
MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Vectorization in MATLAB
And other minor tips and tricks

Derek J. Dalle
University of Michigan, Ann Arbor, MI 48109

March 28, 2012

MATLAB vectorization, and other tips 1/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Introduction

For most of the examples, you will have to open MATLAB and
enter in the sample code to see what the results will be.

Vectorization

The main reason for this tutorial is to explain the basics of using
vectorizing syntax in MATLAB. In particular there are some
examples of things that are particularly hard to find in help files and
on the internet.

Variable types

More importantly, the slides lay out a basic strategy for eliminating
unnecessary loops from your code. Sometimes you may want to keep
unnecessary loops in your code to make the code easier to read or to
make easier to generalize at a later time, but in many, many cases,
removing a loop would make the code better. These slides will
introduce several techniques that can be used to vectorize trickier
sections of code.

MATLAB vectorization, and other tips 2/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Creating vectors
Direct input

Simple cases

This is the easiest way to
create an array.

A = [1, 3; 2, 4]

Commas are not required.

A = [1 3; 2 4]

But be careful with operators!

A = [1 -2]

is very different from

A = [1 - 2]

This is a rare case where
spaces matter.

Appending arrays

Add elements to vectors.

x = [1 2 3];
x = [x, 4]

Combine arrays.

A = [1, 2];
B = [4, -1; 2, 5];
C = [A; B];

MATLAB will check for
compatible sizes.

Indexing new entries

Avoid doing this!

x = 1; x(2) = 3
MATLAB vectorization, and other tips 3/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Initializing large vectors

Creating large vectors by appending is very inefficient
Very difficult to make a higher-dimension array

Initialization

The commands ones, zeros, and nan are
particularly useful for creating vectors.

A = zeros(20, 10)

This makes a 20-by-10 matrix with zero
in all entries. The following makes a
row vector in which all entries are 4.

x = 4 * ones(1, 10)

For some reason, using only one input
gives you a square matrix.

>> A = zeros(2)
A =

0 0
0 0

Multidimensional arrays

This is the preferred way to make an
array with more than two dimensions.

A = zeros(3, 2, 4)

This creates a 3-by-2-by-4 matrix, which
is basically 4 3-by-2 matrices stacked in
pages.

Getting the dimensions

For the array defined above, size(A)
will return [3 2 4], and numel(A) will
return 24. The popular command length
will return 4. Avoid using the length
command!

MATLAB vectorization, and other tips 4/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Other initialization functions

Not a number: NaN

You can initialize a matrix of
NaNs.

A = nan(20, 20)

A NaN can be used as more than
just an error placeholder.
Usually they come from a
calculation like 0/0, but they
have other uses. If you have a
vector whose size isn’t known
in advance, it’s a good way to
keep track of how many of the
values have been used.

Random numbers

The rand function can also
make arbitrary-size arrays.

A = rand(20, 15)

This creates a 20-by-15 matrix
with pseudo-random numbers
between 0 and 1.

Diagonal matrices

Also check how to use the
commands eye and diag.

I = eye(4)

This creates a 4-by-4 identity
matrix.

MATLAB vectorization, and other tips 5/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Vectorization
MATLAB code performance

This is the key to writing fast code in MATLAB.

Compare two versions that calculate the following formula for
each element of two m×n matrices

z = x2 siny

Bad version

for i = 1:m
for j = 1:n

z(i,j) = x(i,j)^2*sin(y(i,j))
end

end

Good version

z = x.^2 .* sin(y)

MATLAB vectorization, and other tips 6/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Built-in functions
Purely numeric functions

Most MATLAB functions, like sin, cos, log, and many others,
work regardless of the size of the input.

If A is a numeric array of any size, then B=sin(A) is another array
such that B(i,j) == sin(A(i,j))

Example

This creates a 20-by-4-by-2 3D array called A and then creates another
array with the same dimensions using the exponential function.

A = rand(20, 4, 2);
B = exp(A)

Most numeric functions have this behavior. The exceptions are matrix
operators and functions like max and sum which obviously output a
smaller array than the input.

MATLAB vectorization, and other tips 7/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Built-in functions
Collapsing functions

Some function act on a vector and output a scalar.

When given an input with more than one non-singleton dimension
MATLAB only collapses one dimension at a time.

Vector behavior

Works on either a row or column
vector.

x = [1, 4, 8, -1, 2];
max(x) == 8
y = [2; 7; -2; -3; 2];
max(y) == 7

Array behavior

The function collapses the first
dimension that is larger than 1.

A = [1, 3, 2; -4, 5, -1];
max(A) == [1 5 2]

Collapsing arrays

Suppose you have an array like

A = rand(3, 3, 3)

and you want to add up all of the
27 entries. You can use
sum(sum(sum(A))), but the
command changes based on the
size of A. A better option is to
convert A to a column vector and
use sum once.

sum(A(:))

The syntax A(:) converts any
array into a column vector.

MATLAB vectorization, and other tips 8/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Operators
Entry-by-entry arithmetic

Some basic operators, like * and ˆ, do not operate on elements.

They default to matrix multiplication and other matrix math.

Use operators like .* and .ˆ instead.

The operators + and - are already element-by-element.

It’s best to use the dots unless you explicitly want matrix math.

Matrix multiplication

A = [1, 2; 0, 4];
B = [2, -1; 3, 4];
A * B == [8, 7; 12, 16]

Entry-wise multiplication

A = [1, 2; 0, 4];
B = [2, -1; 3, 4];
A .* B == [2, -2; 0, 16]

Note that some combinations of matrix size will work with one type of
operator and not the other.

Matrix math doesn’t work at all with multidimensional arrays.

It’s always possible to combine scalars with arrays, for example 4 + A

MATLAB vectorization, and other tips 9/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Manipulation of numeric arrays

Here we discuss several topics critical to using arrays
effectively. There are a host of issues that come up when
vectorizing a code, and any one of them can force you to write a
loop. This section gives you an idea of what kind of hurdles can
be overcome.

Comparing and testing arrays
Reshaping and repeating arrays
Logical indexing and searching
Vectors of vectors
Advanced examples

MATLAB vectorization, and other tips 10/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Comparing arrays
Equality of arbitrary arrays

Suppose you have two variables A and B. You suspect that they might
be equal, but you aren’t even sure if both of them are numeric. The
normal thing to try would be simply A == B, but this has multiple
problems. If both A and B are not scalars but have different sizes, this
will throw an error. Even if A and B are the same array, this will create
an array equivalent to true(size(A)) rather than a single true value.

Example

Initialize two arrays that are equal.

A = rand(4,4,3); B = A;

Try this and see what you get.

A == B

Not exactly what we wanted... Now try this example.

A = rand(4); B = rand(2,3);
A == B

MATLAB vectorization, and other tips 11/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Comparing arrays
Equality of arbitrary arrays (continued)

The full solution is, unfortunately, more complicated.

Create two arrays.

A = rand(4,5,2); B = A;

Get the sizes of the arrays to make sure they can be compared.

s_A = size(A); s_B = size(B);

Before we can compare s_A and s_B directly, we also need to know that they
have the same size, but at least we know that they are both row vectors. So
now we can test if A and B are the same using a long test.

q = (numel(s_A) == numel(s_B)) && all(s_A == s_B) && all(A(:) == B(:))

Way easier way...

MATLAB has a command to do all of these checks for you.

q = isequal(A, B)

MATLAB vectorization, and other tips 12/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Comparing arrays
Comparing real numbers

Two ways to compare

Array with a scalar

This method compares each
entry in the array with the
scalar individually.

[1, 3, 4, -1] > 2
ans =

0 1 1 0

Array with an array

This method compares each
entry with the corresponding
entry from the other array

[1, 3, 4, -1] > [-1, 4, 3, 0]
ans =

1 0 1 0

Be careful with ==

Close but not equal

Try the following.

sin(380*pi/180) == sind(380)

Clearly these should be equal,
but MATLAB is saying that
they are not. The problem
comes from roundoff error
when computations are done in
different orders. The following
is a more reliable test for
“equality” of real numbers.

abs(x - y) <= tol

where tol is a small number
like 1e-14.

MATLAB vectorization, and other tips 13/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Combining tests

We’ve seen how comparing two arrays with the same dimensions creates a third array of
ones and zeros with the same dimensions. We can also use this technique to perform
multiple tests.

Let’s create three arrays.

A = [1, 3, 4, -1];
B = [-1, 4, 3, 0];
C = rand(1, 4);

The following tests which entries of B
are strictly between the corresponding
entries of A and C.

A < B & B < C

Note the use of a single &. With scalars,
use && instead. The following example
finds which entries of C are greater than
the corresponding entry of B or A (or
both).

C > B | C > A

Example: testing bounds

Let’s do an example in which we have to
find which entries of an array A are
between a lower bound a and b.

A = rand(28, 8);
a = 0.4; b = 0.6;

the entries of A greater than or equal to
a are given by

A >= a

Similarly, we have A <= b for the other
test. So the correct solution is

i = A >= a & A <= b

We’ll return to this example later.

MATLAB vectorization, and other tips 14/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Logical indexing
Extracting elements

The story of this slide is that the find command is often not needed.
Suppose we have the following
array.

A = [-4, 2, 0; 1, -2, 3];

The goal is to extract the positive
entries of A. The following test kind
of locates them.

i = A > 0
i =

0 1 0
1 0 1

We can do A(find(A>0)), but the
use of find is unnecessary.

A(A>0)'
ans =

2 1 3

The jist of it...

When you use a logical array (that
is, an array that results from a
test) as an index, MATLAB applies
whatever command you do only to
the entries where the logical array
has a 1.

General description

If you use a command A(i) to
reference parts of an array A, the
variable i can be one of two types.
The first is an array of integers like
i=[1 3 5 6], but the other way is a
logical array like i=[1 0 1 0 1 1].

MATLAB vectorization, and other tips 15/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Logical indexing
Assigning entries

We can also use the syntax A(i) = B to change the values of only part
of A. However, B must be either a single value or have the same
dimensions as A(i).

Example: testing bounds

Let’s return to a previous example

A = rand(28, 8);
a = 0.4; b = 0.6;

Now we want to make the entries
of A all be between a and b.

A(A<a) = a;
A(A>b) = b;

In this case there is another
method.

A = max(a, min(b, A));

Let’s create two random arrays.

A = rand(6, 4);
B = rand(6, 4);

This command makes the entries
of A negative for each element
where B is greater than A.

A(B>A) = -A(B>A);

This adds the corresponding entry
of B whenever A is less than one
half.

i = A < 0.5;
A(i) = A(i) + B(i);

MATLAB vectorization, and other tips 16/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Logical indexing
Conclusions and reminders

Using logical indexing when possible is much faster than find. The
reason for this is that find is more powerful, and it wastes time to use
that power when it’s not needed!

Using logical indexes is a little counterintuitive at first, but if you are
writing a function in the MATLAB editor, it will often help you out. If
you use find in an unnecessary way, MATLAB will often suggest a
small change to your code that’s faster. Listening to this is how I
learned logical indexing!

As a basic review, logical indexing works in the following way. With
the syntax A(i), it ignores any entry of A where the corresponding
entry of i is 0.

MATLAB vectorization, and other tips 17/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Initializing arrays
Cleanup of unkown-size vectors

Sometimes we end up making arrays whose dimensions cannot be known
beforehand. In these cases, it is much better to initialize a larger array than
needed and then trim off the extra entries later.

Example

Create a vector that has i_1 entries of 1, i_2 entries of 2, ... , i_n entries of n
where each i value is a random integer between 1 and m.

Easier way

Initialize an empty vector.

m = 5; n = 4;
x = [];

Now loop through, appending to x
each time.

for i = 1:n
m_i = randi(m);
x = [x, i*ones(1, m_i)];

end

Better

We know the maximum size x can have.

m = 5; n = 4; M = randi(m, 1, n);
x = nan(1, m*n);

Now make entries as we go. The last
command deletes the extra entries of x.

j = 0;
for i = 1:n

x(j+(1:M(i))) = i;
j = j + M(i);

end
x(isnan(x)) = [];

MATLAB vectorization, and other tips 18/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Basic extraction
Slicing

Extracting a column

Suppose A = eye(7). Then
A(:,4) is the 4th column, often
denoted ê4.

“Indices” and “subscripts”

Suppose A = rand(3). Then
A(2,1) is the same as A(2), and
A(1,2) is the same as A(4).
When using indices (for
example A(2)), MATLAB goes
top-to-bottom and then
left-to-right. Use ind2sub and
sub2ind to convert between the
two types.

A ‘page’ of a larger array

Suppose A = rand(3, 4, 5).
This can be viewed as 5 ‘pages’
of 3×4 matrices. To get the kth
page, use A(:,:,k).

Submatrices

If you use the example
command A([1 3], [2 4]), the
result is not

[A(1,2), A(3,4)]

but a whole submatrix.

[A(1,2), A(1,4);
A(3,2), A(3,4)]

MATLAB vectorization, and other tips 19/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Example 1: Dot products

If we have vectors like u = [1; 2; -1] and v = [3; 0; 2], the dot
product is easy in MATLAB. We just do u’ * v.

Challenge: vectorize

Suppose instead we have two large matrices of 3-vectors, for instance

U = 2*rand(3, 40) - 1;
V = 2*rand(3, 40) - 1;

We can do U' * V again, but this will actually create a 40×40 matrix
in which we only want the diagonal entries.

The second solution is to do a for loop, but we don’t want that.

Instead, we have to find a way to do the dot product somewhat
manually. The following command works perfectly; it multiplies uijvij,
and then adds up each column, giving a row vector of
u1jv1j +u2jv2j +u3jv3j for j = 1, . . . ,40.

sum(U .* V)

MATLAB vectorization, and other tips 20/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Example 1: Dot products
(continued)

Actually we can take this method even further. Suppose we have two
vectors for each point in a 3D mesh. We might have

U = 2*rand(20, 50, 30, 3) - 1;
V = 2*rand(20, 50, 30, 3) - 1;

for a 20×50×30 mesh. All we have to do to calculate all the dot
products is dot-multiply the arrays again and tell MATLAB which
direction to add up.

D = sum(U .* V, 4);

This gives a 20×50×30 array for D where

D(i,j,k) == U(i,j,k,1)*V(i,j,k,1)
+ U(i,j,k,2)*V(i,j,k,2) + U(i,j,k,3)*V(i,j,k,3)

MATLAB vectorization, and other tips 21/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Example 2: Norms

If we have a vector like u = [1; 2; -1], calculating the norm is easy
in MATLAB. We just do norm(u).

Challenge: vectorize

Suppose instead we have a large matrix of 3-vectors, for instance

U = 2*rand(3, 40) - 1;

We cannot do norm(U) to calculate the norm of each column, because
MATLAB will try to calculate a matrix norm.

The easy solution is to do a for loop, but we don’t want that.

Instead, we have to find a way to calculate the norms somewhat
manually. The following command works perfectly; it computes u2

ij,
then adds up each column, and takes the square root of the resulting
sums. The result is a row vector of

√
u2

1j +u2
2j +u2

3j for j = 1, . . . ,40.

L = sqrt(sum(U.^2))

MATLAB vectorization, and other tips 22/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Example 3: Dividing by a vector of scalars

If we have a vector like u = [1; 2; -1] and a scalar c = 3, dividing by the
vector is easy. We just do u / c or u ./ c.

Challenge: vectorize

Suppose instead we have a large matrix of 3-vectors and a row of scaling
constants, for instance

U = 2*rand(3, 40) - 1;
C = rand(1, 40);

We cannot do U ./ C to scale each vector because C does not have the same
dimensions as U.

The easy solution is to do a for loop and use U(:,i) / c(i).

Instead we need to make C bigger. The easiest way is U ./ [C; C; C], but this
does not generalize to longer vectors. Here are two solutions.

V = U ./ repmat(C, 3, 1);
V = U ./ (ones(3,1) * C);

In the general case, replace 3 with size(U,1).

MATLAB vectorization, and other tips 23/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Function handles
Introduction: anonymous functions

Suppose you have a simple calculation that you have to perform
several times, but you don’t want to write the operation each time. A
way to do this is to create an anonymous function.

f = @(x) x^2 + sin(x);
a = f(3); b = f(-1); c = f(4);

This allows you to make certain functions without creating a new .m
file. But this example isn’t very good because it won’t work on a
vector. The following version is better.

f = @(x) x.^2 + sin(x);
a = f([3, -1, 4]);

The @ symbol tells MATLAB that an anonymous function declaration
is coming. What follows is a list of input arguments between
parentheses. Then a single line of code, whose value is treated as the
output of the function, follows.

MATLAB vectorization, and other tips 24/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Uses of function handles
Quickly plotting a function or family of functions

Suppose you want to plot a few functions quickly. This can be
somewhat obnoxious if it requires making a range of x-coordinates
and then using a for loop to calculate each entry. This quickly plots
the function ax2 + e−x for several values of a.

x = linspace(0, 1, 101);
f = @(x, a) a.*x.^2 + exp(-x);
plot(x, f(x,1), x, f(x,2), x, f(x,3))

If you happen to forget to use .*, ./, etc., the MATLAB function
vectorize can be of use.

vectorize(@(x, y) x^2 * y)
ans =

@(x,y)x.^2.*y

This may not always be what you want if your function actually
contains a matrix operation.

MATLAB vectorization, and other tips 25/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Advanced function handles
Special considerations

When an anonymous function
is created, any variable that is
not an input to the function is
evaluated. This is hard to
explain, but consider this
example.

>> a = 4;
>> f = @(x) a .* x;
>> f(3)
ans =

12
>> a = 5; f(3)
ans =

12

Changing a after f was created
had no effect on f.

More complex functions

You can also reference
functions that you have
created in separate .m files.
Suppose you have two
functions funa and funb.

f = @(x,a,b) ...
funa(x,a) .* funb(x,b)

This creates a function that
combines the two
two-argument functions into a
single three-argument
function.

MATLAB vectorization, and other tips 26/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Using ode45 with parameters
How to avoid using global

The MATLAB solvers for ordinary differential equations require a function
handle for the first input. But these handles must be for functions with two
inputs and one output. Almost all of the time, though, the function depends on
some sort of other parameters. Suppose your differential equation is

ẋ = x− cos(at) x(0) = 0 0 ≤ t ≤ π (1)

so you create a function using an .m file with the following contents.

function dx = myfun(t, x, a)

dx = sin(a.*t) - x;

But how do you use this function with ode45 since it has three inputs? The
answer is to create a handle to myfun in the command.

a = 4;
[t, x] = ode45(@(t,x)myfun(t,x,a), [0, pi], 0);

The @(t,x) syntax creates a function of two inputs, and a is set to 4.

MATLAB vectorization, and other tips 27/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Cell arrays
Introduction and basic usage

Cell arrays allow you to combine objects that are not of the same type into a
single array-like variable. The following creates a cell array with row vectors
of different sizes.

S = {[1, 2, 3]; [-1, 5]; 4; [2, 3, 6]};

They can contain all sorts of different variables.

S = {@(x) x.^2, 'a string'; rand(2,2), pi};

You can use normal subscripts to get part of the cell array.

S(1,:)
ans =

@(x)x.^2 'a string'

To get an element of the cell array, you have to use different syntax.

S{1,2}
ans =
a string

S(1,2)
ans =

'a string'

These are different because S(1,2) is still a cell array.
MATLAB vectorization, and other tips 28/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Cell arrays
Two little things

Cell arrays can be initialized similar to the way numeric arrays are.

S = cell(3, 4)

This creates a 3×4 cell array in which each entry is an empty matrix.

Now try to figure out what is happening when you run the following
command.

S{2:4}

MATLAB vectorization, and other tips 29/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Cell arrays of strings

Since strings tend to not all have the same length, cell arrays are an
extremely convenient way to store them. Here’s an example.

S = {'Mercury', 'Venus', 'Earth', 'Mars', ...
'Jupiter', 'Saturn', 'Uranus', 'Neptune'};

Now, to get the name of the ith planet, do not try S(i). MATLAB is
not too helpful about what is going on here, and I often see beginners
trying to do crazy things like use cellstr to get the string. The real
solution, though is that the ith planet is S{i}.

However, we can make a cell array that contains the 1st, 2nd, 4th,
and 7th planets like this.

T = T([1, 2, 4, 7]);

MATLAB vectorization, and other tips 30/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

String comparisons
strcmp and strcmpi

Let’s get our list of planets again.

S = {'Mercury', 'Venus', 'Earth', 'Mars', ...
'Jupiter', 'Saturn', 'Uranus', 'Neptune'};

Comparing strings poses a particular challenge because they don’t always
have the same length. Our usual trick of trying all(S{1} == S{2}) will not
work. Fortunately MATLAB has a command for this purpose.

strcmp('Mars', S{4})
ans =

1

strcmp('Mars', S{1})
ans =

0

Furthermore, the command strcmpi works almost exactly the same except
that it ignores case.

strcmpi('mars', S{4})
ans =

1

strcmp('mars', S{4})
ans =

0

MATLAB vectorization, and other tips 31/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

String comparisons using cell arrays
strcmp, strcmpi, any, and all

Let’s get our list of planets again.

S = {'Mercury', 'Venus', 'Earth', 'Mars', ...
'Jupiter', 'Saturn', 'Uranus', 'Neptune'};

Testing for inclusion

This tests if a string s matches any
strings in S.

s = 'Mercury';
q = any(strcmp(s, S));

The case-insensitive version also
works.

s = 'MERCURY';
q = any(strcmpi(S, s));

Testing for matches

Suppose we have two cell arrays
that represent two different sets of
values for four things. The
following tests which events match
in both cell arrays.

S={'on' ,'low' ,'new','hi'};
T={'off','square','new','hi'};
strcmpi(S, T)
ans =

0 0 1 1

MATLAB vectorization, and other tips 32/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Listing inputs

Cell arrays can also be used for some pretty confusing-looking
commands. The first one is to make a list of inputs to some function
where the list can have any length. Suppose you want to make a list
of options to your plot command but you want to use the same list of
options repeatedly.

opts = {'Color', [1 0.5 0.2], 'LineWidth', 1.7, 'Marker', 'x'};
plot(x1, y1, opts{:})
plot(x2, y2, opts{:})
plot(x3, y3, opts{:})
plot(x4, y4, opts{:})

This is the same as typing plot(x1, x2, ’Color’, ...), but more
convenient if you want to change something later.

The syntax opts{:} evaluates each element of the cell array in
sequence, which creates the same effect as a list of inputs. Syntax like
opts{3:end} is also allowed and works the same way.

MATLAB vectorization, and other tips 33/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Arbitray outputs
Possibly the most confusing syntax in MATLAB

This is kind of the converse of the previous slide. Suppose you have a
function that normally gives multiple outputs, but you’d like to put
them into one cell array. It’s kind of hard to come up with a good
example where you’d want this, but it has happened. This example
illustrates how to get each of the dimensions of an array into a cell
array.

S = cell(1,ndims(A));
[S{:}] = size(A);

For this to work, the cell array on the left-hand side of the assignment
must have the correct dimensions, which is the reason that S is
initialized using cell first.

There aren’t really any built-in functions for which this is useful, but
it is possible to make functions where you would want this.

You should learn about varargin and varargout before you consider
this too much.

MATLAB vectorization, and other tips 34/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Structs
Fields and values

structs are a very powerful way to store information with names for each piece
of information. A struct contains several ‘fields’, which each contain a value.

s.a = 14; s.b = ones(1,4); s.c = 'Earth'
s =

a: 14
b: [1 1 1 1]
c: 'Earth'

It’s possible to make a struct with multiple fields using a special command.

s = struct('a', 14, 'b', ones(1,4), 'c', 'Earth');

Extracting information from a struct is very simple.

s.b + 2
ans =

3 3 3 3

Each field can also be a struct if you want.

s.d.name = 'umich'; s.d.type = 'awesome';

MATLAB vectorization, and other tips 35/36

MATLAB vec-
torization

Dalle

Introduction
Creating Vectors

Vector Functions

Operators

Numeric Arrays
Testing

Logical Indexes

Extraction

Examples!

Function
Handles

Cell Arrays
Strings

Inputs/outputs

Structs

Structs
Advanced referencing

A useful command is fieldnames, which takes a struct as input and returns a
cell array of strings. Each string represents the name of a field of the struct.

s = struct('a', 14, 'b', 'New York', 'c', eye(2));
fieldnames(s)
ans =

'a'
'b'
'c'

The complementary command is struct2cell, which creates a cell array with
all of the values of the fields.

Suppose you have the name of a
field as a string, and you want to
get the value. Here is the syntax
for that.

f = 'a';
s.(f)
ans =

14

Suppose you’re not sure if the field
actually exists.

if isfield(s, 'd')
d = s.d;

else
d = [];

end
MATLAB vectorization, and other tips 36/36

	Introduction
	Creating Vectors
	Vector Functions
	Operators

	Numeric Arrays
	Testing
	Logical Indexes
	Extraction
	Examples!

	Function Handles
	Cell Arrays
	Strings
	Inputs/outputs

	Structs

