Velocity Propagation Between Robot Links 3/4

Introduction - Velocity Propagation

Jacobian Matrix - Introduction

- In the field of robotics the Jacobian matrix describe the relationship between the joint angle rates $\left(\underline{\dot{\theta}}_{N}\right)$ and the translation and rotation velocities of the end effector ($\underline{\dot{x}}$). This relationship is given by:

$$
\left\{\begin{array}{l}
\dot{x} \\
\dot{y} \\
\vdots \\
\dot{\omega} \\
\dot{v}
\end{array}\right\}-\underline{\underline{x}}=J(\underline{\theta}) \underline{\dot{\theta}}
$$

- In addyton to the velocity relationship, we are also interested in developing a relationship between the robot joint torques ($\underline{\tau}$) and the forces and moments (\underline{F}) at the robot end effector (Static Conditions). This relationship is given by:

$$
\underline{\tau}=J(\underline{\theta})^{T} \underline{F}
$$

Jacobian Matrix - Calculation Methods

Summary - Changing Frame of Representation

- Linear and Rotational Velocity
- Vector Form

$$
{ }^{A} V_{Q}={ }^{A} V_{B O R G}+{ }_{B}^{A} R^{B} V_{Q}+{ }^{A} \Omega_{B} \times{ }_{B}^{A} R^{B} P_{Q}
$$

- Matrix Form

$$
{ }^{A} V_{Q}={ }^{A} V_{B O R G}+{ }_{B}^{A} R^{B} V_{Q}+{ }_{B}^{A} \dot{R}_{\Omega}\left({ }_{B}^{A} R^{B} P_{Q}\right)
$$

- Angular Velocity
- Vector Form

$$
\frac{{ }^{A} \Omega_{C}={ }^{A} \Omega_{B}+{ }_{B}^{A} R^{B} \Omega_{C}}{{ }_{C}^{A} \dot{R}_{\Omega}={ }_{B}^{A} \dot{R}_{\Omega}+{ }_{B}^{A} R_{C}^{B} \dot{R}_{\Omega}{ }_{B}^{A} R^{T}}
$$

Frame - Velocity

- As with any vector, a velocity vector may be described in terms of any frame, and this frame of reference is noted with a leading superscript.
- A velocity vector computed in frame $\{B\}$ and represented in frame $\{A\}$ would be written

Position Propagation

- The homogeneous transform matrix provides a complete description of the linear and angular position relationship between adjacent links.
- These descriptions may be combined together to describe the position of a link relative to the robot base frame $\{0\}$.

$$
{ }_{i}^{o} T={ }_{T}^{o} T_{2} T_{2} \ldots{ }_{i}^{i-1} T
$$

- A similar description of the linear and angular velocities between adjacent links as well as the base frame would also be useful.

Position Propagation

Motion of the Link of a Robot

- In considering the motion of a robot link we will always use link frame $\{0\}$ as the reference frame (Computed AND Represented). However any frame can be used as the reference (represented) frame including the link's own frame (i)

Where: $\quad v_{i}$ - is the linear velocity of the origin of link frame (i) with respect to frame $\{0\}$ (Computed AND Represented)
$\omega_{i} \quad$ - is the angular velocity of the origin of link frame (i) with respect to frame \{0\} (Computed AND Represented)

- Expressing the velocity of a frame $\{i\}$ (associated with link i) relative to the robot base (frame $\{0\}$) using our previous notation is defined as follows:

$$
\begin{aligned}
& v_{i} \equiv{ }^{0}\left[{ }^{0} V_{i}\right]=\left[{ }^{0} V_{i}\right] \\
& \omega_{i} \equiv{ }^{0}\left[{ }^{0} \Omega_{i}\right]=\left[{ }^{0} \Omega_{i}\right]
\end{aligned}
$$

Velocities - Frame \& Notation

- The velocities differentiate (computed) relative to the base frame $\{\boldsymbol{0}\}$ are often represented relative to other frames $\{\boldsymbol{k}\}$. The following notation is used for this conditions

$$
\begin{aligned}
& { }^{k} v_{i} \equiv{ }^{k}\left[{ }^{0} V_{i}\right]={ }_{0}^{k} R\left[{ }_{0}^{0}\right]={ }_{0}^{k} R \cdot v_{i} \\
& { }^{k} \omega_{i} \equiv{ }^{k}\left[{ }^{0} \Omega_{i}\right]={ }_{0}^{k} R\left[{ }^{0} \Omega_{i}\right]={ }_{0}^{k} R \cdot \omega_{i}
\end{aligned}
$$

Velocity Propagation

- Given: A manipulator - A chain of rigid bodies each one capable of moving relative to its neighbor
- Problem: Calculate the linear and angular velocities of the link of a robot
- Solution (Concept): Due to the robot structure (serial mechanism) we can compute the velocities of
 each link in order starting from the base.

The velocity of link $i+1$ will be that of link i, plus whatever new velocity components were added by joint $i+1$

Instructor: Jacob Rosen
Advanced Robotic - MAE 263D - Department of Mechanical \& Aerospace Engineering - UCLA

Velocity of Adjacent Links - Angular Velocity 1/5

- From the relationship developed previously

$$
{ }^{A} \Omega_{C}={ }^{A} \Omega_{B}+{ }_{B}^{A} R^{B} \Omega_{C}
$$

- we can re-assign link names to calculate the velocity of any link i relative to the base frame $\{0\}$

$$
\begin{gathered}
\left\{\begin{array}{c}
A \rightarrow 0 \\
B \rightarrow i \\
C \rightarrow i+1
\end{array}\right. \\
{ }^{0} \Omega_{i+1}={ }^{0} \Omega_{i}+{ }_{i}^{0} R^{i} \Omega_{i+1}
\end{gathered}
$$

- By pre-multiplying both sides of the equation by ${ }_{0}^{i+1} R$,we can convert the frame of reference for the base $\{0\}$ to frame $\{i+1\}$

Velocity of Adjacent Links - Angular Velocity 2/5

- Using the recently defined notation, we have

$$
{ }^{i+1} \omega_{i+1}=i+1 \omega_{i}-\left.\right|_{i} ^{i+1} R^{i} \Omega_{i+1}
$$

${ }^{i+1} \omega_{i+1}$ - Angular velocity of frame $\{i+1\}$ measured relative to the robot base, and expressed in frame $\{i+1\}$ - Recall the car example ${ }^{c}\left[{ }^{w} V_{c}\right]={ }^{c} v_{c}$
${ }^{i+1} \omega_{i} \quad$ - Angular velocity of frame $\{i\}$ measured relative to the robot base, and expressed in frame $\{i+1\}$
${ }_{i}^{i+1} R^{i} \Omega_{i+1}$ - Angular velocity of frame $\{i+l\}$ measured relative to frame $\{i\}$ and expressed in frame $\{i+1\}$

Velocity of Adjacent Links - Angular Velocity 3/5

$$
{ }^{i+1} \omega_{i+1}={ }^{i+1} \omega_{i}+{ }_{i}^{i+1} R^{i} \Omega_{i+1}
$$

- Angular velocity of frame $\{i\}$ measured relative to the robot base, expressed in frame $\{i+1\}$

Velocity of Adjacent Links - Angular Velocity 4/5

$$
{ }^{i+1} \omega_{i+1}={ }^{i+1} \omega_{i}+{ }_{i}^{i+1} R^{i} \Omega_{i+1}
$$

- Angular velocity of frame $\{i+l\}$ measured (differentiate) in frame $\{i\}$ and represented (expressed) in frame $\{i+1\}$
- Assuming that a joint has only 1 DOF. The joint configuration can be either revolute joint (angular velocity) or prismatic joint (Linear velocity).
- Based on the frame attachment convention in which we assign the Z axis pointing along the $i+1$ joint axis such that the two are coincide (rotations of a link is preformed only along its Z - axis) we can rewrite this term as follows:

Velocity of Adjacent Links - Angular Velocity 5/5

- The result is a recursive equation that shows the angular velocity of one link in terms of the angular velocity of the previous link plus the relative motion of the two links.

$$
{ }^{i+1} \omega_{i+1}={ }_{i}^{i+1} R^{i} \omega_{i}+\left[\begin{array}{c}
0 \\
0 \\
\dot{\theta}_{i+1}
\end{array}\right]
$$

- Since the term ${ }^{i+1} \omega_{i+1}$ depends on all previous links through this recursion, the angular velocity is said to propagate from the base to subsequent links.

Velocity of Adjacent Links - Linear Velocity 0/6

Velocity of Adjacent Links - Linear Velocity 1/6

- Simultaneous Linear and Rotational Velocity
- The derivative of a vector in a moving frame (linear and rotation velocities) as seen from a stationary frame
- Vector Form

$$
{ }^{A} V_{Q}={ }^{A} V_{B O R G}+{ }_{B}^{A} R^{B} V_{Q}+{ }^{A} \Omega_{B} \times{ }_{B}^{A} R^{B} P_{Q}
$$

- Matrix Form

$$
{ }^{A} V_{Q}={ }^{A} V_{\text {BокG }}+{ }_{B}^{A} R^{B} V_{Q}+{ }_{B}^{A} \dot{R}_{\Omega}\left({ }_{B}^{A} R^{B} P_{Q}\right)
$$

Velocity of Adjacent Links - Linear Velocity 2/6

- From the relationship developed previously (matrix form)

$$
\longrightarrow \quad{ }^{A} V_{Q}={ }^{A} V_{B O R G}+{ }_{B}^{A} R^{B} V_{Q}+{ }_{B}^{A} \dot{R}_{\Omega}\left({ }_{B}^{A} R^{B} P_{Q}\right)
$$

- we re-assign link frames for adjacent links (i and $i+1$) with the velocity computed relative to the robot base frame $\{0\}$
- By pre-multiplying both sides of the equation by ${ }_{0}^{i+1} R$,we can convert the frame of reference for the left side to frame $\{i+1\} \stackrel{{ }^{0} R}{ }$

Velocity of Adjacent Links - Linear Velocity 3/6

$$
{ }_{{ }_{0}^{i+1}}^{b} R^{0} V_{i+1} \stackrel{{ }_{0}^{i+1} R_{i}^{0} \dot{R}_{\Omega}}{\left.{ }_{i}^{0} R^{i} P_{i+1}\right)+{ }_{0}^{i+1} R^{0} V_{i}+{ }_{{ }_{0}^{+i+1} R_{i}^{0} R^{i} V_{i+1}}^{\downarrow} .}
$$

- Which simplifies to

$$
{ }_{0}^{i+1} R^{0} V_{i+1}={ }_{0}^{i+1} R_{i}^{0} \dot{R}_{\Omega}\left({ }_{i}^{0} R^{i} P_{i+1}\right)+{ }_{0}^{i+1} R^{0} V_{i}+{ }_{i}^{i+1} R^{i} V_{i+1}
$$

- Factoring out ${ }_{i}^{i+1} R$ from the left side of the first two terms

$$
{ }_{0}^{i+1} R^{0} V_{i+1}={ }_{i}^{i+1} R\left({ }_{0}^{i} R_{i}^{0} \dot{R}_{\Omega}{ }_{i}^{0} R^{i} P_{i+1}+{ }_{0}^{i} R^{0} V_{i}\right)+{ }_{i}^{i+1} R^{i} V_{i+1}
$$

Velocity of Adjacent Links - Linear Velocity 4/6

$$
{ }_{0}^{i+1} R^{0} V_{i+1}={ }_{i}^{i+1} R\left({ }_{0}^{i} R_{i}^{0} \dot{R}_{\Omega i}{ }_{i}^{0} R^{i} P_{i+1}+{ }_{0}^{i} R^{0} V_{i}\right)+{ }_{i}^{i+1} R^{i} V_{i+1}
$$

${ }_{i}^{i+1} R^{i} V_{i+1}$ - Linear velocity of frame $\{i+1\}$ measured relative to frame $\{i\}$ and expressed in frame $\{i+1\}$

- Assuming that a joint has only 1 DOF. The joint configuration can be either revolute joint (angular velocity) or prismatic joint (Linear velocity).
- Based on the frame attachment convention in which we assign the Z axis pointing along the $i+1$ joint axis such that the two are coincide (translation of a link is preformed only along its Z - axis) we can rewrite this term as follows:

$$
{ }_{i}^{i+1} R^{i} V_{i+1}=\left[\begin{array}{c}
0 \\
0 \\
\dot{d}_{i+1}
\end{array}\right]
$$

Velocity of Adjacent Links - Linear Velocity 5/6

$$
\begin{aligned}
& { }_{0}^{i+1} R^{0} V_{i+1}={ }_{i}^{i+1} R\left({ }_{0}^{i} R_{i}^{0} \dot{R}_{\Omega i}^{0} R^{i} P_{i+1}+{ }_{0}^{i} R^{0} V_{i}\right)+\left[\begin{array}{c}
0 \\
0 \\
\dot{d}_{i+1}
\end{array}\right] \\
& \text { Multiply by Matrix } \\
& { }_{0}^{i} R_{i}^{0} \dot{R}_{\Omega i}^{0} R={ }_{0}^{i} R_{i}^{0} \dot{R}_{\Omega 0}{ }_{0}^{i} R^{T}={ }_{0}^{i} R^{0} \Omega_{i}={ }_{0}^{i} R \omega_{i}={ }^{i} \omega_{i} \\
& \text { Definition } \\
& \text { Definition }
\end{aligned}
$$

Velocity of Adjacent Links - Linear Velocity 6/6

- The result is a recursive equation that shows the linear velocity of one link in terms of the previous link plus the relative motion of the two links.

$$
\longrightarrow{ }^{i+1} v_{i+1}={ }_{i}^{i+1} R\left({ }^{i} \omega_{i} \times{ }^{i} P_{i+1}+{ }^{i} v_{i}\right)+\left[\begin{array}{c}
0 \\
0 \\
\dot{d}_{i+1}
\end{array}\right]
$$

- Since the term ${ }^{i+1} v_{i+1}$ depends on all previous links through this recursion, the angular velocity is said to propagate from the base to subsequent links.

Velocity of Adjacent Links - Summary

- Angular Velocity

$$
\begin{aligned}
& \text { - } \begin{array}{l}
\text { Linear Velocity } \\
{ }^{i+1} v_{i+1}={ }_{i}^{i+1} R\left({ }^{i} \omega \times{ }^{i} P_{i+1}+v_{i} v_{i}\right)+\cup\left[\begin{array}{c}
0 \\
\emptyset \\
\dot{d}_{i+1}
\end{array}\right]
\end{array} .
\end{aligned}
$$

Angular and Linear Velocities - 3R Robot - Example

- For the manipulator shown in the figure, compute the angular and linear velocity of the "tool" frame relative to the base frame expressed in the "tool" frame (that is, calculate ${ }^{4} \omega_{4}$ and ${ }^{4} v_{4}$).

Angular and Linear Velocities - 3R Robot - Example

- Frame attachment

Angular and Linear Velocities - 3R Robot - Example

- DH Parameters

i	α_{i-1}	a_{i-1}	d_{i}	θ_{i}
1	0	0	0	θ_{1}
2	90	L1	0	θ_{2}
3	0	L2	0	θ_{3}
4	0	L3	0	0

Angular and Linear Velocities - 3R Robot - Example

- From the DH parameter table, we can specify the homogeneous transform matrix for each adjacent link pair:

$$
\begin{aligned}
& { }_{i}^{i-1} T=\left[\begin{array}{cccc}
c \theta_{i} & -s \theta_{i} & 0 & a_{i-1} \\
s \theta_{i} c \alpha_{i-1} & c \theta_{i} c \alpha_{i-1} & -s \alpha_{i-1} & -s \alpha_{i-1} d_{i} \\
s \theta_{i} s \alpha_{i-1} & c \theta_{i} s \alpha_{i-1} & c \alpha_{i-1} & c \alpha_{i-1} d \\
0 & 0 & 0 & 1
\end{array}\right] \\
& { }_{1}^{0} T=\left[\begin{array}{cccc}
c 1 & -s 1 & 0 & 0 \\
s 1 & c 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad{ }_{2}^{1} T=\left[\begin{array}{ccc}
c 2 & -s 2 & 0 \\
0 & 0 & -1 \\
0 \\
s 2 & c 2 & 0 \\
0 \\
0 & 0 & 0 \\
{ }_{3}^{2} T & =\left[\begin{array}{cccc}
c 3 & -s 3 & 0 & L 2 \\
s 3 & c 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{array}{ }_{{ }_{4}^{3}}^{3} T=\left[\begin{array}{cccc}
1 & 0 & 0 & L 3 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right.
\end{aligned}
$$

Angular and Linear Velocities - 3R Robot - Example

- Compute the angular velocity of the end effector frame relative to the base frame expressed at the end effector frame.

$$
{ }^{i+1} \omega_{i+1}={ }_{i}^{i+1} R^{i} \omega_{i}+\left[\begin{array}{c}
0 \\
0 \\
\dot{\theta}_{i+1}
\end{array}\right]
$$

- For $\boldsymbol{i}=\mathbf{0}$

$$
{ }^{1} \omega_{1}={ }_{0}^{1} R^{0} \omega_{0}+\left[\begin{array}{c}
0 \\
0 \\
\dot{\theta}_{1}
\end{array}\right]=\left[\begin{array}{ccc}
c 1 & s 1 & 0 \\
-s 1 & c 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
\dot{\theta}_{1}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\dot{\theta}_{1}
\end{array}\right]
$$

Angular and Linear Velocities - 3R Robot - Example

- For $\boldsymbol{i}=\mathbf{1}$

$$
\begin{aligned}
& { }^{2} \omega_{2}={ }_{1}^{2} R^{1} \omega_{1}+\left[\begin{array}{c}
0 \\
0 \\
\dot{\theta}_{2}
\end{array}\right]=\left[\begin{array}{ccc}
c 2 & 0 & s 2 \\
-s 2 & 0 & c 2 \\
0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
\dot{\theta}_{1}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
\dot{\theta}_{2}
\end{array}\right]=\left[\begin{array}{c}
s 2 \dot{\theta}_{1} \\
c 2 \dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right] \\
& { }^{3} \omega_{3}={ }_{2}^{3} R^{2} \omega_{2}+\left[\begin{array}{c}
0 \\
0 \\
\dot{\theta}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
c 3 & s 3 & 0 \\
-s 3 & c 3 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
s 2 \dot{\theta}_{1} \\
c 2 \dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
\dot{\theta}_{3}
\end{array}\right]=\left[\begin{array}{c}
s 23 \dot{\theta}_{1} \\
c 23 \dot{\theta}_{1} \\
\dot{\theta}_{2}+\dot{\theta}_{3}
\end{array}\right] \\
& { }^{4} \omega_{4}={ }_{3}^{4} R^{3} \omega_{3}+\left[\begin{array}{c}
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
s 23 \dot{\theta}_{1} \\
c 23 \dot{\theta}_{1} \\
\dot{\theta}_{2}+\dot{\theta}_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
s 23 \dot{\theta}_{1} \\
c 23 \dot{\theta}_{1} \\
\dot{\theta}_{2}+\dot{\theta}_{3}
\end{array}\right]
\end{aligned}
$$

- Note

$$
{ }^{3} \omega_{3}={ }^{4} \omega_{4}
$$

Angular and Linear Velocities - 3R Robot - Example

- Compute the linear velocity of the end effector frame relative to the base frame expressed at the end effector frame.
-
- Note that the term involving the prismatic joint has been dropped from the equation (it is equal to zero).

Angular and Linear Velocities - 3R Robot - Example

- For $\boldsymbol{i}=\mathbf{0}$

$$
{ }^{1} v_{1}={ }_{0}^{1} R\left\{{ }^{0} \omega_{0} \times{ }^{0} P_{1}+{ }^{0} v_{0}\right\}=\left[\begin{array}{ccc}
c 1 & s 1 & 0 \\
-s 1 & c 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \times\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right\}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- For $\boldsymbol{i}=\mathbf{1}$

$$
{ }^{2} v_{2}={ }_{1}^{2} R\left\{{ }_{1} \omega_{1} \times{ }^{1} P_{2}+{ }^{1} v_{1}\right\}=\left[\begin{array}{ccc}
c 2 & 0 & s 2 \\
-s 2 & 0 & c 2 \\
0 & -1 & 0
\end{array}\right]\left\{\left[\begin{array}{c}
0 \\
0 \\
\dot{\theta}_{1}
\end{array}\right] \times\left[\begin{array}{c}
L 1 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right\}=\left[\begin{array}{c}
0 \\
0 \\
-L_{1} \dot{\theta}_{1}
\end{array}\right]
$$

Angular and Linear Velocities - 3R Robot - Example

- For $\boldsymbol{i}=\mathbf{3}$

$$
\begin{aligned}
& { }^{3} v_{3}={ }_{2}^{3} R\left\{{ }_{2}^{2} \omega_{2} \times{ }^{2} P_{3}+{ }^{2} v_{2}\right\}=\left[\begin{array}{ccc}
c 3 & s 3 & 0 \\
-s 3 & c 30 & 0 \\
0 & 0 & 1
\end{array}\right]\left\{\left[\begin{array}{c}
s 2 \dot{\theta}_{1} \\
c 2 \dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right] \times\left[\begin{array}{c}
L 2 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
-L 1 \dot{\theta}_{1}
\end{array}\right]\right\} \\
& =\left[\begin{array}{ccc}
c 3 & s 3 & 0 \\
-s 3 & c 3 & 0 \\
0 & 0 & 1
\end{array}\right]\left\{\left[\begin{array}{c}
0 \\
L 2 \dot{\theta}_{1} \\
-L 2 c 2 \dot{\theta}_{1}-L 1 \dot{\theta}_{1}
\end{array}\right]\right\}=\left[\begin{array}{c}
L 2 s 3 \dot{\theta}_{2} \\
L 2 c 3 \dot{\theta}_{2} \\
(-L 1-L 2 c 2) \dot{\theta}_{1}
\end{array}\right]
\end{aligned}
$$

Angular and Linear Velocities - 3R Robot - Example

- For $\boldsymbol{i}=\mathbf{4}$

$$
\begin{aligned}
& { }^{4} v_{4}={ }_{3}^{4} R\left\{{ }^{3} \omega_{3} \times{ }^{3} P_{4}+{ }^{3} v_{3}\right\}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\left[\begin{array}{c}
s 23 \dot{\theta}_{1} \\
c 23 \dot{\theta}_{1} \\
\dot{\theta}_{2}+\dot{\theta}_{3}
\end{array}\right] \times\left[\begin{array}{c}
L 3 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
L 2 s 3 \dot{\theta}_{2} \\
L 2 c 3 \dot{\theta}_{2} \\
(-L 1-L 2 c 2) \dot{\theta}_{1}
\end{array}\right]\right\} \\
& =\left[\begin{array}{c}
L 2 s 3 \dot{\theta}_{2} \\
(L 2 c 3+L 3) \dot{\theta}_{2}+L 3 \dot{\theta}_{3} \\
(-L 1-L 2 c 2-L 3 c 23) \dot{\theta}_{1}
\end{array}\right]
\end{aligned}
$$

Angular and Linear Velocities - 3R Robot - Example

- Note that the linear and angular velocities (${ }^{4} \omega_{4},{ }^{4} v_{4}$) of the end effector where differentiate (measured) in frame $\{0\}$ however represented (expressed) in frame \{4\}
- In the car example: Observer sitting in the "Car" Observer sitting in the "World"

${ }^{k} v_{i} \equiv{ }^{k}\left[{ }^{0} V_{i}\right]={ }_{0}^{k} R\left[{ }_{0} V_{i}\right]={ }_{0}^{k} R \cdot v_{i}$

$$
{ }^{k} \omega_{i} \equiv{ }^{k}\left[{ }^{0} \Omega_{i}\right]={ }_{0}^{k} R\left[{ }^{0} \Omega_{i}\right]={ }_{0}^{k} R \cdot \omega_{i}
$$

Solve for v_{4} and ω_{4} by multiply both side of the questions from the left by ${ }_{0}^{4} R^{-1}$

$$
\begin{aligned}
& { }^{4} v_{4}={ }_{0}^{4} R \cdot v_{4} \\
& { }^{4} \omega_{4}={ }_{0}^{4} R \cdot \omega_{4}
\end{aligned}
$$

Angular and Linear Velocities - 3R Robot - Example

- Multiply both sides of the equation by the inverse transformation matrix, we finally get the linear and angular velocities expressed and measured in the stationary frame $\{0\}$

$$
\begin{aligned}
& v_{4}={ }_{0}^{4} R^{-1} \cdot{ }^{4} v_{4}={ }_{0}^{4} R^{T} \cdot{ }^{4} v_{4}={ }_{4}^{0} R \cdot{ }^{4} v_{4} \\
& \omega_{4}={ }_{0}^{4} R^{-1} \cdot{ }^{4} \omega_{4}={ }_{0}^{4} R^{T} \cdot{ }^{4} \omega_{4}={ }_{4}^{0} R \cdot{ }^{4} \omega_{4} \\
& { }_{4}^{0} T={ }_{1}^{0} T T_{2}^{4} T_{3}^{2} T_{4}^{3} T
\end{aligned}
$$

Angular and Linear Velocities - 3R Robot - Example

Angular and Linear Velocities - 3R Robot - Example

Angular and Linear Velocities - 3R Robot - Example

Angular and Linear Velocities - 3R Robot - Example

Angular and Linear Velocities - 3R Robot - Example

Angular and Linear Velocities - 3R Robot - Example

Angular and Linear Velocities - 3R Robot - Example

Angular and Linear Velocities - 3R Robot - Example

Angular and Linear Velocities - 3R Robot - Example

Angular and Linear Velocities - 3R Robot - Example

Angular and Linear Velocities-3R Robot - Example

Angular and Linear Velocities - 3R Robot - Example

Angular and Linear Velocities - 3R Robot - Example

Angular and Linear Velocities - 3R Robot - Example

