
11 October 2010 PHM 2010

Verification & Validation for PHM

Dr. Guillaume Brat, NASA ARC

NASA Ames Research Center, Code TI

1

11 October 2010 PHM 2010 2

Who am I?

•  Bio nuggets:
•  Ph.D. from the ECE Dept. at The University of Texas at Austin in 1998
•  Principal Scientist for the FY’10 V&V of Flight Critical Systems study

for the Aviation Safety program in NASA ARMD

•  Deputy Area Lead for Robust Software Engineering in the
Intelligent Systems division at the NASA Ames Research Center

•  Our goal is to increase the reliability and robustness of
NASA software, and the productivity of its software
engineering, through the research, development, application,
and transfer of automated software engineering technology
that scales to meet NASA's software challenges.

•  We draw upon many techniques from Computer Science
(eg, program verification, automated reasoning, model
checking, static analysis, symbolic evaluation, and machine
learning) and apply them to the verification and validation of
software, as well as code generation.

Outline

11 October 2010 PHM 2010 3

•  Setting the stage
•  A few definitions
•  Current V&V trends
•  What about V&V for PHM?
•  Conclusion: need more research

15 June 2010 S5 4

Setting the stage

Focus on aeronautics

11 October 2010 PHM 2010 5

Impact: Cost, and Constraints on Innovation

Winter, D. (VP, Engineering & IT, Boeing PW)
Testimony to House Committee on Science and Technology, July 31,

2008

System Lines of Code

Mars Reconnaissance
Orbiter

545K

Orion Primary Flight Sys. 1.2M

F-22 Raptor 1.7M

Seawolf Submarine
Combat System AN/BSY-2

3.6M

Boeing 777 4M

Boeing 787 6.5M

F-35 Joint Strike Fighter 5.7M

Typical GM car in 2010 100M

Size Comparisons of
Embedded Software

NASA Study
Flight Software Complexity, 4/23/2009

Boehm, B. 1981 Software Engineering Economics, as cited in DAA, 2008
13 April 2010 NFM 2010 6

Software Certification

11 October 2010 PHM 2010 7

•  DO-178B / ED-12B: Software Considerations in Airborne
Systems and Equipment Certification
–  Prepared by RTCA SC-167 and EUROCAE WG-12

•  Main V&V elements:
–  Requires structural testing (with code coverage analysis)

•  testing of executable object code
–  Strong emphasis also on requirement-based testing
–  Review of all requirements, design and code

•  Need to ensure traceability between requirements, code, and the tests that
verify that the code satisfy the requirements

Software Certification Evolution

11 October 2010 PHM 2010 8

•  DO-178C
–  Prepared by RTCA SC-205 and EUROCAE WG-12

•  Among other things, it emphasizes:
–  Model-based design and verification

•  New guidance for model execution/simulation
•  Attempting to define model coverage metrics

–  Formal methods
•  Define new objectives/activities/documentation (abstractions, assumptions)
•  Avoid common errors (false hypotheses)

Place of V&V in certification

•  V&V provides evidences for a certification case

11 October 2010 PHM 2010 9

Safety Requirements

Evidence

Arguments

15 June 2010 S5 10

A few definitions

V&V Definitions

•  Verification is a process that is used to evaluate whether or not
a product, service, or system complies with regulations,
specifications, or conditions imposed at the start of a
development phase.
–  Are we building it right?

•  Validation is the process of establishing evidence that provides
a high degree of assurance that a product, service, or system
accomplishes its intended requirements.
–  Have we built the right thing?

11 October 2010 PHM 2010 11

V&V Misconception

11 October 2010 PHM 2010 12

Wrong: validation does not equate testing

In the research world

•  During the research activity, we’re mostly concerned with
validation:
–  Is the new algorithm solving the right problems?
–  How do we convince people that it is the case?
–  We typically do just enough verification to make sure that we can

trust the simulation results.
•  During technology transfer, we’re very concerned with

verification:
–  Is the software correct with respect to the specifications?
–  We are still concerned with validation because nothing replaces

validation on the final product.
11 October 2010 PHM 2010 13

15 June 2010 S5 14

Current V&V trends

V&V and the Lifecycle Model

15

Methods of Examining for
Big Issues Early-On

18 June 2010

Requirements

•  Requirements analysis determine the needs or conditions
to meet for a new or altered product, taking account of the
possibly conflicting requirements of the various
stakeholders.

11 October 2010 PHM 2010 16

Requirements

•  Requirements can be
–  architectural,
–  structural,
–  behavioral,
–  functional, and
–  non-functional.

11 October 2010 PHM 2010 17

3.1.1 The Spacecraft Navigation Sub-
system shall stop performing
Spacecraft Navigation upon receipt of
a Shutdown Ground Command.

Spacecraft Navigation

Activity
diagrams

Requirements

•  Requirements must be
–  documented,
–  measurable,
–  testable,
–  defined to a level of detail sufficient for system design, and,
–  traceable all the way to code and tests.

•  Requirements are mostly verified through peer reviews
–  Some checks (conflicts, ambiguities) can be automated if

requirements are expressed formally.

11 October 2010 PHM 2010 18

Tabular representation: (RSML-e, SCR)

11 October 2010 PHM 2010 19

Models and Testing

 The goal of Model-Based Testing (MBT) is to reduce costly test
development.
 The use of model checking enables the QA engineers to test contractor code
developed from the models

Software Requirements

Simulink Model
Formal Model

CTL Properties

Test Cases for
requirements
coverage

write properties

create models RCI/UMN Translator Formal Model
with properties

model
check

CTL Properties

Requirements
Coverage Generation

Design

•  Software design is a process of problem-solving and planning
for a software solution that meets the requirements.

11 October 2010 PHM 2010 21

UML
diagrams

Simulink model

11 October 2010 PHM 2010 22

Model-based Development Examples

July 8, 2010 23

Model-based development process

•  More and more, code is automatically generated from design models.
•  Verification can be built into the auto-coding process.

11 October 2010 PHM 2010 24

void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

Program

Flow chart
Finite state machine

•  It’s very important to verify and validate models

10 June 2010 25

Model

safety property
always(ϕ orψ)

model checker

YES (property holds)

NO + counterexample:
(provides a violating execution)

Testing

Model Checking

Formal Requirement/design V&V: example

11 October 2010 PHM 2010 26

Esterel Technologies
Rockwell Collins

Design
Verifier

MathWorks
SRI International

SCADE

Lustre

NuSMV

PVS

Safe State
Machines

Simulink
Simulink
Gateway

StateFlow

SAL

ICS

Symbolic
Model Checker
Bounded
Model Checker

Infinite
Model Checker

Models and Testing

 The goal of Model-Based Testing (MBT) is to reduce costly test
development.
 The use of model checking enables the QA engineers to test contractor code
developed from the models

Software Requirements

Simulink Model
Formal Model

Formal Model

Test Cases for
model coverage

create models RCI/UMN Translator Formal Model
with properties

model
check

CTL Properties

Model
Coverage Generation

Coding

•  Coding is the process of designing, writing, testing,
debugging/troubleshooting, and maintaining the source
code of computer programs.

•  Most embedded systems are coded in C and C++.

•  The main V&V means for coding are:
–  Dynamic analysis, or testing, and,
–  Static analysis.

11 October 2010 PHM 2010 28

10 June 2010 29

Testing exercises
some data points
and some paths

The goal of static analysis
is to exercise all data
ranges for all paths

D
ou

bl
e

f(x
) {

if
x>

0
{

y
=

x/
y;

}

el
se

 {

y

=
1;

}

v
=

sq
r_

ro
ot

 (y
);

w

hi
le

 (v
 <

 1
.4

5)
 {

 …
.;

}

re

tu
rn

 v
;

}

D
ou

bl
e

f(x
) {

if
x>

0
{

y
=

x/
y;

}

el
se

 {

y

=
1;

}

v
=

sq
r_

ro
ot

 (y
);

w

hi
le

 (v
 <

 1
.4

5)
 {

 …
.;

}

re

tu
rn

 v
;

}

Operations are:
•  safe
•  unsafe
•  potentially unsafe

x x x

x x
x

x x x

Static Analysis

Static analysis is well-suited for catching runtime errors, e.g.:
–  Array-out-bound accesses
–  Un-initialized variables/pointers
–  Overflow/Underflow
–  Invalid arithmetic operations

Static Analysis Challenge

13 April 2010 NFM 2010

C Global Surveyor	

(NASA Ames)	

Scalability (KLOC)	

Precision	

1000	

500	

50	

80%	
 95%	

PolySpace	

C-Verifier	

Astree	

100%	

Coverity	

Klocwork	

CERTIFIERS DEBUGGERS

Code Sonar	

30

Software testing

•  Testing is the most common means of verifying software.

11 October 2010 PHM 2010 31

Testing

Unit Testing

•  Unit testing refers to tests that verify the functionality of a
specific section of code, usually at the function level.
–  They are usually written by developers as they work on code, to

ensure that the specific function is working as expected.
•  One function might have multiple tests, to

–  validate nominal cases
–  exercise corner cases or
–  verify that off-nominal cases are caught by exception handlers.

•  Unit testing alone cannot verify the functionality of a piece
of software, but rather is used to assure that the building
blocks the software uses work independently of each other.

11 October 2010 PHM 2010 32

Integration Testing

•  Integration testing is any type of software testing that seeks to
verify the interfaces between components against a software
design.

•  Traditionally, larger groups of tested software components
corresponding to elements of the architectural design are
integrated and tested until the software works as a system.

11 October 2010 PHM 2010 33

Component A Component B

Compositional Verification

July 8, 2010

•  Use system’s natural decomposition
into components to break-up the
verification task
•  Divide-and-Conquer approach

•  Components typically satisfy
requirements in specific contexts /
environments
•  safety assumptions about contexts

•  System safety derives from the ability to
compose the components’ contexts at
the system level

34

System V&V

•  System testing tests a completely integrated system to
verify that it meets its requirements.
–  Hence, the importance of having requirement traceability all the

way to system testing (for verification).
–  It also test beyond the bounds defined in the requirements and

specification, and therefore the believed expectations of the
customer , for validation.

•  It can use test-beds with different level of fidelity, such as
–  Hardware-in-the-loop testing
–  Human-in-the-loop testing

11 October 2010 PHM 2010 35

15 June 2010 S5 36

What about V&V for PHM?

PHM algorithm classification

11 October 2010 PHM 2010 37

PHM algorithm classification

11 October 2010 PHM 2010 38

Physics-based models

11 October 2010 PHM 2010 39

A General Strategy for Physics-Based Model Validation 5

Fig. 1. Schematic representation of the conventional position of validation in model
construction according to Schlesinger [8] and Sargent [9, 10].

salient qualitative features of the experiments, such as the instabilities, their non-
linear development, the determination of the most unstable modes, and so on. See,
for instance, Gnoffo et al. [16].

Considerable work on verification and validation of simulations has been done in
the field of CFD, and in this literature the terms verification and validation have pre-
cise, technical meanings [7, 2, 17, 9, 10]. Verification is taken to mean demonstrating
that a code or simulation accurately represents the conceptual model. Roache [18]
stresses the importance of distinguishing between (i) verification of codes and (ii)
verification of calculations. The former is concerned with the correctness of the code.
The later deals with the correctness of the physical equations used in the code. The
programming and methods of solution can be correct (verification (i) successful)
but they can solve erroneous equations (verification (ii) failure). Validation of a sim-
ulation means demonstrating that the simulation appropriately describes Nature.
The scope of validation is therefore much larger than that of verification and in-
cludes comparison of numerical results with experimental or observational data. In
astrophysics, where it is difficult to obtain observations suitable for comparison to
numerical simulations, this process can present unique challenges. Roache [op. cit.]
goes on to offer the optimistic prognosis that “the problems of Verification of Codes
and Verification of Calculations are essentially solved for the case of structured grids,
and for structured refinement of unstructured grids. It would appear that one higher
level of algorithm/code development is required in order to claim a complete method-
ology for Verification of Codes and Calculations. I expect this to happen. Within
10 years, and likely much less, Verification of Codes and Calculations ought to be
settled questions. I expect that Validation questions will always be with us.” We fully
endorse this last sentence, as we will argue further on that validation is akin to the
development of “trust” in theories of real phenomena, a never-ending quest.

1.3 Impossibility Statements

For these reasons, the possibility of validating numerical models of natural phe-
nomena, often endorsed either implicitly or identified as reachable goals by natural

Adequacy of the conceptual
model with the domain of

intended application

Does the implementation
accurately represents the
conceptual model and its

solution?

Is the computerized
model an accurate
representation of the real
world for the perspective
of its intended uses?

Physics-based models

•  Verification
–  determining that a model implementation accurately represents

the developer’s conceptual description of the model and the
solution of the model

•  Ideas
–  Certifiable code synthesis from equations
–  V&V for numerical analysis code (similar to flight control SW)

•  Numerical instabilities (floating point computation problems)
•  Complex data structure manipulation problems (buffer overflow)

11 October 2010 PHM 2010 40

Physics-based models

•  Validation
–  determining the degree to which a physics model is an accurate

representation of the real world from the perspective of its
intended uses

•  Correctness of the differential equations
•  Usually done through simulations
•  Stability and convergence of the implemented algorithm
•  Analysis of the off-nominal cases

11 October 2010 PHM 2010 41

Physics-based models

•  Related concepts:
–  Model interpolation

•  means application of a model to conditions bounded by the calibration and
validation experiments

–  Model extrapolation
•  outside the range of model parameters tested, or
•  to conditions not tested (i.e., different geometries or boundary conditions),
•  to different physical phenomena for which the model acts as a surrogate

–  Model approximation
•  In the sense that we’re looking for a bounding model for a physical

phenomenon

11 October 2010 PHM 2010 42

Physics-based models V&V references

•  Statistical Validation of Engineering and Scientific Models: Bounds,
Calibration, and Extrapolation by Richard G. Hills and Kevin Dowding, SANDIA
REPORTSAND2005-1826.

•  A General Strategy for Physics-Based Model Validation by Didier Sornette,
Anthony B. Davis, James R. Kamm, and Kayo Ide, in Proceedings of in
Computational Methods in Transport, Granlibakken 2006.

11 October 2010 PHM 2010 43

PHM algorithm classification

11 October 2010 PHM 2010 44

Machine learning (Neural network) strategy

•  The core-layer contains rigorous, mathematically sound results
concerning robustness, stability, and convergence.
–  Current state-of-the-art provides relatively weak results in form of asymptotic

guarantees.
•  Lyapunov proofs of (asymptotic) stability
•  Vapnik-Cherenovis-dimension arguments to reason about the NN’s generalization abilities

•  Testing techniques to provide convergence guarantees in the
required short period of time
–  Analysis of numerical issues
–  tests for convergence and robustness of the system

•  Run-time monitoring on NN performance

11 October 2010 PHM 2010 45

by Johann Schumann and Stacy Nelson, WOSS’02

Machine learning

•  Requirements and Design:
–  Documentation must include the specification for the

NN and its architecture.
•  type of NN (feed-forward, Self Organizing Map, etc),
•  the learning algorithm (gradient descent, Least Means

Squared, Levenberg-Marquardt, Newton’s method, etc.)
•  all parameters of the NN architecture (e.g., number of

layers and hidden nodes, activation functions,
initialization)

•  a concise description of the inputs and outputs (including
units and the expected and maximal range of values) and
acceptable errors and training set(s) for PTNN must be
provided.

11 October 2010 PHM 2010 46

•  Software Detailed Design must include a description of precise code constructs
required to implement the NN, including all data structures and algorithms (e.g.,
libraries for matrix operations).

Machine learning

•  Unit Testing must include both black and white
box testing for modularized NN code.

•  Software Integration should verify that the NN
interfaces with other software including proper
inputs and outputs for the NN.

•  Software Qualification Testing should ensure
that the requirements are sufficiently detailed to
adequately and accurately describe the NN.

11 October 2010 PHM 2010 47

•  System Integration Testing should verify that the architectural design is detailed
enough so, when implemented, the NN can interface with system hardware and
software in various fidelity test-beds.

•  System Qualification Testing should verify that the system requirements are
sufficient enough to ensure that, when implemented, the NN will interface properly
with the system in production.

Machine learning

11 October 2010 PHM 2010 48

•  Other V&V concerns coming from the numerical aspect of a
neural network:
–  general numeric properties, like scaling, conditioning, or

sensitivity analysis,
–  properties/issues specifically related to the training algorithm

(e.g., convergence, termination), and,
–  issues with respect to the actual implementation on a digital

computer (e.g., round-off errors, accuracy of library functions).

Machine learning V&V references

11 October 2010 PHM 2010 49

•  Guidance for the Verification and Validation of Neural Networks by Laura L.
Pullum, Brian J. Taylor, Marjorie A. Darrah

•  Independent Verification and Validation of Neural Networks - Developing
Practitioner Assistance By Dr. Laura L. Pullum, Dr. Marjorie A. Darrah, and Mr.
Brian J. Taylor, Institute for Scientific Research, Inc., Software Tech New

•  Toward V&V of neural network based controllers by Johann Schumann and
Stacy Nelson

•  Validating A Neural Network-based Online Adaptive System by Yan Liu,
Dissertation submitted to the College of Engineering and Mineral Resources at
West Virginia University, 2005

•  Verification and Validation of Adaptive and Intelligent Systems with Flight
Test Results by John Burken and Dick Larson, UCAUV 2009

•  Validation and Regulation of Medical Neural Networks by David M. Rodvold.
Molecular Urology. December 2001, 5(4): 141-145.

15 June 2010 S5 50

Conclusion: need more research?

SSAT Project under Aviation Safety program
Level 2 – System Level!

Level 3 – Themes!

Level 4 – Foundational!

•  SSAA 4.1.1: Argument-
Based Safety Assurance!

•  SSAA 4.1.2: Authority and
Autonomy!

•  SSAA 4.1.3: Distributed
Systems!

•  SSAA 4.1.4: Software
Intensive Systems!

•  SSAA 4.4.1: Decision
Making under
Uncertainty!

•  SSAA 4.4.2:
Diagnostics!

•  SSAA 4.4.3:
Prognostics!

•  SSAA 4.4.4:
Software Health
Management!

SSAA 3.1!
Verification & !

Validation!
 of Flight Critical !

Systems!

SSAA 3.2!
Data Mining and !

Knowledge Discovery!

SSAA 3.3!
Human Systems !

Solutions!

SSAA 3.4!
Prognostics and !
Decision Making!

SSAA 2.2 Systems !
Analysis!

SSAA 2.3 Partnerships!
 and Outreach!

SSAA 2.4 Research!
Test and Integration!

Goal -- Validated multidisciplinary tools and techniques to ensure system safety in NextGen and
enable proactive management of safety risk through predictive methods.!

SSAA 2.1 Technical !
Challenges!

51"“Validated, proactive solutions for ensuring safety in flight and operations”

V&V of
Prognostics Algos

Technical Challenges: PDM

11 October 2010 PHM 2010 52

Prognostic Algorithm Design for Safety Assurance.

Explore designing new prognostics algorithms that are verifiable,
thus removing obstacles to their certification and enabling their
deployment by industry to take advantage of their safety benefits.
(FY 25)

Goal:
Remove obstacles to the certification of prognostic algorithms. The non-linear
and non-deterministic nature of prognostic algorithms requires industry to
perform more costly, intensive testing than on traditional technologies.

Benefits:
•  New class of verifiable prognostic algorithm
•  Reduced the cost to deploy prognostics algorithms

