Vedic Math Presentation

John L. Lehet
jlehet@mathmaverick.com
http://www.mathmaverick.com

check out my mental math apps for android devices at http://www.mathmaverick.com/viewMMIndex.php?vid=997 practice and master mental math - the Vedic way

Vedic Math

Veda means Knowledge

Vedic Maths over 2000 years old Rediscovered in $20^{\text {th }}$ century by Bharati Krishna

Comprised of Sutras and sub-Sutras which are aphoristic formulas

A system of Mental Mathematics

Recommended Reference Book
Vedic Mathematics - Teacher's Manual - Elementary Level
Kenneth R. Williams
ISBN: 81-208-2774-0

Vedic Math

Completing the Whole

lessons

The Ten Point Circle
Using Subtraction to Simply Addition
Using Addition to Simplify Subtraction
Simplifying Addition by Groups of 10
\section*{sutras}

By Completion or Non-Completion
By the Deficiency

The Ten Point Circle

The Ten Point Circle

Below a Multiple of Ten By the Deficiency

View a number as to how close it is to the next multiple of ten
49 is close to 50 and is 1 short
38 is close to 40 and is 2 short

It's easy to
add zeros!

Make use

$$
\begin{gathered}
59+4=63 \\
59 \text { is close to } 60 \text { and is } 1 \text { below it } \\
\text { So, } 59+4 \text { is } 1 \text { below } 60+4 \\
59+4=60+4-1=64-1=63 \\
38+24=62 \\
38 \text { is close to } 40 \text { and is } 2 \text { below it } \\
\text { So, } 38+24 \text { is } 2 \text { below } 40+24 \\
38+24=40+24-2=64-2=62
\end{gathered}
$$ of this!

Practice This Process Mentally!

Sum to Ten

The Ten Point Circle illustrates the pairs of numbers whose sum is 10

There are eight unique groups of three numbers that sum to 10 $1+2+7=10$ is an example

| 1 |
| :---: |$+\quad 7$

$\square+\square+\square=\mathbf{1 0}$
$\square+\square+\square=\square 10$

Can you find the other seven groups of three numbers summing to 10 ?

Adding a List of Numbers

Look for number pairs that make a multiple of 10

$$
7+6+3+4
$$

The list can be sequentially added as follows

$$
7+6 \text { is } 13,
$$

$$
13+3 \text { is } 16
$$

And $16+4$ is 20
OR
You could look for number pairs that make multiples of 10
$7+3$ is 10 ,
$6+4$ is 10
$10+10$ is 20

$$
48+16+61+32
$$

$$
\begin{array}{r}
10<\begin{array}{r}
3 \\
7
\end{array} \\
+9 \\
\hline 59
\end{array}
$$

Subtracting Near a Base

When subtracting a number close to a multiple of 10 , Just subtract from the multiple of 10 and correct the answer
accordingly

$$
53-29
$$

29 is close to 30 , just 1 lower, So subtract 30 from 53 making 23

Then add 1 to make 24

$$
53-29=53-(30-1)=53-30+1=23+1=24
$$

This process can be done mentally

$$
\begin{gathered}
45-18 \\
45-18=45-(20-2)=45-20+2=25+2=27
\end{gathered}
$$

Vedic Math

Doubling and Halving

lessons

Mentally Multiplying and Dividing by 2
Mentally Multiplying and Dividing by 4 and 8 Mentally Multiplying and Dividing by 5, 50 and 25 Using Number Relationships to Simplify a Problem

sutras

Proportionately

Doubling

Adding a number to itself is called Doubling

$$
\begin{array}{r}
23 \\
+23 \\
\hline 2+2 \rightarrow 46 \\
\leftarrow 3+3
\end{array}
$$

Mentally, we can double each column and then combine results

$$
\begin{array}{r}
58 \\
+58 \\
\hline 116
\end{array} \begin{array}{r}
\leftarrow 100+16=116
\end{array}
$$

Grouping columns may simply the problem

$$
\begin{array}{r}
263 \\
+\frac{263}{526} \leftarrow \text { double } 260 \text { and add double 3 } \\
\end{array}
$$

Practice Doubling Mentally

Doubling

Practice how to approach a problem

$$
\begin{array}{r}
736 \\
+736 \\
\hline 1472
\end{array}
$$

Mentally, the problem can be "broken" into two problems

$$
736=700+36
$$

double each of these and combine

$$
1400+72=1472
$$

Practice Doubling Mentally

Multiplying by 4 and 8
Doubling can be used to multiply by 4 just double the number twice

$$
\begin{gathered}
35 \times 4=(35 \times 2) \times 2 \\
30 \\
35 \times 4=70 \times 2=140 \\
\text { similarly }
\end{gathered}
$$

$$
163 \times 4=326 \times 2=652
$$

Doubling can be used to multiply by 8 just double the number three times

$$
\begin{gathered}
35 \times 8=((35 \times 2) \times 2) \times 2 \\
\text { so, } \\
35 \times 8=70 \times 4=140 \times 2=280 \\
\text { similarly, } \\
163 \times 8=326 \times 4=652 \times 2=1304
\end{gathered}
$$

Halving is the opposite of Doubling

> Half of $\mathbf{4 2}$ is $\mathbf{2 1}$ just half each column

$$
\begin{aligned}
& \text { Half of } \mathbf{5 6} \text { is } \mathbf{2 8} \\
& \text { just half } 50 \text { and half } 6 \text { then add }
\end{aligned}
$$

Mentally, the problem can be "broken" into two problems

$$
\begin{gathered}
736=700+36 \\
\text { half each of these and combine } \\
350+18=\mathbf{3 6 8}
\end{gathered}
$$

Practice Halving Mentally

Dividing by 4 and 8

Halving can be used to divide by 4 just half the number twice

$$
\begin{aligned}
& 72 \div 4=(72 \div 2) \div 2 \\
& \text { so, } \\
& 72 \div 4=36 \div 2=18 \\
& \text { similarly, } \\
& 164 \div 4=82 \div 2=41
\end{aligned}
$$

Halving can be used to divide by 8 just half the number three times

$$
\begin{gathered}
72 \div 8=((72 \div 2) \div 2) \div 2 \\
\text { so, } \\
72 \div 8=(36 \div 2) \div 2=18 \div 2=9 \\
\text { similarly, } \\
504 \div 8=252 \div 4=126 \div 4=63
\end{gathered}
$$

Multiplying by 5, 50 and 25 Proportionately

Multiply by 5 by multiplying by 10 and halving the result

$$
\begin{aligned}
& 26 \times 5=(26 \times 10) \div 2=260 \div 2=130 \\
& \text { It's easy to multiply by } 10 \text { and } 100!\text { Make use of this! }
\end{aligned}
$$

Multiply by 50 by multiplying by 100 and half the result

$$
43 \times 50=(43 \times 100) \div 2=4300 \div 2=2150
$$

Multiply by 25 by multiplying by 100 and half the result twice

$$
68 \times 25=(68 \times 100) \div 4=6800 \div 4=3400 \div 2=1700
$$

Dividing by 5, 50 and 25 Proportionately

Divide by 5 by doubling and dividing the result by 10

$$
\begin{aligned}
& 320 \div 5=(2 \times 320) \div 10=640 \div 10=64 \\
& \text { It's easy to divide by } 10 \text { and } 100!\text { Make use of this! }
\end{aligned}
$$

Divide by 50 by doubling and dividing the result by 100

$$
850 \div 50=(850 \times 2) \div 100=1700 \div 100=17
$$

Divide by 25 by doubling twice and dividing the result by 100

$$
325 \div 25=(325 \times 4) \div 100=1300 \div 100=13
$$

We know certain number facts well, such as $8 \times 7=56$
But given the problem 16×7, we may use long multiplication, Instead, proportionately allows us to use our number facts along with halving and doubling

$$
16 \times 7=2 \times(8 \times 7)=2 \times(56)=112
$$

all of which can be done mentally!
\quad similarly,
$18 \times 14=(2 \times 9) \times(2 \times 7)=4 \times(9 \times 7)=4 \times 63=2 \times 126=252$

Vedic Math

Digit Sums

lessons

Definition of Digit Sum
Nine Point Circle
"Casting Out" 9's
Checking with Digit Sums

sutras

When the Samuccaya is the Same it is Zero

Digit Sums

A Digit Sum is the sum of all of the digits of a number

 and is found by adding all of the digits of a numberThe Digit Sum of 35 is $3+5=8$
The Digit Sum of 142 is $1+4+2=7$
If the sum of the digits is greater than 9, then
sum the digits of the result again until the result is less than 10

$$
\text { The Dinit cume f } 57 \text { : } 5 \text {, so sum the digits again }
$$

The Digit Sum of 57 is $5+7=12 \rightarrow 1+2=3$ So the Digit Sum of 57 is 3

The Digit Sum of 687 is $6+8+7=21 \rightarrow 2+1=3$ So the Digit Sum of 687 is 3
Keep finding the Digit Sum of the result until it's less than 10 0 and 9 are equivalent!

Nine Point Circle

Casting Out 9's

When finding the Digit Sum of a number, 9's can be "cast out"

The Digit Sum of 94993 is $4+3=7$ "cast out" the 9's

When finding the Digit Sum of a number, Group of numbers that sum to 9 can be "cast out"

The Digit Sum of 549673 is 7
"cast out" the $5+4,9$ and $6+3$, leaving just 7

By Casting Out 9's,
Finding a Digit Sum can be done more quickly and mentally!

Checking with Digit Sums

Both Addition and Multiplication preserve Digit Sums

If the sum of the Digit Sums does NOT equal The Digit Sum of the sum, then there's a problem!

If the product of the Digit Sums does NOT equal The Digit Sum of the product, then there's a problem!

Digit Sums of Perfect Squares

All Perfect Squares end in 1, 4, 5, 6, 9 or 0 and
 digit sums are 1, 4, 7 or 9

> 4539
> ends in 9
> digit sum is 3

Therefore, 4539 is not a perfect square
5776
ends in 6
digit sum is 7
Therefore, 5776 may be a perfect square

Vedic Math

Left to Right

Vedic Math

All from 9 and the last from 10

lessons

Subtracting Number from 10^{n} Applications with Money

sutras

All From 9 and the Last From 10

All From 9 and the Last From $10{ }^{\text {All from } 9 \text { and the }}$ Last from 10

When subtracting a number from a power of 10 Subtract all digits from 9 and last from 10

| 1000 |
| :---: | :---: |
| -276 |
| 724 |\longrightarrow| from from |
| :---: |
| \downarrow |
| \downarrow |
| 10 |

If the number ends in zero, use the last non-zero number as the last number

10000	from from
	A
-4250	4250
5750	$\downarrow \downarrow \downarrow \downarrow$
	575

All From 9 and the Last From $10{ }^{\text {All from } 9 \text { and the }}$ Last from 10

If the number is less digits, then append zeros to the start

10000	from from
	${ }^{10}$
-425	0425
9575	$\downarrow \downarrow \downarrow \downarrow$
	9575

When subtracting from a multiple of a power of 10 , Just decrement the first digit by 1 , then subtract remaining digits

| 4000 |
| :---: | :---: | :---: |
| -257 |
| 3743 |\longrightarrow| |
| :---: |
| |
| |
| |
| $4-1 \rightarrow 3743$ |

A great application of "All from 9 and last from 10 " is money. Change can be calculated by applying this sutra mentally!

$$
\begin{aligned}
& \$ 10.00 \\
& \text { - } \$ 4.25 \\
& \$ 5.75
\end{aligned}
$$

It is often the case the payment is made with bills only, these are multiples of " 100 "

THINK MENTALLY!

Vedic Math

Number Splitting

lessons

Splitting Number to Simplify Problem

sutras

Proportionately

Number Splitting

Quick mental calculations can be performed more easily if the the numbers are "split" into more manageable parts

This sum can look somewhat daunting

"split" into two more
manageable sums

$$
\begin{array}{r|l}
36142 \\
+24 & 39 \\
\hline 60181
\end{array}
$$

Think about where to place the "split" line. It's often best to avoid number "carries" over the line

$$
\begin{array}{r}
342 \\
+587 \\
\end{array} \longrightarrow \begin{array}{r}
3 \mid 42 \\
+5 \mid 87 \\
\hline 9129
\end{array}
$$

carry $\rightarrow 1$
a carry of " 1 " over No carry is required the line is required

Number Splitting

The same can be done for subtraction also!

3642

-2439 \longrightarrow\begin{tabular}{c|cc}

36 \& 42 \& | The "split" allows one |
| :---: |
| to subtract "36-24" |
| and "42-39", both of |
| which can be done |
| mentally |

\hline 124 \& 39
\end{tabular}

The same can be done for multiplication also!
263

$x 2$$\longrightarrow$| 26 | 3 |
| ---: | ---: |
| $x 2$ | $x 2$ |
| 52 | 6 |$\longrightarrow 526$

The same can be done for division also!

6234
$\div 2$

$$
\begin{array}{r|r}
62 & 34 \\
\div 2 & \div 2 \\
\hline 31 & 17
\end{array} \longrightarrow 3117
$$

Number Splitting

The "split" may require more "parts"
30155

$\div 5$$\longrightarrow$| 30 | 15 | 5 | |
| ---: | ---: | ---: | :--- |
| $\div 5$ | $\div 5$ | $\div 5$ | |
| 6 | 03 | 1 | $\longrightarrow 631$ |

$$
\begin{array}{r}
244506 \\
\div 3
\end{array}
$$

$$
\begin{array}{r|r|r}
24 & 45 & 06 \\
& \\
\div 3 & \div 3 & \div 3 \\
\hline 8 & 15 & 2
\end{array} \longrightarrow 81502
$$

Vedic Math

Base Multiplication

lessons

Multiplying Numbers Just Above or Below 10^{n} Using Number Relationships to Simplify Problems Multiplying Numbers Near Different Bases Squaring Numbers Near a Base
sutras
Vertically and Crosswise Proportionately

Traditionally, the multiplication of 2-digit numbers requires
Four single digit multiplies and series of summations to combine the results

Traditional Method 12 x 13 36 12 156 c

The Vedic Method requires an addition (crosswise), a single digit Multiplication (vertically) and possibly a carry

Multiplying Numbers Just Above 10

A carry may be required when combining the crosswise and
vertical results

Traditional
Method
16
$\times 13$
48
$\frac{16}{208}$

Traditionally, the multiplication of 2-digit numbers requires
Four single digit multiplies and series of summations to combine the results

Traditional
Method
98
x 88
784
784
8624

Vedic
Method

The Vedic Method requires a subtraction (crosswise), and a single digit multiplication (vertically)

Multiplying Numbers Just Above 100

Traditionally, the multiplication of 3-digit numbers requires Six single digit multiplies and series of summations to combine the results

Traditional
102
x 112
204
102
102
11424

The Vedic Method requires an addition (crosswise), and a multiplication (vertically)

Multiplying Numbers on Either Side of $100 \begin{gathered}\text { Vertically and } \\ \text { Crosswise }\end{gathered}$

Multiplying Numbers Close to 100 but on either side

So, what's $103 \times 96 ? \quad 9900-12=9888$

Multiplying Larger Numbers

Traditionally, the multiplication of larger numbers requires numerous single digit multiplies and series of summations to combine the results

The Vedic Method requires an addition (crosswise), and a multiplication (vertically)

Proportionately

Often problems can be simplified in order to be performed mentally more easily

$$
\begin{gathered}
\begin{array}{c}
\text { Vedic } \\
\text { Method }
\end{array} \\
212 \times 104 \longrightarrow 2 \times(106 \times 104)
\end{gathered} \begin{aligned}
& \text { rewrite } \\
& \text { problem }
\end{aligned}, \begin{aligned}
& \text { vertically/ } \\
& \text { crosswise }
\end{aligned}
$$

46×192 can be rewritten as 92×96 by doubling and halving

$$
46 \times 192=92 \times 96=8832 \quad \begin{aligned}
& \text { vertically } \\
& \text { crosswise }
\end{aligned}
$$

Multiplying Numbers Near Different Bases Verically and Multiplying Numbers Near Different Bases Crosswise

Multiplying numbers near different bases uses the same techniques

To square numbers near a base, just apply the same techniques

1005^{2}

Vedic Math

Bar Numbers

lessons

Define Bar Numbers
Bar Number Arithmetic
Using Bar Numbers

sutras

All From 9 and the Last From 10

Bar Numbers

29 is close to the number 30
Let's rewrite 29 as $3 \overline{1}$
$3 \overline{1}$ means $30-1$ or 29

Bar numbers are analogous to time
The time 5:45 can be
"45 minutes past 5 "
OR
" 15 minutes before 6 "
$5 \overline{2}$ means $50-2$ or 48
$6 \overline{3}$ means $60-3$ or 57
$4 \overline{1} 2$ means $400-10+2=392$
Note the distinction between
$4 \overline{1} 2=392$
$4 \overline{13}$ means $400-13=387$
and
$4 \overline{12}=388$

Subtraction using Bar Numbers

$$
\begin{gathered}
435 \\
-276 \\
\hline 159
\end{gathered} \begin{gathered}
\text { Traditionally, subtraction is } \\
\text { performed on columns right to left } \\
\text { "borrowing" from the next left } \\
\text { column when necessary }
\end{gathered}
$$

However, subtracting each column independently gives the following:

$$
\begin{aligned}
& 4-2=2 \\
& 3-7=-4 \\
& 5-6=-1
\end{aligned}
$$

Negative numbers can be replaced with their bar number equivalent, so

$$
\begin{aligned}
& 4-2=2 \\
& 3-7=\overline{4} \\
& 5-6=\overline{1}
\end{aligned}
$$

$$
\text { So, } \quad-276
$$

$$
2 \overline{4} \overline{1}=2 \overline{41}=159
$$

Arithmetic of Bar Numbers

$$
\begin{array}{r}
29 \rightarrow 3 \overline{1} \\
+48 \rightarrow 5 \overline{2} \\
\hline 77
\end{array}
$$

The original problem can be rewritten three different ways using bar numbers

In each case, the result is the same, 77 !

Arithmetic of Bar Numbers

Addition: $\begin{array}{r}28 \\ +43 \\ \hline 71\end{array} \begin{array}{r}3 \bar{l} \\ +42 \\ 71\end{array} \quad 1=2+\overline{1}=2-1$
Subtraction: \(\begin{array}{r}63

\hline 26\end{array}\)| 67 |
| :--- |
| 26 |$\quad 6=3-\overline{3}=3+3$

Multiplication: $\begin{array}{r}28 \\ \frac{x 3}{84}\end{array} \rightarrow \begin{array}{r}3 \overline{2} \\ 9 \overline{6}\end{array}=84 \quad \overline{6}=\overline{2} \times 3$
Division: \(\begin{array}{r}87

\div 3

\hline 71\end{array}\)| $9 \overline{3}$ |
| :---: |
| $\frac{\div 3}{1}=29$ |$\overline{1}=\overline{3} \div 3$

Vedic Math

Special Multiplication

lessons

Multiply by 11
Multiply $a b \times a c$ where $b+c=10$
Multiply $b a \times c a$ where $b+c=10$
Multiply by 99, 999, etc
Using the Average to Multiply

sutras

Vertically and Crosswise
By One More than The One Before
By One Less than The One Before
The First by the First, The Last by the Last
Specific General

Multiplying by 11

Multiplying by 11 can be performed easily

TraditionalMethod
x 11
45
45
495

Carries may be required when the sum exceeds 9

Multiplying by 11

> Traditional
> Method
> 243
> $\begin{array}{r}\mathrm{x} \quad 11 \\ \hline 243\end{array}$ 243
> 2673

Carries may be required when a center sum exceeds 9

When 2-digit numbers start with the same digit and their last digits sum to 10 ,
The product of the two numbers can be easily computed
both numbers
 the sum of the last digits is 10

As the numbers get further from 35,
their product gets further
from $35^{2}=1225$
by a factor of the difference squared

$$
\begin{aligned}
& 35 \times 35=\mathbf{1 2 2 5}=1225-0 \\
& 34 \times 36=\mathbf{1 2 2 4}=1225-\mathbf{1}=1225-\mathbf{1}^{2} \\
& 33 \times 37=\mathbf{1 2 2 1}=1225-\mathbf{4}=1225-\mathbf{2}^{2} \\
& 32 \times 38=\mathbf{1 2 1 6}=1225-\mathbf{9}=1225-\mathbf{3}^{2} \\
& 31 \times 39=\mathbf{1 2 0 9}=1225-\mathbf{1 6}=1225-\mathbf{4}^{2}
\end{aligned}
$$

Special Multiplication

When 2-digit numbers end with the same digit and their first digits sum to 10 ,
The product of the two numbers can be easily computed
both numbers

$$
2736 \longrightarrow 2736
$$

$$
\begin{array}{r}
62 \\
\times 42 \\
\hline 2604 \rightarrow 2604
\end{array}
$$

When multiplying by a number with all digits equal to " 9 ", The product of the two numbers can be easily computed in two parts

Special Multiplication

When multiplying numbers, the average can sometimes be used to determine their product

$$
31 \times 29
$$

their average is 30
square this and subtract 1 to determine the product

$$
\begin{aligned}
& 31 \times 29=30^{2}-1^{2}=900-1=899 \\
& 30=(31+29) / 2
\end{aligned} \begin{aligned}
& 1=(31-30)^{2} \\
& 38 \times 42=40^{2}-2^{2} \\
&=1600-4=1596 \quad \text { "all from 9, the last from } 10 " \\
& \begin{aligned}
47 \times 53 & =50^{2}-3^{2} \\
& =2500-9=2491 \quad \text { "all from 9, the last from } 10 \text { " }
\end{aligned}
\end{aligned}
$$

Vedic Math

General Multiplication

lessons

Multiply 2-Digit Numbers
Multiply 3-Digit Numbers

sutras
Vertically and Crosswise

Multiplying 2-Digit Numbers

Intermediate Method
24
x 43
$12=3 \times 4$
$60=3 \times 20$
$160=40 \times 4$
$800=40 \times 20$
1032

$$
812+220=1032
$$

$$
46 \times 52=2012+380=2392
$$

Multiplying 3-Digit Numbers

Find 504×321

Traditional Method
504
x 321
504
1008
1512
6178

Mentally, we think 15; 160; 1617; 16178; 161784

Find 123×321

$$
\begin{gathered}
3,8,14,8,3 \\
39483
\end{gathered}
$$

Mentally, we think 3; 38; 394; 3948; 39483

Find 617 x 893

Mentally, we think 48;542; 5503; 55096; 550981

Squaring

lessons

Squaring Numbers Ending in 5
Squaring Numbers Near 50
General Squaring using the Duplex of a Number

sutras

By One More Than the One Before Proportionately

By One More Than the One Before

$$
35^{2} \rightarrow 3 \cdot 4 / 25 \rightarrow 12 / 25 \rightarrow 1225
$$

The result is comprised of two "parts"
The bottom "part" is always 25
The top "part" is $n(n+1)$
$75^{2} \rightarrow 7 \bullet 8 / 25 \rightarrow 56 / 25 \rightarrow 5625$
$45^{2} \rightarrow 4 \cdot 5 / 25 \rightarrow 20 / 25 \rightarrow 2025$
$95^{2} \rightarrow 9 \cdot 10 / 25 \rightarrow 90 / 25 \rightarrow 9025$
$115^{2} \rightarrow 11 \cdot 12 / 25 \rightarrow 132 / 25 \rightarrow 13225$

Squaring Numbers Near 50

$$
54^{2} \rightarrow 5^{2}+4 / 4^{2} \rightarrow 29 / 16 \rightarrow 2916
$$

For numbers greater than 50

The result is comprised of two "parts"
The bottom "part" is always the bottom digit squared
The top "part" is the top digit squared plus the bottom digit

$$
48^{2} \rightarrow 5^{2}-2 / 2^{2} \rightarrow 23 / 4 \rightarrow 2304
$$

For numbers less than 50

The result is comprised of two "parts"
The bottom "part" is always the bar of the bottom digit squared
The top "part" is the top digit squared minus the bar of the bottom digit

$$
\begin{aligned}
53^{2} & \rightarrow 25+3 / 9 \\
46^{2} & \rightarrow 25-28 / 9 \rightarrow 2809 \\
\hline 26 & \rightarrow 21 / 16 \rightarrow 2116
\end{aligned}
$$

General Squaring

The Duplex, \boldsymbol{D}, of a number
1 digit $-\mathrm{D}(\mathrm{n})=\mathrm{n}^{2}$

$$
\text { e.g. } D(5)=25
$$

2 digits $-\mathrm{D}(\mathrm{n})=$ twice the product of the digits

$$
\text { e.g. } D(26)=2(2)(6)=24
$$

3 digits $-\mathrm{D}(\mathrm{n})=$ twice the product of the outer digits + the square of the middle digit

$$
\text { e.g. } D(137)=2(1)(7)+3^{2}=14+9=23
$$

The square of a number is the "total" of its Duplexes

$$
\left.\begin{array}{rl}
34^{2}=1156 \\
D(3)= & 9, D(34)=24, D(4)=16 \\
9,24,16 \rightarrow 1156
\end{array}\right)
$$

General Squaring

$$
\begin{array}{ccc}
47^{2}=1156 \\
& & \\
D(4)=16, & D(47) & =56, D(4)=49 \\
\mathbf{1 6 , 5 6 , 4 9} \rightarrow \mathbf{2 2 0 9} & 1649 \\
& \mathbf{2 2 0 9}
\end{array}
$$

Number Splitting

123^{2} - Split 123 into two parts 12 / 3

$$
\begin{gathered}
D(12)=144, D(123)=72, D(3)=9 \\
\mathbf{1 4 4 , 7 2 , 9} \rightarrow \mathbf{1 5 1 2 9}
\end{gathered}
$$

412^{2} - Split 412 into two parts 4 / 12

$$
\begin{gathered}
D(4)=16, D(412)=96, D(12)=144 \\
\mathbf{1 6 , 9 6}, \mathbf{1 4 4} \rightarrow \mathbf{1 6 9 7 4 4}
\end{gathered}
$$

General Squaring (3 and 4-digit numbers)

$$
\begin{gathered}
341^{2}=116281 \\
D(3)=9, D(34)=24, D(341)=22, D(41)=8, D(1)=1 \\
9,24,22,8,1 \rightarrow \mathbf{1 1 6 2 8 1} \\
263^{2}= \\
D(2)=4, \quad D(26)=24, D(263)=48, D(63)=36, D(3)=9 \\
4,24,48,36,9 \rightarrow \mathbf{6 9 1 6 9} \\
4332^{2}= \\
D(4)=16, D(43)=24, D(433)=33, D(4332)=34, \\
D(332)=21, D(32)=12, D(2)=4 \\
\\
\mathbf{1 6 , 2 4 , 3 3 , 3 4 , 2 1 , 1 2 , 4 \rightarrow \mathbf { 1 8 7 6 6 2 2 4 }}
\end{gathered}
$$

Vedic Math

Special Division

lessons

Division by 9
Division Below and Above 10^{n}

sutras

Need to Determine This

Division by 9

Division by 9 with Carries

$3172 \div 9$
9) 3172
$34{ }_{1} \mathrm{r} 13=351 \mathrm{r} 13=352 \mathrm{r} 4$
$5555 \div 9$
$\frac{9) 555}{510 \mathrm{r} 15}=61 \mathrm{r} 6$
Short Cut
$3172 \div 9 \quad \frac{3172}{352 \mathrm{r} 4}$ Check to see if next sum is >9, if so add 1

Division Below a Base Number

$\left.\begin{array}{lll|ll}235 \div 88 & 88\end{array}\right) 2 |$| 3 | 5 |
| :--- | :--- |
| 2 | 1. Drop 2 (the first digit) |

$1121123 \div 8989$

$$
\left.\begin{array}{r}
\begin{array}{c}
8989 \\
10
\end{array} 011
\end{array}\right) \begin{array}{lll|lllll}
1 & 1 & 2 & 1 & 1 & 2 & 3 \\
& 1 & 0 & 1 & 1 & & \\
& & 2 & 0 & 2 & 2 & \\
\hline
\end{array} \begin{array}{lllllll}
1 & 2 & 4 & 6 & 4 & 8 & 7 \\
\hline
\end{array}
$$

Division Above a Base Number

> 1. Drop 1 (the first digit)
> 2. Create 24
> 3. Multiply $\overline{24}$ by $1=\overline{24}$
> 4. $\operatorname{Add} 4+\overline{2}=2$
> 5. Multiply $\overline{24}$ by $2=\overline{48}$
> 6. Add columns
> 12 r10
> $2311 \div 112$
> $=20 \mathrm{r} 71$ where $71=112-41$

Vedic Math

General Division

lessons

General Division
Decimalizing the Remainder

sutras

General Division

$$
\begin{aligned}
& 308 \div 51 \\
& \begin{array}{l|ll|l}
5^{1} & 3 & 0 & { }^{8} \\
\hline & & & 0 \\
\hline & 6 & 2 \\
\hline
\end{array} \\
& \text { 1. Create flag, 1, from divisor } 2^{\text {nd }} \text { digit } \\
& \text { 2. } 5 \text { goes into } 306 \text { times with } r 0 \\
& \text { 3. } 08-1 x 6=2 \\
& =6 r 2 \\
& \text { 1. Create flag, 4, from divisor } 2^{\text {nd }} \text { digit } \\
& 234 \div 54 \\
& \text { 2. } 5 \text { goes into } 234 \text { times with } r 3 \\
& \text { 3. } 34-4 \times 4=18 \\
& =4 r 18 \\
& \text { 1. Create flag, } 2 \text {, from divisor } 2^{\text {nd }} \text { digit } \\
& 503 \div 72 \\
& \text { 2. } 7 \text { goes into } 507 \text { times with } r 1 \\
& \text { 3. } 13-2 x 7=\overline{1}=72-1=71 \\
& =6 \mathrm{r} 71
\end{aligned}
$$

General Division

$19902 \div 62$			
6^{2}	1 9 9 0	2	1. Create flag, 2, from divisor $2^{\text {nd }}$ digit 2. 6 goes into 193 times with r1
	3		
6^{2}	1 9 9 0 1 1	${ }_{0}^{2}$	1. Compute $19-2 x 3=13$ 2. 6 goes into 132 times with $r 1$
	$3 \quad 21$	0	
6^{2}		${ }_{0} 2$	1. Compute $10-2 x 2=6$ 2. 6 goes into 61 times with $r 0$
	$3 \quad 21$	0	
6^{2}	1 9 9 0 1 1	0^{2}	1. Compute $02-2 x 1=0$ (remainder)
	3121	0	321 r0

General Division

$92054 \div 63$			
6^{3}	9 2	4	1. Create flag, 3, from divisor $2^{\text {nd }}$ digit 2. 6 goes into 91 times with $r 3$
	1		1. Compute $32-3 x 1=29$ 2. 6 goes into 294 times with $r 5$
6^{3}	$9_{3}^{2}{ }_{5} 005$	${ }_{0}^{4}$	
	14		1. Compute $50-3 \times 4=38$ 2. 6 goes into 386 times with $r 2$
6^{3}	$\begin{array}{llll}9 & 2 & 0 & 5 \\ 3 & 5 & 2\end{array}$	4	
	146		
6^{3}	$\begin{array}{lllll}9 & 2 & 0 & 0 & 5\end{array}$	${ }_{1}^{4}$	1. Compute $25-3 x 6=7$ 2. 6 goes into 71 time with r1 3. Compute $14-3 x 1=11$ remainder
	$1 \begin{array}{llll}1 & 4 & 6 & 1\end{array}$	11	3. Compute $14-3 x 1=11$ remainder $1461 \text { rl1 }$

General Division

Decimalizing the Reminder

Questions and Comments

