
5
Vector Spaces

As suggested at the end of chapter 4, the vector spaces Rn are not the only
vector spaces. We now give a general definition that includes Rn for all
values of n, and RS for all sets S, and more. This mathematical structure is
applicable to a wide range of real-world problems and allows for tremendous
economy of thought; the idea of a basis for a vector space will drive home
the main idea of vector spaces; they are sets with very simple structure.

The two key properties of vectors are that they can be added together
and multiplied by scalars. Thus, before giving a rigorous definition of vector
spaces, we restate the main idea.

A vector space is a set that is closed under addition and
scalar multiplication.

Definition A vector space (V,+, . ,R) is a set V with two operations +
and · satisfying the following properties for all u, v 2 V and c, d 2 R:

(+i) (Additive Closure) u+ v 2 V . Adding two vectors gives a vector.

(+ii) (Additive Commutativity) u + v = v + u. Order of addition does not
matter.

(+iii) (Additive Associativity) (u + v) + w = u + (v + w). Order of adding
many vectors does not matter.
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This are key concepts

I don’t like the way 
this is stated.

Don’t worry about memorizing all of these axioms. But be ready to refer to them when needed. If some mathematical object is presented to you, and you are asked to determine whether it is a vector space or not, what you have to do is open the book to this page, go through this list and check that ALL of these conditions are satisfied.



102 Vector Spaces

(+iv) (Zero) There is a special vector 0V 2 V such that u+ 0V = u for all u
in V .

(+v) (Additive Inverse) For every u 2 V there exists w 2 V such that
u+ w = 0V .

(· i) (Multiplicative Closure) c · v 2 V . Scalar times a vector is a vector.

(· ii) (Distributivity) (c+d) ·v = c ·v+d ·v. Scalar multiplication distributes
over addition of scalars.

(· iii) (Distributivity) c · (u+v) = c ·u+c ·v. Scalar multiplication distributes
over addition of vectors.

(· iv) (Associativity) (cd) · v = c · (d · v).
(· v) (Unity) 1 · v = v for all v 2 V .

Examples of each rule

Remark Rather than writing (V,+, . ,R), we will often say “let V be a vector space
over R”. If it is obvious that the numbers used are real numbers, then “let V be a
vector space” su�ces. Also, don’t confuse the scalar product · with the dot product .
The scalar product is a function that takes as its two inputs one number and one
vector and returns a vector as its output. This can be written

· : R⇥ V ! V .

Similarly
+ : V ⇥ V ! V .

On the other hand, the dot product takes two vectors and returns a number. Suc-
cinctly: : V ⇥ V ! R. Once the properties of a vector space have been verified,
we’ll just write scalar multiplication with juxtaposition cv = c · v, though, to keep our
notation e�cient.

5.1 Examples of Vector Spaces

One can find many interesting vector spaces, such as the following:
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One can define vector
spaces where the scaling is 
done over the complex numbers,
or over more abstract “number
systems”. In this class we 
will stick mostly with numbers
just being real numbers.

The dot product does not yet
exist for us
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Example of a vector space

Example 58
RN = {f | f : N ! R}

Here the vector space is the set of functions that take in a natural number n and return
a real number. The addition is just addition of functions: (f1+f2)(n) = f1(n)+f2(n).
Scalar multiplication is just as simple: c · f(n) = cf(n).

We can think of these functions as infinitely large ordered lists of numbers: f(1) =
13 = 1 is the first component, f(2) = 23 = 8 is the second, and so on. Then for
example the function f(n) = n3 would look like this:

f =

0

B

B

B

B

B

B

B

B

@

1
8
27
...
n3

...

1

C

C

C

C

C

C

C

C

A

.

Thinking this way, RN is the space of all infinite sequences. Because we can not write
a list infinitely long (without infinite time and ink), one can not define an element of
this space explicitly; definitions that are implicit, as above, or algebraic as in f(n) = n3

(for all n 2 N) su�ce.
Let’s check some axioms.

(+i) (Additive Closure) (f1 + f2)(n) = f1(n) + f2(n) is indeed a function N ! R,
since the sum of two real numbers is a real number.

(+iv) (Zero) We need to propose a zero vector. The constant zero function g(n) = 0
works because then f(n) + g(n) = f(n) + 0 = f(n).

The other axioms should also be checked. This can be done using properties of the
real numbers.

Reading homework: problem 1

Example 59 The space of functions of one real variable.

RR = {f | f : R ! R}
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The addition is point-wise

(f + g)(x) = f(x) + g(x) ,

as is scalar multiplication
c · f(x) = cf(x) .

To check that RR is a vector space use the properties of addition of functions and
scalar multiplication of functions as in the previous example.

We can not write out an explicit definition for one of these functions either, there
are not only infinitely many components, but even infinitely many components between
any two components! You are familiar with algebraic definitions like f(x) = ex

2�x+5.
However, most vectors in this vector space can not be defined algebraically. For
example, the nowhere continuous function

f(x) =

(

1 , x 2 Q

0 , x /2 Q
.

Example 60 R{⇤,?,#} = {f : {⇤, ?,#} ! R}. Again, the properties of addition and
scalar multiplication of functions show that this is a vector space.

You can probably figure out how to show that RS is vector space for any
set S. This might lead you to guess that all vector spaces are of the form RS

for some set S. The following is a counterexample.

Example 61 Another very important example of a vector space is the space of all
di↵erentiable functions:

⇢

f : R ! R
�

�

�

d

dx
f exists

�

.

From calculus, we know that the sum of any two di↵erentiable functions is dif-
ferentiable, since the derivative distributes over addition. A scalar multiple of a func-
tion is also di↵erentiable, since the derivative commutes with scalar multiplication
( d
dx(cf) = c d

dxf). The zero function is just the function such that 0(x) = 0 for ev-
ery x. The rest of the vector space properties are inherited from addition and scalar
multiplication in R.

Similarly, the set of functions with at least k derivatives is always a vector
space, as is the space of functions with infinitely many derivatives. None of
these examples can be written as RS for some set S. Despite our emphasis on
such examples, it is also not true that all vector spaces consist of functions.
Examples are somewhat esoteric, so we omit them.

Another important class of examples is vector spaces that live inside Rn

but are not themselves Rn.
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Example 62 (Solution set to a homogeneous linear equation.)
Let

M =

0

@

1 1 1
2 2 2
3 3 3

1

A .

The solution set to the homogeneous equation Mx = 0 is
8

<

:

c1

0

@

�1
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0

1
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0

@

�1
0
1

1

A

�

�

�

�

�

�

c1, c2 2 R

9

=

;

.

This set is not equal to R3 since it does not contain, for example,

0

@

1
0
0

1

A. The sum of

any two solutions is a solution, for example
2
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0

@
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1
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0
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1

A

3
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2
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0
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1
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0

@
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1

A

3
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0
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1
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1
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0

@
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0
1

1

A

and any scalar multiple of a solution is a solution

4

2
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0

@
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0
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1

A .

This example is called a subspace because it gives a vector space inside another vector
space. See chapter 9 for details. Indeed, because it is determined by the linear map
given by the matrix M , it is called kerM , or in words, the kernel of M , for this see
chapter 16.

Similarly, the solution set to any homogeneous linear equation is a vector
space: Additive and multiplicative closure follow from the following state-
ment, made using linearity of matrix multiplication:

If Mx1 = 0 and Mx2 = 0 then M(c1x1+c2x2) = c1Mx1+c2Mx2 = 0+0 = 0.

A powerful result, called the subspace theorem (see chapter 9) guarantees,
based on the closure properties alone, that homogeneous solution sets are
vector spaces.

More generally, if V is any vector space, then any hyperplane through
the origin of V is a vector space.
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This is a very good example
to think about and be a bit confused
by right now. We will have to come
back to it later in the course and 
realize that it is naturally interpreted
in terms of linear functions.
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Example 63 Consider the functions f(x) = ex and g(x) = e2x in RR. By taking
combinations of these two vectors we can form the plane {c1f + c2g|c1, c2 2 R} inside
of RR. This is a vector space; some examples of vectors in it are 4ex�31e2x, ⇡e2x�4ex

and 1
2e

2x.

A hyperplane which does not contain the origin cannot be a vector space
because it fails condition (+iv).

It is also possible to build new vector spaces from old ones using the
product of sets. Remember that if V and W are sets, then their product is
the new set

V ⇥W = {(v, w)|v 2 V,w 2 W} ,
or in words, all ordered pairs of elements from V and W . In fact V ⇥W is a
vector space if V and W are. We have actually been using this fact already:

Example 64 The real numbers R form a vector space (over R). The new vector space

R⇥ R = {(x, y)|x 2 R, y 2 R}

has addition and scalar multiplication defined by

(x, y) + (x0, y0) = (x+ x0, y + y0) and c.(x, y) = (cx, cy) .

Of course, this is just the vector space R2 = R{1,2}.

5.1.1 Non-Examples

The solution set to a linear non-homogeneous equation is not a vector space
because it does not contain the zero vector and therefore fails (iv).

Example 65 The solution set to

✓

1 1
0 0

◆✓

x
y

◆

=

✓

1
0

◆

is

⇢✓

1
0

◆

+ c

✓�1
1

◆

�

�

�

c 2 R
�

. The vector

✓

0
0

◆

is not in this set.

Do notice that if just one of the vector space rules is broken, the example is
not a vector space.

Most sets of n-vectors are not vector spaces.
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Not-examples are just as important as examples!!!!
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Example 66 P :=

⇢✓

a
b

◆

�

�

�

a, b � 0

�

is not a vector space because the set fails (·i)

since

✓

1
1

◆

2 P but �2

✓

1
1

◆

=

✓�2
�2

◆

/2 P .

Sets of functions other than those of the form RS should be carefully
checked for compliance with the definition of a vector space.

Example 67 The set of all functions which are nowhere zero

{f : R ! R | f(x) 6= 0 for any x 2 R} ,

does not form a vector space because it does not satisfy (+i). The functions f(x) =
x2+1 and g(x) = �5 are in the set, but their sum (f+g)(x) = x2�4 = (x+2)(x�2)
is not since (f + g)(2) = 0.

5.2 Other Fields

Above, we defined vector spaces over the real numbers. One can actually
define vector spaces over any field. This is referred to as choosing a di↵erent
base field. A field is a collection of “numbers” satisfying properties which are
listed in appendix B. An example of a field is the complex numbers,

C =
�

x+ iy | i2 = �1, x, y 2 R
 

.

Example 68 In quantum physics, vector spaces over C describe all possible states a
physical system can have. For example,

V =

⇢✓

�
µ

◆

| �, µ 2 C
�

is the set of possible states for an electron’s spin. The vectors
✓

1
0

◆

and
✓

0
1

◆

describe,

respectively, an electron with spin “up” and “down” along a given direction. Other

vectors, like
✓

i
�i

◆

are permissible, since the base field is the complex numbers. Such

states represent a mixture of spin up and spin down for the given direction (a rather
counterintuitive yet experimentally verifiable concept), but a given spin in some other
direction.
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Complex numbers are very useful because of a special property that they
enjoy: every polynomial over the complex numbers factors into a product of
linear polynomials. For example, the polynomial

x2 + 1

doesn’t factor over real numbers, but over complex numbers it factors into

(x+ i)(x� i) .

In other words, there are two solutions to

x2 = �1,

x = i and x = �i. This property has far-reaching consequences: often in
mathematics problems that are very di�cult using only real numbers become
relatively simple when working over the complex numbers. This phenomenon
occurs when diagonalizing matrices, see chapter 13.

The rational numbers Q are also a field. This field is important in com-
puter algebra: a real number given by an infinite string of numbers after the
decimal point can’t be stored by a computer. So instead rational approxi-
mations are used. Since the rationals are a field, the mathematics of vector
spaces still apply to this special case.

Another very useful field is bits

B2 = Z2 = {0, 1} ,

with the addition and multiplication rules

+ 0 1
0 0 1
1 1 0

⇥ 0 1
0 0 0
1 0 1

These rules can be summarized by the relation 2 = 0. For bits, it follows
that �1 = 1!

The theory of fields is typically covered in a class on abstract algebra or
Galois theory.
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5.3 Review Problems

Webwork:
Reading problems 1

Addition and inverse 2

1. Check that

⇢✓

x
y

◆

�

�

�

�

x, y 2 R
�

= R2 (with the usual addition and scalar

multiplication) satisfies all of the parts in the definition of a vector
space.

2. (a) Check that the complex numbersC = {x+ iy | i2 = �1, x, y 2 R},
satisfy all of the parts in the definition of a vector space over C.
Make sure you state carefully what your rules for vector addition
and scalar multiplication are.

(b) What would happen if you used R as the base field (try comparing
to problem 1).

3. (a) Consider the set of convergent sequences, with the same addi-
tion and scalar multiplication that we defined for the space of
sequences:

V =
n

f | f : N ! R, lim
n!1

f(n) 2 R
o

⇢ RN .

Is this still a vector space? Explain why or why not.

(b) Now consider the set of divergent sequences, with the same addi-
tion and scalar multiplication as before:

V =
n

f | f : N ! R, lim
n!1

f(n) does not exist or is ±1
o

⇢ RN .

Is this a vector space? Explain why or why not.

4. Consider the set of 2⇥ 4 matrices:

V =

⇢✓

a b c d
e f g h

◆

�

�

�

�

a, b, c, d, e, f, g, h 2 C
�
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