
 International Journal of Advanced Engineering Technology E-ISSN 0976-3945

IJAET/Vol.I/ Issue III/Oct.-Dec.,2010/130-134

1,2,3
Dept.of Electronics and Communication Engg.

Charotar University of Science and Technology, Changa,Anand,Gujarat-388421(India)

4
Electronics and Communication Dept S.P.B.Patel Engineering College, Linch

Mehsana - Ahmadabad Highway.

1
purvi.mulani@gmail.com,

2
jigneshpatoliya@ecchanga.ac.in,

3
hiteshpatel.ec@ecchanga.ac.in,

4
chauhan_ec@yahoo.co.in

ABSTRACT

Verification is the process used to demonstrate the functional correctness of a design prior to its fabrication. The lack

of flexible verification environments that allow verification components reuse across ASIC design projects keep the

verification cost very high. Design engineers have made design reuse central in bringing the design effort’s complexity

back to a manageable size and to reduce development time and effort. Considering the fact that verification consumes

more resources than design does in a typical design project, it would be of great value to build verification components

that are modular and reusable. This paper describes the verification of I2C DUT using System Verilog. The DUT has

been verified for all four possible configurations, which are: Master TX, Master Rx, Slave TX, and Slave Rx. The

verification environment is designed in System Verilog for verifying the DUT which acts as master if DUT is

configured as slave and acts as slave if DUT is configured as master. The verification environment designed is

reusable for any I2C DUT.

KEYWORDS: ASIC, DUT, I2C, SoC, System Verilog

I. INTRODUCTION

The tremendous progress of VLSI technology

enables the integration of more than several

million transistors in a single chip to make a SoC

(System-on-Chip). This has made verification the

most critical bottleneck in the chip design flow.

Roughly 70 to 80 percent of the design cycle is

spent in functional verification. [1]System

Verilog is a special hardware verification

language to be used in function verification. It

provides the high-level data structures available

in object-oriented languages, such as C++. These

data structures enable a higher level of

abstraction and modeling of complex data types.

The System Verilog also provides constructs

necessary for modeling hardware concepts such

as cycles, tri-state values, wires, just like Verilog

hardware languages. So System Verilog can be

used to simulate the HDL design and verify them

by high level test case. I2C is one module in this

SoC and it has been verified for all possible

configurations. During verifying the SoC, a great

deal of visual simulation waveform inspection is

required. The Simvision waveform viewer is used

and the observed waveforms are also discussed in

this paper.

II. VERIFICATION ENVIRONMENT

ARCHITECTURE

The architecture of verification environment

developed for I2C protocol is shown in the

figure 1. The different modules of environment

are explained.

 Research Article

VERIFICATION OF I2C DUT USING SYSTEMVERILOG
1
 Purvi Mulani,

 2
Jignesh Patoliya,

 3
Hitesh Patel,

4
Dharmendra Chauhan

 Address for Correspondence

 International Journal of Advanced Engineering Technology E-ISSN 0976-3945

IJAET/Vol.I/ Issue III/Oct.-Dec.,2010/130-134

Figure 1. I2C verification environment architecture

A).Top module

This is test case which is class of system Verilog

which contains instances of I2C Env, master agent

and slave agent.

B). i2c_env

This is I2C component, containing Agent (master

and slave). In addition, agent should be

configurable for passive/active. All checkers and

coverage are configurable to disable/enable.

C). i2c_env_config

This env config class contains the configurable

parameters like number of masters, number of

slaves present in the environment.

D). i2c_transfer

This is the basic transfer class, which will have all

required parameters for I2C like address,

read/write access, data size, etc.

E) .i2c_master_agent

Master agent is configurable either as a active or

as a passive. Active contains Driver, Sequencer

and monitor, while passive component contains

only Monitor. Agent will also pass the interface of

the DUT to each of the sub-sequent component.

F). i2c_master_agent_config

Master agent config has all the parameters like

frequency of the master, timing parameters for the

master like delay_to_drive_sda,

delay_to_sample_sda, scl_high_width,

scl_low_width, the duration for which glitch

needs to be generated. These parameters can be

configured at run time for the component. It

contains two methods:

(1) i2c_ferq_update: to change the frequency

according to user.

(2) i2c_scl_pulse_width: calculates scl pulse

width according to frequency.

G). i2c_master_monitor

Master Monitor collects all the data from interface

and makes a transaction. It also stores this data

and emits an event for score-boarding. Based on

 International Journal of Advanced Engineering Technology E-ISSN 0976-3945

IJAET/Vol.I/ Issue III/Oct.-Dec.,2010/130-134

the collected transfer, it makes functional

coverage and also does a data checking.

H). i2c_master_driver

Driver makes use of “i2c_transfer” as a basic item

and does connect the sequences with this basic

item. This will also contain the provision to make

directed and random test selection.

I). i2c_master_seq

This will contain the sequences, which are going

to be used for verification. By this, the test case

can become shorten and easier.It contains

instances of monitor, master_agent_config and

master interface.

J). i2c_master_seq_library

This file contains the different sequences which

are used in test cases to generate different

scenarios. Each sequence is a class.

K). i2c_slave_agent

Slave agent is configurable as either active or

passive. Active contains driver, sequence and

monitor while passive component contains only

Monitor. Agent will also pass the interface of the

DUT to each of the sub-sequent component.

L). i2c_slave_agent_config

Slave agent config has all the parameters like

address of the Slave, Glitch period to be detected

on SDA and SCL line, busy bit to be set by slave.

This parameters can be configured at run time for

the component.

M). i2c_slave_monitor

Slave Monitor collects all the data from interface

and makes a transaction. It also stores this data

and emits an event for score-boarding. Based on

the collected transfer, it makes functional

coverage and also does data checking.

N). i2c_slave_seq

This will contain the sequences, which are going

to be used for verification. By this, the test case

can become shorten and easier.

It contains instances of monitor,

slave_agent_config and slave interface.

O). i2c_slave_seq_library

This file contains the different sequences which

are used in test cases to generate different

scenarios. Each sequence is a class.

III. TESTCASES

A).DUT can work in following four modes.

Mater_TX:

DUT is master and is in transmit mode. So

we have used slave part of our verification

environment and we have to configure it in

RX mode to receive data transmitted by

DUT.

Mater_RX:

DUT is master and is in receive mode. So we

have used slave part of our verification

environment and we have to configure it in

TX mode to transmit data to DUT.

Slave_TX:

DUT is slave and is in transmit mode. So we

have used master part of our verification

environment and we have to configure it in

RX mode to receive data transmitted by

DUT.

Slave_RX:

DUT is slave and is in receive mode. So we

have used master part of our verification

environment and we have to configure it in

TX mode to transmit data to DUT.

Testcases are written for these four modes to

verify the DUT.

 International Journal of Advanced Engineering Technology E-ISSN 0976-3945

IJAET/Vol.I/ Issue III/Oct.-Dec.,2010/130-134

Figure 2. Environment with DUT configured as slave

Figure 3. Environment with DUT configured as master

B). i2c_slave_rx_test.sv:

DUT has been configured as slave and it is

configured as a receiver. To verify the DUT, the

verification environment is developed which is

master and it transmits the data which is received

by DUT which is shown in figure 3. Verification

environment asa master will generate clock and

start condition. After that, it will send address of

the slave to which it wants to communicate which

is shown by signal sda_in_iic in figure. This

address is received by DUT and then DUT will

send acknowledgement to the verification

environment (master). After receiving

acknowledgement, Verification environment will

send data to DUT on the pin sig_sda which will

be received by slave DUT on sda_in_iic pin.

Then after data transfer has been finished,

verification environment as a master will

generate stop condition which indicates

completion of transfer.

 International Journal of Advanced Engineering Technology E-ISSN 0976-3945

IJAET/Vol.I/ Issue III/Oct.-Dec.,2010/130-134

Figure 4. i2c_slave_rx_test

IV. CONCLUSION

In this paper, we have used System Verilog to put

up a verification intellectual property which is

reusable to verify any I2C DUT. By using this

verification environment the DUT has been

verified for its functionality.

REFERENCES

1. Han Ke, Deng Zhongliang, Shu Qiong

“Verification of AMBA Bus Model Using

SystemVerilog” in The Eighth International

Conference on Electronic Measurement and

Instruments

2. SystemVerilog 3.1a Language Reference

Manual Accellera’s Extensions to Verilog

3. UM10204 I2C-bus specification and user

manual Rev. 03 — 19 June 2007

4. Micro computer control small area network

specialists

5. I2C bus Inter Integrated Circuits bus by

Philips Semiconductors TomášMatoušek

tmd.havit.cz

