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Abstract 

In motor vehicle crashes, occupants who are elderly and obese are at increased risk of death and serious injury 
compared with young, non-obese adults. However, current procedures for evaluating vehicle safety designs are 
mainly conducted with crash test dummies and computational dummy/human models representing only a few sizes 
of young and non-obese occupants, namely large-male, mid-size male, and small-female. In this paper we present 
a preliminary modeling study to show the potential effects of aging and obesity on injury risk trends. We first 
developed a set of 12 male human body models (HBMs) of different stature (1750 mm and 1880 mm), body mass 
index (BMI) (25, 30 and 35) and age (30 and 70 YO), by morphing the Global Human Body Model Consortium 
(GHBMC) mid-size male model into target geometries defined by the statistical skeleton and external body surface 
models developed previously. Next, these 12 morphed HBMs were integrated into a vehicle NCAP crash (35mph 
frontal) sled model through a series of steps for HBM posture adjustment and seatbelt fitting based on a driving 
posture model developed previously. Finally, from the simulation results, we identified injury risk trends due to 
different body sizes. The following trends were found: 1) taller occupants tended to have a higher risk of head 
injuries; 2) higher BMI occupants tended to have higher femur/pelvis injury risk; 3) older occupants tended to 
have higher thorax and femur injury risks due to their lower injury tolerance.  Although the simulations in the 
current study were only based on one generic vehicle and the results may not be generalized for the whole fleet, 
this study did demonstrate that occupant characteristics had profound impact in injury risks in frontal crashes. 
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1. Introduction 

Crash injury data analysis has shown that occupants 
who are short, elderly and/or obese are at increased 
risk of death and serious injury in motor vehicle 
crashes (MVCs) compared with young, non-obese 
adults.  Specifically, the effectiveness of vehicle 
airbag deployment on injuries was reported to be less 
for smaller occupants than mid-size male (Newgard 
and McConnell 2008).  It was also reported that if 
the injury risk for all ages were set as that at age 20, 
1.13-1.32 million fewer occupants would be injured 
each year in the US, which is nearly half of the total 
annual injury numbers in MVCs (Kent et al. 2009).  
Using similar field data, Zhu et al. (2006) found that 
obese male drivers have a significantly increased 
risk for death due to MVCs, especially at high 
speeds. All of the above findings highlight the 
potential benefit of safety systems specifically 
optimized for vulnerable populations. 

The current design process for vehicle safety 
systems heavily relies on crash tests to ensure design 
crashworthiness and occupant protection.  
Unfortunately, the crash tests are mainly conducted 
using crash tests dummies that represent only mid-
size young male and sometimes small young female 
or large young male.  Injury assessment tools 
considering age and obesity effects, and capable of 
simulating the geometrical and biomechanical 
variations among the population are not currently 
available.  As a result, vulnerable populations are 
generally not considered in the current safety design 
process.  

Due to longer life expectancy and decreasing birth 
rates, the growth rate of the older population is much 
faster today than in the past, and it is expected to be 
even faster in the next several decades in the US.  It 
has been predicted that 20% of the US population 
will be age 65 or older by 2030 
(http://www.census.gov).  Similarly, the proportion 
of obese individuals in the US population has also 
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increased significantly during the past two decades.  
In 2009-2010 35.7% of the US adults were obese, 
and by 2030 this rate would increase to at least 44% 
for every state, with 13 states exceeding 60% (Ogden 
et al. 2012).  All these changing demographics are 
the primary drivers of contemporary vehicle safety 
designs, and the projected increase of older and 
obese populations in the US further motivates future 
efforts to develop more advanced injury assessment 
methodologies and tools to evaluate safety designs 
for mitigating injuries for these vulnerable 
populations. 

Finite-element (FE) human body models (HBMs) 
have been widely used in the injury biomechanics 
field.  For example, the newly developed GHBMC 
(Global Human Body Models Consortium) model 
contains 2.2 million elements, representing the state-
of-the-art in human models for injury prediction.  
However, all the current HBMs have the same size 
and shape specifications as adult dummies (i.e. the 
midsize male, small female, and large male) because 
of the desire to compare predictions between human 
FE models and ATD models.  As a result, current FE 
HBMs are limited in the same way that adult 
dummies are limited.  They are not able to capture 
the variability in body shape and age with geometric, 
compositional, and material characteristics at a level 
that is sufficient to isolate their effects on injuries. 
The relative contributions of age and obesity related 
effects on injury risks in crashes can best be assessed 
using a parametric human FE model, which can be 
morphed automatically to account for age, stature, 
and BMI (body mass index) effects on geometries 
for the skeleton and external body shape.  Therefore, 
the objectives of this study are 1) to develop 12 FE 
HBMs by morphing the GHBMC 50th percentile 
male model to represent male occupants with a wide 
range of stature and BMI, and 2) to conduct 

simulations using the 12 morphed GHBMC models 
in US-NCAP (New Car Assessment Program) crash 
conditions to investigate the age and BMI effects on 
injuries. 

2. Materials and Methods 

2.1. Model Development Overview 

A flowchart of the methods for developing a 
parametric FE HBMs by morphing the GHBMC 
50th percentile male model is shown in Figure 1.  
The foundations of the parametric human model 
concept are statistical models of human geometry 
(skeleton and external body surface) that describe 
morphological variations within the population as 
functions of characteristic parameters (age, sex, 
stature, and/or BMI) and a mesh morphing method 
that can rapidly morph a baseline human model 
(GHBMC in this study) into other geometries while 
maintaining high geometry accuracy and good mesh 
quality.   

With any given sex, age, stature, and BMI, the 
statistical human geometry models developed 
previously can predict thousands of points that 
define the body posture, the size and shape of the 
external body surface, and ribcage and lower 
extremity bone geometries.  The skeleton and 
external body shape geometries were integrated 
together based on the landmark and joint locations 
shared in both models.   

Once the target geometries are developed, the 
GHBMC model was morphed to match the target 
geometries using a landmark-based technique based 
on radial basis functions (RBF).  To achieve this, 
landmarks are identified on the GHBMC model at 
the locations corresponding to those in the geometry 
model.  During the mesh morphing  

 
Figure 1: The process of rapid development of FE HBMs with a wide range of age, stature, and BMI 
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procedure, the body size and shape, bone cross- 
sectional area and the cortical bone thickness of the 
lower extremity bones were all morphed according 
to landmark locations and the cortical bone 
thicknesses at those locations.  The internal organs 
and any soft tissues between bones, organs, and 
external body surface were morphed smoothly 
according to the boundaries provided by the 
geometry models. 

2.2. Statistical Human Body Geometry Models 

The human body geometry targets used in this study 
combined statistical models of skeleton geometry 
based on medical CT images and seated external 
body contours based on whole-body laser scanning.  
Table 1 shows the list of adult geometry models used 
in this study. 

Table 1: Statistical geometry models developed 
previously for adults 

Body 
Region Sex Subject 

Number Reference 

External 
Surface 

F ~100 (Reed and 
Parkinson 2008)* M ~100 

Pelvis F 77 (Klein 2015) M 39 

Femur F 36 (Klein et al. 2015) M 62 

Tibia F 28 (Klein 2015) M 48 

Rib cage 
F 42 

(Shi et al. 2014a)* M 47 
*The models have been updated recently using additional 
whole-body laser scan and CT scan data. 

The procedures used to develop skeleton geometry 
models included CT image segmentation, landmark 
identification or template mesh mapping/projection, 
generalized procrustes alignment for the extracted 
geometry, and development of statistical models 
using a combination of principal component analysis 
(PCA) and multivariate regression analysis.  For the 
femur and tibia models, cortical bone thickness 
distributions were included, while such information 
were not available for the pelvis and ribcage models 
due to the limited resolution of the CT images.  As a 
result, with a given set of occupant characteristics 
(age, sex, stature, and BMI), the models can predict 
a size and shape of the ribcage, pelvis, femur, and 
tibia as well as the cortical bone thickness associate 
each node/landmark on the femur and tibia. 

The procedure for developing the external body 
surface model is similar to that for the bones.  With 
any given set of occupant characteristics, the model 
predicted the external body surface and associated 
anatomical landmarks and joint centers, which were 
used to integrate the bones into the external body 
surfaces.  Details about the bone positioning can be 
found in a study by Hwang et al. (2016). 

2.3. Mesh Morphing Using Radial Basis Function 

In this study, landmark-based RBF interpolation was 
used to morph the baseline HBM into other 
geometries.  To achieve this, landmarks have to be 
identified at locations on the baseline model 
(GHBMC mid-size male) corresponding to the 
locations predicted by the statistical geometry 
models.  The basic concepts and formulas of the RBF 
interpolation have been previous described by Carr 
et al. (1997).  Applications of this method on 
building parametric human models have also been 
well documented (Hu J et al. 2012; Li et al. 2011; Li 
et al. 2012; Shi et al. 2014b).  For completeness, 
details of RBF mesh morphing method are 
introduced: 

In general, a RBF takes the form,  
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Where p(x) is a low order polynomial, 𝜆𝜆𝑖𝑖 is the 
weighting coefficient, φ is the basis function, and 
‖𝑥𝑥 − 𝑥𝑥𝑖𝑖‖ is the Euclidean distance between x and xi.  
In this study, because of the 3D coordinates of the 
nodes, the Euclidean distance between two nodes 

was defined as 𝑟𝑟𝑖𝑖𝑖𝑖 = ��𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖�
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2
.  

A first order polynomial was selected for p(x), and 
the thin-plate spline function 𝜑𝜑(𝑟𝑟) = 𝑟𝑟2 log 𝑟𝑟 was 
selected as the basis function because it generally 
resulted in smooth mesh. Assume that the numbers 
of landmarks on the baseline model and the target 
geometry are both n. To compute the weight 
coefficient 𝜆𝜆𝑖𝑖, and the coefficients of the polynomial 
function p(x), the RBF can be written in the matrix 
form as Equation 2 by applying the interpolation 
requirements and boundary conditions.  
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Where  

A is a n×n matrix, in which 𝐴𝐴𝑖𝑖𝑖𝑖 =
𝜑𝜑(𝑟𝑟𝑖𝑖𝑖𝑖)=𝑟𝑟𝑖𝑖𝑖𝑖2 𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟𝑖𝑖𝑖𝑖); 

B=  �
1 𝑥𝑥1 𝑦𝑦1 𝑧𝑧1
⋮ ⋮ ⋮ ⋮
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�
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, x, y, and z are the 

coordinates of the baseline landmarks; 

 𝑇𝑇 = �
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, X, Y, and Z are the 

coordinates of the target landmarks; 

α is a smoothing factor. But in this study, α=0 was 
assumed to represent an exact interpolation;  

c is constant. 

Solving the Equation 2 can determine λ and c. 
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Once they are determined, by assuming that the total 
number of nodes in the baseline model is N, the 
coordinates of the nodes in morphed model (𝑇𝑇′) can 
be calculated by Equation 3.  
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Where 

 𝑇𝑇′ = �
𝑋𝑋1 𝑌𝑌1 𝑍𝑍1
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𝑋𝑋𝑁𝑁 𝑌𝑌𝑁𝑁 𝑍𝑍𝑁𝑁
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, X, Y, and Z are the 

coordinates of the nodes in the morphed model; 

A′ is a N×n matrix, in which 𝐴𝐴𝑖𝑖𝑖𝑖 =
𝜑𝜑(𝑟𝑟𝑖𝑖𝑖𝑖)=𝑟𝑟𝑖𝑖𝑖𝑖2 𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟𝑖𝑖𝑖𝑖), i is the number of nodes in the 
baseline model, and j is the number of baseline 
landmarks. 

B’=  �
1 𝑥𝑥1 𝑦𝑦1 𝑧𝑧1
⋮ ⋮ ⋮ ⋮
1 𝑥𝑥𝑁𝑁 𝑦𝑦𝑁𝑁 𝑧𝑧𝑁𝑁

�
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, x, y, and z are the 

coordinates of the nodes in the baseline model; 

α=0 was also assumed to represent an exact 
interpolation. 

2.4. NCAP Simulations Using Morphed GHBMC 
Models 

In this study, the RBF mesh morphing method was 
used to develop a set of 12 male HBMs of different 
stature (1750 mm and 1880 mm), BMI (25, 30 and 
35) and age (30 and 70 YO), by morphing the 
GHBMC mid-size male model into target geometries 
described above. These 12 morphed HBMs were 
then integrated into a vehicle US-NCAP crash 
(35mph frontal) sled model through two steps, 
including a pre-simulation to adjust the HBM 
posture based on a driving posture model developed 
by Reed et al. (2002) and seatbelt fitting. 

The NCAP crash sled model was validated against 
dummy responses in a NCAP crash test.  For each 
simulation, the occupants were positioned as drivers 
based on the driving posture model developed using 
volunteer test data (Reed et al. 2002).  Using that 
model, with a given set of vehicle package factors 
and the occupant stature and weight, the locations of 
the occupant hip, eye, ankle, as well as the seat H-
point can be determined.  This information was used 
to position the occupant and the driver seat before 
each simulation.  For each simulation, the driver’s 
right foot was positioned onto the gas pedal, while 
the left foot was on the floor. 

In this study, simulations with each of the 12 
morphed models were conducted, with a duration of 
120ms.  For each simulation, injury measures for the 
head (HIC), neck (force), chest (deflection), and 

lower extremities (femur force) were output.  The 
injury risks were calculated based on the injury risk 
curves provided by US-NCAP, Laituri et al., (2005), 
and Rupp et al., (2010), all of which are shown 
below.  In addition, the strain/stress distribution in 
the ribs and femurs were also monitored. 

Head injury risk: 

𝑃𝑃(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻)∗ =  ∅�
ln(𝐻𝐻𝐼𝐼𝐼𝐼15) − 7.45231

0.73998 � 

*For all injury risk curves: 0 ≤ 𝑃𝑃(𝑥𝑥) ≤ 1. 
 

Where ∅ is the standard normal cumulative 
distribution and HIC15 is the Head Injury Criteria 
measured over 15 milliseconds. 

Neck Injury risk: 

𝑃𝑃(𝑁𝑁𝐻𝐻𝑁𝑁𝑁𝑁50𝑡𝑡ℎ)

=  
1

(1 + exp(10.9745− 2.375𝐹𝐹𝐹𝐹𝐻𝐻𝑥𝑥𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)) 
 

𝑃𝑃(𝑁𝑁𝐻𝐻𝑁𝑁𝑁𝑁95𝑡𝑡ℎ)

=  
1

(1 + exp(10.9745− 2.003𝐹𝐹𝐹𝐹𝐻𝐻𝑥𝑥𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)) 

Where 𝐹𝐹𝐹𝐹𝐻𝐻𝑥𝑥𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 is the axial force in the neck in kN. 

Chest injury risk: 

𝑃𝑃(𝑇𝑇ℎ𝑙𝑙𝑟𝑟𝐻𝐻𝑥𝑥,𝐴𝐴𝐼𝐼𝐴𝐴3 +)

=
1

1 + exp−�−12.597 + 0.05861𝐴𝐴𝑙𝑙𝐻𝐻 + 1.568𝛿𝛿50𝑡𝑡ℎ0.4612�
 

Where 𝛿𝛿50𝑡𝑡ℎ is the chest compression of the 50th 
percentile male in mm. The scaling factor for 95th 
male from 50th male is: 𝛿𝛿95𝑡𝑡ℎ = 1.108𝛿𝛿50𝑡𝑡ℎ 

Knee-thigh-hip (KTH) injury risk: 

𝑃𝑃(𝐾𝐾𝑇𝑇𝐻𝐻|𝑝𝑝𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻)

= ∅�
ln�𝐹𝐹𝐹𝐹𝐻𝐻𝑥𝑥𝑓𝑓𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓� − (0.0081𝐹𝐹− 0.0124𝐻𝐻 + 2.9396)

0.4519 � 

Where ∅ is the standard normal cumulative 
distribution function, 𝐹𝐹𝐹𝐹𝐻𝐻𝑥𝑥𝑓𝑓𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓 is the peak femur 
force in kN, 𝐹𝐹 is mass in kg, and 𝐻𝐻 is age in years. 

3. Results 

3.1. Morphed GHBMC Models 

The 12 morphed GHBMC models are shown in 
Figure 2, in which the younger occupants are on the 
left and older ones are on the right.  The weights of 
the models are all slightly lower than the theoretical 
values based on BMI, but the errors are generally 
less than 5%.  The mesh quality of the morphed 
models are also generally lower than the original 
GHBMC, but the number of elements with Jacobian 
values lower than the minimum Jacobian of the 
original GHBMC model is generally less than 400.  
Considering the GHBMC model has over 2 million 
elements, such mesh quality change did not affect the 
model stability when using a similar time step as the 
original GHBMC model. 
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Figure 2: A total of 12 morphed GHBMC models. The weights of the occupants shown here are those from the morphed 
GHBMC models, which are slightly different to the target weights. 

3.2. NCAP Simulation Results 

US-NCAP frontal crash simulations were 
successfully conducted with the 12 morphed 
GHBMC models, with the exception of 30YO-
BMI25-Stature1880mm and 70YO-BMI25-
Stature1880mm cases that ran for 95 ms.  Exemplar 

results of simulated occupant kinematics during the 
crash are shown in Figure 3.  Taller and heavier 
occupants tended to move slightly more forward, 
which caused the airbag to deform more and result 
in more severe impacts between the knee and the 
knee bolster. 
 

Time 30 YO  70 YO  
BMI25-Stature1750mm BMI35-Stature1880mm BMI25-Stature1750mm BMI35-Stature1880mm 

40 
ms  

        

80 
ms  

 

 

 

     

120 
ms 

 

     
Figure 3: Examples of kinematics from occupants with different characteristics 
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The injury risks to the head, neck, chest, and femur 
for the 12 morphed GHBMC models are shown in 
Figure 4. Generally, taller occupants sustained 
higher head injury risks due to the contact with the 
instrumentation panel. Occupants with higher weight 

sustained higher femur injury risk due to the higher 
knee excursions. Chest compression reduced with 
increasing BMI and age, but older occupants 
sustained higher chest injury risks due to the low 
tolerance. 

 
 30 YO 70 YO 

Head 
Injury 
Risk 

    

Neck 
Injury 
Risk 

     

Chest 
Injury 
Risk 

   

KTH 
Injury 
Risk 

  
Figure 4: Injury risks for occupants with a range of characteristics 
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The ribcage stress history, shown in Figure 5, 
indicates the stress distribution in heaver occupants 
is higher on ribs where the shoulder belt is routed. 
The load from the seatbelt caused more deformation 
in load-bearing ribs instead of increased sternal 
displacement relative to the thoracic spine. This 
effect caused low chest deflections in heavier and 
older HBMs. However, older occupants sustained 

higher chest and femur injury risks mainly due to 
their lower injury tolerance and increased adipose 
tissues around the abdomen compared to young 
occupants with similar BMI and stature. Stress in the 
femur shaft is higher for obese occupants upon 
impact as shown in Figure 6. These findings are all 
consistent to those reported by the field data 
analyses. 

Time 30 YO  70 YO  Unit: GPa BMI25-Stature1750mm BMI35-Stature1880mm BMI25-Stature1750mm BMI35-Stature1880mm 

40 ms  

    

 

80 ms  

    

120 ms 

    

Figure 5: Ribcage stress history of 30 and 70 YO occupants with the largest difference in chest deflection  

Time 30 YO  70 YO  Unit: GPa BMI25-Stature1750mm BMI35-Stature1880mm BMI25-Stature1750mm BMI35-Stature1880mm 

40 ms  

        

 

80 ms  

        

120 ms  

      

Figure 6: Right femur stress history of 30 and 70 YO occupants with the largest difference in maximum femur load  

4. Limitations and Future Work 

There are several limitations in this study.  First, the 
mesh morphing method only considered the effect of 
age, sex, stature and BMI on the geometrical 
variations on the human body.  Their effects on the 

material properties of tissues were not considered, 
but will be investigated in the future.  Second, this 
study focused only on the geometry variations of 
limited bones including the ribcage, pelvis, femur, 
and tibia; because field data have shown that older 
and obese occupants sustained increased risks of 
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thorax and lower extremity injuries. It is necessary 
to include the geometry variations of other bones in 
the future. Third, the crash simulations conducted in 
this study were based on one generic vehicle; 
therefore the results cannot be generalized for the 
whole fleet. However, the injury trends found in this 
study are consistent with the field data.  Lastly, this 
study focused on the mesh morphing method for 
rapid development of HBMs, but did not show any 
validations of the morphed models against cadaver 
test results.  As the mesh morphing method is proven 
to be robust to generate a large number of HBMs 
with a large range of human attributes, the next step 
of our study is to validate these models in crash 
conditions using cadaver tests with a large range of 
human attributes. 

5. Conclusions 

In this study, we presented a preliminary modeling 
study to show the potential effects of aging and 
obesity on injury risk trends in MVCs.  We first 
developed a set of 12 male HBMs of different 
stature, BMI and age by morphing the GHBMC mid-
size male model into target geometries defined by 
the statistical skeleton and external body surface 
models developed previously. Next, these 12 
morphed HBMs were integrated into a vehicle US-
NCAP crash sled model through a series of steps for 
HBM posture adjustment and seatbelt fitting based 
on a driving posture model developed previously. 
Finally, from the simulation results, we identified 
injury risk trends due to different body sizes. The 
following trends were found: 1) taller occupants 
tended to have a higher risk of head injuries; 2) 
higher BMI occupants tended to have higher 
femur/pelvis injury risk; 3) older occupants tended 
to have higher thorax and femur injury risks due to 
their lower injury tolerance. Although the 
simulations in the current study were only based on 
one generic vehicle and the results may not be 
generalized for the whole fleet, this study did 
demonstrate that occupant characteristics had 
profound impact in injury risks in frontal crashes. 
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