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Abstract A relation is established between the duality within projective geometry and the
duality between a vector space and its dual space of linear funtions. The action of a linear
function on a vector appears to be a cross ratio.

1 Introduction

Vector spaces are of fundamental importance, not only in Mathematics, but in many applied
sciences as well, especially in Physics. Less familiar is the concept of the dual vector space - the
space of linear functions on a vector space - though it is a basic concept in both Mathematics
and Theoretical Physics. Projective spaces are - even among many mathematicians - alien or
forgotten objects, that one encounters every once in a while, but hardly ever needs to use.

We will show in this article that projective spaces are at the heart of Linear Algebra, and
that in particular the dual vector space gets a better understanding when seen in the light of
projective geometry.

2 Prerequisites

The reader is supposed to be familiar with the basics of linear algebra and projective geometry,
in particular with the concepts of (number) field, vector space, projective space and cross ratio.

In this article we will restrict to finite-dimensional vector spaces. Essentially these are the
n-th powers of number fields: every n-dimensional vector space over a field F is isomorphic
to the space F n of n-tuples of numbers of F .

An n-dimensional projective space over F can be defined in various ways. One way is to extend
Euclidean n-space with an (n − 1)-dimensional hyperplane ‘at infinity’. Another one is to
‘divide’ an (n+ 1)-dimensional vector space V by the relation a ' λa, with a ∈ V, λ ∈ F \ 0.
But we emphasize that it can be defined synthetically as well, that is, it can be constructed
from a few relatively simple geometric axioms1. An element of F is also called a scalar, as
opposed to the vectors of V .

1See e.g. my On the Fundamentals of Geometry available at www.mathart.nl .
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3 Linear transformations

Let be given two vector spaces, V and W , over some field F . A linear transformation or
homomorphism f : V → W is a map satisfying f(v+w) = f(v)+f(w) and f(av) = af(v) for
all v, w ∈ V, a ∈ F . If V has dimension n and W has dimension m, then each homomorphism
from V to W can be represented by an m× n-matrix of scalars. This representation depends
on the bases chosen in V and W : the i-th column of this matrix is the image of the i-th basis
vector of V expressed in the basis of W .

One can add two maps f, g : V → W by defining (f+g)v = f(v)+g(v). Scalar multiplication
is defined by (a.f)v = a.f(v). The zero transformation 0 maps all vectors of V on the zero
vector of W . Thus, the linear transformations from V to W form a vector space Lin(V,W ),
of dimension m.n over the same field F .

Fundamental concepts are kernel and image of a transformation. The kernel Ker f of a
homomorphism f : V → W is the set of vectors of V that are mapped on the zero vector of
W :

Ker f = { v ∈ V | f(v) = 0W }

The image of f is simply the set of images f(v):

imf = { f(v) | v ∈ V }

which may be less than W . Kernel and image are vector spaces of their own, subspaces of V
resp. W . The sum of the dimensions of kernel and image of f is the dimension of V :

dim( Ker f) + dim(imf) = dim(V )

In general, a linear transformation is not invertible (bijective), but if it is, it is called an
isomorphism, and the spaces V and W are called isomorphic. In that case they necessarily
have the same dimension. Isomorphisms are precisely those maps that have square matrices
with non-zero determinant.

All n-dimensional vector spaces over some fixed field F are isomorphic, and in particular
isomorphic to the set of n-tuples of elements of F , viz. F n.

4 The dual space

Given a vector space V over a field F , its dual space, V ∗, is defined as the space of linear
functions G : V → F . Since F = F 1 is a 1-dimensional vector space over F , V ∗ =Lin(V, F )
is a vector space of the same dimension as V , and hence isomorphic to V . Its elements are
called covectors or dual vectors2.

Let e1 . . . en be a basis for V . For each vector v there is a unique n-tuple (a1, . . . an) such that
v =

∑
i aiei. The ai are called he coordinates of v with respect to this basis. If G : V → F is a

linear function, we have: G(v) = G(
∑
i aiei) =

∑
i aiG(ei). Hence, G is completely determined

by the images of the vectors ei.

2We will, with J.M. Lee ([Lee]), use the term covector
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Now define the covectors Ei : V → F by Ei(ej) = δij, where δij is the Kronecker delta, defined
by δij = 1 if i = j and δij = 0 if i 6= j. If we apply Ei to an arbitrary vector v =

∑
j ajej, it picks

out the i-th coordinate, i.e. Ei(v) = ai. But then we have G(v) =
∑
i aiG(ei) =

∑
iG(ei)Ei(v),

so we can write G =
∑
iG(ei)Ei, or, putting bi = G(ei), G =

∑
i biEi. That is, for each G ∈ V ∗

there is some n-tuple (bi) such that G =
∑
i biEi, so the Ei form a basis for V ∗. It is called

the dual basis or cobasis corresponding to (ei).

In a similar way one can construct the dual V ∗∗ of V ∗. This again is a vector space isomorphic
to both V ∗ and V . However, it appeares that there is a canonical (=natural) isomorphism
between V ∗∗ and V . Define ι : V → V ∗∗ as follows. First, notice that ι(v) is an element of
V ∗∗, that is: a map from V ∗ to the number field F :

ι(v) : V ∗ → F

So for every G ∈ V ∗ we have to define what ι(v)(G) means. What if we simply define
ι(v)(G) = G(v)? Can we prove that ι is an isomorphism? Obviously, it is linear, because
every G is linear:

ι(v + w)(G) = G(v + w) = G(v) +G(w) = ι(v)(G) + ι(w)(G)

for every G ∈ V ∗, hence ι(v + w) = ι(v) + ι(w). Similarly ι(av) = aι(v).
Next, suppose ι(v) = ι(w), i.e. G(v) = G(w) for all G. In particular, given bases (ei) and
(Ei) as above, Ei(v) = Ei(w) for all i. That is, v and w have the same coordinates and must
be equal. But then ι is injective (one-one), and since V and V ∗∗ have the same dimension, it
is bijective. So ι is indeed an isomorphism.

Because of this ‘naturality’ it would be pedantic to distinguish between V ∗∗ and V , leave alone
to consider V ∗∗∗ etc. Yet there is a fundamental difference in quality: a vector is definitely
to be distinguished from a function, so how should a function on a function space become
a vector again? That seems hardly possible as long as these functions themselves have no
geometrical meaning.

5 The cross ratio

Given three distinct points P,Q,R, and a fourth one S, all on one projective line. The cross
ratio (PQRS) is defined as the homogeneous coordinates (µ : λ) of S with respect to the
system of reference P (1 : 0), Q(0 : 1), R(1 : 1).

We will show that this definition is in accordance with the ususal Euclidean one. Let
A,B,C,D be points on a Euclidean line, in the order ABCD and with AB = α > 0, BC =
β > 0 and CD = γ > 0 then the Euclidean definition gives

(ABCD) =
AC

BC
:
AD

BD
=

(α + β)(β + γ)

β(α + β + γ)

We can give the following homogeneous coordinates to our points: A(0 : 1), B(α : 1), C(α+β :
1), D(α + β + γ : 1) to our points. Now apply the projective map

f =

(
1 −α

β/(α + β) 0

)
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Verify that f(A) = (1 : 0), f(B) = (0 : 1), f(C) = (1 : 1) and f(D) = ( (α+β)(β+γ)
β(α+β+γ)

: 1) indeed.

It is possible to extend the definition to the cases (AABB), (ABAB) and (ABBA) but we
will have no need for this.

6 The 2 dimensional case

In this section we will use capitals for lines and covectors, and lower case type for points and
vectors.

Let be given the 2-dimensional vector space V over the reals, with a fixed basis e1, e2 and
zero vector o.

Let V∗ be the dual vector space, i.e. the space of linear functions or covectors G : V → R.
A natural basis for the dual space is E1, E2 defined as follows: Ei(ej) = δij, the Kronecker
delta.

Every vector a can be written as

a = Σαiei = (α1, α2)

and every linear function B as
B = ΣβiEi = [β1, β2]

In particular o = (0, 0) and O = [0, 0], the zero function that maps each vector onto the
number 0.

Now B(a) = Σαiβi = a(B), the last equality because of the duality between V and V∗:
vectors behave as linear functions on V∗. Though this looks very much like a scalar product
of vectors, it is not, since it is the mutual action of a vector and a covector. It has no relation
to any metric on V , nor on V∗. In addition it is heavily dependent of the basis, whereas a
metric is not.

The duality between V∗ and V reminds us of the duality inside projective spaces, viz. between
points and lines in the plane. Is this a coincidence, or is there a connection between these
two dualities?

We will set up a correspondence between the linear functions and the lines.

6.1 Example

Let’s first have a closer look at the kernel of a linear function. Consider the linear function
G(x, y) = 2x−3y ∈ V∗. Its kernel is the line 2x−3y = 0, see left figure. Now the map H = 2G
has the same kernel as G. So it is not possible to set up a 1-1-correspondence between kernels
and covectors.

If we take level sets (or isolines or contour lines) in stead of kernels the situation is better.
A level set is the inverse image of a number. Let G again be the linear function 2x− 3y. The
5-level is the set

G−1(5) = { (x, y) ∈ R2 | 2x− 3y = 5 }
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Figure 1: kernel and level sets

that is, a line parallel to the above kernel, which is also shown in the left figure.

Consider all the level sets of some constant γ, while varying our G. Since the value of γ is not
important (that is, with any fixed value 6= 0 we can do the next considerations), we consider
the level sets of γ = 1.

Now, whereas H = 2G and G have the same kernel, they have not the same level-1 set. The
level-1 set of G, 2x − 3y = 1, is not the same as 4x − 6y = 1, the level-1 set of H. In fact,
the last one, which can be written 2x− 3y = 1/2, is closer to the origin than the first. This
last observation, can be reformulated as: the bigger λ (λ > 0), the closer the level-1 set of
λG is to the origin, or the smaller λ (but always positive) , the farther its level-1 set from the
origin. In the right figure the level-1 sets of −G,G,G/5 and G/13 are shown.

If λ becomes infinitely small, i.e. G is the zero-map, its level set is empty. But, if we embed
our vector space R2 in a projective space, by adding, in the usual way, a line at infinity, ∞,
then we find that, independent of G, we have

lim
λ→0

(λG)−1(1) =∞

as long as G 6= 0. So it makes sense to redefine level sets in the following way:

• if G 6= 0 then G−1(1) = { v ∈ V | G(v) = 1 }

• 0−1(1) =∞

While G(0, 0) = 0 6= 1 for each G, no level set contains o, just like no vector is in ∞.

This gives a perfect relation between vector spaces and projective geometry. In fact, from a
geometrical point of view, it is natural to consider a vector space as a subset of a projective
space.
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6.2 To make a projective space from a vector space

Returning to the general 2-dimensional case, the first thing we have to do in order to connect
lines and covectors is to turn this vector space into a projective space S. Add points at infinity
to V in the usual way, to get the set of all points S0 of S. Add the line at infinity∞ to the lines
of V to get the collection S1 of all lines of S. Define a1(1 : 0 : 0) as the meeting point of oe1 with

Figure 2: a vector space, its dual and the projective space

∞, a2(0 : 1 : 0) as the meeting point of oe2 with ∞, and a3 = o = (0 : 0 : 1), the zero vector.
Let u = e1 +e2 = (1 : 1 : 1) be the meeting point of the lines a1e2 and a2e1. Now a1, a2, a3, u
is a system of reference for S0. Observe that if v(α, β) = (α : β : 1), w(γ, δ) = (γ : δ : 1) are
vectors, their sum is v + w = (α + γ : β + δ : 1). And λv = (λα : λβ : 1).

Define A1 = a2a3 = [1 : 0 : 0], A2 = a1a3 = [0 : 1 : 0], A3 = ∞ = a1a2 = [0 : 0 : 1] and the
unit line U = [1 : 1 : 1] as the line through −e1 and −e2. Now A1, A2, A3, L is a system of
reference for S1.
We recall that with these bases the cross product of two distinct poins is their connecting
line, and the cross product of two distinct lines is their meeting point.

6.3 Isolines

We will consider level sets (or contour lines or isolines): lines that connect points (vectors)
with equal function values, viz. function value 1 (one could, however, take any other fixed
non-zero number again). The level-1 set of the basis covector E1 is

E−11 (1) = {v = λe1 + µe2|E1(v) = 1} = {e1 + µe2} = e1a2 = [−1 : 0 : 1]
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and the level 1 set of E2 is e2a1 = [0 : −1 : 1]. So, if the normal coordinates of a covector G
are [α, β] then its homogeneous coordinates are [−α : −β : 1].

Let G = λE1 + µE2 = [−λ : −µ : 1] be an arbitrary covector. We will compute G−1(1).
Suppose first µ 6= 0 and let v = αe1 + βe2 such that G(v) = 1. Then G(v) = αλ + µβ = 1,
which implies β = (1− αλ)/µ or

v = αe1 + (1− αλ)e2/µ = αe1 + e2/µ− αλe2/µ = e2/µ+ α(e1 − λe2/µ)

Hence v = (α : (1/µ − αλ/µ : 1)) and G−1(1) = [−λ : −µ : 1] indeed. Verify that this last
relation also holds if µ = 0.

The level 1 line of [−λ : −µ : 1] meets the axes in the points (1/λ : 0 : 1) and (0 : 1/µ : 1). If
we move either or both λ and µ to infinty, we get contour lines through the point o(0 : 0 : 1).
So this point has the same unreachable status with respect to the covectors as the line at
infinty has with respect to the vectors. At the other hand, moving either or both λ and µ to
0 we get the line at infinity, so we define the level 1 contour line of the zero function as the
line at infinity.

6.4 The mutual action of a vector and a covector

Let be given a vector v = (α, β) = (α : β : 1) and a covector G = [λ, µ] = [−λ : −µ : 1].
Let L be the line through o and v, i.e. L = [−β : α : 0]. The meeting point of L and G is
p(α : β : −αλ − βµ), and that of L and ∞ is q(α : β : 0). Next apply the regular projective
map (coordinate transformation) with matrix

1

α

 1 0 0
−β α 0
0 0 α


then the images or our four points are

o′ = o = (0 : 0 : 1), v′ = (1 : 0 : 1), p′ = (1 : 0 : αλ+ βµ), q′ = (1 : 0 : 0)

or, dropping the middle coordinate

o′ = o = (0 : 1), q′ = (1 : 0), v′ = (1 : 1), p′ = (1 : αλ+ βµ)

Hence the cross ratio (oqvp) = (oq′v′p′) = αλ+ βµ = G(v). This cross ratio equals (OQV P )
where O, Q, V and P are the lines connecting o, q, v and p respectively with any point not
on L, in particular the meeting point of G and ∞: here too we have full duality. We can also
write this cross ratio as (o∞vG) = (∞oGv), where the two lines (covectors) separate the two
points (vectors).

Note that this cross ratio is independent of the chosen basis e1, e2, but is does depend on the
choice of o and ∞.

The mutual action of a vector and a covector is a cross ratio. This cross ratio does not depend
on the bases, but only on the choice of o and ∞.
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7 The general case

It does not require much imagination to see that the above can be extended to any dimension.

Let be given a n-dimensional projective space S, with set of points S0 and set of hyperplanes
Sn−1. Take a fixed point o = a0 and a fixed hyperplane A0 =∞ not containing o. Let G be
any plane not containing o, and v be any point not in ∞. Then we define the mutual action
of them as G(v) = v(G) = (∞oGv) = (qopv), where p is the meeting point of line ov with
G and q is the meeting point of ov with ∞. Observe that in this cross ratio the two points
separate the two hyperplanes.

Take points a1, a2, . . . , an ≺ A0 and a point u 6≺ A0 such that a0, . . . , an, u form a system of
reference for S0.
The hyperplane generated by all the ak exept ai is called Ai. The unit hyperplane U [1 : 1 :
. . . : 1] is the plane through the points that have one coordinate 1, one coordinate -1 and all
others 0. Then the Ai and U form a system of reference for Sn−1.
Let V = S0 \ {v ∈ ∞} be the set of points not in ∞ and let V∗ be the set of hyperplanes not
containing o. For 0 < k ≤ n let Ek be the hyperplane containing u and all ai exept a0 and
ak. Let ek be the meeting point of line oak and Ek. The the ek are a basis for V and the the
Ek are a basis for V∗.

Proposition 7.1 Take any point v(1 : α1 : . . . : αn) (hence not in ∞) and one hyperplane
G[1 : −β1 : . . . : −βn] (not containing o). Then G(v) = v(G) = (∞oGv) = (o∞vG) =
Σn
i=1αiβi.

Proof. The proof is essentially the same as that in section 6.4. Let L be the line through
o and v, p(Σαiβi : α1 : . . . : αn) the meeting point of L and G, and q(0 : α1 : . . . : αn) the
meeting point of L and ∞. Consider the coordinate transformations

T =



1 0 0 . . . 0 0
0 1 0 . . . 0 α1
...

...
0 0 0 . . . 1 αn−1
0 0 0 . . . 0 αn

 and T−1 =



αn 0 0 . . . 0 0
0 αn 0 . . . 0 −α1
...

...
0 0 0 αn −αn−1
0 0 0 . . . 0 1

 /αn

They leave all basis points invariant exept the last one. T moves (0 : . . . : 0 : 1) to q and T−1

moves it back. Both maps leave ∞ invariant (although not pointwise). The images of our
four points of L under T−1 are o′ = o, v′ = (1 : 0 : . . . : 0 : 1), p′ = (Σβiαi : 0 : . . . : 0 : 1) and
q′ = (0 : . . . : 0 : 1). If we drop the middle coordinates we get o = (1 : 0), v′ = (1 : 1), p′ =
(Σβiαi : 1) and q′ = (0 : 1). Hence G(v) = v(G) = (∞oGv) = (qopv) = (oq′v′p′) = Σn

i=1αiβi.
�
Let v be a point on G, that is 0 = Gvτ = 1−Σαiβi = 1−G(v) hence G(v) = 1. Clearly G is
the level 1 hyperplane of the covector G.

In thit last sentence we encounter the matrix product Gvτ . These matrices are determined
up to a scalar factor, viz. Gvτ = (λG)vτ = G(λv)τ = λ(Gvτ ) for each λ 6= 0, hence can
assume any value. So, in general this product can only be used for distinguishing 0 and 6= 0,
i.e. determining incicence. That it plays the above important role, is because we
enforced affine coondinates by taking the first ones equal to 1.
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8 Computing with covectors

In the rest of this article points are named by capitals, lines by lower case type.

8.1 Adding covectors

The question arises: what is the geometrical meaning of adding two covectors? We will show
this by an example in the projective plane. But first, let’s recall what addition of vectors
(represented by points) means. The vector C = A+B is constructed as follows.

1 Join A and O by a line a, and B and O by b.

2 Next, draw a line a′ ‖ a through B, or - in projective terminology - draw a′ through B
and the meeting point A′ of a and ∞. Similarly, draw b′ through A and the meeting
point B′ of b and ∞.

3 Now the meeting point of a′ and b′ is C, the sum of A and B.

We will carefully dualize this, in order to find the sum of the covectors represented by two
lines a, b.

1 First let A and B be the meeting points of a resp. b with ∞.

2 Join A resp. B with O to get the lines a′ resp. b′. A′ is the meeting point of a′ and b,
B′ is the meeting point of a and b′.

3 Now the line c joining A′ and B′ is the sum of a and b.

We leave it as an exercise to define a+ b if a, b and∞ are concurrent (have a common point).
You should also check that, indeed, if you add for instance the functions φ(x, y) = x− 3y and
ψ = 2x+ y you get the function (φ+ ψ)(x, y) = 3x− 2y.
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8.2 Scalar multiplication

Next, we want to have a geometric interpretation of the product of a covector and a scalar.

Let’s again restrict to the real projective plane. As we saw above, as soon as we have singled
out a point O and a line ∞ we obtain the additive groups of R2 and its dual. But then we
can construct the vectors 2A = A + A, 3A etc. as well. Using a harmonic net3 we can even
find the rational multiples of vectors, hence approach every real multiple as closely as wanted.

So, given two collinear vectors, A and B, there is a unique real number λ such that B = λA.
Now, how do we find Y = λX for an arbitrary vector X? Well, this is - again - very similar
to the Euclidean case.

Let m = OX, p = AX, P the meeting point of p and ∞, q = BP, Y the meeting point of q
and m. Then Y = λX is the desired point. (To define multiplication on AB one has to use
an intermediate line.)

Dualizing, we proceed as follows. Let a, b and ∞ be concurrent, viz. share the point L.
There is a number λ such that b = λa. We want to construct y = λx for some given line x
not through P . Let M be the meeting point of x and ∞ and P the meeting point of a and
x. Draw the line p = OP and let Q be its meeting point with b. Then y = MQ is the desired
line.

9 Free covectors

In this section we again restrict to dimension 2. A free vector is an equivalence class of the
relation (A,B) ∼ (C,D) ⇔ there are two points E,F such that ABFE and CDFE are

3See for instance Frank Ayres, Projective Geometry, 1967 McGraw-Hill, Schaum’s ouline series
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parallelograms. And four non-collinear finite points ABCD are a parallelogram if AB and
CD meet in a point at infinity and so do AD and BC. There is a one-one relation between
vectors and free vectors: in each class there is exactly one with first element O.

Dualizing this we define on the set of (pairs of) lines not containing O the relation (a, b) ∼
(c, d) ⇔ there are two lines e, f such that abfe and cdfe are dual parallelograms. A dual
parallelogram then is a set of four distinct non-concurrent lines abcd, none containing O, such
that the meeting point of a and b and the meeting point of c and d are collinear with O, and
also the meeting point of a and d and the meeting point of b and c are collinear with O.

How does the relation (A,B)+(B,C) = (A,C) look dually? Of course, we get (a, b)+(b, c) =
(a, c). But whereas in the point case we think of moving from A to B along the line joining
them (and not crossing ∞) and next from B to C, in the dual case we must think of a line
turning from a to b (and not passing O) about the common point of a and b, and next from
b to c about their meeting point. The result is then the same as turning from a to c about
their meeting point.
The maximal possible rotation is a half turn because the lines are not allowed to pass O.

10 Semantic considerations

The word vector goes back to Hamilton (1805-1865). Initially it was used to denote concepts
like velocity, accelleration, force etc. Geometrically it meant a line segment together with
direction, or - in modern terms - an equivalence class of the relation (A,B) ∼ (C,D) defined
by: the line AB is parallel to line CD, d(A,B) = d(C,D) and the direction from A to B
is the same as that from C to D, where A,B,C and D are points in the Euclidean space
or plane. Today, a vector space in mathematics is an abstract set satisfying certain axioms.
Their use is widespread in mathematics.

In physics we work with distinct qualities, like time, temperature, colour etc. We have to be
very careful not to confuse these. A point in physical space is a location in it. It is meaningless
to add two points, or to multiply a point with a number. Full stop.

If we fix an origin O, we can convert our physical space - at least locally - into a vector space.
Each point A corresponds to one vector OA. Adding two vectors, viz. OA + OB = OC,
means: if a particle moves from O to A, and then from A to C (where the free vector AC
equals OB), the result is the same as when it moves from O to C. But of course the two
roads differ, so it is only the end results that correspond. If we take O as the location of the
observer, the correspondence of physical space and vector space becomes less artificial.
In analytical geometry, location and direction vectors are very comfortable in defining point
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sets like lines and planes. Yet - to our view - the essence here is coordinate geometry rather
than vector geometry.

Velocities and forces are (co-) vectors by nature. It makes sense to add two velocities, or
to multiply them with scalars. Now, vectors are closely related to infinitesimal calculus and
differential equations. It is at the same time lucky and tragic that the tangent space4 of
Euclidean space is isomorphic to the space itself: lucky, because it simplifies computations a
lot, tragic, because it obscures the diference in quality between points and vectors.

So, firstly, we have to distinguish between our unique physical space and all kinds of geomet-
rical spaces. Our physical space is locally Euclidean, but a priory it could turn out to be any
topological manifold. Let’s call this space S.

Secondly, in any point P of S (like in every other differentiable manifold) is defined an abstract
tangent space TPS. This tangent space is a vector space, that is, with our new definition, a
projective space in which a (hyper-) plane ∞ and a point O are singled out. Though it is
comfortable to think of this tangent space TPS as touching S in P , it is not always adequate
to do so, and, indeed, at times confusing. If we consider a circle in Euclidean plane, the
tangent line in a point can be found by differetiating some vector function. And if a particle
moves on this circle due to a centripetal force, it will leave the circle and continue along this
tangent line if - at the moment that the particle is in the tangent point - the force suddenly
disappears. But the abstract tangent space consists of (velocity-) vectors, and not of points
on the tangent line. That means, if the tangent space has a geometrical meaning, we can
think of TPS touching S in the point P = O. But if it has not, this image of touching spaces
might obscure the true physical concepts. In that connection it may be illuminating that,
according to Steiner, one enters a different - supersensual - world as soon as one changes from
physical points to differentials5.

Thirdly, though projective spaces have an immediate and historic geometric interpretation,
as vector spaces in the above developed way their elements (vectors, covectors etc.) can no
longer be seen as points, that is as locations in physical space. Rather one should determine
their quality depending on the physical phenomena at hand: an electric force being completely
different from, say, the speed of a planet.

Fourthly, it is possible that the similarity between the inproduct of two vectors (or covectors)
and the action of a covector on a vector, obscures the true meaning of some physical concepts.

Finally, the cotangent space is really the same projective space TPS, but a covector is a
hyperplane in it. Now one could point out the following asymmetry. Whereas the tangent
space - in geometrical situations - touches S in our above P = O, the dual space does not
touch S in ∞. However, that is because we are used to think pointwise. If we consider S as
a collection of planes, then the cotangent space TαS does meet S in α =∞.

Yet it is an interesting question to ask: what is the meaning of∞ if we are investigating electric
forces, or velocities, or whatever physical vectors. But that is for physicists to investigate,
rather than for mathematicians.

4See any introductory course in differential topology, e.g. J.M. Lee, Introduction to Smooth Manifolds,
2006 Springer

5See e.g. R. Steiner, Mathematik und Okkultismus, essay in GA 35

12


