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5 Vector Visualization 

Vector Algorithms 

Vector data is a three-dimensional representation of 

direction and magnitude. Vector data often results from 

the study of fluid flow, or when examining derivatives, i.e. 

rate of change, of some quantity. 

Different visualization techniques are available for vector 

data sets, for example: 

• Hedgehogs and oriented glyphs 

• Warping 

• Displacement plots 

• Time animation 

• Streamlines 
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Vector Algorithms (continued) 

Divergence 

Given a vector field v:R3→R3, the divergence of 

v=(vx,vy,vz) is the scalar quantity 

 

Intuitively, if v is a flow field that transports mass, div v 

characterizes the increase or loss of mass at a given 

point p in the vector field in unit time. 

– positive divergence at p: mass spreads from p outward. 

– negative divergence at p: mass gets sucked into p. 

– zero divergence at p: mass is transported without getting 

spread or sucked, i.e. without compression or expansion. 
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Vector Algorithms (continued) 

Vorticity 

Given a vector field v:R3→R3, the vorticity of v=(vx,vy,vz), 

also called curl or rotor, is the vector quantity 

 

 

The vorticity rot v of v is a vector field that is locally 

perpendicular to the plane or rotation of v and whose 

magnitude expresses the speed of angular rotation of v 

around rot v. Hence, the vorticity vector characterizes the 

speed and direction of rotation of a given vector field at 

every point. Sometimes rot v is also denoted as curl v. 
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Vector Algorithms (continued) 

neg. divergence 

pos. divergence 

laminar 

vortex 

Divergence of a 

2D vector field 

Vorticity of a 2D 

vector field 

Images courtesy of Alexandru Telea 
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Vector Algorithms (continued) 
A simple vector visualization technique is to draw an 

oriented, scaled line for each vector. The line begins at 

the point with which the vector is associated and is 

oriented in the direction of the vector components. 

Typically, the resulting line must be scaled up or down to 

control the size of its visual representation. This 

technique is often referred to as  hedgehog because of 

the bristly result. 

 

 

Direction can also be visualized using color coding by 

using different colors at each ends of the glyph 
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Vector Algorithms (continued) 

The problem with glyphs is that it easily results in clutter. 
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Vector Algorithms (continued) 

Vector Color Coding 

One of the simplest techniques to produce a visualization 
is to use vector color coding. Similar to scalar color 
mapping, vector color coding associates a color with 
every point of a given surface, on which we have defined 
a vector dataset. The color is used to encode the vector 
orientation and direction attributes. Every distinct hue 
corresponds to a different angle of the color wheel: red is 
0º, magenta 60º, blue is 120º, cyan is 180º, green is 240º, 
and yellow is 300º. In addition, the vector magnitude can 
be encoded as the luminance, i.e. long vectors result in 
full color whereas shorter vectors tend to be represented 
as black. 
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Vector Algorithms (continued) 

Example 

 

 

 

 

 

 

 

Orientation and magnitude Orientation only 

Images courtesy of Alexandru Telea 
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Vector Algorithms (continued) 

Warping 

Vector data is often associated with motion. The motion is 

in the form of velocity or displacement. An effective 

technique for displaying such vector data is to “warp” or 

deform geometry according to the vector field. For 

example, imagine representing the displacement of a 

structure under load by deforming the structure. 

The warping technique should – as usual – be applied 

with the application in mind. 
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Vector Algorithms (continued) 

Example 

The motion of a vibrating beam 
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Vector Algorithms (continued) 

Example 

Warped planes in a structured grid data set. The planes 

are warped according to flow momentum. 

 

 

 

 

 

 

Note: scaling might be required 
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Vector Algorithms (continued) 

Combination of techniques 

We can also combine scalar and vector techniques by 

using a colormap: 
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Vector Algorithms (continued) 

Displacement plots 

Vector displacement on the surface of an object can be 

visualized with displacement plots. A displacement plot 

shows the motion of an object in the direction 

perpendicular to its surface. The object motion is caused 

by an applied vector field. In a typical application the 

vector field is a displacement or strain field. A useful 

application of this technique is the study of vibration. 
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Vector Algorithms (continued) 

In order to move an object’s surface in normal direction 

using vector data, the vectors have to be converted into 

scalars by computing the dot product between the vector 

and the normal. 
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Vector Algorithms (continued) 

Example 

Displacement plot with color map 
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Vector Algorithms (continued) 

Time animation 

The idea is to move points (mass-less particles) along the 

vector field. Basically, the particle is advected at every 

point in direction of the vector at that location (if 

necessary interpolation needs to be used), i.e. v = dx/dt. 

Beginning with a sphere S centered about some point, we 

move S repeatedly to generate the bubbles below: 
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Vector Algorithms (continued) 

The eye tends to trace out a path by connecting the 

bubbles, giving the observer a qualitative understanding 

of the fluid flow in that area. The bubbles may be 

displayed as an animation over time (giving the illusion of 

motion) or as a multiple exposure sequence (giving the 

appearance of a path). 

The choice of step size is a critical parameter in 

constructing accurate visualization of particle paths in a 

vector field. By taking large steps we are likely to jump 

over changes in the velocity. Using smaller steps we will 

end in a different position. 
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Vector Algorithms (continued) 

Example 

Particle advection for fire simulation 
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Vector Algorithms (continued) 

Tracing particles 

In order to determine the locations of a particle previously 

represented as a bubble, the particle needs to be traced 

throughout the vector field.  

Since we are considering a mass-less particle, the 

particle basically follows the integral curve, i.e. 

 

 

 

The initial position is user-defined. 
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Vector Algorithms (continued) 

Although this form cannot be solved analytically for most 

real world data, its solution can be approximated using 

numerical integration techniques. Accurate numerical 

integration is a topic beyond the scope of this class, but it 

is known that the accuracy of the integration is a function 

of the step size. Since the path is an integration 

throughout the data set, the accuracy of the cell 

interpolation functions, as well as the accuracy of the 

original vector data, plays an important role in realizing 

accurate solutions. 
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Vector Algorithms (continued) 

Euler’s method 

The simples form of numerical integration is Euler’s 

method 

 

 

where xi is the position and Δt the step size. 

Euler’s method has an error on the order of O(Δt2), which 

is not accurate enough for some applications. 
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Vector Algorithms (continued) 

Example 

Integral curves computed using two different techniques 

for a rotational vector field 
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Vector Algorithms (continued) 

Runge-Kutta method 

The family of explicit Runge-Kutta methods is given by 

  

Where 

 

 

 

 

(Note: the above equations have different but equivalent 

definitions in different texts). 
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Vector Algorithms (continued) 

To specify a particular method, one needs to provide the integer s 

(the number of stages), and the coefficients aij (for 1 ≤ j < i ≤ s), bi (for 

i = 1, 2, ..., s) and ci (for i = 2, 3, ..., s). These data are usually 

arranged in a mnemonic device, known as a Runge-Kutta tableau: 

 

 

 

The Runge-Kutta method is consistent if  

There are also accompanying requirements if we require the method 

to have a certain order p, meaning that the truncation error is 

O(hp+1). These can be derived from the definition of the truncation 

error itself. For example, a 2-stage method has order 2 if b1 + b2 = 1, 

b2c2 = 1/2, and b2a21 = 1/2. 
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Vector Algorithms (continued) 

Runge-Kutta technique of order 2 

Hence, we get the following formula for the Runge-Kutta 

technique of order 2: 
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Vector Algorithms (continued) 

Streamlines 

We have seen that the step size is a design parameter. 

Hence, we can choose the step size in such a way that a 

line is formed. For a static vector field, i.e. a vector field 

that does not change over time, the integral curve results 

in a streamline. 

Different type types of integral curves exist: 

• Pathlines 

• Streaklines 

• Streamlines 
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Vector Algorithms (continued) 

Pathline 

A pathline is the line traced by a given particle. This is 

generated by injecting a dye into the fluid and following its 

path by photography or other means  



5-29 Department of Computer Science and Engineering 

5 Vector Visualization 

Vector Algorithms (continued) 

Streakline 

A streakline concentrates on fluid particles that have 

gone through a fixed station or point. At some instant of 

time the position of all these particles are marked and a 

line is drawn through them. 
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Vector Algorithms (continued) 

Streamline 

A streamline is one that is drawn tangential to the velocity 

vector at every point in the flow at a given instant and 

forms a powerful tool in understanding flows. Thus, it 

satisfies the equation )),((),( txsvtxs

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Vector Algorithms (continued) 

Example 

Flow velocity computed for a small kitchen (side view). 

Forty streamlines start along the rake positioned under 

the window. Some eventually travel over the hot stove 

and are convected upwards. 
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Vector Algorithms (continued) 

Example 

Flow around NASA’s tapered cylinder 
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Vector Algorithms (continued) 

Many enhancements of streamlines exist. Lines can be 

colored according to velocity magnitude to indicate speed 

of flow. Other scalar quantities such as temperature or 

pressure also may be used to color the lines. We also 

may create constant time dashed lines. Each dash 

represents a constant time increment. This, in areas of 

high velocity, the length of the dash will be greater 

relative to regions of lower velocity. 
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Vector Algorithms (continued) 

Example 

NASA’s blunt fin data set 
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Vector Algorithms (continued) 

Choosing an appropriate sampling strategy that solves 

the coverage, density, and continuity issues well is more 

critical when tracing streamlines in 3D datasets as 

compared to 2D datasets. 

Similar to the using glyphs, streamline visualizations can 

get cluttered if the parameters for placement and opacity 

are not chosen properly. 
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Vector Algorithms (continued) 

Example 

Undersampling 10x10x10, opacity 1 Undersampling 3x3x3, opacity 1 

Undersampling 3x3x3, opacity 0.1 Undersampling 3x3x3, opacity 0.3 

Images courtesy of 

Alexandru Telea 
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Previously, we showed how to create simple vector 
glyphs and how to integrate particles through a vector 
field to create streamlines. Now we extend these 
concepts to integrate more data into our visualization. 

We start with streamribbons and streamsurfaces. 

Streamlines depict particle paths in a vector field. By 
coloring these lines, or creating local glyphs (such as 
dashed lines or oriented cones), we can present 
additional scalar and local information. However, these 
techniques can convey only elementary information about 
the vector field. Local information, e.g. flow rotation or 
derivatives, and global information, e.g. structure of a 
field such as vortex tubes, is not represented. 

Vector Algorithms (continued) 



5-38 Department of Computer Science and Engineering 

5 Vector Visualization 

Streamribbons 

Streamribbons are a technique that includes local 

information, such as flow rotation. They are a natural 

extension of the streamline technique. The ribbon is 

created by widening the line. It can be constructed by 

generating two adjacent streamlines and then bridging 

the lines with a polygonal mesh. This technique works 

well as long as the streamlines remain relatively close to 

one another. If separation occurs, so that the streamlines 

diverge, the resulting ribbon will not accurately represent 

the flow. 

Vector Algorithms (continued) 



5-39 Department of Computer Science and Engineering 

5 Vector Visualization 

The streamribbon provides information about important 

flow parameters: the vector vorticity and flow divergence. 

Vorticity ω is the measure of rotation of the vector field, 

expressed as a vector quantity: a direction (axis of 

rotation) and magnitude (amount of rotation). Streamwise 

vorticity Ω is the projection of along the instantaneous 

velocity vector v. In other words, streamwise vorticity is 

the rotation of the vector field around the streamline 

defined as follows: 

 

The amount of twisting of the streamribbon approximates 

the streamwise vorticity. 
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Vector Algorithms (continued) 
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Flow divergence is a measure of the spread of the flow. 

The changing width of the streamribbon is proportional to 

the cross-flow divergence of the flow. 

Vector Algorithms (continued) 
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Examples 

 

 

 

 

 

 

 

Images courtesy of Mathworks 

Vector Algorithms (continued) 
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Vector Algorithms (continued) 

Streamtubes 

If we now start streamlines around a circular area A 

perpendicular to the flow we can create a tubular 

structure representing the vector field: 

 

 

 

These streamlines form a tube that is impermeable since 

the walls of the tube are made up of streamlines, and 

there can be no flow normal to a streamline (by 

definition). This tube is called a streamtube.  
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Vector Algorithms (continued) 

Example 

Images courtesy of Google 



5-44 Department of Computer Science and Engineering 

5 Vector Visualization 

Streamsurfaces 

A streamsurface is a collection of an infinite number of 

streamlines passing through a base curve. The base 

curve, or rake, defines the starting points for the 

streamlines. If the base curve is closed (e.g. a circle) the 

surface is closed and a streamtube results. Thus, 

streamribbons are specialized types of streamsurfaces 

with a narrow width compared to length. 

Vector Algorithms (continued) 
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Computing streamsurfaces 

In order to compute a streamsurface based on an 

interpolation, the base curve is split equidistantly. At each 

split point a streamline is started. The immediate points of 

the integration process are then connected with triangles. 

Vector Algorithms (continued) 
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If two neighboring streamline become closer than a pre-

defined threshold, the two streamlines are merged and 

only one is continued. In the opposite case, where two 

streamlines diverge so that they are farther away from 

each other than a pre-defined threshold, an additional 

streamline is started in the center between those two 

streamlines to maintain a certain precision of the 

streamsurface. 

Often times, streamsurfaces are colored in stripes in 

order to visualize the divergence of the vector field. 

Vector Algorithms (continued) 
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Example 

Vector Algorithms (continued) 
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Streampolygons 

Streampolygons try to visualize additional local properties 

of a vector field, such as strain, displacement, and 

rotation. The basic idea is to integrate a streamline and 

use a deformed polygon instead of a single point at each 

point resulting form the integration step. The deformation 

of the polygon is based on strain and rotation as defined 

by the vector field. 

Vector Algorithms (continued) 
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The local strain is expressed as a combination of the 

partial derivatives: 

 

 

 

The local rigid body rotation is given by: 
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Vector Algorithms (continued) 
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Vector Algorithms (continued) 



5-51 Department of Computer Science and Engineering 

5 Vector Visualization 

Placing the deformed polygons along the streamline: 

Vector Algorithms (continued) 
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Vector field topology 

Vector fields have a complex structure characterized by 

special features called critical points. Critical points are 

locations in the vector field where the local vector 

magnitude goes to zero and the vector direction becomes 

undefined. At these points the vector field either 

converges or diverges, and/or local circulation around the 

point occurs. In order to understand critical points better, 

we take a look at linearly defined vector fields. Since we 

usually interpolate vector fields linearly, this will result in 

the most common cases of critical points. 

Vector Algorithms (continued) 
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Critical points 

Let v be a given vector field v:W→IR3 with W  IR3 as 

defined on a face of a tetrahedron. Let further x0W be a 

point where the vector field vanishes, i.e. v(x0) = 0. Then 

x0 is considered a critical point of the vector field v. 

Several terms are used synonymously for critical points. 

These are singularities, singular points, zeros, or 

equilibrium.  

Vector Algorithms (continued) 
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Linear vector fields 

A linear 3-D vector field v can be described by a matrix 
and a displacement vector. Therefore, a linear map 
A:W→IR3 described by the 33 matrix A and a vector 
bIR3 can be found such that it describes the given vector 
field v, i.e. v(x) = Ax + b for all xW. 

Then, singularities can be found by directly solving the 
equation Ax + b = 0. Obviously, there cannot be more 
than one singularity located within one triangle when 
using linear interpolation. For the case b = 0 we consider 
the vector field described by Ax homogenous linear. 
Without loss of generality we assume homogenous linear 
vector fields in the further discussion of the theory of 
vector field topology. 

Vector Algorithms (continued) 
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Classification of critical points 

Singularities can be classified using the eigenvalues of 

the interpolating matrix A regarding their property of 

attracting or repelling the surrounding flow. If all 

eigenvalues have negative real parts the singularity is 

considered a sink which attracts the surrounding flow. On 

the other hand, if all eigenvalues have positive real parts 

the singularity is a source that repels the surrounding 

flow. 

Vector Algorithms (continued) 



5-56 Department of Computer Science and Engineering 

5 Vector Visualization 

Computing streamlines 

Further analyzing the matrix A leads to a several types of 

vector fields distinguished by their major properties of the 

flow, i.e. the behavior of the streamlines within this vector 

field. In order to compute a streamline, the Cauchy 

problem has to be solved with initial problem x(0)  = k, k  

IR3: 
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 

Vector Algorithms (continued) 
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Solution to the Cauchy problem 

It can be proven that the solution to the Cauchy problem 

for a linear vector field can be described by an 

exponential function: 

 

 

Different categories of vector fields can then be 

distinguished weather the matrix A is diagonalizable, 

resulting in a different behavior of the streamlines in each 

case. This leads to three main categories described in the 

following. 
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Vector Algorithms (continued) 
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Type 1 vector fields 

The matrix A is diagonalizable, i.e. the eigenvalues λ and 

μ are real. Thus it is similar to a matrix B, i.e. there exist 

an invertible matrix P with B = PAP-1, of the following 

structure: 

 

Due to the structure of the matrix B, a streamline x(t) with 

initial condition k = (k1, k2) can be computed in a vector 

field described by such a matrix using the following 

formula:  
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Vector Algorithms (continued) 
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By computing streamlines we can generate a phase 

portrait of the different cases of vector fields within this 

category. Three different types are possible, again 

distinguished by the eigenvalues of the interpolating 

matrix A. The first case, where λ > 0 > μ, results in a 

saddle singularity: 

Vector Algorithms (continued) 
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The second case, described by an eigenvalue 

configuration of λ < μ < 0, describes a node singularity:  

Vector Algorithms (continued) 
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The last case with two identical eigenvalues is the focus 

singularity, for example λ = μ < 0. 

 

 

 

 

The examples shown here mainly show sinks; however, 

the same types of singularities occur with sources. The 

only difference is in the sign of the eigenvalues, i.e. 

multiplying the eigenvalues by -1 results in the same 

singularities as sources. 

Vector Algorithms (continued) 
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Type 2 vector fields 

The two eigenvalues of the matrix A have a non-

imaginary part, i.e. A is similar to the following matrix: 

 
When substituting the values a and b in the above matrix 

by introducing new values θ and r: 

 
the matrix B can be rewritten as follows:  
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Obviously, a vector field described by such a matrix has a 

strong rotational component. Consequently, a streamline 

x(t) with initial condition k = (k1, k2) can be computed using 

the following formula: 
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For a=0, the streamlines describe perfect, concentric 

circles, resulting in the center singularity: 

Otherwise, a spiral singularity is 

described with streamlines spiralling 

around the singularity and then 

eventually ending up at the 

singularity itself.  
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Type 3 vector fields 

The matrix A is not diagonalizable and the two 

eigenvalues are equal, i.e. λ = μ. In this case, A is similar 

to the following matrix: 

 

By splitting up the matrix B into two components 

 

it can be easily seen that a streamline with initial condition k = 

(k1, k2)  integrated through such a vector field can be described 
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This case resembles an improper node singularity: 
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Topological analysis 

The topological graph, or simply topology, of a vector field 

describes the structure of the flow or phase portrait. 

Separatrices are used to separate the areas of the flow 

into regions with similar behavior. Separatrices can be 

easily computed by integrating streamlines emerging 

from saddle singularities in direction of the eigenvectors 

of the interpolating matrix. The topological graph then 

consists of the singularities and the separatrices.  
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Example 
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Topological analysis with different interpolation 

The topological graph be different when using different 

types of interpolations. By changing the cell type alone, 

for example triangulating the cells by splitting up 

rectangles into two triangles, the topological graph can 

change. Hence, the interpolation technique used for 

integrating the streamlines should be chosen with special 

care! 

Vector Algorithms (continued) 



5-70 Department of Computer Science and Engineering 

5 Vector Visualization 

Example 
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Closed streamlines 

There are more topological features other than 

separatrices and critical points. The flow can – in the 

same way as with critical points – be attracted or repelled 

by a closed streamline. 

For example, the Hopf bifurcation describes critical point 

that changes from source to sink resulting in an attracting 

closed streamline: 
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By considering closed streamlines are able to connect 

parts of the topological skeleton and to complete the 

topological analysis. 

 

 

 

 

 

Since closed streamlines are a global feature we cannot 

identify them by using local properties of the vector field. 
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Obviously a closed streamline runs through the same 

cells of our grid over and over again. The idea for finding 

a closed streamline is basically to prove that the closed 

streamline does not leave cell cycle. 
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In order to check if the streamline can leave cell cycle we 

basically need to start backward integration at every point 

at edge of cell cycle. If the backward integration exists 

that run toward the streamline then the streamline leaves 

cell cycle (near the point where the backward integration 

was started). Otherwise, if such backward integration 

does not exist then the streamline stays inside the cell 

cycle forever. The problem, however, is that the number 

of points at the edge of the cell cycle infinite. 
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Therefore, we define 
potential exits. Potential exits 
are considered those points 
that are either vertices of cell 
cycle or points at edge of cell 
cycle where the vector field 
is tangential to that edge. 
Then, backward integration 
is only necessary at these 
potential exits since the 
integration of two 
neighboring potential exits 
cover the entire edge 
connecting them. 
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Example 

In a vector field 

describing a hurricane, 

the eye of the hurricane 

is surrounded by a 

closed streamline if the 

vector field is projected 

on to a 2-D plane. 

Thus, the eye can be 

identified by finding the 

closed streamline in the 

projected vector field. 

 

Image courtesy of David Bock, NCSA 
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Example 

In combustion processes it is 

important that the gas stays in 

an area for a certain amount of 

time for the gas  to burn 

completely. Closed streamlines 

are a hint for recirculation 

zones, i.e. areas where the gas 

stays for longer period of time. 

Hence, closed streamlines 

indicate areas with better 

combustion. 
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Tracking closed streamlines over time 

In order to understand how and when closed streamlines 

occur, we can take a look at a vector field that changes 

over time. At various instances in time, a 2-D vector field 

is given. Through linear interpolation between 

consecutive time steps we can compute vectors at every 

instance in time and any location within the 2-D space 

defined by the domain of the vector field. 
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2-D grid structure including time 
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Closed streamlines over time 

We can now determine the location of the closed 

streamlines within each of the time steps and then 

connect the resulting curves with triangles: 
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Line integral convolution 

The basic idea of line integral convolution (LIC) is to 

deform a texture according to the given vector field in 

order to get a visualization. 

This approach heavily depends on the choice of texture 

as we will see later. Hence, a bad choice of texture may 

occlude important features of the vector field. 

Before go into the details of line integral convolution, we 

should begin with a simpler case, the DDA convolution. 
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DDA convolution 

This approach is a generalization of traditional line 

drawing techniques and the spatial convolution 

algorithms given by Cabral and Leedom (line integral 

convolution) or Van Wijk and Perlin (spot noise). 
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The convolution algorithm then consists of three steps: 

• Each vector in the field is used to define a long, narrow, 

DDA generated filter kernel that is tangential to the 

vector and going in the positive and negative vector 

direction some fixed distance, the kernel length L.  

• A texture is then mapped one-to-one onto the vector 

field. 

• The input texture pixels under the filter kernel are 

summed, normalized by the length of the filter kernel, 

2L, and placed in an output pixel image for the vector 

position. 
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Simple circular vector field with     Computational fluid dynamics                                                                            

           white noise (texture)                 code with white noise 
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Symmetry 

This algorithm is very sensitive to symmetry of the DDA 

algorithm and filter. If the algorithm weights the forward 

direction more than the backward direction, the circular 

field in the previous figure (left) would appear to spiral 

inward implying a vortical behavior that is not present in 

the field (i.e. representing the center singularity as a 

spiral singularity). 

Vector Algorithms (continued) 



5-88 Department of Computer Science and Engineering 

5 Vector Visualization 

Disadvantages 

This algorithm assumes that the local  vector field can be  

approximated by a straight line.  

For complex structures smaller than the length of the 

DDA line, the local radius of curvature is small and is not 

well approximated by a straight line.  

In a sense, DDA convolution renders the vector field 

unevenly, treating linear portions of the vector field more 

accurately than small scale vortices (high curvature 

areas). 

Vector Algorithms (continued) 



5-89 Department of Computer Science and Engineering 

5 Vector Visualization 

Line Integral Convolution (LIC) 

The LIC algorithm is a derivative of the DDA technique 

that, instead of using a vector, uses a local streamline to 

generate the filter. The local behavior of the vector field 

can be approximated by computing a local stream line 

that starts at the center of pixel (x, y) and moves out in the 

positive and negative directions.  
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The forward coordinate advection 
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As with the DDA algorithm, it is important to maintain 

symmetry about a cell. Hence, the local stream line is 

also advected backwards by the negative of the vector 

field as shown in this equation: 

 

 

 

Primed variables represent the negative direction 

counterparts to the positive direction variables and are 

not repeated in subsequent definitions. As above Δs'i, is 

always positive. 
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Illustration of local stream 
line calculation 

Continuous sections of the 
local stream line – i.e. the 
straight line segments in the 
figure on the right – can be 
thought of as parameterized 
space curves in s and the input 
texture pixel mapped to a cell 
can be treated as a continuous 
scalar function of x and y. It is 
then possible to integrate over 
this scalar field along each 
parameterized space curve.  
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Line Integrals of the First Kind (LIFK) 

Such integrals can be summed in a piecewise C1 fashion 

and are known as line integrals of the first kind (LIFK): 
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Result of Applying LIFK 

This results in a variation of the DDA approach that 

locally follows the vector field and captures small radius 

of curvature features. 

For each continuous segment, i, an exact integral of a 

convolution kernel k(w) is computed and used as a weight 

in the LIC as shown in the equation on next slide. 
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LIC for an output pixel F’(x, y) 
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Local Streamline L 

The length of the local stream line, 2L, is given in unit 

pixels. Depending on the input pixel field, F, if L is too 

large, all the resulting LICs will return values very close 

together for all coordinates (x, y).  

On the other hand, if L is too small then an insufficient 

amount of filtering occurs. Since the value of L 

dramatically affects the performance of the algorithm, the 

smallest effective value is desired. 
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The effect of varying L 
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Truncation of the streamline / termination of 

algorithm 

Singularities in the vector field occur when vectors in two 

adjacent local stream line cells geometrically “point” at a 

shared cell edge. This results in Δsi values equal to zero 

leaving fraction in the previous equation undefined. This 

situation can easily be detected and the advection 

algorithm terminated. 

If the vector field goes to zero at any point, the LIC 

algorithm is terminated as in the case of a field 

singularity. Both of these cases generate truncated 

stream lines. 
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Periodic motion filters 

The LIC algorithm visualizes local vector field tangents, 

but not their direction. The local vector field direction can 

be rendered via animation of successive LIC imaged 

vector fields using varying phase shifted periodic filter 

kernels.  
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Required Properties of the filter 

• The success of this technique depends on the shape of 

the filter. 

• If the filter is periodic, by changing the phase of such 

filters as a function of time, apparent motion in the 

direction of the vector field is created. 

• It is possible, and desirable, to create periodic low-pass 

filters to blur the underlying texture in the direction of 

the vector field.  
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Hanning Filter 

A Hanning filter, ½(1 + cos(w+b)), has this property. It has 

low band-pass filter characteristics, it is periodic by 

definition and has a simple analytic form. This function 

will be referred to as the ripple filter function.  
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Ripple filter function 

Vector Algorithms (continued) 



5-103 Department of Computer Science and Engineering 

5 Vector Visualization 

General form of the filter 

The general form of this function (Hanning ripple function 
• Hanning window function) is shown in the following 
equation: 

 

 

 

 

c :  dilation constant of the Hanning window function 

d :  dilation constant of the Hanning ripple function 

 :  phase shift of the  ripple function given in radian 

))cos()cos()cos()cos(1(
4

1

2

)cos(1

2

)cos(1
)(













dwcwdwcw

dwcw
wk

Vector Algorithms (continued) 



5-104 Department of Computer Science and Engineering 

5 Vector Visualization 

Periodicity of the Ripple function 

Choosing the periodicity of the ripple function represents 

making a design trade-off between maintaining a nearly 

constant frequency response as a function of phase shift 

and the quality of the apparent motion. 
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Frequency of the filter 

• A low frequency ripple function results in a windowed 

filter whose frequency response noticeably changes as 

a function of phase. This appears as a periodic blurring 

and sharpening of the image as the phase changes. 

• Higher frequency ripple functions produce windowed 

filters with a nearly constant frequency response. 

However, the feature size picked up by the ripple filter 

is smaller and the result is less apparent motion.  

• If the ripple frequency exceeds the Nyquist limit of the 

pixel spacing the apparent motion disappears. 
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Example 
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Normalization 

A normalization to the convolution integral is performed in 

the equation below to ensure that the apparent brightness 

and contrast of the resultant image is well behaved as a 

function of kernel shape, phase and length. 
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Variable and Constant kernel normalization 

Because the actual length of the LIC may vary 

from pixel to pixel, the denominator cannot be 

pre-computed. 

However, an interesting effect is observed if a 

fixed normalization is used. Truncated stream 

lines are attenuated which highlights singularities. 
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Comparison between different normalizations 

     Variable kernel normalization            Constant kernel normalization  
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White noise convolved with checkerboard vector field 

            fixed  normalization                gradient shaded normalization  
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Three-dimensional LIC 

The LIC algorithm easily generalizes to higher 

dimensions. 

In the 3D case, cell edges are replaced with cell faces. 

Both the input vector field and input texture must be 

three-dimensional.  

The output of the three-dimensional LIC algorithm is a 3D 

image or scalar field. 
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3D rendering 

This is a 3D rendering 

of an electrostatic field 

with two point charges 

placed a fixed 

distance apart from 

one another. 
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Implementation of the LIC algorithm 

The LIC algorithm is designed as a function, which maps 

an input vector field and texture to a filtered version of the 

input texture. The dimension of the output texture is that 

of the vector field. Careful attention must be paid to the 

size of the input texture relative to that of the vector field. 
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Size of the input texture 

• If the texture is too large it is cropped to the vector field 

dimensions. 

• If the input texture is smaller than the vector field the 

implementation of the algorithm wraps the texture using 

a toroidal topology. That is, the right and left edges 

wrap as do the top and bottom edges. 

• If too small a texture is used, the periodicity induced by 

the texture tiling will be visible. 
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Post processing 

The output of the LIC algorithm can be operated on in a 

variety of ways. In this section several standard 

techniques are used in combination with LIC to produce 

novel results. 
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The fixed normalization fluid dynamics field is multiplied 

by a color image of the magnitude of the vector field: 
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A wind velocity visualization is created by compositing an 

image of North America under an image of the velocity 

field rendered using variable length LIC over noise: 

Vector Algorithms (continued) 



5-118 Department of Computer Science and Engineering 

5 Vector Visualization 

The LIC algorithm can be used to process an image 

using a vector field generated from the image itself, e.g. 

image gradient: 
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The LIC algorithm can also be used to post process 

images to generate motion blur. The original photo on the 

left shows no motion blurring. The photo on the right uses 

variable length LIC to motion blur Boris Yeltsin’s waving 

arm, simulating a slower shutter. 
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