
1© 2015 The MathWorks, Inc.

Verification and Validation of

High-Integrity Systems

Chethan CU, MathWorks

Vaishnavi HR, MathWorks

2

Growing Complexity of Embedded Systems

Engine Management

Transmission Control

Forward Camera

Electric Power Steering

Smart Junction Box

Smart Junction Box

Battery Management

Propulsion Motor Control

DC/DC Converter

Stability Control

Infotainment

HVAC Control

Navigation

Instrument Panel

Vehicle-to-Vehicle

Vehicle-to-

Infrastructure

Short-Range Radar

Ultrasonic Sensor

Long-Range Radar

Stability Control

Airbag
Emergency Braking

Automatic Parking

Adaptive Cruise Control

All-Wheel Drive

Active Damping

4-Wheel Steer

Back-up Camera

Body Control Module

Tire Pressure Monitor

Voice Recognition

Adaptive Front

Lighting

Power Window

Power Seat

Keyless Entry

Power Liftgate

E-Call

2000 2015Lines of Code

16 M

2-3M

6 M

Siemens, “Ford Motor Company Case Study,” Siemens PLM Software, 2014

McKendrick, J. “Cars become ‘datacenters on wheels’, carmakers become software companies,” ZDJNet, 2013

http://www.plm.automation.siemens.com/en_us/about_us/success/case_study.cfm?Component=63184&ComponentTemplate=1481
http://www.zdnet.com/article/cars-become-datacenters-on-wheels-car-makers-become-software-companies/

3

Model-Based Design, Verification and Validation

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Verified code

ready for

target

deployment

Target

Requirement

based Model

Standards

Compliant

Model

Design Error

free and

Functionally

correct Model

Code

Generation

ready Model

Simulink Models

4

Key Takeaways

▪ Author, manage requirements in Simulink

▪ Early verification to find defects sooner

▪ Automate manual verification tasks

▪ Workflow that conforms to safety standards

▪ Static Source code verification

High Level

Design

Detailed

Design

Coding

Integration

Testing

Unit

Testing

Verified & Validated

System
System

Requirements

5

Poor Requirements Management

Sources: Christopher Lindquist, Fixing the Requirements Mess, CIO Magazine, Nov 2005

Why do 71% of Embedded Projects Fail?

6

Requirements

Challenge with Traditional Development Process

Specification C/C++

Hand code

7

Simulink Models for Specification

Requirements C/C++
Executable

Specification

Hand code

8

Complete Model Based Design

Code

Generation

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

9

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Model Based Design Verification Workflow

Component

and system

testing

Equivalence

testing

Equivalence

checking

Review and

static analysis

10

Challenges with Requirements

Where are

requirements

implemented?

How are

they tested?

Is design and

requirements

consistent?

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

11

Gap Between Requirements and Design

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

12

Simulink Requirements

Author

Track Manage

13

Requirements Editor

14

Requirements Editor

15

Import

Import Requirements from External Sources

IBM Rational DOORS

Simulink Requirements EditorMicrosoft Word

16

Requirements Perspective

17

Requirements Perspective

18

Link Requirements, Designs and Tests

REQ 3.1 ENABLING CRUISE CONTROL

Cruise control is enabled

when …..

19

Link Requirements, Designs and Tests

REQ 3.1 ENABLING CRUISE CONTROL

Cruise control is enabled

when …..

ENABLE SWITCH DETECTION

If the Enable switch is

pressed ……

Derives

20

Link Requirements, Designs and Tests

REQ 3.1 ENABLING CRUISE CONTROL

Cruise control is enabled

when …..

ENABLE SWITCH DETECTION

If the Enable switch is

pressed ……

Implemented

By

Derives

21

Link Requirements, Designs and Tests

Verified

By

Test Case

x

REQ 3.1 ENABLING CRUISE CONTROL

Cruise control is enabled

when …..

ENABLE SWITCH DETECTION

If the Enable switch is

pressed ……

Implemented

By

Derives

22

Track Implementation and Verification

Passed

Failed

No Result

Missing

Verification Status

Implemented

Justified

Implementation Status

Missing

23

Respond to Change

If the switch is pressed and the counter reaches 50
then it shall be recognized as a long press of the switch.

If the switch is pressed and the counter reaches 75
then it shall be recognized as a long press of the switch.

Implements
Original Requirement

Updated Requirement

24

Verify Design to Guidelines and Standards

Is the design

built right?

Is it too

complex?

Is it ready

for code

generation?

Requirement

based Model

Standards

Compliant

Model

Design Error

free and

Functionally

correct Model

Code

Generation

ready Model

Simulink Models

Requirements C/C++

25

Automate verification with static analysis

Check for:

• Readability and Semantics

• Performance and Efficiency

• Clones

• And more……
Model Advisor Analysis

Requirement

based Model

Standards

Compliant

Model

Design Error

free and

Functionally

correct Model

Code

Generation

ready Model

Simulink Models

Requirements C/C++

26

Generate reports for reviews and documentation

Model Advisor Analysis Model Advisor Reports

Requirement

based Model

Standards

Compliant

Model

Design Error

free and

Functionally

correct Model

Code

Generation

ready Model

Simulink Models

Requirements C/C++

27

Navigate to Problematic Blocks

Requirement

based Model

Standards

Compliant

Model

Design Error

free and

Functionally

correct Model

Code

Generation

ready Model

Simulink Models

Requirements C/C++

28

Guidance Provided to Address Issues or Automatically Correct

Requirement

based Model

Standards

Compliant

Model

Design Error

free and

Functionally

correct Model

Code

Generation

ready Model

Simulink Models

Requirements C/C++

29

Built in checks for industry standards and guidelines

• DO-178/DO-331

• ISO 26262

• IEC 61508

• IEC 62304

• EN 50128

• MISRA C:2012

• CERT C, CWE, ISO/IEC TS 17961

• MAAB (MathWorks Automotive Advisory Board)

• JMAAB (Japan MATLAB Automotive Advisory Board)

Requirement

based Model

Standards

Compliant

Model

Design Error

free and

Functionally

correct Model

Code

Generation

ready Model

Simulink Models

Requirements C/C++

30

Configure and customize analysis

Requirement

based Model

Standards

Compliant

Model

Design Error

free and

Functionally

correct Model

Code

Generation

ready Model

Simulink Models

Requirements C/C++

31

Static

Analysis

Checks for standards and guidelines are often performed late

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Rework

32

Static

Analysis

Edit-Time

Checking

Shift Verification Earlier With Edit-Time Checking

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

• Highlight violations as you edit

• Fix issues earlier

• Avoid rework

33

Find Compliance Issues as you Edit with Edit-Time Checking

34

Assess Quality with Metrics Dashboard

• Consolidated view of

metrics

• Size

• Compliance

• Complexity

• Identify where problem

areas may be

35

Grid Visualization for Metrics

▪ Visualize Standards

Check Compliance

– Find Issues

– Identify patterns

– See hot spots

Red: Fail

Orange: Warning

Green: Pass

Gray: Not run

Legend:

36

Detect Design Errors with Formal Methods

▪ Find run-time design errors:
• Integer overflow

• Dead Logic

• Division by zero

• Array out-of-bounds

• Range violations

▪ Generate counter example to reproduce
error

Requirement

based Model

Standards

Compliant

Model

Design Error

free and

Functionally

correct Model

Code

Generation

ready Model

Simulink Models

Requirements C/C++

37

Prove That Design Meets Requirements

▪ Prove design properties using formal
requirement models

▪ Model functional and safety requirements

▪ Generates counter example for analysis and
debugging

Requirement

based Model

Standards

Compliant

Model

Design Error

free and

Functionally

correct Model

Code

Generation

ready Model

Simulink Models

Requirements C/C++

38

Functional Testing

Does the

design meet

requirements?

Is it functioning

correctly?

Is it

completely

tested?

Requirement

based Model

Standards

Compliant

Model

Design Error

free and

Functionally

correct Model

Code

Generation

ready Model

Simulink Models

Requirements C/C++

39

Test Case

Main Model

Systematic Functional Testing

AssessmentsInputs

Test Sequence

Signal Builder

MAT file (input) MAT file (baseline)

Test Assessment

MATLAB Unit Test

and more! and more!

Excel file (input) Excel file (baseline)

Test Harness

40

Manage Testing and Test Results

41

Coverage Analysis to Measure Testing

Simulink
• Identify testing gaps

• Missing requirements

• Unintended Functionality

• Dead Logic

Stateflow

Generated Code

Coverage Reports

42

Test Case Generation for Functional Testing

▪ Specify functional test

objectives
– Define custom objectives that signals

must satisfy in test cases

▪ Specify functional test

conditions
– Define constraints on signal values to

constrain test generator

Test Condition

Test Objective

Test Objective

43

Model-Based Design, Verification and Validation

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Verified code

ready for

target

deployment

Target

Requirement

based Model

Standards

Compliant

Model

Design Error

free and

Functionally

correct Model

Code

Generation

ready Model

Simulink Models

44

Equivalence Testing

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Is the code

functionally

equivalent to

model?

Is all the

code tested?

45

Equivalence Testing

▪ Processor in the Loop (PIL)

– Numerical equivalence, model to target code

– Execute on target board

Benefits

▪ Re-use tests developed for model to test code

▪ Collect code coverage

▪ Generate artefacts for IEC 61508, ISO 26262,

EN 50128, and DO-178 certification

▪ Early verification and defect detection

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Target

Board

▪ Software in the Loop (SIL)

– Show functional equivalence, model to code

– Execute on desktop / laptop computer

Desktop

Computer

PIL

SIL

46

C/C++

Static Code Analysis

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Is interface

between

generated and

other code fully

tested?

Is integrated

code free of

run-time

errors?

Other code

Is the code

compliant

to MISRA?

The Generated Code is integrated

with Other Code (Handwritten)

47

Static Code Analysis with Polyspace

▪ Code metrics and standards

– Comment density, cyclomatic complexity,…

– MISRA and Cybersecurity standards

– Support for DO-178, ISO 26262, ….

▪ Bug finding and Code proving

– Detect bugs and security vulnerabilities

– Prove absence of runtime errors

– Check data and control flow of software

Results from Polyspace Code Prover

48

Code Proving with Polyspace

49

Qualify tools with IEC Certification Kit and DO Qualification Kit

▪ Qualify code generation and verification products

▪ Includes documentation, test cases and procedures

BAE Systems Delivers DO-178B Level A Flight

Software on Schedule with Model-Based Design

KOSTAL Asia R&D Center Receives ISO 26262

ASIL D Certification for Automotive Software

Developed with Model-Based Design

50

Summary

1. Author and manage requirements within Simulink

2. Find defects earlier

3. Automate manual verification tasks

4. Reference workflow that conforms to safety standards

5. Static Code verification using Polyspace

51

MathWorks V&V Product Capabilities

Simulink Requirements* (New in R2017b)
Requirements

Simulink Check* (New in R2017b)
Standards Compliance

Simulink Test
Testing

Simulink Design Verifier
Formal Verification

Simulink Coverage* (New in R2017b)
Coverage Analysis

Polyspace Bug Finder, Polyspace Code Prover
Static Code Analysis

Simulink Test
SIL, PIL

* Customers with Simulink V&V licenses will automatically receive these new products

52

KOSTAL Asia R&D Center Receives ISO 26262

ASIL D Certification for Automotive Software

Developed with Model-Based Design

Challenge
Develop automotive electronic steering column lock

software and certify it to the highest-level functional

safety standard

Solution
Use Model-Based Design to design, implement, and

verify the application software via back-to-back PIL

testing required for ISO 26262 ASIL D certification

Results
▪ Development and certification time cut by 30%

▪ 80% of errors identified in modeling phase

▪ PIL test framework for ISO 26262 established

“Using Model-Based Design to design, implement, and

verify our software for the highest functional safety standard

enabled our team to save costs, increase efficiency, and

ensure software quality. Without Model-Based Design,

more engineers would be needed to complete the project in

the same time frame.”

– Cheng Hui, KOSTAL

Kostal’s electronic steering column lock

module.

53

Miele Proves Absence of Run-Time Errors in Control

Software Across Its Entire Product Line

Challenge
Maintain a reputation for producing quality appliances

and other products by minimizing defects in the

control software

Solution
Integrate Polyspace Code Prover and Polyspace Bug

Finder into the development process to prove the

absence of run-time errors in the software and

enforce standard coding rules

Results
▪ Hundreds of source files analyzed daily

▪ Developer focus on core functionality enabled

▪ Reusable, trusted components proven free of

run-time errors

“We have embedded static code analysis with Polyspace

products deeply into our quality assurance processes. It is

much better to find run-time errors as development begins than

to find them at the end of development—or worse, after the

product is delivered.”

- Stefan Trampe, Miele

The Miele Center Gütersloh in Germany.

54

Learn More

Visit MathWorks Verification, Validation and Test Solution Page:

mathworks.com/solutions/verification-validation.html

https://www.mathworks.com/solutions/verification-validation.html

55

Training Services
Exploit the full potential of MathWorks products

Flexible delivery options:

▪ Public training available in several cities

▪ Onsite training with standard or

customized courses

▪ Web-based training with live, interactive

instructor-led courses

More than 48 course offerings:

▪ Introductory and intermediate training on MATLAB, Simulink,

Stateflow, code generation, and Polyspace products

▪ Specialized courses in control design, signal processing, parallel computing,

code generation, communications, financial analysis,

and other areas

www.mathworks.in/training

http://www.mathworks.com/training

56

Verification and Validation of Simulink Models

This one-day course describes techniques for testing Simulink model
behavior against system requirements.

Topics include:

▪ Identifying the role of verification and validation in Model-Based
Design

▪ Creating test cases for Simulink models

▪ Analyzing simulation results to verify model behavior

▪ Automating testing activities and managing results

▪ Formally verifying model behavior

▪ Automatically generating artifacts to communicate results

57

Polyspace for C/C++ Code Verification

This two-day course discusses the use of Polyspace Bug Finder™ and
Polyspace Code Prover™ to prove code correctness, improve software
quality metrics, and ensure product integrity.

Topics include:

▪ Creating a verification project

▪ Reviewing and understanding verification results

▪ Emulating target execution environments

▪ Handling missing functions and data

▪ Managing unproven code (color-coded in orange by Polyspace® products)

▪ Applying MISRA C® rules

▪ Reporting

58

Thank You!

