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Who am I? 

•  Bio nuggets: 
•  Ph.D. from the ECE Dept. at The University of Texas at Austin in 1998 
•  Principal Scientist for the FY’10 V&V of Flight Critical Systems study 

for the Aviation Safety program in NASA ARMD 

•  Deputy Area Lead for Robust Software Engineering in the 
Intelligent Systems division at the NASA Ames Research Center 

•  Our goal is to increase the reliability and robustness of 
NASA software, and the productivity of its software 
engineering, through the research, development, application, 
and transfer of automated software engineering technology 
that scales to meet NASA's software challenges.  

•  We draw upon many techniques from Computer Science 
(eg, program verification, automated reasoning, model 
checking, static analysis, symbolic evaluation, and machine 
learning) and apply them to the verification and validation of 
software, as well as code generation.  



Outline 
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•  Setting the stage 
•  A few definitions 
•  Current V&V trends 
•  What about V&V for PHM? 
•  Conclusion: need more research 
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Setting the stage 



Focus on aeronautics 
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Impact: Cost, and Constraints on Innovation 

Winter, D. (VP, Engineering & IT, Boeing PW) 
Testimony to House Committee on Science and Technology, July 31, 

2008 

System Lines of Code 

Mars Reconnaissance 
Orbiter 

545K 

Orion Primary Flight Sys. 1.2M 

F-22 Raptor 1.7M 

Seawolf Submarine 
Combat System AN/BSY-2 

3.6M 

Boeing 777 4M 

Boeing 787 6.5M 

F-35 Joint Strike Fighter 5.7M 

Typical GM car in 2010 100M 

Size Comparisons of 
Embedded Software 

NASA Study 
Flight Software Complexity, 4/23/2009 

Boehm, B. 1981 Software Engineering Economics, as cited in DAA, 2008 
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Software Certification 
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•  DO-178B / ED-12B: Software Considerations in Airborne 
Systems and Equipment Certification  
–  Prepared by RTCA SC-167 and EUROCAE WG-12 

•  Main V&V elements: 
–  Requires structural testing (with code coverage analysis) 

•  testing of executable object code 
–  Strong emphasis also on requirement-based testing 
–  Review of all requirements, design and code 

•  Need to ensure traceability between requirements, code, and the tests that 
verify that the code satisfy the requirements 



Software Certification Evolution 
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•  DO-178C 
–  Prepared by RTCA SC-205 and EUROCAE WG-12 

•  Among other things, it emphasizes: 
–  Model-based design and verification 

•  New guidance for model execution/simulation 
•  Attempting to define model coverage metrics 

–  Formal methods 
•  Define new objectives/activities/documentation (abstractions, assumptions) 
•  Avoid common errors (false hypotheses) 



Place of V&V in certification 

•  V&V provides evidences for a certification case 
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Safety Requirements  

Evidence 

Arguments 
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A few definitions 



V&V Definitions 

•  Verification is a process that is used to evaluate whether or not 
a product, service, or system complies with regulations, 
specifications, or conditions imposed at the start of a 
development phase.  
–  Are we building it right? 

•  Validation is the process of establishing evidence that provides 
a high degree of assurance that a product, service, or system 
accomplishes its intended requirements. 
–  Have we built the right thing? 
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V&V Misconception 
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Wrong: validation does not equate testing 



In the research world 

•  During the research activity, we’re mostly concerned with 
validation: 
–  Is the new algorithm solving the right problems? 
–  How do we convince people that it is the case? 
–  We typically do just enough verification to make sure that we can 

trust the simulation results. 
•  During technology transfer, we’re very concerned with 

verification: 
–  Is the software correct with respect to the specifications? 
–  We are still concerned with validation because nothing replaces 

validation on the final product. 
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Current V&V trends 



V&V and the Lifecycle Model 

15 

Methods of Examining for 
Big Issues Early-On 
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Requirements 

•  Requirements analysis determine the needs or conditions 
to meet for a new or altered product, taking account of the 
possibly conflicting requirements of the various 
stakeholders. 
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Requirements 

•  Requirements can be  
–  architectural,  
–  structural,  
–  behavioral,  
–  functional, and  
–  non-functional. 
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3.1.1 The Spacecraft Navigation Sub-
system shall stop performing 
Spacecraft Navigation upon receipt of 
a Shutdown Ground Command.  

Spacecraft Navigation 

Activity 
diagrams 



Requirements 

•  Requirements must be  
–  documented,  
–  measurable,  
–  testable,  
–  defined to a level of detail sufficient for system design, and, 
–  traceable all the way to code and tests. 

•  Requirements are mostly verified through peer reviews 
–  Some checks (conflicts, ambiguities) can  be automated if 

requirements are expressed formally. 
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Tabular representation: (RSML-e, SCR)  
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Models and Testing 

 The goal of Model-Based Testing (MBT) is to reduce costly test 
development.  
 The use of model checking enables the QA engineers to test contractor code 
developed from the models 

Software Requirements 

Simulink Model 
Formal Model 

CTL Properties 

Test Cases for  
requirements 
coverage 

write properties 

create models RCI/UMN Translator Formal Model 
with properties 

model 
check 

CTL Properties 

Requirements 
Coverage Generation 



Design 

•  Software design is a process of problem-solving and planning 
for a software solution that meets the requirements. 
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UML 
diagrams 



Simulink model 
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Model-based Development Examples 
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Model-based development process 

•  More and more, code is automatically generated from design models. 
•  Verification can be built into the auto-coding process. 
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void add(Object o) { 
 buffer[head] = o; 
 head = (head+1)%size; 
} 

Object take() { 
 … 
 tail=(tail+1)%size; 
 return buffer[tail]; 
} 

Program 

Flow chart 
Finite state machine 

•  It’s very important to verify and validate models 
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Model 

safety property 
always(ϕ orψ) 

model checker 

YES (property holds)  

NO + counterexample: 
(provides a violating execution)  

Testing 

Model Checking 



Formal Requirement/design V&V: example 
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Esterel Technologies 
Rockwell Collins 

Design 
Verifier 

MathWorks 
SRI International 

SCADE 

Lustre 

NuSMV 

PVS 

Safe State 
Machines 

Simulink 
Simulink 
Gateway 

StateFlow 

SAL 

ICS 

Symbolic 
Model Checker 
Bounded 
Model Checker 

Infinite  
Model Checker 



Models and Testing 

 The goal of Model-Based Testing (MBT) is to reduce costly test 
development.  
 The use of model checking enables the QA engineers to test contractor code 
developed from the models 

Software Requirements 

Simulink Model 
Formal Model 

Formal Model 

Test Cases for  
model  coverage 

create models RCI/UMN Translator Formal Model 
with properties 

model 
check 

CTL Properties 

Model  
Coverage Generation 



Coding 

•  Coding is the process of designing, writing, testing, 
debugging/troubleshooting, and maintaining the source 
code of computer programs.  

•  Most embedded systems are coded in C and C++. 

•  The main V&V means for coding are: 
–  Dynamic analysis, or testing, and, 
–  Static analysis. 
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Testing exercises 
some data points 
and some paths 

The goal of static analysis 
is to exercise all data 
ranges for all paths 
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Operations are: 
•  safe 
•  unsafe 
•  potentially unsafe 
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x 
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Static Analysis 

Static analysis is well-suited for catching runtime errors, e.g.: 
–  Array-out-bound accesses 
–  Un-initialized variables/pointers 
–  Overflow/Underflow 
–  Invalid arithmetic operations 



Static Analysis Challenge 

13 April 2010 NFM 2010 

C Global Surveyor	

(NASA Ames)	


Scalability (KLOC)	


Precision	


1000	


500	


50	


80%	
 95%	


PolySpace	

C-Verifier	


Astree	

100%	


Coverity	


Klocwork	


CERTIFIERS DEBUGGERS 

Code Sonar	
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Software testing 

•  Testing is the most common means of verifying software. 
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Testing 



Unit Testing 

•  Unit testing refers to tests that verify the functionality of a 
specific section of code, usually at the function level.  
–  They are usually written by developers as they work on code, to 

ensure that the specific function is working as expected.  
•  One function might have multiple tests, to  

–  validate nominal cases 
–  exercise corner cases or  
–  verify that off-nominal cases are caught by exception handlers.  

•  Unit testing alone cannot verify the functionality of a piece 
of software, but rather is used to assure that the building 
blocks the software uses work independently of each other. 
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Integration Testing 

•  Integration testing is any type of software testing that seeks to 
verify the interfaces between components against a software 
design.  

•  Traditionally, larger groups of tested software components 
corresponding to elements of the architectural design are 
integrated and tested until the software works as a system. 
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Component A Component B 



Compositional Verification 

July 8, 2010 

•  Use system’s natural decomposition 
into components to break-up the 
verification task 
•  Divide-and-Conquer approach 

•  Components typically satisfy 
requirements in specific contexts / 
environments 
•  safety assumptions about contexts 

•  System safety derives from the ability to 
compose the components’ contexts at 
the system level 

34 



System V&V 

•  System testing tests a completely integrated system to 
verify that it meets its requirements. 
–  Hence, the importance of having requirement traceability all the 

way to system testing (for verification). 
–  It also test beyond the bounds defined in the requirements and 

specification, and therefore the believed expectations of the 
customer , for validation. 

•  It can use test-beds with different level of fidelity, such as 
–  Hardware-in-the-loop testing 
–  Human-in-the-loop testing 
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What about V&V for PHM? 



PHM algorithm classification 
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PHM algorithm classification 
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Physics-based models 
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A General Strategy for Physics-Based Model Validation 5

Fig. 1. Schematic representation of the conventional position of validation in model
construction according to Schlesinger [8] and Sargent [9, 10].

salient qualitative features of the experiments, such as the instabilities, their non-
linear development, the determination of the most unstable modes, and so on. See,
for instance, Gnoffo et al. [16].

Considerable work on verification and validation of simulations has been done in
the field of CFD, and in this literature the terms verification and validation have pre-
cise, technical meanings [7, 2, 17, 9, 10]. Verification is taken to mean demonstrating
that a code or simulation accurately represents the conceptual model. Roache [18]
stresses the importance of distinguishing between (i) verification of codes and (ii)
verification of calculations. The former is concerned with the correctness of the code.
The later deals with the correctness of the physical equations used in the code. The
programming and methods of solution can be correct (verification (i) successful)
but they can solve erroneous equations (verification (ii) failure). Validation of a sim-
ulation means demonstrating that the simulation appropriately describes Nature.
The scope of validation is therefore much larger than that of verification and in-
cludes comparison of numerical results with experimental or observational data. In
astrophysics, where it is difficult to obtain observations suitable for comparison to
numerical simulations, this process can present unique challenges. Roache [op. cit.]
goes on to offer the optimistic prognosis that “the problems of Verification of Codes
and Verification of Calculations are essentially solved for the case of structured grids,
and for structured refinement of unstructured grids. It would appear that one higher
level of algorithm/code development is required in order to claim a complete method-
ology for Verification of Codes and Calculations. I expect this to happen. Within
10 years, and likely much less, Verification of Codes and Calculations ought to be
settled questions. I expect that Validation questions will always be with us.” We fully
endorse this last sentence, as we will argue further on that validation is akin to the
development of “trust” in theories of real phenomena, a never-ending quest.

1.3 Impossibility Statements

For these reasons, the possibility of validating numerical models of natural phe-
nomena, often endorsed either implicitly or identified as reachable goals by natural

Adequacy of the conceptual 
model with the domain of 

intended application 

Does the implementation 
accurately represents the 
conceptual model and its 

solution? 

Is the computerized 
model an accurate 
representation of the real 
world for the perspective 
of its intended uses? 



Physics-based models 

•  Verification 
–  determining that a model implementation accurately represents 

the developer’s conceptual description of the model and the 
solution of the model 

•  Ideas 
–  Certifiable code synthesis from equations 
–  V&V for numerical analysis code (similar to flight control SW) 

•  Numerical instabilities (floating point computation problems) 
•  Complex data structure manipulation problems (buffer overflow) 
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Physics-based models 

•  Validation 
–  determining the degree to which a physics model is an accurate 

representation of the real world from the perspective of its 
intended uses 

•  Correctness of the differential equations 
•  Usually done through simulations 
•  Stability and convergence of the implemented algorithm 
•  Analysis of the off-nominal cases 
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Physics-based models 

•  Related concepts: 
–  Model interpolation  

•  means application of a model to conditions bounded by the calibration and 
validation experiments 

–  Model extrapolation  
•  outside the range of model parameters tested, or  
•  to conditions not tested (i.e., different geometries or boundary conditions), 
•  to different physical phenomena for which the model acts as a surrogate 

–  Model approximation 
•  In the sense that we’re looking for a bounding model for a physical 

phenomenon 
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Physics-based models V&V references 

•  Statistical Validation of Engineering and Scientific Models: Bounds, 
Calibration, and Extrapolation by Richard G. Hills and Kevin Dowding, SANDIA 
REPORTSAND2005-1826. 

•  A General Strategy for Physics-Based Model Validation by Didier Sornette, 
Anthony B. Davis, James R. Kamm, and Kayo Ide, in Proceedings of in 
Computational Methods in Transport, Granlibakken 2006. 
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PHM algorithm classification 
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Machine learning (Neural network) strategy 

•  The core-layer contains rigorous, mathematically sound results 
concerning robustness, stability, and convergence.  
–  Current state-of-the-art provides relatively weak results in form of asymptotic 

guarantees.  
•  Lyapunov proofs of (asymptotic) stability 
•  Vapnik-Cherenovis-dimension arguments to reason about the NN’s generalization abilities 

•  Testing techniques to provide convergence guarantees in the 
required short period of time 
–  Analysis of numerical issues 
–  tests for convergence and robustness of the system 

•   Run-time monitoring on NN performance  
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by Johann Schumann and Stacy Nelson, WOSS’02 



Machine learning 

•  Requirements and Design:  
–  Documentation must include the specification for the 

NN and its architecture.  
•  type of NN (feed-forward, Self Organizing Map, etc),  
•  the learning algorithm (gradient descent, Least Means 

Squared, Levenberg-Marquardt, Newton’s method, etc.) 
•  all parameters of the NN architecture (e.g., number of 

layers and hidden nodes, activation functions, 
initialization) 

•  a concise description of the inputs and outputs (including 
units and the expected and maximal range of values) and 
acceptable errors and training set(s) for PTNN must be 
provided. 
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•  Software Detailed Design must include a description of precise code constructs 
required to implement the NN, including all data structures and algorithms (e.g., 
libraries for matrix operations). 



Machine learning 

•  Unit Testing must include both black and white 
box testing for modularized NN code. 

•  Software Integration should verify that the NN 
interfaces with other software including proper 
inputs and outputs for the NN. 

•  Software Qualification Testing should ensure 
that the requirements are sufficiently detailed to 
adequately and accurately describe the NN. 
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•  System Integration Testing should verify that the architectural design is detailed 
enough so, when implemented, the NN can interface with system hardware and 
software in various fidelity test-beds. 

•  System Qualification Testing should verify that the system requirements are 
sufficient enough to ensure that, when implemented, the NN will interface properly 
with the system in production. 



Machine learning 
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•  Other V&V concerns coming from the numerical aspect of a 
neural network: 
–  general numeric properties, like scaling, conditioning, or 

sensitivity analysis, 
–  properties/issues specifically related to the training algorithm 

(e.g., convergence, termination), and, 
–   issues with respect to the actual implementation on a digital 

computer (e.g., round-off errors, accuracy of library functions). 



Machine learning V&V references 
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•  Guidance for the Verification and Validation of Neural Networks by Laura L. 
Pullum, Brian J. Taylor, Marjorie A. Darrah  

•  Independent Verification and Validation of Neural Networks - Developing 
Practitioner Assistance By Dr. Laura L. Pullum, Dr. Marjorie A. Darrah, and Mr. 
Brian J. Taylor, Institute for Scientific Research, Inc., Software Tech New 

•  Toward V&V of neural network based controllers by Johann Schumann and 
Stacy Nelson 

•  Validating A Neural Network-based Online Adaptive System by Yan Liu, 
Dissertation submitted to the College of Engineering and Mineral Resources at 
West Virginia University, 2005 

•  Verification and Validation of Adaptive and Intelligent Systems with Flight 
Test Results by John Burken and Dick Larson, UCAUV 2009 

•  Validation and Regulation of Medical Neural Networks by David M. Rodvold. 
Molecular Urology. December 2001, 5(4): 141-145. 
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Conclusion: need more research? 



SSAT Project under Aviation Safety program 
Level 2 – System Level!

Level 3 – Themes!

Level 4 – Foundational!

•  SSAA 4.1.1:  Argument-
Based Safety Assurance!

•  SSAA 4.1.2:  Authority and 
Autonomy!

•  SSAA 4.1.3: Distributed 
Systems!

•  SSAA 4.1.4: Software 
Intensive Systems!

•  SSAA 4.4.1:  Decision 
Making under 
Uncertainty!

•  SSAA 4.4.2:  
Diagnostics!

•  SSAA 4.4.3:  
Prognostics!

•  SSAA 4.4.4:    
Software Health 
Management!

SSAA 3.1!
Verification & !

Validation!
 of Flight Critical !

Systems!

SSAA 3.2!
Data Mining and !

Knowledge Discovery!

SSAA 3.3!
Human Systems !

Solutions!

SSAA 3.4!
Prognostics and !
Decision Making!

SSAA 2.2 Systems !
Analysis!

SSAA 2.3 Partnerships!
 and Outreach!

SSAA 2.4 Research!
Test and Integration!

Goal -- Validated multidisciplinary tools and techniques to ensure system safety in NextGen and 
enable proactive management of safety risk through predictive methods.!

SSAA 2.1 Technical !
Challenges!

51"“Validated, proactive solutions for ensuring safety in flight and operations” 

V&V of  
Prognostics Algos 



Technical Challenges: PDM 
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Prognostic Algorithm Design for Safety Assurance.  

Explore designing new prognostics algorithms that are verifiable, 
thus removing obstacles to their certification and enabling their 
deployment by industry to take advantage of their safety benefits. 
(FY 25) 

Goal:  
Remove obstacles to the certification of prognostic algorithms. The non-linear 
and non-deterministic nature of prognostic algorithms requires industry to 
perform more costly, intensive testing than on traditional technologies. 

Benefits:  
•   New class of verifiable prognostic algorithm 
•   Reduced the cost to deploy prognostics algorithms 


