in ŷ can be interpreted as a percentage of ∣y∣. For example,
if the relative error is greater than 1 in magnitude, then ŷ can be considered completely erroneous,
since the error is larger in magnitude as the exact value. Another useful interpretation of the
relative error concerns significant digits, which are all digits excluding leading zeros. Specifically,
if the relative error is at most �−p, where � is an integer greater than 1, then the representation of
ŷ in base � has at least p correct significant digits.

It should be noted that the absolute error and relative error are often defined using absolute
value; that is,

Eabs = ∣ŷ − y∣, Erel =

∣∣∣∣ ŷ − yy
∣∣∣∣ .

This definition is preferable when one is only interested in the magnitude of the error, which is
often the case. If the sign, or direction, of the error is also of interest, then the first definition must
be used.

We also note that if the quantities y and ŷ are vectors or matrices, rather than numbers, then
appropriate norms can instead be used to measure absolute and relative error. For example, given
an exact value y and approximation ŷ, that are both vectors in ℝn, we can define the absolute
error and relative error by

Eabs = ∥ŷ − y∥, Erel =
∥ŷ − y∥
∥y∥

,

14



where ∥ ⋅ ∥ is any vector norm.

Example Assume that we are using a floating-point system that uses base � = 10 (decimal),
with 4 digits of precision and rounding to nearest. Then, if we add the numbers 0.4567× 100 and
0.8580× 10−2, we obtain the exact result

x = 0.4567× 100 + 0.008530× 100 = 0.46523× 100,

which is rounded to
fl(x) = 0.4652× 100.

The absolute error in this computation is

Eabs = fl(x)− x = 0.4652− 0.46523 = −0.00003,

while the relative error is

Erel =
fl(x)− x

x
=

0.4652− 0.46523

0.46523
≈ −0.000064484.

Using the same floating-point system, suppose that we multiply 0.4567×104 and 0.8530×10−2.
The exact result is

x = (0.4567× 104)× (0.8530× 10−2) = 0.3895651× 102 = 38.95651,

which is rounded to
fl(x) = 0.3896× 102 = 38.96.

The absolute error in this computation is

Eabs = fl(x)− x = 38.96− 38.95651 = 0.00349,

while the relative error is

Erel =
fl(x)− x

x
=

38.96− 38.95651

38.95651
≈ 0.000089587.

We see that in this case, the relative error is smaller than the absolute error, because the exact
result is larger than 1, whereas in the previous operation, the relative error was larger in magnitude,
because the exact result is smaller than 1. □

15



Forward Error and Backward Error

Suppose that we compute an approximation ŷ = f̂(x) of the value y = f(x) for a given function
f and given problem data x. Before we can analyze the accuracy of this approximation, we must
have a precisely defined notion of error in such an approximation. We now provide this precise
definition.

Definition (Forward Error) Let x be a real number and let f : ℝ → ℝ be a function. If ŷ is a
real number that is an approximation to y = f(x), then the forward error in ŷ is the difference
Δy = ŷ − y. If y ∕= 0, then the relative forward error in ŷ is defined by

Δy

y
=
ŷ − y
y

.

Clearly, our primary goal in error analysis is to obtain an estimate of the forward error Δy. Un-
fortunately, it can be difficult to obtain this estimate directly.

An alternative approach is to instead view the computed value ŷ as the exact solution of a
problem with modified data; i.e., ŷ = f(x̂) where x̂ is a perturbation of x.

Definition (Backward Error) Let x be a real number and let f : ℝ → ℝ be a function. Suppose
that the real number ŷ is an approximation to y = f(x), and that ŷ is in the range of f ; that is,
ŷ = f(x̂) for some real number x̂. Then, the quantity Δx = x̂− x is the backward error in ŷ. If
x ∕= 0, then the relative backward error in ŷ is defined by

Δx

x
=
x̂− x
x

.

The process of estimating Δx is known as backward error analysis. As we will see, this estimate of
the backward error, in conjunction with knowledge of f , can be used to estimate the forward error.

As discussed previously, floating-point arithmetic does not follow the laws of real arithmetic.
This tends to make forward error analysis difficult. In backward error analysis, however, real
arithmetic is employed, since it is assumed that the computed result is the exact solution to a
modified problem. This is one reason why backward error analysis is sometimes preferred.

In analysis of roundoff error, it is assumed that fl(x op y) = (x op y)(1 + �), where op is an
arithmetic operation and � is an unknown constant satisfying ∣�∣ ≤ u. From this assumption, it
can be seen that the relative error in fl(x op y) is ∣�∣. In the case of addition, the relative backward
error in each operand is also ∣�∣.

16


