
Week 1
Vectors in Linear Algebra

1.1 Opening Remarks

1.1.1 Take Off

”Co-Pilot Roger Murdock (to Captain Clarence Oveur): We have clearance, Clarence.

Captain Oveur: Roger, Roger. What’s our vector, Victor?”

From Airplane. Dir. David Zucker, Jim Abrahams, and Jerry Zucker. Perf. Robert Hays, Julie
Hagerty, Leslie Nielsen, Robert Stack, Lloyd Bridges, Peter Graves, Kareem Abdul-Jabbar, and
Lorna Patterson. Paramount Pictures, 1980. Film.

You can find a video clip by searching “What’s our vector Victor?”

Vectors have direction and length. Vectors are commonly used in aviation where they are routinely provided by air traffic
control to set the course of the plane, providing efficient paths that avoid weather and other aviation traffic as well as assist
disoriented pilots.

Let’s begin with vectors to set our course.

11

Week 1. Vectors in Linear Algebra 12

1.1.2 Outline Week 1

1.1. Opening Remarks . 11
1.1.1. Take Off . 11
1.1.2. Outline Week 1 . 12
1.1.3. What You Will Learn . 13

1.2. What is a Vector? . 14
1.2.1. Notation . 14
1.2.2. Unit Basis Vectors . 16

1.3. Simple Vector Operations . 17
1.3.1. Equality (=), Assignment (:=), and Copy . 17
1.3.2. Vector Addition (ADD) . 18
1.3.3. Scaling (SCAL) . 20
1.3.4. Vector Subtraction . 21

1.4. Advanced Vector Operations . 23
1.4.1. Scaled Vector Addition (AXPY) . 23
1.4.2. Linear Combinations of Vectors . 24
1.4.3. Dot or Inner Product (DOT) . 26
1.4.4. Vector Length (NORM2) . 28
1.4.5. Vector Functions . 30
1.4.6. Vector Functions that Map a Vector to a Vector . 32

1.5. LAFF Package Development: Vectors . 35
1.5.1. Starting the Package . 35
1.5.2. A Copy Routine (copy) . 36
1.5.3. A Routine that Scales a Vector (scal) . 36
1.5.4. A Scaled Vector Addition Routine (axpy) . 37
1.5.5. An Inner Product Routine (dot) . 37
1.5.6. A Vector Length Routine (norm2) . 37

1.6. Slicing and Dicing . 38
1.6.1. Slicing and Dicing: Dot Product . 38
1.6.2. Algorithms with Slicing and Redicing: Dot Product . 38
1.6.3. Coding with Slicing and Redicing: Dot Product . 39
1.6.4. Slicing and Dicing: axpy . 40
1.6.5. Algorithms with Slicing and Redicing: axpy . 41
1.6.6. Coding with Slicing and Redicing: axpy . 41

1.7. Enrichment . 42
1.7.1. Learn the Greek Alphabet . 42
1.7.2. Other Norms . 42
1.7.3. Overflow and Underflow . 46
1.7.4. A Bit of History . 46

1.8. Wrap Up . 47
1.8.1. Homework . 47
1.8.2. Summary of Vector Operations . 51
1.8.3. Summary of the Properties of Vector Operations . 51
1.8.4. Summary of the Routines for Vector Operations . 52

1.1. Opening Remarks 13

1.1.3 What You Will Learn

Upon completion of this week, you should be able to

• Represent quantities that have a magnitude and a direction as vectors.

• Read, write, and interpret vector notations.

• Visualize vectors in R2.

• Perform the vector operations of scaling, addition, dot (inner) product.

• Reason and develop arguments about properties of vectors and operations defined on them.

• Compute the (Euclidean) length of a vector.

• Express the length of a vector in terms of the dot product of that vector with itself.

• Evaluate a vector function.

• Solve simple problems that can be represented with vectors.

• Create code for various vector operations and determine their cost functions in terms of the size of the vectors.

• Gain an awareness of how linear algebra software evolved over time and how our programming assignments fit into this
(enrichment).

• Become aware of overflow and underflow in computer arithmetic (enrichment).

Week 1. Vectors in Linear Algebra 14

1.2 What is a Vector?

1.2.1 Notation

* View at edX

Definition

Definition 1.1 We will call a one-dimensional array of n numbers a vector of size n:

x =


χ0

χ1
...

χn−1

 .

• This is an ordered array. The position in the array is important.

• We will call the ith number the ith component or element.

• We denote the ith component of x by χi. Here χ is the lower case Greek letter pronounced as “kı”. (Learn more about our
notational conventions in Section 1.7.1.)

As a rule, we will use lower case letters to name vectors (e.g., x,y, ...). The “corresponding” Greek lower case letters are
used to name their components.

• We start indexing at 0, as computer scientists do. MATLAB, the tool we will be using to implement our libraries,
naturally starts indexing at 1, as do most mathematicians and physical scientists. You’ll have to get use to this...

• Each number is, at least for now, a real number, which in math notation is written as χi ∈ R (read: “ki sub i (is) in r” or
“ki sub i is an element of the set of all real numbers”).

• The size of the vector is n, the number of components. (Sometimes, people use the words “length” and “size” inter-
changeably. We will see that length also has another meaning and will try to be consistent.)

• We will write x ∈ Rn (read: “x” in “r” “n”) to denote that x is a vector of size n with components in the real numbers,
denoted by the symbol: R. Thus, Rn denotes the set of all vectors of size n with components in R. (Later we will talk
about vectors with components that are complex valued.)

• A vector has a direction and a length:

– Its direction is often visualized by drawing an arrow from the origin to the point (χ0,χ1, . . . ,χn−1), but the arrow
does not necessarily need to start at the origin.

– Its length is given by the Euclidean length of this arrow,√
χ2

0 +χ2
1 + · · ·+χ2

n−1,

It is denoted by ‖x‖2 called the two-norm. Some people also call this the magnitude of the vector.

• A vector does not have a location. Sometimes we will show it starting at the origin, but that is only for convenience. It
will often be more convenient to locate it elsewhere or to move it.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/f6a00dd4dfa949248b0adb0ae90585b8/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/f6a00dd4dfa949248b0adb0ae90585b8/1

1.2. What is a Vector? 15

Examples

Example 1.2

Consider x =

 4

−3

. Then

• Components 4 and −3 are the first and second compo-
nent, respectively.

• χ0 = 4, χ1 =−3 so that 4 is the component indexed with
0 and −3 the component indexed with 1.

• The vector is of size 2, so x ∈ R2.

Exercises

Homework 1.2.1.1 Consider the following picture:

x

Using the grid for units,

(a) x =

 −2

−3

 (b) x =

 3

−2


(c) x =

 2

−3

 (d) x =

 −3

−2


(e) None of these

Week 1. Vectors in Linear Algebra 16

Homework 1.2.1.2
Consider the following picture:

a

b

c
de

f

g

Using the grid for units,

(a) a =

  (b) b =

 
(c) c =

  (d) d =

 
(e) e =

  (f) f =

 
(g) g =

 

While a vector does not have a location, but has direction and length, vectors are often used to show the direction and length

of movement from one location to another. For example, the vector from point (1,−2) to point (5,1) is the vector

 4

3

. We

might geometrically represent the vector

 4

3

 by an arrow from point (1,−2) to point (5,1).

Homework 1.2.1.3 Write each of the following as a vector:

• The vector represented geometrically in R2 by an arrow from point (−1,2) to point (0,0).

• The vector represented geometrically in R2 by an arrow from point (0,0) to point (−1,2).

• The vector represented geometrically in R3 by an arrow from point (−1,2,4) to point (0,0,1).

• The vector represented geometrically in R3 by an arrow from point (1,0,0) to point (4,2,−1).

1.2.2 Unit Basis Vectors

* View at edX

Definition

Definition 1.3 An important set of vectors is the set of unit basis vectors given by

e j =



0
...

0

1

0
...

0



 j zeroes

←− component indexed by jn− j−1 zeroes

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/f6a00dd4dfa949248b0adb0ae90585b8/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/f6a00dd4dfa949248b0adb0ae90585b8/2

1.3. Simple Vector Operations 17

where the “1” appears as the component indexed by j. Thus, we get the set {e0,e1, . . . ,en−1} ⊂ Rn given by

e0 =



1

0
...

0

0


, e1 =



0

1
...

0

0


, · · · , en−1 =



0

0
...

0

1


.

In our presentations, any time you encounter the symbol e j, it always refers to the unit basis vector with the “1” in the component
indexed by j.

These vectors are also referred to as the standard basis vectors. Other terms used for these vectors are natural basis and
canonical basis. Indeed, “unit basis vector” appears to be less commonly used. But we will use it anyway!

Homework 1.2.2.1 Which of the following is not a unit basis vector?

(a)


0

0

1

0

 (b)

 0

1

 (c)

 √
2

2√
2

2

 (d)


1

0

0

 (e) None of these are unit basis
vectors.

1.3 Simple Vector Operations

1.3.1 Equality (=), Assignment (:=), and Copy

* View at edX

Definition

Definition 1.4 Two vectors x,y ∈ Rn are equal if all their components are element-wise equal:

x = y if and only if χi = ψi, for all 0≤ i < n.

This means that two vectors are equal if they point in the same direction and are of the same length. They don’t, however,
need to have the same location.

The assignment or copy operation assigns the content of one vector to another vector. In our mathematical notation, we will
denote this by the symbol := (pronounce: becomes). After the assignment, the two vectors are equal to each other.

Algorithm

The following algorithm copies vector x ∈ Rn into vector y ∈ Rn, performing the operation y := x:
ψ0

ψ1
...

ψn−1

 :=


χ0

χ1
...

χn−1



https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/2fbd39e751554603899d65b73496eb9c/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/2fbd39e751554603899d65b73496eb9c/1

Week 1. Vectors in Linear Algebra 18

for i = 0, . . . ,n−1

ψi := χi

endfor

Cost

(Notice: we will cost of various operations in more detail in the future.)
Copying one vector to another vector requires 2n memory operations (memops).

• The vector x of length n must be read, requiring n memops and

• the vector y must be written, which accounts for the other n memops.

Homework 1.3.1.1 Decide if the two vectors are equal.

• The vector represented geometrically in R2 by an arrow from point (−1,2) to point (0,0) and the vector
represented geometrically in R2 by an arrow from point (1,−2) to point (2,−1) are equal.

True/False

• The vector represented geometrically in R3 by an arrow from point (1,−1,2) to point (0,0,0) and the vector
represented geometrically in R3 by an arrow from point (1,1,−2) to point (0,2,−4) are equal.

True/False

1.3.2 Vector Addition (ADD)

* View at edX

Definition

Definition 1.5 Vector addition x+ y (sum of vectors) is defined by

x+ y =


χ0

χ1
...

χn−1

+


ψ0

ψ1
...

ψn−1

=


χ0 +ψ0

χ1 +ψ1
...

χn−1 +ψn−1

 .

In other words, the vectors are added element-wise, yielding a new vector of the same size.

Exercises

Homework 1.3.2.1

 −1

2

+

 −3

−2

=

Homework 1.3.2.2

 −3

−2

+

 −1

2

=

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/2fbd39e751554603899d65b73496eb9c/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/2fbd39e751554603899d65b73496eb9c/2

1.3. Simple Vector Operations 19

Homework 1.3.2.3 For x,y ∈ Rn,

x+ y = y+ x.

Always/Sometimes/Never

Homework 1.3.2.4

 −1

2

+

 −3

−2

+

 1

2

=

Homework 1.3.2.5

 −1

2

+

 −3

−2

+

 1

2

=

Homework 1.3.2.6 For x,y,z ∈ Rn, (x+ y)+ z = x+(y+ z). Always/Sometimes/Never

Homework 1.3.2.7

 −1

2

+

 0

0

=

Homework 1.3.2.8 For x ∈ Rn, x+0 = x, where 0 is the zero vector of appropriate size.
Always/Sometimes/Never

Algorithm

The following algorithm assigns the sum of vectors x and y (of size n and stored in arrays x and y) to vector z (of size n and
stored in array z), computing z := x+ y: 

ζ0

ζ1
...

ζn−1

 :=


χ0 +ψ0

χ1 +ψ1
...

χn−1 +ψn−1

 .

for i = 0, . . . ,n−1

ζi := χi +ψi

endfor

Cost

On a computer, real numbers are stored as floating point numbers, and real arithmetic is approximated with floating point
arithmetic. Thus, we count floating point operations (flops): a multiplication or addition each cost one flop.

Vector addition requires 3n memops (x is read, y is read, and the resulting vector is written) and n flops (floating point
additions).

For those who understand “Big-O” notation, the cost of the SCAL operation, which is seen in the next section, is O(n).
However, we tend to want to be more exact than just saying O(n). To us, the coefficient in front of n is important.

Vector addition in sports

View the following video and find out how the “parallelogram method” for vector addition is useful in sports:

http://www.nsf.gov/news/special_reports/football/vectors.jsp

Discussion: Can you find other examples of how vector addition is used in sports?

http://www.nsf.gov/news/special_reports/football/vectors.jsp
http://www.nsf.gov/news/special_reports/football/vectors.jsp

Week 1. Vectors in Linear Algebra 20

1.3.3 Scaling (SCAL)

* View at edX

Definition

Definition 1.6 Multiplying vector x by scalar α yields a new vector, αx, in the same direction as x, but scaled by a factor α.
Scaling a vector by α means each of its components, χi, is multiplied by α:

αx = α


χ0

χ1
...

χn−1

=


αχ0

αχ1
...

αχn−1

 .

Exercises

Homework 1.3.3.1

 −1

2

+

 −1

2

+

 −1

2

=

Homework 1.3.3.2 3

 −1

2

=

Homework 1.3.3.3 Consider the following picture:

a

b

c
d

e

f

g

Which vector equals 2a?; (1/2)a? ; and −(1/2)a?

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/2fbd39e751554603899d65b73496eb9c/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/2fbd39e751554603899d65b73496eb9c/3

1.3. Simple Vector Operations 21

Algorithm

The following algorithm scales a vector x ∈ Rn by α, overwriting x with the result αx:


χ0

χ1
...

χn−1

 :=


αχ0

αχ1
...

αχn−1

 .

for i = 0, . . . ,n−1

χi := αχi

endfor

Cost

Scaling a vector requires n flops and 2n+1 memops. Here, α is only brought in from memory once and kept in a register for
reuse. To fully understand this, you need to know a little bit about computer architecture.

“Among friends” we will simply say that the cost is 2n memops since the one extra memory operation (to bring α in from
memory) is negligible.

1.3.4 Vector Subtraction

* View at edX
Recall the geometric interpretation for adding two vectors, x,y ∈ Rn:

x

y
x+ y

y

x

y+ x

Subtracting y from x is defined as

x− y = x+(−y).

We learned in the last unit that−y is the same as (−1)y which is the same as pointing y in the opposite direction, while keeping
it’s length the same. This allows us to take the parallelogram that we used to illustrate vector addition

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/2fbd39e751554603899d65b73496eb9c/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/2fbd39e751554603899d65b73496eb9c/4

Week 1. Vectors in Linear Algebra 22

x

y

x

y

and change it into the equivalent picture

x

−y

x

−y

Since we know how to add two vectors, we can now illustrate x+(−y):

x

−y

x

−y

x+(−y)

Which then means that x− y can be illustrated by

1.4. Advanced Vector Operations 23

x

y

x

y

x− y

Finally, we note that the parallelogram can be used to simulaneously illustrate vector addition and subtraction:

x

y

x

y

x− y

x+ y

(Obviously, you need to be careful to point the vectors in the right direction.)
Now computing x− y when x,y ∈ Rn is a simple matter of subtracting components of y off the corresponding components

of x:

x− y =


χ0

χ1
...

χn−1

−


ψ0

ψ1
...

ψn−1

=


χ0−ψ0

χ1−ψ1
...

χn−1−ψn−1

 .

Homework 1.3.4.1 For x ∈ Rn, x− x = 0.
Always/Sometimes/Never

Homework 1.3.4.2 For x,y ∈ Rn, x− y = y− x.
Always/Sometimes/Never

1.4 Advanced Vector Operations

1.4.1 Scaled Vector Addition (AXPY)

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/de9876de14394df395423b596b7884d4/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/de9876de14394df395423b596b7884d4/1

Week 1. Vectors in Linear Algebra 24

Definition

Definition 1.7 One of the most commonly encountered operations when implementing more complex linear algebra operations
is the scaled vector addition, which (given x,y ∈ Rn) computes y := αx+ y:

αx+ y = α


χ0

χ1
...

χn−1

+


ψ0

ψ1
...

ψn−1

=


αχ0 +ψ0

αχ1 +ψ1
...

αχn−1 +ψn−1

 .

It is often referred to as the AXPY operation, which stands for alpha times x plus y. We emphasize that it is typically used in
situations where the output vector overwrites the input vector y.

Algorithm

Obviously, one could copy x into another vector, scale it by α, and then add it to y. Usually, however, vector y is simply updated
one element at a time: 

ψ0

ψ1
...

ψn−1

 :=


αχ0 +ψ0

αχ1 +ψ1
...

αχn−1 +ψn−1

 .

for i = 0, . . . ,n−1

ψi := αχi +ψi

endfor

Cost

In Section 1.3 for many of the operations we discuss the cost in terms of memory operations (memops) and floating point
operations (flops). This is discussed in the text, but not the videos. The reason for this is that we will talk about the cost of
various operations later in a larger context, and include these discussions here more for completely.

Homework 1.4.1.1 What is the cost of an axpy operation?

• How many memops?

• How many flops?

1.4.2 Linear Combinations of Vectors

* View at edX

Discussion

There are few concepts in linear algebra more fundamental than linear combination of vectors.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/de9876de14394df395423b596b7884d4/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/de9876de14394df395423b596b7884d4/2

1.4. Advanced Vector Operations 25

Definition

Definition 1.8 Let u,v ∈ Rm and α,β ∈ R. Then αu+βv is said to be a linear combination of vectors u and v:

αu+βv = α


υ0

υ1
...

υm−1

+β


ν0

ν1
...

νm−1

=


αυ0

αυ1
...

αυm−1

+


βν0

βν1
...

βνm−1

=


αυ0 +βν0

αυ1 +βν1
...

αυm−1 +βνm−1

 .

The scalars α and β are the coefficients used in the linear combination.
More generally, if v0, . . . ,vn−1 ∈ Rm are n vectors and χ0, . . . ,χn−1 ∈ R are n scalars, then χ0v0 +χ1v1 + · · ·+χn−1vn−1 is

a linear combination of the vectors, with coefficients χ0, . . . ,χn−1.

We will often use the summation notation to more concisely write such a linear combination:

χ0v0 +χ1v1 + · · ·+χn−1vn−1 =
n−1

∑
j=0

χ jv j.

Homework 1.4.2.1

3


2

4

−1

0

+2


1

0

1

0

=

Homework 1.4.2.2

−3


1

0

0

+2


0

1

0

+4


0

0

1

=

Homework 1.4.2.3 Find α, β, γ such that

α


1

0

0

+β


0

1

0

+ γ


0

0

1

=


2

−1

3


α = β = γ =

Algorithm

Given v0, . . . ,vn−1 ∈ Rm and χ0, . . . ,χn−1 ∈ R the linear combination w = χ0v0 +χ1v1 + · · ·+χn−1vn−1 can be computed by
first setting the result vector w to the zero vector of size m, and then performing n AXPY operations:

w = 0 (the zero vector of size m)

for j = 0, . . . ,n−1

w := χ jv j +w

endfor

The axpy operation computed y := αx+ y. In our algorithm, χ j takes the place of α, v j the place of x, and w the place of y.

Week 1. Vectors in Linear Algebra 26

Cost

We noted that computing w = χ0v0 +χ1v1 + · · ·χn−1vn−1 can be implementated as n AXPY operations. This suggests that the
cost is n times the cost of an AXPY operation with vectors of size m: n× (2m) = 2mn flops and (approximately) n× (3m)
memops.

However, one can actually do better. The vector w is updated repeatedly. If this vector stays in the L1 cache of a computer,
then it needs not be repeatedly loaded from memory, and the cost becomes m memops (to load w into the cache) and then
for each AXPY operation (approximately) m memops (to read v j (ignoring the cost of reading χ j). Then, once w has been
completely updated, it can be written back to memory. So, the total cost related to accessing memory becomes m+n×m+m =
(n+2)m≈ mn memops.

An important example

Example 1.9 Given any x ∈ Rn with x =


χ0

χ1
...

χn−1

, this vector can always be written as the linear combination

of the unit basis vectors given by

x =


χ0

χ1
...

χn−1

= χ0



1

0
...

0

0


+χ1



0

1
...

0

0


+ · · ·+χn−1



0

0
...

0

1


= χ0e0 +χ1e1 + · · ·+χn−1en−1 =

n−1

∑
i=0

χiei.

Shortly, this will become really important as we make the connection between linear combinations of vectors,
linear transformations, and matrices.

1.4.3 Dot or Inner Product (DOT)

* View at edX

Definition

The other commonly encountered operation is the dot (inner) product. It is defined by

dot(x,y) =
n−1

∑
i=0

χiψi = χ0ψ0 +χ1ψ1 + · · ·+χn−1ψn−1.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/de9876de14394df395423b596b7884d4/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/de9876de14394df395423b596b7884d4/3

1.4. Advanced Vector Operations 27

Alternative notation

We will often write

xT y = dot(x,y) =


χ0

χ1
...

χn−1



T 
ψ0

ψ1
...

ψn−1



=
(

χ0 χ1 · · · χn−1

)


ψ0

ψ1
...

ψn−1

= χ0ψ0 +χ1ψ1 + · · ·+χn−1ψn−1

for reasons that will become clear later in the course.

Exercises

Homework 1.4.3.1


2

5

−6

1


T



1

1

1

1

1

1


=

Homework 1.4.3.2


2

5

−6

1


T 

1

1

1

1

=

Homework 1.4.3.3


1

1

1

1


T 

2

5

−6

1

=

Homework 1.4.3.4 For x,y ∈ Rn, xT y = yT x.
Always/Sometimes/Never

Homework 1.4.3.5


1

1

1

1


T 


2

5

−6

1

+


1

2

3

4



=

Week 1. Vectors in Linear Algebra 28

Homework 1.4.3.6


1

1

1

1


T 

2

5

−6

1

+


1

1

1

1


T 

1

2

3

4

=

Homework 1.4.3.7




2

5

−6

1

+


1

2

3

4




T 

1

0

0

2

=

Homework 1.4.3.8 For x,y,z ∈ Rn, xT (y+ z) = xT y+ xT z.
Always/Sometimes/Never

Homework 1.4.3.9 For x,y,z ∈ Rn, (x+ y)T z = xT z+ yT z.
Always/Sometimes/Never

Homework 1.4.3.10 For x,y ∈ Rn, (x+ y)T (x+ y) = xT x+2xT y+ yT y.
Always/Sometimes/Never

Homework 1.4.3.11 Let x,y ∈ Rn. When xT y = 0, x or y is a zero vector.
Always/Sometimes/Never

Homework 1.4.3.12 For x ∈ Rn, eT
i x = xT ei = χi, where χi equals the ith component of x.

Always/Sometimes/Never

Algorithm

An algorithm for the DOT operation is given by

α := 0

for i = 0, . . . ,n−1

α := χiψi +α

endfor

Cost

Homework 1.4.3.13 What is the cost of a dot product with vectors of size n?

1.4.4 Vector Length (NORM2)

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/de9876de14394df395423b596b7884d4/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/de9876de14394df395423b596b7884d4/4

1.4. Advanced Vector Operations 29

Definition

Let x ∈ Rn. Then the (Euclidean) length of a vector x (the two-norm) is given by

‖x‖2 =
√

χ2
0 +χ2

1 + · · ·+χ2
n−1 =

√
n−1

∑
i=0

χ2
i .

Here ‖x‖2 notation stands for “the two norm of x”, which is another way of saying “the length of x”.

A vector of length one is said to be a unit vector.

Exercises

Homework 1.4.4.1 Compute the lengths of the following vectors:

(a)


0

0

0

 (b)


1/2

1/2

1/2

1/2

 (c)


1

−2

2

 (d)



0

0

1

0

0



Homework 1.4.4.2 Let x ∈ Rn. The length of x is less than zero: x‖2 < 0.
Always/Sometimes/Never

Homework 1.4.4.3 If x is a unit vector then x is a unit basis vector.
TRUE/FALSE

Homework 1.4.4.4 If x is a unit basis vector then x is a unit vector.
TRUE/FALSE

Homework 1.4.4.5 If x and y are perpendicular (orthogonal) then xT y = 0.
TRUE/FALSE

Hint: Consider the picture

x y

x+ y

Week 1. Vectors in Linear Algebra 30

Homework 1.4.4.6 Let x,y ∈ Rn be nonzero vectors and let the angle between them equal θ. Then

cosθ =
xT y

‖x‖2‖y‖2
.

Always/Sometimes/Never

Hint: Consider the picture and the “Law of Cosines” that you learned in high school. (Or look up this law!)

x

y θ

y− x

Homework 1.4.4.7 Let x,y ∈ Rn be nonzero vectors. Then xT y = 0 if and only if x and y are orthogonal (perpen-
dicular).

True/False

Algorithm

Clearly, ‖x‖2 =
√

xT x, so that the DOT operation can be used to compute this length.

Cost

If computed with a dot product, it requires approximately n memops and 2n flops.

1.4.5 Vector Functions

* View at edX
Last week, we saw a number of examples where a function, f , takes in one or more scalars and/or vectors, and outputs a

vector (where a scalar can be thought of as a special case of a vector, with unit size). These are all examples of vector-valued
functions (or vector functions for short).

Definition

A vector(-valued) function is a mathematical functions of one or more scalars and/or vectors whose output is a vector.

Examples

Example 1.10

f (α,β) =

 α+β

α−β

 so that f (−2,1) =

 −2+1

−2−1

=

 −1

−3

 .

Example 1.11

f (α,


χ0

χ1

χ2

) =


χ0 +α

χ1 +α

χ2 +α

 so that f (−2,


1

2

3

) =


1+(−2)

2+(−2)

3+(−2)

=


−1

0

1

 .

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/de9876de14394df395423b596b7884d4/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/de9876de14394df395423b596b7884d4/5

1.4. Advanced Vector Operations 31

Example 1.12 The AXPY and DOT vector functions are other functions that we have already encountered.

Example 1.13

f (


χ0

χ1

χ2

) =

 χ0 +χ1

χ1 +χ2

 so that f (


1

2

3

) =

 1+2

2+3

=

 3

5

 .

Exercises

Homework 1.4.5.1 If f (α,


χ0

χ1

χ2

) =


χ0 +α

χ1 +α

χ2 +α

, find

• f (1,


6

2

3

) =

• f (α,


0

0

0

) =

• f (0,


χ0

χ1

χ2

) =

• f (β,


χ0

χ1

χ2

) =

• α f (β,


χ0

χ1

χ2

) =

• f (β,α


χ0

χ1

χ2

) =

• f (α,


χ0

χ1

χ2

+


ψ0

ψ1

ψ2

) =

• f (α,


χ0

χ1

χ2

)+ f (α,


ψ0

ψ1

ψ2

) =

Week 1. Vectors in Linear Algebra 32

1.4.6 Vector Functions that Map a Vector to a Vector

* View at edX

Now, we can talk about such functions in general as being a function from one vector to another vector. After all, we can
take all inputs, make one vector with the separate inputs as the elements or subvectors of that vector, and make that the input
for a new function that has the same net effect.

Example 1.14 Instead of

f (α,β) =

 α+β

α−β

 so that f (−2,1) =

 −2+1

−2−1

=

 −1

−3



we can define

g(

 α

β

) =

 α+β

α−β

 so that g(

 −2

1

) =

 −2+1

−2−1

=

 −1

−3



Example 1.15 Instead of

f (α,


χ0

χ1

χ2

) =


χ0 +α

χ1 +α

χ2 +α

 so that f (−2,


1

2

3

) =


1+(−2)

2+(−2)

3+(−2)

=


−1

0

1

 ,

we can define

g(


α
χ0

χ1

χ2



) = g(


α

χ0

χ1

χ2

) =


χ0 +α

χ1 +α

χ2 +α

 so that g(


−2

1

2

3

) =


1+(−2)

2+(−2)

3+(−2)

=


−1

0

1

 .

The bottom line is that we can focus on vector functions that map a vector of size n into a vector of size m, which is written
as

f : Rn→ Rm.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/de9876de14394df395423b596b7884d4/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/de9876de14394df395423b596b7884d4/6

1.4. Advanced Vector Operations 33

Exercises

Homework 1.4.6.1 If f (


χ0

χ1

χ2

) =


χ0 +1

χ1 +2

χ2 +3

, evaluate

• f (


6

2

3

) =

• f (


0

0

0

) =

• f (2


χ0

χ1

χ2

) =

• 2 f (


χ0

χ1

χ2

) =

• f (α


χ0

χ1

χ2

) =

• α f (


χ0

χ1

χ2

) =

• f (


χ0

χ1

χ2

+


ψ0

ψ1

ψ2

) =

• f (


χ0

χ1

χ2

)+ f (


ψ0

ψ1

ψ2

) =

Week 1. Vectors in Linear Algebra 34

Homework 1.4.6.2 If f (


χ0

χ1

χ2

) =


χ0

χ0 +χ1

χ0 +χ1 +χ2

, evaluate

• f (


6

2

3

) =

• f (


0

0

0

) =

• f (2


χ0

χ1

χ2

) =

• 2 f (


χ0

χ1

χ2

) =

• f (α


χ0

χ1

χ2

) =

• α f (


χ0

χ1

χ2

) =

• f (


χ0

χ1

χ2

+


ψ0

ψ1

ψ2

) =

• f (


χ0

χ1

χ2

)+ f (


ψ0

ψ1

ψ2

) =

Homework 1.4.6.3 If f : Rn→ Rm, then
f (0) = 0.

Always/Sometimes/Never

Homework 1.4.6.4 If f : Rn→ Rm, λ ∈ R, and x ∈ Rn, then

f (λx) = λ f (x).

Always/Sometimes/Never

1.5. LAFF Package Development: Vectors 35

Homework 1.4.6.5 If f : Rn→ Rm and x,y ∈ Rn, then

f (x+ y) = f (x)+ f (y).

Always/Sometimes/Never

1.5 LAFF Package Development: Vectors

1.5.1 Starting the Package

In this course, we will explore and use a rudimentary dense linear algebra software library. The hope is that by linking the
abstractions in linear algebra to abstractions (functions) in software, a deeper understanding of the material will be the result.

We will be using the MATLAB interactive environment by MATHWORKS® for our exercises. MATLAB is a high-level
language and interactive environment that started as a simple interactive “laboratory” for experimenting with linear algebra. It
has since grown into a powerful tool for technical computing that is widely used in academia and industry.

For our Spring 2017 offering of LAFF on the edX platform, MATHWORKS® has again graceously made temporary licenses
available for the participants. Instructions on how to install and use MATLAB can be found in Section 0.3.

The way we code can be easily translated into other languages. For example, as part of our FLAME research project we
developed a library called libflame. Even though we coded it in the C programming language, it still closely resembles the
MATLAB code that you will write and the library that you will use.

A library of vector-vector routines

The functionality of the functions that you will write is also part of the ”laff” library of routines. What this means will become
obvious in subsequent units.

Below is a table of vector functions, and the routines that implement them, that you will be able to use in future weeks.

Operation Abbrev. Definition Function MATLAB Approx. cost

intrinsic flops memops

Vector-vector operations

Copy (COPY) y := x y = laff copy(x, y) y = x 0 2n

Vector scaling (SCAL) x := αx x = laff scal(alpha, x) x = alpha * x n 2n

Scaled addition (AXPY) y := αx+ y y = laff axpy(alpha, x, y) y = alpha * x + y 2n 3n

Dot product (DOT) α := xT y alpha = laff dot(x, y) alpha = x’ * y 2n 2n

Length (NORM2) α := ‖x‖2 alpha = laff norm2(x) alpha = norm2(x) 2n n

A couple of comments:

• The operations we will implement are available already in MATLAB. So why do we write them as routines? Because

1. It helps us connect the abstractions in the mathematics to the abstractions in code; and

2. Implementations in other languages (e.g. C and Fortran) more closely follow how we will implement the operations
as functions/routines.

• In, for example, laff copy, why not make the function

y = laff copy(x)?

1. Often we will want to copy a column vector to a row vector or a row vector to a column vector. By also passing y
into the routine, we indicate whether the output should be a row or a column vector.

2. Implementations in other languages (e.g. C and Fortran) more closely follow how we will implement the operations
as functions/routines.

The way we will program translates almost directly into equivalent routines for the C or Python programming languages.
Now, let’s dive right in! We’ll walk you through it in the next units.

http://www.mathworks.com/products/matlab
http://www.mathworks.com
https://www.edx.org/course/linear-algebra-foundations-frontiers-utaustinx-ut-5-05x
http://www.cs.utexas.edu/users/flame/

Week 1. Vectors in Linear Algebra 36

1.5.2 A Copy Routine (copy)

* View at edX

Homework 1.5.2.1 Implement the function laff copy that copies a vector into another vector. The function is
defined as

function [y out] = laff copy(x, y)

where

• x and y must each be either an n×1 array (column vector) or a 1×n array (row vector);

• y out must be the same kind of vector as y (in other words, if y is a column vector, so is y out and if y is a
row vector, so is y out).

• The function should “transpose” the vector if x and y do not have the same “shape” (if one is a column vector
and the other one is a row vector).

• If x and/or y are not vectors or if the size of (row or column) vector x does not match the size of (row or
column) vector y, the output should be ’FAILED’.

* Additional instructions. If link does not work, open LAFF-2.0xM/1521Instructions.pdf.

* View at edX

1.5.3 A Routine that Scales a Vector (scal)

* View at edX

Homework 1.5.3.1 Implement the function laff scal that scales a vector x by a scalar α. The function is defined
as

function [x out] = laff scal(alpha, x)

where

• x must be either an n×1 array (column vector) or a 1×n array (row vector);

• x out must be the same kind of vector as x; and

• If x or alpha are not a (row or column) vector and scalar, respectively, the output should be ’FAILED’.

Check your implementation with the script in LAFF-2.0xM/Programming/Week01/test scal.m.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/a5c372da8f954d77bba11976db91fe2a/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/a5c372da8f954d77bba11976db91fe2a/2
http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spring2015/Notes/1521Instructions.pdf
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/a5c372da8f954d77bba11976db91fe2a/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/a5c372da8f954d77bba11976db91fe2a/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/a5c372da8f954d77bba11976db91fe2a/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/a5c372da8f954d77bba11976db91fe2a/3

1.5. LAFF Package Development: Vectors 37

1.5.4 A Scaled Vector Addition Routine (axpy)

* View at edX

Homework 1.5.4.1 Implement the function laff axpy that computes αx+ y given scalar α and vectors x and y.
The function is defined as

function [y out] = laff axpy(alpha, x, y)

where

• x and y must each be either an n×1 array (column vector) or a 1×n array (row vector);

• y out must be the same kind of vector as y; and

• If x and/or y are not vectors or if the size of (row or column) vector x does not match the size of (row or
column) vector y, the output should be ’FAILED’.

• If alpha is not a scalar, the output should be ’FAILED’.

Check your implementation with the script in LAFF-2.0xM/Programming/Week01/test axpy.m.

1.5.5 An Inner Product Routine (dot)

* View at edX

Homework 1.5.5.1 Implement the function laff dot that computes the dot product of vectors x and y. The
function is defined as

function [alpha] = laff dot(x, y)

where

• x and y must each be either an n×1 array (column vector) or a 1×n array (row vector);

• If x and/or y are not vectors or if the size of (row or column) vector x does not match the size of (row or
column) vector y, the output should be ’FAILED’.

Check your implementation with the script in LAFF-2.0xM/Programming/Week01/test dot.m.

1.5.6 A Vector Length Routine (norm2)

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/a5c372da8f954d77bba11976db91fe2a/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/a5c372da8f954d77bba11976db91fe2a/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/a5c372da8f954d77bba11976db91fe2a/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/a5c372da8f954d77bba11976db91fe2a/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/a5c372da8f954d77bba11976db91fe2a/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/a5c372da8f954d77bba11976db91fe2a/6

Week 1. Vectors in Linear Algebra 38

Homework 1.5.6.1 Implement the function laff norm2 that computes the length of vector x. The function is
defined as

function [alpha] = laff norm2(x)

where

• x is an n×1 array (column vector) or a 1×n array (row vector);

• If x is not a vector the output should be ’FAILED’.

Check your implementation with the script in LAFF-2.0xM/Programming/Week01/test norm2.m..

1.6 Slicing and Dicing

1.6.1 Slicing and Dicing: Dot Product

* View at edX

In the video, we justify the following theorem:

Theorem 1.16 Let x,y ∈ Rn and partition (Slice and Dice) these vectors as

x =


x0

x1
...

xN−1

 and y =


y0

y1
...

yN−1

 ,

where xi,yi ∈ Rni with ∑
N−1
i=0 ni = n. Then

xT y = xT
0 y0 + xT

1 y1 + · · ·+ xT
N−1yN−1 =

N−1

∑
i=0

xT
i yi.

1.6.2 Algorithms with Slicing and Redicing: Dot Product

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/2

1.6. Slicing and Dicing 39

Algorithm: [α] := DOT(x,y)

Partition x→

 xT

xB

 , y→

 yT

yB


wherexT and yT have 0 elements

α := 0

while m(xT)< m(x) do

Repartition xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


whereχ1 has 1 row, ψ1 has 1 row

α := χ1×ψ1 +α

Continue with xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

1.6.3 Coding with Slicing and Redicing: Dot Product

* View at edX

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/3

Week 1. Vectors in Linear Algebra 40

There are a number of steps you need to take with MATLAB Online before moving on with this unit. If you do this right,
it will save you a lot of grief for the rest of the course:
When you uploaded LAFF-2.0xM.zip and unzipped it, that directory and all its subdirectories were automatically placed
on the ”path”. In theory, in Unit 1.5.2, you removed LAFF-2.0xM from the path. If not: right-click on that folder, choose
”Remove from path” and choose ”Selected folder and subfolders”. LAFF-2.0xM should now turn from black to gray. Next,
there is a specific set of functions that we do want on the path. To accomplish this

• Expand folder LAFF-2.0xM.

• Expand subfolder Programming.

• Right-click on subfolder laff , choose “Add to path” and choose “Selected folder and subfolders”. laff should
now turn from gray to black. This should be the last time you need to set the path for this course.

Finally, you will want to make LAFF-2.0xM -> Programming -> Week01 your current directory for the Command Win-
dow. You do this by double clicking on LAFF-2.0xM -> Programming -> Week01. To make sure the Command Window
views this directory as the current directory, type “pwd” in the Command Window.

The video illustrates how to do the exercise using a desktop version of MATLAB. Hopefully it will be intuitively obvious
how to do the exercise with MATLAB Online instead. If not, ask questions in the discussion for the unit.

Homework 1.6.3.1 Follow along with the video to implement the routine

Dot unb(x, y).

The “Spark webpage” can be found at

http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spark/index.html

or by opening the file

LAFF-2.0xM → Spark → index.html

that should have been in the LAFF-2.0xM.zip file you downloaded and unzipped as described in Week0 (Unit
0.2.7).

1.6.4 Slicing and Dicing: axpy

* View at edX

In the video, we justify the following theorem:

Theorem 1.17 Let α ∈ R, x,y ∈ Rn, and partition (Slice and Dice) these vectors as

x =


x0

x1
...

xN−1

 and y =


y0

y1
...

yN−1

 ,

http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spark/index.html
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/4

1.6. Slicing and Dicing 41

where xi,yi ∈ Rni with ∑
N−1
i=0 ni = n. Then

αx+ y = α


x0

x1
...

xN−1

+


y0

y1
...

yN−1

=


αx0 + y0

αx1 + y1
...

αxN−1 + yN−1

 .

1.6.5 Algorithms with Slicing and Redicing: axpy

* View at edX

Algorithm: [y] := AXPY(α,x,y)

Partition x→

 xT

xB

 , y→

 yT

yB


wherexT and yT have 0 elements

while m(xT)< m(x) do

Repartition xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


whereχ1 has 1 row, ψ1 has 1 row

ψ1 := α×χ1 +ψ1

Continue with xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

1.6.6 Coding with Slicing and Redicing: axpy

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/6

Week 1. Vectors in Linear Algebra 42

Homework 1.6.6.1 Implement the routine

Axpy unb(alpha, x, y).

The “Spark webpage” can be found at

http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spark/index.html

or by opening the file

LAFF-2.0xM → Spark → index.html

that should have been in the LAFF-2.0xM.zip file you downloaded and unzipped as described in Week0 (Unit
0.2.7).

* View at edX

1.7 Enrichment

1.7.1 Learn the Greek Alphabet

In this course, we try to use the letters and symbols we use in a very consistent way, to help communication. As a general rule

• Lowercase Greek letters (α, β, etc.) are used for scalars.

• Lowercase (Roman) letters (a, b, etc) are used for vectors.

• Uppercase (Roman) letters (A, B, etc) are used for matrices.

Exceptions include the letters i, j, k, l, m, and n, which are typically used for integers.
Typically, if we use a given uppercase letter for a matrix, then we use the corresponding lower case letter for its columns

(which can be thought of as vectors) and the corresponding lower case Greek letter for the elements in the matrix. Similarly,
as we have already seen in previous sections, if we start with a given letter to denote a vector, then we use the corresponding
lower case Greek letter for its elements.

Table 1.1 lists how we will use the various letters.

1.7.2 Other Norms

A norm is a function, in our case of a vector in Rn, that maps every vector to a nonnegative real number. The simplest example
is the absolute value of a real number: Given α ∈ R, the absolute value of α, often written as |α|, equals the magnitude of α:

|α|=

 α if α≥ 0

−α otherwise.

Notice that only α = 0 has the property that |α|= 0 and that |α+β| ≤ |α|+ |β|, which is known as the triangle inequality.
Similarly, one can find functions, called norms, that measure the magnitude of vectors. One example is the (Euclidean)

length of a vector, which we call the 2-norm: for x ∈ Rn,

‖x‖2 =

√
n−1

∑
i=0

χ2
i .

Clearly, ‖x‖2 = 0 if and only if x = 0 (the vector of all zeroes). Also, for x,y ∈ Rn, one can show that ‖x+ y‖2 ≤ ‖x‖2 +‖y‖2.
A function ‖ · ‖ : Rn→ R is a norm if and only if the following properties hold for all x,y ∈ Rn:

• ‖x‖ ≥ 0; and

http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spark/index.html
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/6

1.7. Enrichment 43

Matrix Vector Scalar Note

Symbol LATEX Code

A a α \alpha alpha

B b β \beta beta

C c γ \gamma gamma

D d δ \delta delta

E e ε \epsilon epsilon e j = jth unit basis vector.

F f φ \phi phi

G g ξ \xi xi

H h η \eta eta

I Used for identity matrix.

K k κ \kappa kappa

L l λ \lambda lambda

M m µ \mu mu m(·) = row dimension.

N n ν \nu nu ν is shared with V.

n(·) = column dimension.

P p π \pi pi

Q q θ \theta theta

R r ρ \rho rho

S s σ \sigma sigma

T t τ \tau tau

U u υ \upsilon upsilon

V v ν \nu nu ν shared with N.

W w ω \omega omega

X x χ \chi chi

Y y ψ \psi psi

Z z ζ \zeta zeta

Figure 1.1: Correspondence between letters used for matrices (uppercase Roman),vectors (lowercase Roman), and the symbols
used to denote their scalar entries (lowercase Greek letters).

Week 1. Vectors in Linear Algebra 44

• ‖x‖= 0 if and only if x = 0; and

• ‖x+ y‖ ≤ ‖x‖+‖y‖ (the triangle inequality).

The 2-norm (Euclidean length) is a norm.
Are there other norms? The answer is yes:

• The taxi-cab norm, also known as the 1-norm:

‖x‖1 =
n−1

∑
i=0
|χi|.

It is sometimes called the taxi-cab norm because it is the distance, in blocks, that a taxi would need to drive in a city like
New York, where the streets are laid out like a grid.

• For 1≤ p≤ ∞, the p-norm:

‖x‖p =
p

√
n−1

∑
i=0
|χi|p =

(
n−1

∑
i=0
|χi|p

)1/p

.

Notice that the 1-norm and the 2-norm are special cases.

• The ∞-norm:

‖x‖∞ = lim
p→∞

p

√
n−1

∑
i=0
|χi|p =

n−1
max
i=0
|χi|.

The bottom line is that there are many ways of measuring the length of a vector. In this course, we will only be concerned with
the 2-norm.

We will not prove that these are norms, since that, in part, requires one to prove the triangle inequality and then, in turn,
requires a theorem known as the Cauchy-Schwarz inequality. Those interested in seeing proofs related to the results in this unit
are encouraged to investigate norms further.

Example 1.18 The vectors with norm equal to one are often of special interest. Below we plot the points to which

vectors x with ‖x‖2 = 1 point (when those vectors start at the origin, (0,0)). (E.g., the vector

 1

0

 points to the

point (1,0) and that vector has 2-norm equal to one, hence the point is one of the points to be plotted.)

1.7. Enrichment 45

Example 1.19 Similarly, below we plot all points to which vectors x with ‖x‖1 = 1 point (starting at the origin).

Example 1.20 Similarly, below we plot all points to which vectors x with ‖x‖∞ = 1 point.

Example 1.21 Now consider all points to which vectors x with ‖x‖p = 1 point, when 2 < p < ∞. These form a
curve somewhere between the ones corresponding to ‖x‖2 = 1 and ‖x‖∞ = 1:

Week 1. Vectors in Linear Algebra 46

1.7.3 Overflow and Underflow

A detailed discussion of how real numbers are actually stored in a computer (approximations called floating point numbers)
goes beyond the scope of this course. We will periodically expose some relevant properties of floating point numbers througout
the course.

What is import right now is that there is a largest (in magnitude) number that can be stored and a smallest (in magnitude)
number not equal to zero, that can be stored. Try to store a number larger in magnitude than this largest number, and you cause
what is called an overflow. This is often stored as a “Not-A-Number” (NAN). Try to store a number not equal to zero and
smaller in magnitude than this smallest number, and you cause what is called an underflow. An underflow is often set to zero.

Let us focus on overflow. The problem with computing the length (2-norm) of a vector is that it equals the square root of
the sum of the squares of the components. While the answer may not cause an overflow, intermediate results when squaring
components could. Specifically, any component greater in magnitude than the square root of the largest number that can be
stored will overflow when squared.

The solution is to exploit the following observation: Let α > 0. Then

‖x‖2 =

√
n−1

∑
i=0

χ2
i =

√
n−1

∑
i=0

[
α2
(

χi

α

)2
]
=

√
α2

n−1

∑
i=0

(
χi

α

)2
= α

√(
1
α

x
)T (1

α
x
)

Now, we can use the following algorithm to compute the length of vector x:

• Choose α = maxn−1
i=0 |χi|.

• Scale x := x/α.

• Compute ‖x‖2 = α
√

xT x.

Notice that no overflow for intermediate results (when squaring) will happen because all elements are of magnitude less than
or equal to one. Similarly, only values that are very small relative to the final results will underflow because at least one of the
components of x/α equals one.

1.7.4 A Bit of History

The functions that you developed as part of your LAFF library are very similar in functionality to Fortran routines known as
the (level-1) Basic Linear Algebra Subprograms (BLAS) that are commonly used in scientific computing libraries. These were
first proposed in the 1970s and were used in the development of one of the first linear algebra libraries, LINPACK. Classic
references for that work are

• C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, “Basic Linear Algebra Subprograms for Fortran Usage,” ACM Trans-
actions on Mathematical Software, 5 (1979) 305–325.

• J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LINPACK Users’ Guide, SIAM, Philadelphia, 1979.

The style of coding that we use is at the core of our FLAME project and was first published in

• John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn, “FLAME: Formal Linear Algebra
Methods Environment,” ACM Transactions on Mathematical Software, 27 (2001) 422–455.

• Paolo Bientinesi, Enrique S. Quintana-Orti, and Robert A. van de Geijn, “Representing linear algebra algorithms in code:
the FLAME application program interfaces,” ACM Transactions on Mathematical Software, 31 (2005) 27–59.

1.8. Wrap Up 47

1.8 Wrap Up

1.8.1 Homework

Homework 1.8.1.1 Let

x =

 2

−1

 , y =

 α

β−α

 , and x = y.

Indicate which of the following must be true (there may be multiple correct answers):

(a) α = 2

(b) β = (β−α)+α = (−1)+2 = 1

(c) β−α =−1

(d) β−2 =−1

(e) x = 2e0− e1

Week 1. Vectors in Linear Algebra 48

Homework 1.8.1.2 A displacement vector represents the length and direction of an imaginary, shortest, straight
path between two locations. To illustrate this as well as to emphasize the difference between ordered pairs that
represent positions and vectors, we ask you to map a trip we made.
In 2012, we went on a journey to share our research in linear algebra. Below are some displacement vectors to de-
scribe parts of this journey using longitude and latitude. For example, we began our trip in Austin, TX and landed
in San Jose, CA. Austin has coordinates 30◦ 15′ N(orth),97◦ 45′ W(est) and San Jose’s are 37◦ 20′ N,121◦ 54′ W.
(Notice that convention is to report first longitude and then latitude.) If we think of using longitude and latitude
as coordinates in a plane where the first coordinate is position E (positive) or W (negative) and the second co-
ordinate is position N (positive) or S (negative), then Austin’s location is (−97◦ 45′,30◦ 15′) and San Jose’s are
(−121◦ 54′,37◦ 20′). (Here, notice the switch in the order in which the coordinates are given because we now
want to think of E/W as the x coordinate and N/S as the y coordinate.) For our displacement vector for this, our
first component will correspond to the change in the x coordinate, and the second component will be the change in
the second coordinate. For convenience, we extend the notion of vectors so that the components include units as
well as real numbers. Notice that for convenience, we extend the notion of vectors so that the components include
units as well as real numbers (60 minutes (′)= 1 degree(◦). Hence our displacement vector for Austin to San Jose

is

 −24◦ 09′

7◦ 05′

.

After visiting San Jose, we returned to Austin before embarking on a multi-legged excursion. That is, from Austin
we flew to the first city and then from that city to the next, and so forth. In the end, we returned to Austin.
The following is a table of cities and their coordinates:

City Coordinates City Coordinates

London 00◦ 08′ W, 51◦ 30′ N Austin −97◦ 45′ E, 30◦ 15′ N

Pisa 10◦ 21′ E, 43◦ 43′ N Brussels 04◦ 21′ E, 50◦ 51′ N

Valencia 00◦ 23′ E, 39◦ 28′ N Darmstadt 08◦ 39′ E, 49◦ 52′ N

Zürich 08◦ 33′ E, 47◦ 22′ N Krakow 19◦ 56′ E, 50◦ 4′ N

Determine the order in which cities were visited, starting in Austin, given that the legs of the trip (given in order)
had the following displacement vectors: 102◦ 06′

20◦ 36′

→
 04◦ 18′

−00◦ 59′

→
 −00◦ 06′

−02◦ 30′

→
 01◦ 48′

−03◦ 39′

→
 09◦ 35′

06◦ 21′

→
 −20◦ 04′

01◦ 26′

→
 00◦ 31′

−12◦ 02′

→
 −98◦ 08′

−09◦ 13′



1.8. Wrap Up 49

Homework 1.8.1.3 These days, high performance computers are called clusters and consist of many compute
nodes, connected via a communication network. Each node of the cluster is basically equipped with a central
processing unit (CPU), memory chips, a hard disk, and a network card. The nodes can be monitored for average
power consumption (via power sensors) and application activity.
A system administrator monitors the power consumption of a node of such a cluster for an application that executes
for two hours. This yields the following data:

Component Average power (W) Time in use (in hours) Fraction of time in use

CPU 90 1.4 0.7

Memory 30 1.2 0.6

Disk 10 0.6 0.3

Network 15 0.2 0.1

Sensors 5 2.0 1.0

The energy, often measured in KWh, is equal to power times time. Notice that the total energy consumption can
be found using the dot product of the vector of components’ average power and the vector of corresponding time
in use. What is the total energy consumed by this node in KWh? (The power is in Watts (W), so you will want to
convert to Kilowatts (KW).)
Now, let’s set this up as two vectors, x and y. The first records the power consumption for each of the components
and the other for the total time that each of the components is in use:

x =



90

30

10

15

5


and y = 2



0.7

0.6

0.3

0.1

1.0


.

Instead, compute xT y. Think: How do the two ways of computing the answer relate?

Week 1. Vectors in Linear Algebra 50

Homework 1.8.1.4 (Examples from statistics) Linear algebra shows up often when computing with data sets.
In this homework, you find out how dot products can be used to define various sums of values that are often
encountered in statistics.
Assume you observe a random variable and you let those sampled values be represented by χi, i = 0,1,2,3, · · · ,n−
1. We can let x be the vector with components χi and~1 be a vector of size n with components all ones:

x =


χ0

...

χn−1

 , and ~1 =


1
...

1

 .

For any x, the sum of the values of x can be computed using the dot product operation as

• xT x

• ~1T x

• xT~1

The sample mean of a random variable is the sum of the values the random variable takes on divided by the number
of values, n. In other words, if the values the random variable takes on are stored in vector x, then x = 1

n ∑
n−1
i=0 χi.

Using a dot product operation, for all x this can be computed as

• 1
n xT x

• 1
n
~1T x

• (~1T~1)−1(xT~1)

For any x, the sum of the squares of observations stored in (the elements of) a vector, x, can be computed using a
dot product operation as

• xT x

• ~1T x

• xT~1

1.8. Wrap Up 51

1.8.2 Summary of Vector Operations

Vector scaling αx =


αχ0

αχ1
...

αχn−1



Vector addition x+ y =


χ0 +ψ0

χ1 +ψ1
...

χn−1 +ψn−1



Vector subtraction x− y =


χ0−ψ0

χ1−ψ1
...

χn−1−ψn−1



AXPY αx+ y =


αχ0 +ψ0

αχ1 +ψ1
...

αχn−1 +ψn−1


dot (inner) product xT y = ∑

n−1
i=0 χiψi

vector length ‖x‖2 =
√

xT x =
√

∑
n−1
i=0 χiχi

1.8.3 Summary of the Properties of Vector Operations

Vector Addition

• Is commutative. That is, for all vectors x,y ∈ Rn,x+ y = y+ x.

• Is associative. That is, for all vectors x,y,z ∈ Rn,(x+ y)+ z = x+(y+ z).

• Has the zero vector as an identity.

• For all vectors x ∈ Rn,x+0 = 0+ x = x where 0 is the vector of size n with 0 for each component.

• Has an inverse, −x. That is x+(−x) = 0.

The Dot Product of Vectors

• Is commutative. That is, for all vectors x,y ∈ Rn,xT y = yT x.

• Distributes over vector addition. That is, for all vectors x,y,z ∈ Rn,xT (y+ z) = xT y+ xT z and (x+ y)T z = xT z+ yT z.

Partitioned vector operations

For (sub)vectors of appropriate size

•


x0

x1
...

xN−1

+


y0

y1
...

yN−1

=


x0 + y0

x1 + y1
...

xN−1 + yN−1

.

Week 1. Vectors in Linear Algebra 52

•


x0

x1
...

xN−1



T 
y0

y1
...

yN−1

= xT
0 y0 + xT

1 y1 + · · ·+ xT
N−1yN−1 = ∑

N−1
i=0 xT

i yi.

Other Properties

• For x,y ∈ Rn,(x+ y)T (x+ y) = xT x+2xT y+ yT y.

• For x,y ∈ Rn,xT y = 0 if and only if x and y are orthogonal.

• Let x,y ∈ Rn be nonzero vectors and let the angle between them equal θ. Then cos(θ) = xT y/‖x‖2‖y‖2.

• For x ∈ Rn,xT ei = eT
i x = χi where χi equals the ith component of x.

1.8.4 Summary of the Routines for Vector Operations

Operation Abbrev. Definition Function Approx. cost

flops memops

Vector-vector operations

Copy (COPY) y := x laff.copy(x, y) 0 2n

Vector scaling (SCAL) x := αx laff.scal(alpha, x) n 2n

Scaled addition (AXPY) y := αx+ y laff.axpy(alpha, x, y) 2n 3n

Dot product (DOT) α := xT y alpha = laff.dot(x, y) 2n 2n

Length (NORM2) α := ‖x‖2 alpha = laff.norm2(x) 2n n

