

International Journal of Electrical Electronics & Computer Science Engineering

Special Issue - ICSCAAIT-2018 | E-ISSN : 2348-2273 | P-ISSN : 2454-1222

 Available Online at www.ijeecse.com

141

Vehicle Detection and Counting Method Based on Digital Image Processing in

Python

Reha Justin
1
, Dr. Ravindra Kumar

2

1
Intern,

2
Principal Scientist, CSIR-Central Road Research Institute, Transportation Planning Division Delhi, India

1reha.justin96@gmail.com, 2ravindra261274@gmail.com

Abstract: Vehicle counting process provides appropriate

information about traffic flow, vehicle crash

occurrences and traffic peak times in roadways. An

acceptable technique to achieve these goals is using

digital image processing methods on roadway camera

video outputs. This paper presents a vehicle counter-

classifier based on a combination of different video-

image processing methods including object detection,

edge detection, frame differentiation and the Kalman

filter. An implementation of proposed technique has

been performed using python programming language.

This paper describes the methodology used for image

processing for traffic flow counting and classification

using different library and algorithm with real time

image.

Keywords: Vehicle Counting, Vehicle Detection, Traffic

Analysis, Object Detection, Video-Image Processing.

I. INTRODUCTION

Vehicles detection and counting are done a non-intrusives

sensor/manual method/video infrared, magnetic, radar,

ultrasonic, acoustic, and video imaging sensors and

intrusive sensor sensors include pneumatic road tube,

piezo-electric sensor, magnetic sensor, and inductive loop

. Non inrusive technology has advantages over intrusive

technology which requires closing of traffic lanes and put

construction workers in harm’s way, stop traffic or a lane

closure and non-intrusive sensors are above the roadway

surface and don’t typically require a stop in traffic or lane

closure. Both types of sensors have advantages and

disadvantages . But the accuracy from video or digital

counting manually is very high as compared to other

technology.

However the image processing is time consuming and

requires some automation to save the time for image

count and classification. In current era of python type

programming language has much addition of image

processing and time saving for vehicle detection, counting

and classification. The paper states about way to image

process, type of filter used and proposed technique are

able to detect, count and classify the image accurately.

II. BACKGROUND INFORMATION

A. Video Processing:

Video processing is a subcategory of Digital Signal

Processing techniques where the input and output signals

are video streams. In computers, one of the best ways to

reach video analysis goals is using image processing

methods in each video frame. In this case, motions are

simply realized by comparing sequential frames[7]. Video

processing includes pre-filters, which can cause contrast

changes and noise elimination along with video frames

pixel size conversions[6]. Highlighting particular areas of

videos, deleting unsuitable lighting effects, eliminating

camera motions and removing edge-artifacts are

performable using video processing methods[29].

OpenCv library of python is equipped with functions that

allow us to manipulate videos and images. OpenCV-

Python makes use of Numpy, which is a library for

numerical operations with a MATLAB-style syntax. All

the OpenCV array structures are converted to and from

Numpy arrays. This also makes it easier to integrate with

other libraries that use Numpy such as SciPy and

Matplotlib.[34]

B. RGB to Grayscale Conversion:

In video analysis, converting RGB color image to

grayscale mode is done by image processing methods.

The main goal of this conversion is that processing the

grayscale images can provide more acceptable results in

comparison to the original RGB images[11]. In video

processing techniques the sequence of captured video

frames should be transformed from RGB color mode to a

0 to 255 gray level. When converting an RGB image to a

grayscale mode, the RGB values for each pixel should be

taken, and a single value reflecting the brightness

percentage of that pixel should be prepared as an

output[2].

C. Power-Law Transformation:

Enhancing an image provides better contrast and a more

detailed image as compared to a non-enhanced one. There

are several image enhancement techniques such as power-

law transformation, linear method and Logarithmic

method. Image enhancement can be done through one of

these grayscale transformations. Among them, power-law

transformation method is an appropriate technique which

has the basic form below.

V = A v γ (1)

International Journal of Electrical Electronics & Computer Science Engineering

Special Issue - ICSCAAIT-2018 | E-ISSN : 2348-2273 | P-ISSN : 2454-1222

 Available Online at www.ijeecse.com

142

Where V and v are output and input gray levels, γ is

Gamma value and A is a positive constants (in the

common case of A=1). The python code that implements

power law transformation is-

power_law_transformation=cv2.pow(gray,0.6)

The second argument is the gamma value. Consequently,

choosing the proper value of γ can play an important role

in image enhancement process and preparing suitable

details identifiable in image.

D. Canny Edge Detection:

Object detection can be performed using image matching

functions and edge detection. Edges are points in digital

images at which image brightness or gray levels changes

suddenly in amount.[33] The main task of edge detection

is locating all pixels of the image that correspond to the

edges of the objects seen in the image. Among different

edge detection methodologies, Canny algorithm is a

simple and powerful edge detection method. Since edge

detection is susceptible to noise in the image, first step is

to remove the noise in the image with a 5x5 Gaussian

filter. Smoothened image is then filtered with a Sobel

kernel in both horizontal and vertical direction to get first

derivative in horizontal direction (Gx) and vertical

direction (Gy)[9]. From these two images, we can find

edge gradient and direction for each pixel as follows:

Edge_Gradient(G)=√G2x+G2y (2)

Angle(θ)=tan
−1

(Gy/Gx) (3)

Gradient direction is always perpendicular to edges. It is

rounded to one of four angles representing vertical,

horizontal and two diagonal directions. After getting

gradient magnitude and direction, a full scan of image is

done to remove any unwanted pixels which may not

constitute the edge. For this, at every pixel, pixel is

checked if it is a local maximum in its neighborhood in

the direction of gradient. OpenCV puts all the above in

single function, cv2.Canny() [12].

E. The Kalman Filter:

Images typically have a lot of speckles caused by noise

which should be removed by the means of filtration. The

Kalman filter is a powerful and useful tool to estimate a

special process using some kind of feedback

information[14]. The Kalman filter is used to provide an

improved estimate based on a series of noisy estimates.

This filter specifies that the fundamental process must be

modeled by a linear dynamical structure:

xk = Fk-1xk-1 + wk-1 (4)

yk = Hkxk + vk (5)

Where xk and yk are the state and measurement vectors,

wk and vk are the process and measurement noise, Fk and

Hk are the transition and measurement values and k is

desired time step[28]. The Kalman filter also specifies

that the measurements and the error terms express a

Gaussian distribution, which means in vehicle detection

each vehicle can only be tracked by one Kalman filter

[22],[31]. Therefore the number of Kalman filters applied

to each video frame depends on the number of detected

vehicles.

III. PREVIOUS WORKS

 Using image/video processing and object detection

methods for vehicle detection and traffic flow estimation

purposes has attracted a huge attention for several years.

Vehicle detection/tracking processes have been performed

using one of these methodologies[8]:

 Matching

 Threshold and segmentation

 Point detection

 Edge detection

 Frame differentiation

 Optical flow methods

It can be said that one of the most important researches in

object detection fields, which has resulted in the auto-

scope video detection systems is introduced in [15]. In

some works such as [21], forward and backward image

differencing method used to extract moving vehicles in a

roadway view. Some studies like [17] and [4] proved that

the use of feature vectors from image region can be

extremely efficient for vehicle detections goals. Some

others represented the accurate vehicle dimension

estimation using a set of coordinate mapping functions as

it can be seen in [16]. Furthermore, some studies have

developed a variety of boosting algorithms for object

detection using machine learning methods which can

detect and classify moving objects by both type and color

such as [18] and [19]. Named approaches have both their

advantages and disadvantages.

IV. PROPOSED TECHNIQUE

Different from previous works, the method proposed in

this paper uses a combination of both “Frame

Differentiation” and “Edge Detection” algorithms to

provide better quality and accuracy for vehicle detection.

By using the Kalman filter, position of each vehicle will

be estimated and tracked correctly. This filter also used to

classify detected vehicles in different specified groups and

count them separately to provide a useful information for

traffic flow analysis. The

https://docs.opencv.org/3.1.0/dd/d1a/group__imgproc__feature.html#ga04723e007ed888ddf11d9ba04e2232de

International Journal of Electrical Electronics & Computer Science Engineering

Special Issue - ICSCAAIT-2018 | E-ISSN : 2348-2273 | P-ISSN : 2454-1222

 Available Online at www.ijeecse.com

143

flowchart of the method is represented in Figure 1.

Fig. 1. Flowchart of the Technique

Based on Figure 1, the technique includes these steps:

image enhancement process, edge detection, motion

analysis using a combination of different techniques,

detection zone definition, the Kalman filter, vehicle type

classification and counting. It is necessary to say that

some assumptions made in this work:

 No sudden changes of directions are expected

 No car accidents and crashes are expected

 There is both physical and legal limitations for vehicles

 motion scenes are captured with a view from above to

the roadway surface

The proposed technique to detect and count vehicles is

presented as below:

A. Grayscale Image Generation and Image Enhancement:

To get better results, vehicle detection process should be

performed in the grayscale image domain. Hence a RGB

to grayscale conversion is performed on each video frame.

To achieve an appropriate threshold level and make

results more suitable than the input image, each frame

should be brought in contrast to background. Among

several grayscale transformations, power-law method has

been used in this work. For color conversion we use the

function cv2.cvtColor(input_image,flag) where flag

determines the type of conversion. To convert to

grayscale we use flag cv2.COLOR_BGR2GRAY.

Experimental results in different situations showed that

the best results appear when γ value is set to 0.6 as it can

be seen in Figure 2. This figure shows the result of

applying different γ values to grayscale converted image,

where section A is the input RGB color frame and B, and

C are grayscale versions with gamma values 0.6 and 0.9,

respectively. The implementation of Figure 2 results can

be obtained by using the python code shown in Figure 3.

Fig. 2. Input RGB Video Frame (A) and Grayscale

Converted With Different Γ Values (B and C)

Fig. 3. Code for Conversion from RGB to Grayscale and

Image Enhancement

B. Edge Detection:

Each image (video frame) has three significant features to

achieve detection goals. These features include: edges,

contours and points. Among mentioned features, an

appropriate option is to use edge pixels. Processing of

image pixels enables us to find edge pixels, which are the

main features of passing vehicles in a roadway video

frame. One of the most common ways to find the edges of

an image is to use Canny operator which has been used in

this work. The result is presented in Figure 4 and the

corresponding code is presented in Figure 5. As it can be

seen the output result of edge detection process is

demonstrated in a binary image (threshold) with the

detected edge pixels.

Fig. 4. A: Original Image B: Edge Detection Result

Video Frames

Edge Detection

Motion Analysis

Detection Zone

Definition

The Kalman Filter

Counting

Result

Classification

International Journal of Electrical Electronics & Computer Science Engineering

Special Issue - ICSCAAIT-2018 | E-ISSN : 2348-2273 | P-ISSN : 2454-1222

 Available Online at www.ijeecse.com

144

Fig. 5. Code for Canny Edge Detection

The next step is to extract moving edges from sequential

video frames and process the resulting edge information

to obtain quantitative geometric measurements of passing

vehicles.

C. Background Subtraction:

Using provided threshold, the static parts of sequential

video frames should be cleaned. The main challenge here

is that the performance of image analysis algorithms

suffers from darkness, glare, long shadows or bad

illumination at night, which may cause strong noises [3],

[13]. Therefore, the grayscale image might be unspecified

in these situations and make the detection task a bit more

complex. Edges essentially separate two various regions

which are static region (the roadway) and dynamic region

(moving vehicles). The static background is then deleted

to locate moving objects in each frame. The result zone

leaves only vehicles and some details as moving objects

in sequential images which are changing frame to frame.

A combination of forward and backward image

differencing method and Sobel edge detector has been

used in this work. According to this method, three

sequential frames are chosen and the middle one should

be compared to its previous and next frames.

Consequently, extracted edges of each frame detected by

Canny edge detection achieved from previous section are

used here. Then the differences of frames can be obtained

by subtracting each two sequential pair of generated

binary images, as in equation 6:

BinaryImage (Canny (Fn-1) ∩ Canny (Fn)) –

BinaryImage (Canny (Fn) ∩ Canny (Fn+1)) (6)

Where Fn-1 is previous frame, Fn is current frame and Fn+1

is the next frame. This process continues to the last three

sequential video frames. The output result is demonstrated

in Figure 6. The python code is represented in Figure 7. In

this figure A, B and C represent three sequential frames,

where D demonstrates the output background subtraction

method. Using this technique moving vehicles are

detected in three sequential frames.

Fig. 6. Proposed Moving Vehicle Detection Technique

and Background Subtraction (A,B,C and D)

Fig. 7. Code for Background Subtraction

D. Detection Zone:

As an observation (detection) zone, a region should be

defined to display moving vehicle’s edges in a bounding

box at the time that the vehicle enters it. This zone is in

the middle of the screen and covers 1/3 of its height and

3/5 of its width (considering minimum and maximum

available size of detectable passing vehicles in pixels).

This area which contains the most traffic can embed both

small and long vehicles and the main goal of defining it is

to avoid perspective challenges and wrong type counts.

Based on proposed method in background subtraction

level, a vehicle is detected in three sequential frames.

When a moving vehicle is detected, a bounding box

whelming vehicle borders in binary image is drawn.

E. The Kalman Filter:

The bounding boxes could also be used to count and

classify passing vehicles. This can be done by the Kalman

filtering technique. In roadway videos, the edge detection

International Journal of Electrical Electronics & Computer Science Engineering

Special Issue - ICSCAAIT-2018 | E-ISSN : 2348-2273 | P-ISSN : 2454-1222

 Available Online at www.ijeecse.com

145

function provides an inaccurate position of moving

vehicles, but the knowledge of the vehicle's current

position needs to be improved. Since perfect

measurements cannot be guaranteed due to movement of

objects, the measurements should be filtered to produce

the best estimation of the accurate track.

The Kalman filter can optimally estimate the current

position of each vehicle and also predict the location of

vehicles in future video frames by minimizing noise

disorders. It is also used to stop tracking of vehicles

proceeding in opposite direction in roadway captured

video. Although edge detection can find moving objects,

the Kalman filter makes an optimal estimate of positions

based on a sequence of localization measurement.

The linear Kalman filter is simpler and used in proposed

technique. Consider parameter A as area of vehicle’s

bounding box, which has been detected in frame

differentiation phase and p(x, y) is the center point of the

vehicle where x and y are its distances from horizontal

and vertical edges. Now by integration of proposed

parameter in (7) and (8) equations resulted in the

following vectors [30]:

xk = [x, y, A, vx, vy, vA]
T

 (7)

yk = [x, y, A]
T

(8)

Where vA is the rate of changes in vehicle’s bounding

box, vx and vy are the speed of changes in the movement

of vehicle’s center point. Subsequently using the Kalman

filtering technique, the position of each vehicle can be

estimated and tracked better. Finally an identifier is

allocated to each passing vehicle for counting and

classification purposes.

The Kalman Filter is a unsupervised algorithm for

tracking a single object in a continuous state space. Given

a sequence of noisy measurements, the Kalman Filter is

able to recover the “true state” of the underling object

being tracked. It is implemented using the pykalman

library of python.

Sample code-

from pykalman import KalmanFilter

kf = KalmanFilter(initial_state_mean=0, n_dim_obs=2)

The traditional Kalman Filter assumes that model

parameters are known beforehand. The KalmanFilter class

however can learn parameters using

KalmanFilter.em() (fitting is optional). Then the hidden

sequence of states can be predicted

using KalmanFilter.smooth():

measurements = [[1,0], [0,0], [0,1]]

kf.em(measurements).smooth([[2,0], [2,1], [2,2]])[0]

array([[0.85819709],

 [1.77811829],

 [2.19537816]])

Common uses for the Kalman Filter include radar and

sonar tracking and state estimation in robotics. This

module implements two algorithms for tracking: the

Kalman Filter and Kalman Smoother. In addition, model

parameters which are traditionally specified by hand can

also be learned by the implemented EM algorithm without

any labeled training data. All three algorithms are

contained in the KalmanFilter class in this module.

F. Counting and Classification Functions:

Vehicle counters are used in computing capacity,

establishing structural design criteria and computing

expected roadway user revenue [10]. Typically in

proposed technique vehicles are classified as four

common types:

 Type1: bicycles, motorcycles

 Type2: motorcars

 Type3: pickups, minibuses

 Type4: buses, trucks, trailers

It is necessary to have the width and length of each

vehicle’s bounding boxes in pixels to diagnose that the

passing vehicles belongs to which of the mentioned types.

The area of each bounding box shows that which type

should be allocated for the vehicle. Each vehicle type can

be shown by a special rectangle color. Type 1 has been

represented by red, where Type2, Type 3 and Type 4 have

been characterized by green, blue and yellow rectangles,

respectively.

In counting step, four isolated counters used for each

vehicle type and a total counter is needed to store the sum

value of them. All counters should count just the vehicles

which are passing in a specific direction. So if a vehicle

stops, turns or moves in wrong direction in the detection

zone, it should not be counted. In this technique, counting

is according to the number of moving vehicles detected in

the detection zone and classified in one of mentioned

groups.

Total passed vehicles, which will be shown in yellow,

help to analyze traffic flow in a period of time. Also by

calculating the bounding boxes height and width in pixels,

vehicle types can be distinguished and counted by related

counters. Furthermore, in both counted vehicles, edges

will be covered with green rectangles, which shows that

they belong to Type 2 (even the green numbers inside

bounding boxes confirm this result).

https://pykalman.github.io/#pykalman.KalmanFilter
https://pykalman.github.io/#pykalman.KalmanFilter.em
https://pykalman.github.io/#pykalman.KalmanFilter.smooth
https://pykalman.github.io/#pykalman.KalmanFilter

International Journal of Electrical Electronics & Computer Science Engineering

Special Issue - ICSCAAIT-2018 | E-ISSN : 2348-2273 | P-ISSN : 2454-1222

 Available Online at www.ijeecse.com

146

V. CONCLUSION

In this paper a methodology based on python language

programming has been proposed. Python is very good

library like numpy, matplotlib, scipy, which can help to

count traffic, classify the traffic and save the time of

engineer. Traffic flow is basic data for transportation

planning process and its accuracy and processing within

limited time frame is challenging task for transportation

and highway engineer. This tools will be very useful for

their field application road construction design, traffic

planning point of view.

VI. REFERENCES

[1] D. Beymer, P. McLauchlan, B. Coifman, J. Malik,

“A Real-time Computer Vision System for

Measuring Traffic Parameters,” IEEE Conference on

Computer Vision and Pattern Recognition, 1997.

[2] M. Fathy, M. Y. Siyal, “An Image Detection

Technique, Based on Morphological Edge Detection

and Background Differencing for Real-time Traffic

Analysis,” Pattern Recognition Letters, Vol. 16, pp.

1321-1330, 1995.

[3] V. Kastrinaki, M. Zervakis, K. Kalaitzakis, “A

Survey of Video Processing Techniques for Traffic

Applications,” Image and Vision Computing, Vol.

21, pp. 359-381, 2003.

[4] D. A. Forsyth, J. Ponce, “Computer Vision: A

Modern Approach,” Prentice Hall, 2003.

[5] T. R. Currin, “Turning Movement Counts. In

Introduction to Traffic Engineering: A Manualfor

Data Collection and Analysis,” Stamford Wadsworth

Group, pp. 13–23, 2001.

[6] W. Yao, J. Ostermann, Y. Q. Zhang, “Video

Processing and Communications,” Signal Processing

Series, ISBN: 0-13-017547-1, Prentice Hall, 2002.

[7] P. Choudekar, S. Banerjee, M. K. Muju, “Real Time

Traffic Light Control Using Image Processing,”

Indian Journal of Computer Science and

Engineering, Vol. 2, No. 1, ISSN: 0976-5166.

[8] N. Chintalacheruvu, V. Muthukumar, “Video Based

Vehicle Detection and Its Application in Intelligent

Transportation Systems,” Journal of Transportation

Technologies, Vol. 2, pp. 305-314, 2012.

[9] R. Milances Gil, S. Pun, T. Pun, “Comparing

Features for Target Tracking in Traffic Scenes,”

Pattern Recogition, Vol. 29, No. 8, pp. 1285-1296,

1996.

[10] E. Atkociunas, R. Blake, A. Juozapavicius, M.

Kazimianec, “Image Processing in Road Traffic

Analysis,” Nonlinear Analysis: Modelling and

Control, Vol. 10, No. 4, pp. 315–332, 2005.

[11] X. Fu, Z. Wang, D. Liang, J. Jiang, “The Extraction

of Moving Object in Real-Time Web-Based Video

Sequence,” 8th International Conference on Digital

Object Identifier, Vol. 1, pp. 187-190, 2004.

[12] V. Khorramshahi, A. Behrad, N. K. Kanhere, “Over-

Height Vehicle Detection in Low Headroom Roads

Using Digital Video Processing,” World Academy

of Science, Engineering and Technology, 2008.

[13] J. Zhou, D. Gao, D. Zhang, “Moving Vehicle

Detection for Automatic Traffic Monitoring,” IEEE

Transactions on Vehicular Technology, Vol. 56, NO.

1, 2007.

[14] G. Welch, G. Bishop, “An Introduction to the

Kalman Filter”, The University of North Carolina at

Chapel Hill, 2006.

[15] P. G. Michalopoulos, “Vehicle Detection Video

Through Image Processing: The Autoscope System,”

IEEE Transactions on Vehicular Technology, Vol.

40, No. 1, 1991.

[16] A. H. S. Lai, G. S. K. Fung, N. H. C. Yung, “Vehicle

Type Classification from Visual-Based Dimension

Estimation,” IEEE Intelligent Transportation

Systems Conference, pp. 201-206, 2001.

[17] D. G. Lowe, “Distinctive Image Features from

Scaled-Invariant Keypoints,” International Journal

of Computer Vision, pp. 91-110, 2004.

[18] P. T. Martin, G. Dharmavaram, A. Stevanovic,

“Evaluation of UDOT’s Video Detection Systems:

System’s Performance in Various Test Conditions,”

Report No: UT-04.14, 2004.

[19] O. Hasegawa, T. Kanade, “Type Classification,

Color Estimation, and Specific Target Detection of

Moving Targets on Public Streets,” Machine Vision

and Applications, Vol. 16, No. 2, pp. 116-121, 2005.

[20] R. Cucchiara, M. Piccardi, P. Mello, “Image

Analysis and Rule-based Reasoning for a Traffic

Monitoring System,” IEEE Transactions on

Intelligent Transportation Systems, Vol. 1, Issue 2,

pp 119-130, 2000.

[21] Q. Cai, A. Mitiche, J. K. Aggarwal, “Tracking

Human Motion in an Indoor Environment,”

International Conference on Image Processing,

USA, Vol. 1, pp. 215-218, 1995.

International Journal of Electrical Electronics & Computer Science Engineering

Special Issue - ICSCAAIT-2018 | E-ISSN : 2348-2273 | P-ISSN : 2454-1222

 Available Online at www.ijeecse.com

147

 [22] T. Le, M. Combs, Q. Yang, “Vehicle Tracking based

on Kalman Filter Algorithm,” Technical Reports

Published by the MSU Department of Computer

Science, ID: MSU-CS-2013-02, 2013.

[23] Sh. Agarwal, A. Awan, D. Roth, “Learning to Detect

Objects in Images via a Sparse, Part-based

Representation,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2004.

[24] Sh. Agarwal, D. Roth, “Learning a Sparse

Representation for Object Detection,” European

Conference on Computer Vision, Vol. 1, ISBN: 978-

3-540-43748-2, pp. 113-127, 2002.

[25] A. Torralba, K. P. Murphy, W. T. Freeman, “Shared

Features for Multiclass Object Detection,” Toward

Category-Level Object Recognition, ISBN: 978-3-

540-68794-8, pp. 345-361, 2006.

[26] L. Bohang, L. Qingbing, C. Duiyong, S. Hailong,

“Pattern Recognition of Vehicle Types and

Reliability Analysis of Pneumatic Tube Test Data

under Mixed Traffic Condition,” 2nd International

Asia Conference on Informatics in Control,

Automation and Robotics, ISSN: 1948-3414, pp. 44-

47, 2010.

[27] L. Feng, W. Liu, B. Chen, “Driving Pattern

Recognition for Adaptive Hybrid Vehicle Control,”

SAE 2012 World Congress and Exhibition, pp. 169-

179, 2012.

[28] D. Simon, “Optimal State Estimation: Kalman, H

Infinity, and Nonlinear Approaches,” Wiley-

Interscience, 2006.

[29] R. Gonzalez, R. E. Woods, “Digital Image

Processing,” 2nd Edition, Prentice-Hall, 2002.

[30] S. Siang Teoh, T. Bräunl, “A Reliability Point and

Kalman Filterbased Vehicle Tracking Technique,”

International Conference on Intelligent Systems, pp.

134-138, 2012.

[31] K. Markus, “Using the Kalman Filter to Track

Human Interactive Motion Modeling and

Initialization of the Kalman Filter for Translational

Motion,” Technical Report, University of Dortmund,

Germany, 1997.

 [32] D. Nagamalai, E. Renault, M. Dhanuskodi.

“Implementation of LabVIEW Based Intelligent

System for Speed Violated Vehicle Detection”, First

International Conference on Digital Image

Processing and Pattern Recognition, ISSN: 1865-

0929, pp. 23-33, 2011.

[33] I. E. Igbinosa, “Comparison of Edge Detection

Technique in Image Processing Techniques”,

International Journal of Information Technology and

Electrical Engineering, ISSN: 2306-708X, Vol. 2,

Issue 1, 2013.

[34] Learning OpenCV: Computer Vision with the

OpenCV Library By Gary Bradski, Adrian Kaehler.

