
Vehicle CAN-bus Scan Tool Development

Abhishek Bhat July 1st 2011

Scan tool Development | Abhishek Bhat

Introduction of the speaker

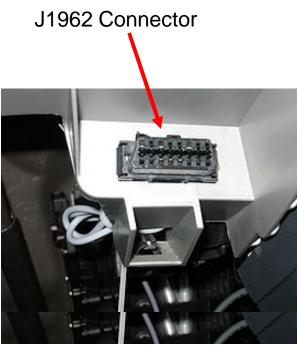
- Vehicle Diagnostic Systems
- Development of the Scan Tool
- Example of operation

Introduction

- Educational Background
 - University of Michigan, Ann Arbor
 - Masters in Mechanical Engineering
 - University of Pune, India
 - Bachelors in Mechanical Engineering
- Professional Experience
 - MBtech NA LLC
 - Simulation Engineer at Chrysler Group LLC
 - Hardware in Loop Test Engineer at Daimler Trucks NA
 - Mercedes Benz India Pvt. Ltd
 - Diagnostics and Rectification Engineer on Assembly Line
- Personal Projects
 - Development of CAN based Scan Tools
 - Voice Activated vehicle control via mobile interface
 - Augmented Vision display over the windscreen

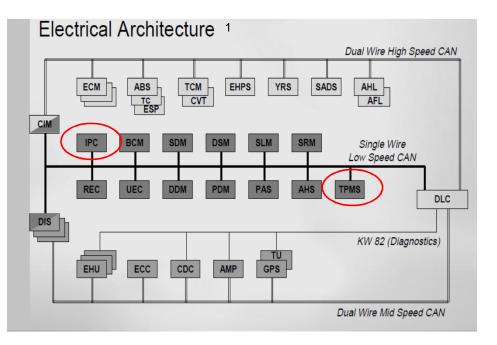
- Introduction of the speaker
- Vehicle Diagnostic Systems
- Development of the Scan Tool
- Example of operation

Introduction to Vehicle Diagnostic Systems


- On-Board Diagnostics, or OBD, in an automotive context, is a generic term referring to a vehicle's self-diagnostic and reporting capability.¹
- The current OBD-II specification was made mandatory for all cars sold in the United States since 1996.
- The OBD-II standard specifies the type of diagnostic connector (J1962 connector) and its pin out, the electrical signaling protocols available, and the messaging format.
- As a result of this standardization, a single device can query the onboard computer(s) in any vehicle – The Off Board Diagnostic Scan Tool

References: 1 – Wikipedia

J1962 Connector


- Manufacturers had the freedom to choose the necessary protocol
 - Pin Diagram of OBD 2 Connector ¹

1. Manufacturer discretion. GM: J2411 GMLAN/SWC/Single-Wire CAN.	9
2. Bus positive Line of SAE-J1850 PWM and SAE-1850 VPW	10. Bus negative Line of SAE- J1850 PWM only (not SAE-1850 VPW)
3. Ford DCL(+) Argentina, Brazil (pre OBD-II) 1997-2000, USA, Europe, etc. Chrysler CCD Bus(+)	11. Ford DCL(-) Argentina, Brazil (pre OBD-II) 1997-2000, USA, Europe, etc. Chrysler CCD Bus(-)
4. Chassis ground	12
5. Signal ground	13
6. CAN high (ISO 15765-4 and SAE-J2284)	14. CAN low (ISO 15765-4 and SAE-J2284)
U	· ·

References: 1 - Wikipedia

GMLAN Vehicle Architecture

- GM SWCAN works on a 29 bit identifier
- The data transmission rate is 33.33 kBaud
- On the OBD diagnostic port, the SWCAN can be accessed on pin 1 of the J1962 connector

References: 1 – Dr. Thomas ITDC-PE Electronics, VehicleDiagnostics.ppt, 25-Sep-02

- Introduction of the speaker
- Vehicle Diagnostic Systems

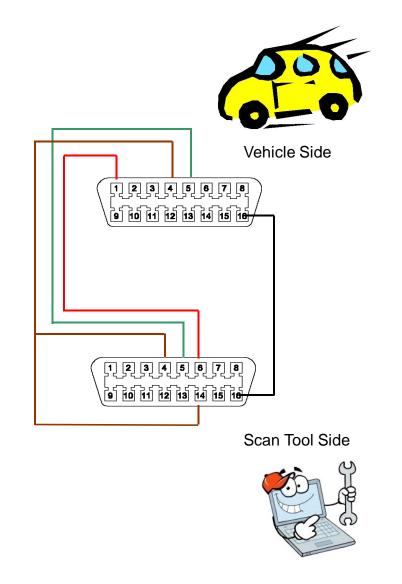
Development of the Scan Tool

Example of operation

System Components

- Wireless scan tool
 - Works for all OBD-2 protocols
 - Based on ELM 327 chip ¹

- Modified J1962 cable ²
 - Modified to connect the Pin 1 (SWCAN) to the ELM chip.


- Computer interface
 - Uses Hyperterminal for Serial Communication

References: 1 - www.elmelectronics.com/DSheets/ELM327DS.pdf

2 - www.obd2cables.com

Wiring Modification

Vehicle End	Scantool End	Comments
MALE	FEMALE	
1	6	GMLAN to CAN_HIGH
4	4,14	CAN_LOW is tied to the chassis ground. Short pins 4 and 14 on the scan tool side. This is because the SWCAN works on 0 to 5 V range while dual wire CAN works on 1.5V to 3.5 V.
5	5	-Signal Ground
16	16	+ve Battery voltage
		** IMPORTANT : Thus the Pin 14 on vehicle is not connected to the scantool. DON'T short the pin 4 and 14 on the vehicle side!

- Introduction of the speaker
- Vehicle Diagnostic Systems
- Development of the Scan Tool
- Example of operation

Scan Tool Initialization

- Start HyperTerminal to initiate the serial communication with the scantool.
 - Set the COM Port Settings as (115200,8,N,1,none)
 - This will initiate the communication of the laptop with the scantool
- Configure the scan tool to start accessing the CAN bus :
 - AT PP 2c SV 41 (receive and transmit 29 bit header can messages on ISO 15765-4)
 - AT PP 2d SV 0F (set baud rate divisor accordingly to support 33.3kbps)
 - AT PP 2c ON (enable the Protocol)
 - AT PP 2D ON (enable baud rate setting)
 - ATZ (reset the ELM327 for changes to take effect)
 - ATSP B (manually set protocol to USER1 user-defined)
 - ATH1 (display headers)
 - AT CAF 0 (turn on CAN auto-formatting)
- Now that the scantool has been configured correctly, the required CAN messages can be accessed
- Vehicle Tested on : 2010 Chevrolet Impala

Example 1 : Vehicle Odometer Reading

- Setting scan tool
 - Set filter for specific CAN message
 - AT CF 10 04 E0 60
 - Set the mask for the CAN message
 - AT CM 1F FF FF FF (Ensures exact message is filtered)
 - Start scanning the CAN bus for the message to be transmitted on the bus
 - AT MA
- Response (in SI Unit kilometer)
 - The response message is received at every kilometer counter
 - Received Message: 10 04 E0 60 00 01 63 80 00
 - Conversion Formula: (0 -31 bit) / 64 in km
 - (&h00016380 => 91008)/ 64 = 1422 km

Example 2 : Tire Pressure Values

- Setting scan tool
 - Set filter for specific CAN message
 - AT CF 10 00 A0 B0
 - Set the mask for the CAN message
 - AT CM 1F FF FF FF (Ensures exact message is filtered)
 - Start scanning the CAN bus for the message to be transmitted on the bus
 - AT MA
- Response (in SI units kPa)
 - The response message is received every mile
 - Received Message 10 0 A0 B0 24 24 39 39 3A 38 02 FF
 - Conversion Formula :
 - Pressure FL Byte 3 *4 = (&h39 =>57)*4 = 228 kPa
 - Pressure FR Byte 4 *4 = (&h39 =>57)*4 = 228 kPa
 - Pressure RR Byte 5 *4 = (&h3A =>58)*4 = 232 kPa
 - Pressure RL Byte 6 *4 = (&h38 =>56)*4 = 224 kPa

Thank you!

Questions and Queries?

In car Testing

Limitations of Generic Scan Tools

- GM Single Wire CAN-bus (SWCAN) is not federally mandated to be made available via generic scan tool
- GM Specific scantool (eg. Scan XL) is expensive and doesn't give access to the data except read out on the screen.
- In order to access the TPMS (tire pressure) and Instrument Cluster (odometer reading), standard scan tool needs to be modified to access the low speed canbus (SWCAN)