

10th International Conference on Tests & Proofs 5-7 July 2016, Vienne, Austria

Using Formal Methods for Verification and Validation in Railway

Klaus Reichl

Klaus.Reichl@thalesgroup.com System and Software Architect Handelskai 92 A-1200 Vienna

Klaus.Reichl@gmail.com

Computer Hacker and Guitar Player Living in Vienna

https://www.thalesgroup.com/en/worldwide/transportation/rail-public-transport-0 http://www.thalesgroup.com/austria

Outline

- Railway Theory The Norm
 - Excurse: CENELEC Standard
- A "Real" Model
 - Railway in Action
- Railway Theory The Standards
 - Excurse: ERTMS, ETCS and Interlocking
- Modelling Formally
 - Interlocking Architecture and its Model
- What comes next
 - Plans for the near Future

Bad Aibling 2016

Bad Aibling 2016 - Facts

- Head to head collision at 100 km/h each
- Trains were equipped with the PZB (*Punktförmige Zugbeeinflussung*) train protection system (= Indusi)
 - Enforces line-side signaling and prevent drivers from accidentally pass signals in case of danger
 - Main signals showing "*stop*" or are out of operation can be passed when subsidiary signals operated by the train dispatcher are set
- Both trains received permission by means of a subsidiary signal due to human error
- 150 people were on the trains, considerably fewer than normal because of Holiday season
 - 12 people died, 85 others were injured

Excurse: CENELEC Norm

CENELEC - a standard for (not only) Railways

CENELEC/TC 9X is responsible for the development of European Standards for Electro Technical Applications related to the Rail Transport Industry of the European Union.

- CENELEC is European (AREMA is the American counterpart)
- CENELEC includes Development Process beside RAMS and Hardware
 - CENELEC EN 50128
 - Railway applications Communications, signalling and processing systems
 - specialises EN 61508
 - Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems

CENELEC railway standards for signalling

EN 50126-1 :1999: The specification and demonstration of reliability, availability, maintainability and safety (RAMS).

EN 50128:2011: Software for railway control and protection systems. Replaced 2001 version.

EN 50129:2003: Safety-related electronic systems for signalling. Replaced 1998 version.

EN 50159:2010: Safety-related communication in transmission systems. Replaced 2001 version.

Safety Integrity Level

- Concept of Safety Integrity Level (SIL) based on the Tolerable Hazard Rate
- SIL 4 is the most stringent

Tolerable Hazard Rate THR per hour and function	Safety Integrity Level (SIL)
10 ⁻⁹ <= THR < 10 ⁻⁸	4
10 ⁻⁸ <= THR < 10 ⁻⁷	3
10 ⁻⁷ <= THR < 10 ⁻⁶	2
10 ⁻⁶ <= THR < 10 ⁻⁵	1
10 ⁻⁵ <= THR < 10 ⁻³	0

The V-Model in CENELEC

The V-Model in CENELEC - Phases

The V-Model in CENELEC - Missions

Klaus Reichl - Formal Methods for Verification and Validation in Railway

CENELEC Recommendations

- Formal Methods are "recommended" for SIL 1/2 and "highly recommended" for SIL 3/4
 - Software Requirement Specification (Table A.2)
 - Software Architecture (Table A.3)
 - Modelling (Table A.17)
- Formal Proof is "recommend" for SIL 1/2 and "highly recommended" for SIL 3/4
 - Verification and Testing (Table A.5)
- Formal Proof of correctness of data is "highly recommended" for SIL 3/4
 - Data Preparation Techniques (Table A.11)

CENELEC on Formal Methods

- apply formal methods to requirements and high-level designs where most of the details are abstracted away
- apply formal methods to only the most critical components
- analyse models of software and hardware where variables are made discrete and ranges drastically reduced
- analyse system models in a hierarchical manner that enables "divide and conquer"
- automate as much of the verification as possible

Described are CSP, CCS, HOL, LOTOS, OBJ, Temporal Logic, VDM, Z, B, Model Checking and Formal Proof

CENELEC Tools Qualification

SOI - System of Interest <= SIL Level Qualification and Assessment Enabling System <= Tool Qualification, part of the Assessment

- T3 Tools which produces code or data for SOI
 - Code and Data Generators
- T2 Tools which are used to verify and validate the SOI
 - Test and Verification Tools
- T1 Other tools in the development process
 - Editors
- Grey Zone Build Tools, Statistics, ...

TVR (Tool Validation Report) as framework to Qualification Process

Back to modelling ...

All Models are Wrong

George Box 1976

(https://en.wikipedia.org/wiki/All_models_are_wrong#cite_note-1)

... but Some are Useful

George Box 1978

(https://en.wikipedia.org/wiki/All_models_are_wrong#cite_ref-2)

All Models are Right ... Most are Useless

Thaddeus Tarpey 2012

(http://corescholar.libraries.wright.edu/math/211/)

Fallacy of Reification

When an abstraction (the model) is treated as if it were a real concrete entity.

=> The fallacy of reification is committed over and over, believing the model represents the truth... instead of an approximation.

=> The model is not wrong but treating the model as the absolute truth (i.e. reification) is wrong.

Thaddeus Tarpey 2012

Ceci n'est pas une pipe.

lodel of a Classical

Ite

Questions?

- Is the model right?
- Is the model useful?
- Is the model economically practical?

Questions?

- Is the model right?
- Is the model useful?
- Is the model economically practical?

Classical Signalling

H

- Conventional Optical Signals
 - Optional Train Protection
- Route Control pre configured
 - Priority Routes
 - Alternative Routes
- Trains (rather vehicles!) detected by
 - Track Circuit
- Element Control

O Points and Signals Klaus Reichl - Formal Methods for Verification and Validation in Railway THALES

Questions?

- Is the model right?
- Is the model useful?
- Is the model economically practical?

Is the Model Economically Practical?

• Great Demo for Customers (Little & Big Girls)

- Way too expensive
 - Maintenance by "Ferro-Sexual" Hobbyists
- Not shareable
- Not movable
 - However a small variant exists ;-)

Excurse: Some words on ERTMS, ETCS and Interlocking

ERTMS – European Rail Traffic Management System

European Union driven replacement to the different national train control and command systems in Europe.

- GSM-R (Global System for Mobiles Railway) •
 - Communication between vehicles and line controllers \cap
- ETCS (European Train Control System) •
 - In-cab train control supplementing or replacing trackside signaling Ο
 - Interface to Interlockings Ο
- ETML (European Traffic Management Layer) •
 - Operation management level to optimize train movements Ο
 - Augmentation to Interlockings by means of Remote Control and Ο Traffic/Operational Management Centres

ETCS - European Train Control

- Level 0 ETCS-fitted vehicles on non-ETCS route
 - Train driver observes trackside
 - Might be limited in speed by the last balises encountered
- Level 1 Cab signalling which can be superimposed on the existing signalling system
 - Eurobalise radio beacons pick up signal aspects from the trackside signals via signal adapters and telegram coders (STM - Specific Transmission Module)
 - "Infill" Eurobalise or EuroLoop between the distant signal and main signal deliver new proceed aspects
- Level 2 Cap signalling via digital radio-based system (Radio Block Center RBC)
 - Movement Authority and other signal aspects are granted via radio
 - Breaking curves implemented by the Onboard Unit (EVC European Vital Computer)
- Level 3 From Train Protection to full Radio-Based Train Spacing
 - Trains find their position themselves
 - Fixed blocks (potentially) replaced by Moving Blocks (breaking distance spacing)
 - Reliable Train Integrity (End of Train device)

ETCS - European Train Control

- Level 0 ETCS-fitted vehicles on non-ETCS route
 - Train driver observes trackside
 - Might be limited in speed by the last balises encountered
- Level 1 Cab signalling which can be superimposed on the existing signaling system
 - Eurobalise radio beacons pick up signal aspects from the trackside signals via signal adapters and telegram coders (STM - Specific Transmission Module)
 - "Infill" Eurobalise or EuroLoop between the distant signal and main signal deliver new proceed aspects

ETCS - European Train

- Level 0 ETCS-fitted vehicles on non-ETCS
 - Train driver observes trackside
 - Might be limited in speed by the last balises
- Level 1 Cab signalling which can be super
 - Eurobalise radio beacons pick up signal asp coders (STM - Specific Transmission Modul
 - "Infill" Eurobalise or EuroLoop between the
- Level 2 Cap signalling via digital radio-based system (Radio Block Center RBC)
 - Movement Authority and other signal aspects are granted via radio
 - Breaking curves implemented by the Onboard Unit (EVC European Vital Computer)
- Level 3 From Train Protection to full Radio-Based Train Spacing
 - \circ \quad Trains find their position themselves
 - Fixed blocks (potentially) replaced by Moving Blocks (breaking distance spacing)
 - Reliable Train Integrity (End of Train device)

34

ETCS - European Train Control

- Level 0 ETCS-fitted vehicles on non-ET
 - Train driver observes trackside
 - Might be limited in speed by the last balise
- Level 1 Cab signalling which can be sup
 - Eurobalise radio beacons pick up signal a coders (STM - Specific Transmission Mod
 - "Infill" Eurobalise or EuroLoop between th
- Level 2 Cap signalling via digital radio-ba
 - Movement Authority and other signal aspe
 - Breaking curves implemented by the Onb
- Level 3 From Train Protection to full Radio-Based Train Spacing
 - \circ \quad Trains find their position themselves
 - Fixed blocks (potentially) replaced by Moving Blocks (breaking distance spacing)
 - Reliable Train Integrity (End of Train device)

35

ETCS - European Train Control

- Virtual Signals Movement Authority
 - Train Protection
- Route Control computed
 - In addition to pre configured
- Trains (rather vehicles!) detected by
 - Positioning Logic
- Element Control
 - Points and Level Crossings

Klaus Reichl - Formal Methods for Verification and Validation in Railway

THALES

(LK) ERS

Now really modelling ...

Interlocking Architecture

Klaus Reichl - Formal Methods for Verification and Validation in Railway

Refinement Strategy

Establishing a Route

Establishing a Route (Locked by Another)

Closing a Signal after Track Occupancy

□ * □ □ □ □ □ □ □ □ □ □ □ □ □ 0 × B B 大 1 0 0 * 0 * 0 * 0 * 0 * × □ □ 0 0 × 0 * × 0 * × □ □ 0 0 0 75% *

Is the model useful?

- Allows to formulate Business Rules
 - How to safely drive trains through the network
 - What can we optimize
- Domain Specific Language works well in Rodin Theories
- Hazards can be translated to Guards and Invariants
 - What are the constraints
 - Which situations need discussion
- Data Models can be used for Verification and Validation
 - Axioms on Data
 - Scenarios on given Topological and Geometric Situations

Is the model economically practical?

- Adding new Control Operations is painful
 - This should be done using an Adaptor
 - Protocol to HMI adds Incidental Complexity
 - ACK/NAK does not bring any value
- Business Domain and Architecture is Mixed
 - Should be strictly decoupled for Maintainability
 - Model is good for different Topologies, not for additional Functionality
- Adding new Features need Elaboration
 - Unclear how to properly do Feature Driven Development
 - \circ How to evolve the Model

What we like to do about it ...

Layered Architecture - Context Map

Architecture Principle

The Plan ...

- Rework Interlocking Model according to DDD Principles
 - Use Domain Language as already defined
 - Adopt towards "railML.org" Standards (railTOPOMODEL http://www.railtopomodel.org/en/)
- Put an Example Model into Open Source
 - "Railground" Project on github as playground (https://github.com/klar42/railground)
 - Explains modelling principles for Railway Models
 - Interested community can participate
- Integrate Verification and Validation Strategies with Model-Driven Architecture and Design
 - ECSEL EU ENABLE-S3 Project kicked-off June 2016
 - Work on Verification and Validation
 - Continuous Integration (CI) on the models as major step forward

Overview of (a bit) of the Railway Theory

• Norm, Standards

Feeling on how Railway Applications are Modelled

- Railway Domain Core, Generic Application, Station Data
- Distributed Problem

Where is it driving at

• Model Integration with various Stakeholders from various Domains

Klaus.Reichl@gmail.com

Computer Hacker and Guitar Player Living in Vienna

Klaus.Reichl@thalesgroup.com System and Software Architect Handelskai 92 A-1200 Vienna Klaus.Reichl@thalesgroup.com System and Software Architect Questions?

https://www.thalesgroup.com/en/worldwide/transportation/rail-public-transport-0

References

- CENELEC https://www.cenelec.eu/
- ERTMS <u>http://www.ertms.net/</u>
- ETCS <u>http://uic.org/ETCS</u>
- railML <u>https://www.railml.org/en/</u> - <u>http://www.railtopomodel.org/en/</u>

 Thales
 - <u>https://www.thalesgroup.com/en</u>

Thales Transportation

- <u>https://www.thalesgroup.</u>

com/en/worldwide/transportation/ground-transportation

Polarsys Capella System Modelling - <u>https://www.polarsys.org/capella/</u>

"railground" Playground Event-B Model - <u>https://github.com/klar42/railground</u>

- DDD
- <u>http://dddeurope.com/2016/#top</u>
 - https://groups.google.com/forum/#!

forum/dddcqrs

License

© 2016 - Klaus Reichl - <u>Klaus.Reichl@thalesgroup.com</u>, <u>Klaus.Reichl@gmail.</u> <u>com</u>

This document is licensed under a Creative Commons Attribution 4.0 Unported license. For more information about this license see <u>https:</u> //creativecommons.org/licenses/by/4.0/ (In short, you can copy, redistribute, and adopt this work as long as you give proper attribution).

