
1© 2015 The MathWorks, Inc.

Verification of Automatically

Generated Code

Richard Anderson

2

Development Lifecycle

Requirements

Models

Source Code

Object Code

Simulink & Stateflow

Embedded Coder

Compiler/IDE

And which tools

should I use?

When should I start

verification?

3

Verification with MATLAB and Simulink

Requirements

Models

Source Code

Object Code

Refine Requirements

Iterate Design

simOut = sim(‘myModel’);

Model Advisor
Simulation Data Inspector (SDI)

Simulink & Stateflow

Embedded Coder

Compiler/IDE

4

Verification with Embedded Coder

Requirements

Models

Source Code

Object Code

Software-in-the-Loop

(SIL)

Processor-in-the-Loop

(PIL)

Requirements

Based Testing

With PIL

Simulink & Stateflow

Embedded Coder

Compiler/IDE

5

Automated Dynamic Testing
Software-in-the-Loop (SIL) and Processor-in-the-Loop (PIL)

• Verify numerical equivalence

• Assess execution time

• Assess code coverage

• Create certification artifacts

6

Demo – SIL/PIL with Emulator (QEMU)

8

Extend Model Coverage to Code Coverage

Collect Code Coverage during SIL/PIL Simulations

 Using LDRA Testbench

 Using Simulink Verification and Validation (R2016b)

9

Dynamic Verification Workflow

 Use Simulink simulation to verify your models and your code

– Requirements based tests

– Functional tests

– Coverage Tests

 Use Processor-in-the-Loop to

– Assess numerical behaviour

 Using full target toolchain and libraries

– Gather performance metrics

– Demonstrate testing coverage

10

But it’s not just Simulink based

12

Have I missed anything?

Requirements

Models

Source Code

Object Code

Polyspace

Bug Finder

Simulink & Stateflow

Embedded Coder

Compiler/IDE

Model

Advisor

Does the code meet

my company coding

standard?

 MISRA C Checker { 2012, 2004 }

 MISRA AC AGC Subset
– application of MISRA-C for generated code

 MISRA C++ Checker

 JSF++ Checker

13

Does the code match my design?

Requirements

Models

Source Code

Object Code

Simulink & Stateflow

Embedded Coder

Compiler/IDE

Simulink Code Inspector

 Demonstrate that model and

source code match structurally

and functionally

 Provide modelcode

traceability data

 Reduce manual code reviews for

DO-178 software

14

Are there any runtime errors in the system?

Requirements

Models

Source Code

Object Code

Polyspace

Code Prover

Simulink & Stateflow

Embedded Coder

Compiler/IDE

Polyspace Bug Finder

& Code Prover

Simulink Design

Verifier

15

Polyspace in action

16

Polyspace product family for C/C++

 Polyspace Bug Finder

– Quickly find bugs in embedded software

– Check code compliance for MISRA and JSF

– Intended for every day use by software engineers

 Polyspace Code Prover

– Proves code to be safe and dependable

– Deep verification of software components

– Perform QA signoff for production ready code

Ada language also supported for proving code

17

• Re-generate and re-verify the code

• Reuse and manually integrate the existing code

with newly generated code

Upgrading to a New Release

Multiple benefits:

 New features or products

 Latest advances in code generation

But, you have already verified code from previous release(s)

18

Code Reuse Across Releases (R2016b)

• Avoid re-verifying code spanning MATLAB releases

• Support simulation workflows via SIL/PIL

• Automate integration with newly generated code as part of Build action

Existing code from a prior release

10a 15b

16b

New code

19

What have I learned …

 Start verification early, using the power of MATLAB and Simulink

 Reuse your simulation tests to verify the code on real hardware with PIL

– Gather code coverage metrics

– Capture execution time

– Demonstrate numerical equivalence to design

 Use static analysis to

– Ensure code standards conformance

– Spot weaknesses in your design

– Prove the absence of runtime errors

20

Questions?

