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Abstract

Security protocols are expected to build secure communications over vulnerable
networks. However, security protocols may contain potential flaws. Therefore,
they need formal verifications.

In this thesis, we investigate Paulson’s inductive approach and apply this formal
approach to a classical cryptographic protocol which has not been previously
verified in this way. We also investigate the modelling of timestamps and fur-
ther extension of the inductive approach with message reception and agent’s
knowledge. We modelled and verified Lowe’s modified Denning-Sacco shared-
key protocol using the inductive approach. The model and theorems are later
updated with message reception and agent’s knowledge.

Theorem proving is supported by the interactive theorem prover Isabelle. We
have completed the proofs for both versions. As a result, Lowe’s modified
Denning-Sacco shared-key protocol has been formally verified using the induc-
tive approach.
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Chapter 1

Introduction

On computer networks, a number of computer systems are connected for the
sake of communication. When two peers on the network want to communicate
with each other, the message traffics between them have to pass through some
other peers on the vulnerable network. Secure communications are always ex-
pected. Participants may wish the messages can keep secrecy from others and
are not altered by someone before they reach the destination. By receiving a
message, the participant may expect that the message is not fabricated by any
malicious party and is really originated with the claimed creator.

Security protocols are designed to achieve these goals. Most security proto-
col employs cryptography, thus they are also called cryptographic protocols. In
this thesis, we mainly discuss shared-key protocols and thus set a symmetric key
environment. For shared-key protocols, an agent shares a long-term key with
the server and uses this key to exchange session keys which are short-term and
only used to encrypt actual message.

However, security protocols may contain flaws. They are claimed to achieve
certain security goals by their designers, but they often fail in fact. Possible at-
tacks against several well-known protocols have been reported. And it is believed
that potential flaws still exist. Informal reasoning is not sufficient to guarantee
the correctness of a security protocol. Thus, several formal approaches have
been developed to verify security protocols. Formal verification can find errors



2 Introduction

and can increase our understanding of a protocol by making essential properties
explicit [27].

Paulson’s inductive approach [26] is one of the successful formal methods. The
protocol model, constructed by induction, is permissive and unbounded. A his-
tory of agent’s behaviors is formalized as a list of events, which is called a trace.
A protocol is then formalized as the set of all possible traces. Security properties
are specified and proved by induction on a generic trace. If a security property
can hold on a generic trace through extension of each inductive step, then it is
proved that the protocol maintains this property. The proof is assisted by the
interactive theorem prover Isabelle [25].

Thesis Objective

The main goal of this thesis project is to investigate Paulson’s inductive ap-
proach [26], and apply this formal approach to a classical cryptographic protocol
which has not been formally modelled and verified in this way. We choose Lowe’s
modified version of Denning-Sacco shared-key protocol [18]. It uses symmetric
key cryptography to seal messages and relies on both timestamp and nonce to
give evidences of freshness. With the inductive approach, this protocol is going
to be analyzed and its correctness is going to be verified.

We start form the theoretical background about cryptographic protocols, pos-
sible attacks, and protocol analysis in both informal and formal ways. We then
give emphasis to the investigation of the inductive approach, including Paulson’s
original approach [26], the modelling of timestamps [6], and Bella’s extension
with message reception [5]. The selected protocol is formalized and analyzed.
Several security properties are specified and then proved with the support of
the theorem prover. The protocol is first modelled using Paulson’s original
approach, and then the model is updated with Bella’s extension of message re-
ception. Subsequently, the proof for the original model is also updated with
message reception.

Thesis Outline

The outline of this thesis is presented with brief description for each chapter.
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Chapter 2 reviews several aspects about security protocols. General types
of attacks and expected security goals are presented, and cryptography
protocols are introduced. We take a protocol as the example to describe
protocol flaws and possible attacks against protocols. Informal and formal
methods for protocol analysis are reviewed.

Chapter 3 introduces Paulson’s inductive approach which is adopted for this
thesis project. Basic principles of the inductive approach are given, and
basic constituents are discussed.

Chapter 4 presents how a cryptographic protocol is modelled using the in-
ductive approach. We choose Lowe’s modified Denning-Sacco shared-key
protocol [18] as the example. Since it is a timestamp-based protocol, we
first concerns how timestamps are modelled, and Bella’s extension of in-
ductive approach with timestamps [6] is presented. The protocol is first
formalized using Paulson’s original approach [26]. Then the model is up-
dated with Bella’s extensions of message reception [5]. We also discuss a
couple of issues on the modelling of protocols.

Chapter 5 describes how Lowe’s modified Denning-Sacco shared-key protocol
is verified using the inductive approach. Based on our inductive model,
the expected security goals are analyzed and then formalized as several
theorems. These theorems are proved with the support of the theorem
prover Isabelle [25]. After that, we also update the theorems and their
proofs with message reception.

Chapter 6 gives a conclusion of the thesis project and summarizes our work.

Appendix A contains our Isabelle/HOL theory for modelling and verifying
Lowe’s modified Denning-Sacco shared-key Protocol.

Appendix B contains our updated theory with Bella’s extension of message
reception and agent’s knowledge.
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Chapter 2

Security Protocols

This chapter presents several aspects about security protocols. At the begin-
ning, general types of possible security attacks over a vulnerable network are
introduced (§ 2.1), and several general security goals are expected (§ 2.2). Then
the network protocols employing cryptography (§ 2.3) are introduced. (§ 2.4)
The cryptographic protocols are expected to provide secure communications
over insecure networks and achieve some security goals. However, cryptographic
protocols may contain flaws and thus can be affected by attackers. Possible at-
tacks against protocols are discussed and illustrated by an example (§ 2.5). In
this case, several methods arise for verifying security protocols. We mention the
informal methods and then introduce some of the major formal approach (§ 2.6).

2.1 Possible Attacks

A computer network contains a number of computing systems. Since the mes-
sage flows have to pass through other network nodes, communications over
computer networks are not safe. Suppose Alice wants to communicate with Bob
on an insecure network. An intruder may attack the communication in various
ways. Compared with the unaffected normal flow, five different types of possible
attacks are illustrated in Figure 2.1.
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Figure 2.1: Possible Attacks

Eavesdropping

The spy may listen to the messages that are sent from Alice to Bob. In this
case, the spy does not modify or block the message, and he does not send any
message to the agents involved in the protocol. Since the spy doest not directly
affect their communications, it is called a passive attack. This kind of attacks is
difficult for the honest agents to detect. As the spy keeps listening and collecting
information, he may gain some significant information by analyzing the traffic
flow.

Interruption

The spy may block the message that is sent from Alice to Bob, but did not
get the information or introduce new messages to the agents. As this kind of at-
tack affects the normal flow between agents, interruption is among the so-called
active attacks. Types of possible active attacks could be various, which will be
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exemplified in the following cases.

Interception

The spy may thieve the message that is sent from Alice to Bob. That is, the
spy obtains the information, while Bob does not receive it. Similarly, it is also
an active attack, because the spy breaks the normal communications.

Fabrication

The spy may pretend to be Alice and send fake message to Bob. The spy at-
tempts to make Bob believe that the massage was originated with Alice, while
Alice knows nothing at all. This is also a kind of active attacks, as the spy
performs active interventions. Here the message could be a synthetic message
created by the spy or an earlier message that the spy obtained from past traffic.
In case the spy sends an earlier message he obtained, this is a commonly called
a replay attack.

Modification

The spy may intercept the message that is sent from Alice to Bob, modify
the original information, and send the new message to Bob instead. This attack
can be considered as a combination of interception and fabrication. In this case,
the message was altered by the spy, but neither the sender nor the receiver has
any knowledge about this modification. Obviously, this is an active attack as
well.

2.2 Security Goals

On insecure networks, several security goals are expected for secure communi-
cations. In general, the main security properties for protocols are concluded as
follows.

Confidentiality

Confidentiality means that unauthorized parities can not access the secret infor-
mation. This would be the most obvious and straightforward security property.
To achieve this goal, secret information should not be transmitted over the net-
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work in plain text, instead it must be protected. Cryptography is the common
technique to keep data secret.

Integrity

Integrity means that unauthorized parties can not modify the messages. As
an agent receives a message, it ensures that the message was not altered during
the transmission. Therefore, modification affects the integrity of the message.

Authentication

Authentication means that unauthorized parties can not pretend to be any-
one else. As an agent receives a message, it guarantees that the message is
really originated with the agent as indicated. And the sender of a message can
guarantee that he is really communicating with the expected agent. Thus, fab-
rication affects the authentication of the message.

Availability

Availability means that the message should be accessible to authorized par-
ties at appropriate times [29]. In other words, for those authorized parities,
their legitimate access to the information should not be denied or blocked. In-
terruption and interception affect the availability of the message. However, the
denial-of-service attack is beyond the scope of this thesis project.

Non-repudiation

Non-repudiation means that the agents should agree on what they have done.
The sender of a message should not be able to falsely deny that he sent the
message [31].

2.3 Cryptography

Cryptography is the universal technique to protect data from reading, modifi-
cation and fabrication. The plaintext message is encrypted in some way and
then becomes unreadable ciphertext. And the reverse process, decryption, turns
the ciphertext back into the original plaintext. In modern cryptography, the
algorithms for encryption and decryption always employ keys. This is shown in
Figure 2.2.
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Figure 2.2: Encryption and Decryption with Keys

For the encryption process, the original plaintext, the encryption algorithm and
the key value determine the resulting ciphertext altogether. As the algorithm
is always open and published, the security concerns turn to the secrecy of keys.

Sometimes, the keys used in encryption and decryption are the same ones, or
the two keys are not same but can be calculated form each other. Such kind of
cryptography is symmetric. In most symmetric cases, the encryption key and
the decryption key are the same. This is shown in Figure 2.3.

Figure 2.3: Symmetric Cryptography

Another type of key-based cryptography is asymmetric cryptography. This
means the encryption key and decryption key are different keys, and they are
not able to be calculated from each other. This is shown in Figure 2.4.

Figure 2.4: Symmetric Cryptography
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2.4 Cryptographic Protocols

A protocol is a series of steps, involving two or more parties, designed to ac-
complish a task [31]. The protocol using cryptography is called cryptographic
protocol. In common cryptographic protocols, each conversation is encrypted
with a unique key. The key is only used for the certain communication session,
and it is only valid for a short-term, hence the name session keys or short-term
keys. Normally, session keys are always symmetric keys. Suppose that Alice
and Bob want to communicate on a network. They have to both get hold of a
particular session key and agree on it before sending secret informations. Secure
exchange of secret session keys and mutual authentication of participants could
be complicated issues, and they are just the two main problems for protocol
designers to solve.

2.4.1 Shared-Key Protocol

A shared-key protocol, also called a symmetric key protocol, requires that each
participant on the network shares a unique secret key with a trusted third party,
the authentication server, before the protocol runs. This shared secret key is
long-term and symmetric. The protocol assumes that the shared keys are al-
ready distributed properly and securely. The long-term keys are only used to
encrypt the exchange of session keys but not to encrypt any actual message
between participants.

A typical example is the Needham-Schroeder shared-key protocol [23] (see Fig-
ure 2.5).

(1) A → S : A,B, Na
(2) S → A : {Na,B, Kab, {Kab,A}Kb}Ka

(3) A → B : {Kab,A}Kb

(4) B → A : {Nb}Kab

(5) A → B : {Nb− 1}Kab

Figure 2.5: The Needham-Schroeder Shared-key Protocol

In this thesis, protocols are represented in the notation used above. Suppose
that the protocol session is initiated by a participant A and responded by B.
Ka is the long-term secret key of A, which is shared with the server S, and
Kb is B’s long-term key. Kab stands for the session key. The notation {X}K
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indicates the resulting ciphertext for encrypting message X by key K. Then
the protocol steps can be interpreted as follows.

(1) A generates a fresh nonce Na, and send it to the server with his own name
and B’s name. Generally, the nonce is a random number generated by the
protocol participant. Since the value of nonce is random and unguessable,
it is used to identify a unique protocol session, in order to prevent replay
attacks.

(2) As A’s request arrives, the server issues a fresh session key Kab. Since the
server has Ka and Kb, he encrypts the session key and A’s name with Kb,
then uses Ka to encrypt this encrypted message together with A’s nonce,
B’s name and the session key Kab. The resulting message is sent back to
A.

(3) A can decrypt the outer layer of the message by his own key and obtain
the session key. He accepts this session key if the nonce Na which arrives
in this step is the same as the one generated in step (1). The message
{Kab,A}Kb is not readable by A, so A just forward it to B.

(4) B decrypts the message by his own key and gets the session key Kab.
Then B generates another fresh nonce Nb, encrypts Nb with the session
key Kab, and send the encrypted message to A.

(5) A decrypts the message with the session key that he obtained and accepted
in step (3). Then A calculates Nb− 1, encrypts the result with Kab, and
sent it back to B.

(6) This is the implicit last step. B decrypts the message with the session key
and then verifies Nb − 1. If it is satisfied, B will accept the session key
Kab and use it to communicate with A.

In this protocol, nonces are employed to prevent replay attacks. A generates
a nonce Na in step (1), and then he can verify the nonce he receives in step
(2) to ensure that this response is freshly originated with the server and not a
replayed one from old sessions. Similarly, by the reception of Nb−1 in step (5),
B can verify that the message is sent by A and not a replay from previous runs
of the protocol. However, there is still a possible replay attack on the Needham-
Schroeder shared-key protocol. This weakness will be discussed in section 2.5.2.
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2.4.2 Public-Key Protocol

The asymmetric key protocol uses asymmetric cryptography to exchange and
agree on a session key. It is also known as the public-key protocol. For each
agent on the network, he owns a pair of keys for encryption and decryption
separately, containing a public key and a private key. That is, when one key of
the pair is used to encrypt a message, the other key is the only decryption key
for that ciphertext. Each agent has his own private key and keeps it secret from
other agents, while the public keys are published and known by the world.

A simple example for public-key protocols is the Needham-Schroeder public-
key protocol [23](see Figure 2.6).

(1) A → B : {A,Na}Kb

(2) B → A : {Nb,Na}Ka

(3) A → B : {Nb}Kb

Figure 2.6: The Needham-Schroeder Public-key Protocol

Similarly, we assume that the public keys have been distributed in some way
before the protocol starts. That is, Alice and Bob already have the public keys
of each other. So the steps for public key distribution are irrelevant and thus
omitted. Here, Ka stands for A’s public key and Kb is B’s public key.

2.5 Attacks against Protocols

2.5.1 Assumptions

Security issues on cryptographic protocols can be related to the cryptographic
algorithm and techniques, or concern the protocols themselves. In this thesis,
we focus on the verification of security properties of protocols. Therefore we
assume the cryptography itself is secure enough. This means, we are using
perfect encryption that the following properties hold.

• Given an encrypted message {M}K , the attacker without key K cannot
get the original message M .

• Given an encrypted message {M}K , the attacker without key K cannot
transform {M}K into {M ′}K for any expected M ′.
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• By analyzing a series of encrypted messages {M1}K , {M2}K , . . . , {Mn}K ,
the attacker is not able to find key K and any plaintext message Mi.

On the other hand, in order to detect potential flaws of a protocol, we should
assume that the adversary is not only a passive eavesdropper but also an active
attacker with enough power. The capability of the adversary should include all
of the following possible cases.

• The adversary can act as a passive eavesdropper and observe all the mes-
sages sent over the network.

• For all the messages sent over the network, the adversary can intercept
them and attempt to modify the messages using all of his knowledge.
Modified messages can be sent to the receiver instead, or re-directed to
any other agents.

• The adversary can fabricate new messages using all of his knowledge.

• The adversary may get hold of old session keys from past protocol sessions.

• The adversary could be a corrupt insider (a legitimate protocol partici-
pant) or an outsider (an external party) or a combination of both [24].

2.5.2 An Example

Consider the Needham-Schroeder shared-key protocol that has been described
in section 2.4.1 . A possible replay attack on this protocol was revealed by
Denning and Sacco [11] afterwards. The spy can listen to the messages in step
(3) for each protocol execution and store them. As long as the spy gets hold of
an old session key, he can pretend to be A, and convince B to accept this old
and compromised session key by the follow steps.

(3’) The spy may intervene in the current execution by intercepting the mes-
sage from A to B in step (3). Then he can impersonate A and replay an
old message from a previous session in which the corresponding old session
key K ′ is known by the spy.

Spy(A) → B : {K ′, A}Kb

(4’) B decrypts the message and obtains the compromised key K ′. Then he
generates Nb, encrypts it with K ′ and sends it to A.

B → Spy(A) : {Nb}K′
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(5’) The spy intercepts this message, decrypts it to get Nb and sends encrypted
Nb− 1 to B.

Spy(A) → B : {Nb− 1}K′

(6’) By checking Nb− 1, B is convinced that he is talking with A and accepts
the old key K ′ as fresh.

Here and henceforth, the notation Spy(A) is used to denote the Spy imitating
A. The above steps show how the replay attack against Needham-Schroeder
shared-key protocol achieves. To fix this weakness, timestamps can be used to
enhance this protocol, suggested by Denning and Sacco [11]. This will be dis-
cussed in section 4.1.

2.6 Protocol Analysis

2.6.1 Informal Reasoning

A protocol is proposed by its designer and claimed to hold the expected security
properties. However, the protocol may still contain potential subtle flaws. The
proposed protocol is then analyzed by others to check if it is really secure as
it was claimed. In the early days, cryptographic protocols were analyzed and
tested in informal ways. An ideal instance is a thorough and complete test that
checks all possible paths and status for the protocol without any omission. The-
oretically, it could find every potential flaw at last. However, this is impractical
for most cases. Alternatively, people set a limited number of test cases to check.
In this way, a potential flaw can be found only if certain test case is wisely
included. Otherwise, it is failed to detect the flaw, while the flaw does exist.

As cryptographic protocols are more and more widely used, there is stronger
demand to discover those potential flaws. Although informal analysis becomes
more and more conscientious, it may still miss subtle but not trivial flaws. Some
literature reported their findings in several well-known protocols. Most of these
flaws and weakness are discovered after several years since the protocol was
proposed.

• The three-messages protocol in the CCITT.X.509 standard was proposed
in 1987 [10]. A parallel session attack was presented after 2 years, by
Burrows, Abadi and Needham in 1989 [9].
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• Needham-Schroeder shared-key protocol was proposed in 1978 [23]. A
possible replay attack on this protocol was reported by Denning and Sacco
after 3 years in 1981 [11].

• Denning-Sacco public-key protocol was proposed in 1981 [11]. Abadi and
Needham detected a possible masquerade attack after 13 years in 1994 [3].

• Needham-Schroeder public-key protocol was proposed in 1978 [23]. Af-
ter 17 years, a man-in-the-middle attack on this protocol was discovered
finally, by Lowe in 1995 [17].

These are only some of the examples. Why they take years? The main reason is
that the security goals are informally stated and poorly understood [14]. Con-
fidentiality is the most straightforward security property, but it is not the only
goal. It is also very important to authenticate both sides of the communication.
Another important reason is that the attacker can be active and powerful. At-
tack can affect the protocol in various ways, while they could act as a protocol
participant or an external party or even a combination of the both. This makes
the cases very complicated for informal reasoning. Thus, subtle flaws and weak-
nesses may survive in some informal analysis.

2.6.2 Formal Approaches

Formal verification can significantly help to detect protocol flaws and can in-
crease our understanding of a protocol by making essential properties explicit
[27]. It can also help to yield general principles of secure protocol design [5].
Several formal methods have been proposed and already used for years in the
analysis of cryptographic protocols. Some survey papers [19][20] gave detailed
introduction to the formal approaches and related researches. In this section,
we only refer to some of the major approaches in this field besides Paulson’s
inductive approach.

BAN Logic

BAN logic [9], proposed by Burrows, Abadi and Needham, is well-known and
have been widely used. It provides statements to idealize protocols into initial
logic formulae. Some examples of the BAN logic statements are as follows.
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P said X means the principal P sent a message containing X.

P sees X means the principal P receives a message containing X, and X is
readable to P .

P believes X means the principal P acts as if X is true.

X is fresh means X has not appeared in any message at any time before the
current session of the protocol.

BAN logic also provides several inference rules to apply to the logic formulae
for reasoning about beliefs of a protocol. A set of beliefs are then derived from
the initial logic formulae. The protocol is considered to be correct if the set of
beliefs is adequate based on some predefined notions.

BAN logic has been used for years as a popular formal approach for verify-
ing cryptographic protocols. It successfully detected some potential flaws for
several protocols after they have been proposed for years. However, some pro-
tocols that passed the verification by BAN logic were proposed to contain flaws.
One example is a faulty variant of Otway-Rees protocol that the nonce of the
responder is not encrypted, which is exemplified in [26] and [27]. However, BAN
logic is not adequate to detect its fault [27]. Another example is the Needham-
Schroeder public-key protocol. It has been proved correct using BAN logic [9],
but a possible attack against this protocol was then reported by Lowe in [17].

BAN logic is designed for reasoning about the evolution of the belief and trust of
the participants in a cryptographic protocol [32]. As BAN logic models beliefs
rather than knowledge, it can deal with authentication goals, while it is weak at
reasoning about confidentiality. And it dose not clearly formulate the possible
actions of an attacker. In spite of its inadequacy, BAN logic is still a simple and
usable approach to detect some of the flaws. The logic is straightforward, and
the proof is normally short and handmade, where machine proof is not required.

Model Checking

Model checking approaches model a cryptographic protocol as a finite state ma-
chine, and verify the protocol by checking whether certain properties hold for
all reachable states. The checking process could be automatically performed
by some applications, known as the model checker. On the other side, model
checking is restricted by the size of protocol. As the technique is based on state
machine, it can only deal with simple protocols of small size.
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Most versions of the model checking approach are developed based on the Dolev-
Yao Model [12]. One of the successful examples is the NRL Protocol Analyzer
[21], which specifies an insecure state and tries all possibilities to find a path
that could start from the initial state and reach the insecure state. The proto-
col is claimed to be insecure if such a path can be found. Another well-known
model checker is FDR [30]. In this method, the protocol and the property are
separately specified using CSP [15]. The two sets of traces are then examined
to check whether the protocol process is a subset of the property set, in order
to verify the protocol.

The Lysa-Calculi

Lysa [8] is a process calculus designed for analysis of cryptographic protocols.
This is a more recent approach compared with the aforementioned ones. Lysa
is patterned after Spi-calculus [2] which is also used for analysis of security
protocols. Spi-calculus is based on the Π-calculus [22], but provides support for
cryptography related operations. The derivation is illustrated in Figure 2.7.

Figure 2.7: Process Calculus [24]

Like most process calculus, Spi-calculus uses channels to enable communications
between processes. However, the derived Lysa-calculi does not retain the con-
cept of channel, which would be considered as the most significant difference



18 Security Protocols

from Spi-calculus on syntax. Compared with the aforementioned calculus, Lysa
is tiny but much powerful for modelling security protocols, and subject to au-
tomatic analysis [24].

This approach formalizes the protocol as Lysa-process, then apply static analysis
to verify the protocol. The static analysis was adjusted to be less complicated
while making efforts to provide much useful information. Lysa is mainly fo-
cused on verification of authentication. It was demonstrated that this approach
is adequate for detecting several authentication flaws in both shared-key and
public-key cryptographic protocols [8]. Developing on Lysa-calculus is still in
progress. It has been proposed to be extended in future for several purposes.
However, Lysa-calculus, as well as Spi-calculus, is relatively difficult to grasp.
In addition, since time is not representable in Lysa, this approach cannot be
used to analyze those protocols with timestamps.



Chapter 3

The Inductive Approach

This chapter introduces Paulson’s inductive approach [26] which is adopted for
protocol verification in this thesis project. The protocol is formally specified
using operational semantics. The protocol model is defined with induction. A
trace is a list of events that have been taken place on a network system running
the protocol. And each possible action by an agent extends the event trace.
The protocol is then formalized as a set of traces involving all possible traces.
Security properties are also formally specified and proved by provided induction
rules. The proof is aided by the interactive theorem proof assistant Isabelle [25].

All the Isabelle theory files for verifying cryptographic protocols can be found
in the folder Auth [1] at Isabelle/HOL/Auth. The theory dependencies for the
main part of this division are illustrated in Figure 3.1. Generally, basics for ver-
ifying a cryptographic protocol are involved in three theories named Message,
Event and Public.

In this chapter, we introduce the basic types (§ 3.1) and operators (§ 3.3) for
the inductive approach, as well as the definitions of agent’s knowledge (§ 3.2).
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Figure 3.1: Theory Dependencies of Auth (part)

3.1 Basics

Before defining messages in cryptographic protocols, a free type key of crypto-
graphic keys has to be defined.

types key = nat
consts invKey :: "key => key"

A key is a natural number. The function invKey maps an encryption key to
the corresponding decryption key, and vice versa. That is to say, for asymmet-
ric keys, the inverse of a public key is the corresponding private key, and vice
versa. And for symmetric keys, we have K−1 = K. The set of symmetric keys
is defined as symKeys.

constdefs
symKeys :: "key set"
"symKeys == K. invKey K = K"

Because the protocols we discuss and analyze in this thesis are shared key pro-
tocols, a symmetric key setting is assumed for the follow part of the thesis.
Since then, each agent shares a long-term symmetric key with the server. The
function shrK is defined to map an agent name to the corresponding shared key.
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consts shrK :: "agent => key"

Obviously all shared keys are symmetric. And it is assumed that no two agents
can correspond to the same shared key. In the symmetric key environment,
every cryptographic key is either a long-term shared key or a short-term session
key.

The Isabelle datatype definition is used to define three basic types for mod-
elling a cryptographic protocol, namely agent, message and event.

3.1.1 Agent

The datatype agent represents all the principals on the network. The definition
is shown below.

datatype agent = Server | Friend nat | Spy

One of the agents is the Server, which is a trusted third party required by most
key distribution protocols. The Spy is the malicious agent on the network, that
is, the active attacker. Since nat is the type of natural numbers, any number of
friendly agents is allowed. These friendly agents are indexed by natural numbers.

An agent is compromised if his own shared key is already perceived by the
spy from the start of the protocol. The set of compromised agents is defined as
bad. In particular, the spy belongs to the set bad, since it knows his own key.
But server is not in bad, because it is set to be secure.

consts bad :: "agent set"
specification (bad)

Spy in bad [iff]: "Spy ∈ bad"
Server not bad [iff]: "Server /∈ bad"

3.1.2 Message

Then the form of messages in cryptographic protocol is defined as datatype msg,
which introduces seven constructors.

datatype msg = Agent agent
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| Number nat
| Nonce nat
| Key key
| Hash msg
| MPair msg msg
| Crypt key msg

A message can be an agent’s name, an ordinary number, an unguessable nonce, a
cryptographic key, a hashed message, an encrypted message or a pair of message.
Compound message is recursively defined. The notation {|X1, . . . , Xn−1, Xn|}
expresses a compound message, as an abbreviated form for MPair X1 ( . . . (MPair
Xn−1 Xn)).

CryptKX expresses the ciphertext that the message X is encrypted by key
K. In respect that constructors of datatype are injective, we have the theorem

Crypt K X = Crypt K ′ X ′ =⇒ K = K ′ & X = X ′.

That is to say, a ciphertext can only be decrypted by only one certain key, and
the resulting plaintext is unique. Moreover, as we have discussed in setion 2.5.1,
the encryption is assumed to be perfect that encrypted messages are not able
to be read or transformed by any agent unless he has the right key. Moreover,
it is assumed that the type of each message component is clearly specified, so it
is impossible to confuse different types of message components.

Number represents the guessable natural number, which is normally used for
modelling timestamps. It was later added [6] in order to apply the inductive
approach to protocols with timestamps.

3.1.3 Event

In the inductive approach, the history of actions on the network is specified
as a trace of events. Then, an event is a single action that forms the trace.
Sending message is the most important and straightforward event, but it is not
everything. The datatype event is defined as follows, which contains three con-
structors.

datatype event = Says agent agent msg
| Gets agent msg
| Notes agent msg
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Obviously, the constructor Says expresses sending a messages. Says A B X
states that A attempts to send a message X to B.

The Gets constructor, explicitly expressing message reception, is an extension to
event by G.Bella [5] in order to model agent’s knowledge via message reception.
Gets B X expresses B’s reception of a message X. It only indicates that the
message was previously sent, but B does not have any knowledge about who is
the sender. In Paulson’s work [26], this case is expressed as Says A′ B X with-
out the Gets constructor. In this way, the sender is stated as A′ which is not
used elsewhere, because B cannot get to know the real sender of the message X.
However, the extension of Gets can improve the readability of the specifications
of protocols and security properties.

Notes A X expresses that the agent A internally stores X which is a part of the
message he received. This means the event is only known by A himself, as long
as A is uncompromised. Otherwise, if A is a bad agent, the event Notes A X is
also visible to the spy.

3.1.4 Event Traces

As mentioned above, the history of agents’ actions is formalized as a list of
events, namely a trace. When an event has taken place, the existing trace is
then extended with the new event. A trace is a list of events in reverse order.
So the new event is inserted to the head of the list. In Isabelle syntax, ev#evs
expresses the trace evs is extended with the new event ev.

Moreover, given a trace evs, set evs represents the set of all events in the trace,
that is, all the events that have occurred. According to Isabelle’s Logic, the
function set maps a list to the set that consists of all elements from the list.
Therefore, given ev ∈ set evs, it is indicated that the event ev has taken place
on trace evs.

3.2 Agent’s Knowledge

In order to model agents’ knowledge inductively, the initial knowledge of agents
is required to be specified.
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3.2.1 Initial Knowledge

To specify the initial knowledge of agents before the protocol starts, the function
initState is declared as follows.

consts initState :: "agent => msg set"

The function initState maps an agent’s name to the set of messages that are
known by the agent before the running of the protocol. So the notation init-
State A expresses the initial knowledge of the agent A. In a symmetric key
setting, for each type of agents, the initial knowledge of the agent is defined
respectively as follows.

primrec
initState Server:

"initState Server = (Key ‘ range shrK)"
initState Friend:

"initState (Friend i) = Key (shrK(Friend i))"
initState Spy:

"initState Spy = (Key ‘ shrK ‘ bad)

According to Isabelle’s logics, a function’s range is the set of values that the
function can take on, in other word, the image of the universal set under that
function. Therefore, range shrK represents the set of all shared keys. And the
notation f ‘ A represents the image of the set A under the function f [25].
In this way, the above definition of agents’ initial knowledge turns to be clear.
The server’s initial knowledge contains the shared keys of all the agents on the
network, that is, all long-term keys on the network. The initial knowledge of a
friendly agent is his own long-term key that is shared with the server. And the
spy’s initial knowledge contains shared keys of all compromised agents, includ-
ing his own shared key, of course.

3.2.2 Modelling Agent’s Knowledge

The function knows is introduced to describe an agent’s knowledge on some
trace.

consts knows :: "agent => event list => msg set"

The notation knows A evs represents the set of message that the agent A can
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obtain based on the trace evs. This knowledge is defined as follows.

primrec
knows Nil: "knows A [] = initState A"
knows Cons:
"knows A (ev # evs) =
(if A = Spy then
(case ev of
Says A’ B X => insert X (knows Spy evs)

| Gets A’ X => knows Spy evs
| Notes A’ X =>

if A’∈bad then insert X (knows Spy evs) else knows Spy evs)
else
(case ev of
Says A’ B X =>
if A’=A then insert X (knows A evs) else knows A evs

| Gets A’ X =>
if A’=A then insert X (knows A evs) else knows A evs

| Notes A’ X =>
if A’=A then insert X (knows A evs) else knows A evs))"

• At the beginning, any agent’s knowledge is just his initial knowledge.

• About the spy’s knowledge, he knows every message sent over the network
no matter who is the sender or the receiver. And the spy also knows what
is noted by every compromised agent. Notice that a Gets event for message
reception does not extend the spy’s knowledge because the Says event for
sending that message did so already.

• For an agent other than the spy, he knows every message sent by himself,
and he knows every message he received. Every note by that agent on the
trace is also included in the agent’s knowledge.

The modelling of agents’ knowledge was introduced by G. Bella [5]. In Paul-
son’s original version [26] of the inductive approach, only the spy’s knowledge
was modelled. A function spies is used to specify the spy’s knowledge. The
notation spies evs represents the set of message that the spy can see based on
the trace evs.

spies[ ] , initState Spy
spies((Says A B X)#evs) , {X} ∪ spies evs

spies((Notes A X)#evs) ,

{
{X} ∪ spies evs if A ∈ bad
spies evs otherwise
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In the current logic library of Isabelle 2005 [1], the basic theories for protocol
verification have already been updated with G. Bella’s extension [5] of agents’
knowledge and message reception. However, the use of spies is still retained
for compatibility, as the syntax for spies stays in the theory. For simple key-
distribution protocols, Paulson’s original syntax would be sufficient for analysis
of the security properties. In this thesis, we adopt the original syntax in mod-
elling and analyzing the protocol, and then update the protocol model with
message reception and agent’s knowledge.

3.3 Operators

Operators express the operations on messages. These operations are used to
describe the capabilities of attackers and specify the security properties. The
following three operators are all defined inductively. Each of them maps a set
of messages to another set of messages.

3.3.1 The Function parts

Suppose H is a set of messages. Then parts H is inductively defined as follows.

consts parts :: "msg set => msg set"
inductive "parts H"

intros
Inj [intro]: "X ∈ H ==> X ∈ parts H"
Fst: "{|X,Y|} ∈ parts H ==> X ∈ parts H"
Snd: "{|X,Y|} ∈ parts H ==> Y ∈ parts H"
Body: "Crypt K X ∈ parts H ==> X ∈ parts H"

According to the above definition, parts H consist of every part of each message
in H. Formally speaking, for any form of message X, the parts of message X
contain the message itself; for a compound message, the parts of the message
contain all the elements that form the compound message; for an encrypted
message Crypt K X, the parts of the message contain the decrypted plaintext
X, while the key K does not belong to parts of the message unless K appears
in X.
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Basic lemmas about parts can be derived from the definition. Two straight-
forward examples are its idempotence and monotonicity. The operator parts is
idempotent, because we have

parts(parts H) = parts H.

And parts is monotonic since we have

G ⊆ H =⇒ parts G ⊆ parts H

3.3.2 The Function analz

The function analz is used to describe what the spy can obtain by analyzing a
set of messages. The inductive definition of analz is shown below.

consts analz :: "msg set => msg set"
inductive "analz H"
intros
Inj [intro,simp] : "X ∈ H ==> X ∈ analz H"
Fst: "{|X,Y|} ∈ analz H ==> X ∈ analz H"
Snd: "{|X,Y|} ∈ analz H ==> Y ∈ analz H"
Decrypt [dest]:
"[|Crypt K X ∈analz H; Key(invKey K): analz H|] ==> X∈analz H"

The definition is similar with parts, the only difference is the last rule for en-
crypted message. For an encrypted message Crypt K X in set H, the decrypted
plaintext X is included in analz H only if the appropriate decryption key is
available in analz H. For symmetric key settings, the decryption key is the
same as the encryption key, namely, Key(invKey K) = Key K.

Similarly, the operator analz is idempotent and monotonic.

analz(analzH) = analzH.
G ⊆ H =⇒ analzG ⊆ analzH

Further lemmas between the two operators can be easily derived from their
definitions. Here are some examples.

parts(analzH) = parts H analz(parts H) = parts H
analzH ⊆ parts H
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3.3.3 The Function synth

The operator synth is used to describe what the spy can build up by synthesizing
a set of messages. It is defined in Isabelle syntax as follows.

consts synth :: "msg set => msg set"
inductive "synth H"
intros
Inj [intro]: "X ∈ H ==> X ∈ synth H"
Agent [intro]: "Agent agt ∈ synth H"
Number [intro]: "Number n ∈ synth H"
Hash [intro]: "X∈synth H ==> Hash X∈synth H"
MPair [intro]: "[|X∈synth H; Y∈synth H|] ==> {|X,Y|}∈synth H"
Crypt [intro]: "[|X∈synth H; Key(K)∈H|] ==> Crypt K X∈synth H"

According to the above definition, synth H contains all its element messages,
all the agent names and any guessable numbers. Because nonces and keys are
assumed to be not guessable, they are then not included in synth H, except
for those already in H. Besides, available messages in synth H can be hashed,
combined to form pairs, and can be encrypted using available keys in H.

Similarly, this operator synth is also idempotent and monotonic.

synth(synthH) = synthH.
G ⊆ H =⇒ synthG ⊆ synthH

Among the above three operators, there are nine possible combination of two
operators. An notable combination is synth ◦ analz. Recall the notion of spy’s
knowledge, then analz(knows Spy evs) specifies the set of messages that the spy
can extract from his knowledge, and synth(analz(knows Spy evs)) specifies the
set of fake messages that the spy can fabricate based on his knowledge.

3.4 Other Useful Functions

3.4.1 The Function used

A necessary operator used is required to express freshness. The function maps a
trace of events to the set of all message components mentioned in the trace and
in all agents’ initial knowledge. The definition in Isabelle syntax is shown below.
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consts used :: "event list => msg set"
primrec

used Nil: "used [] = (
⋃

B. parts (initState B))"
used Cons: "used (ev # evs) =

(case ev of
Says A B X => parts {X} ∪ used evs

| Gets A X => used evs
| Notes A X => parts {X} ∪ used evs)"

According to this definition, used evs includes parts of all initial knowledge by ev-
ery agent and parts of all past messages on the trace evs, namely, parts(knows Spy evs).
Thus, a message X is considered to be fresh on trace evs, if X is not in the set
used evs.

In particular, this operator is much useful in modelling cryptographic proto-
cols with nonce. It is used to formalize the agent’s behavior that an agent
generates a fresh nonce. In this way, Nonce N /∈ used evs specifies the freshness
of nonce N on trace evs.

3.4.2 The Function keysFor

Similar as the aforementioned operators, the function keysFor also expresses op-
eration on messages. This function maps a set of messages to the set of keys
that can be used to decrypt any message in the set. Its definition is simple and
straightforward, as follows.

constdefs
keysFor :: "msg set => key set"
"keysFor H == invKey ‘ K. ∃X. Crypt K X ∈ H"

For shared-key protocols, all the keys are symmetric, no matter long-term keys
or short-term keys. In this setting, given a message set H, keysFor H repre-
sents the set of keys that were used to seal those encrypted messages in H. It
is mostly used to state the lemma new_keys_not_used (ses section 5.1) in the
form of keysFor (parts (spies evs)) , which represents the set of keys that have
been used to encrypt any message components that appear on traffic.
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Chapter 4

Modelling the Protocol

This chapter presents how a cryptographic protocol is modelled by Paulson’s
inductive approach. We apply the approach to the modified version of Denning-
Sacco shared-key protocol [11] proposed by Gavin Lowe [18]. This protocol
uses symmetric key cryptography to encrypt messages and employs both nonce
and timestamps to guarantee freshness (§ 4.1). At the beginning, modelling of
timestamps was not contained in Paulson’s original inductive approach [26]. It
was proposed when BAN Kerberos was verified by the inductive approach [6].
We introduces the method for modelling timestamps (§ 4.2), and then describes
how Lowe’s modified Dennning-Sacco shared key protocol is modelled and for-
mally specified in Isabelle (§ 4.3). We also include some discussions about the
inductive model of a protocol (§ 4.4). The protocol is first modelled following
Paulson’s original approach [26] (§ 4.3). Then the model is updated with Bella’s
extensions of message reception and agent’s knowledges [5] (§ 4.5).
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4.1 Lowe’s Modified Denning-Sacco Shared-key
Protocol

Consider the Needham-Schroeder shared-key protocol [23] (see section 2.4.1).
As mentioned above, it has weakness that replay attacks against this protocol is
possible if old session keys may be compromised occasionally (see section 2.5.2).
Considering the possibility that the session keys may be lost, Denning and Sacco
[11] proposed to employ timestamps in key distribution protocols in order to
prevent replays of compromised old session keys. In this way, they proposed a
solution to enhance Needham-Schroeder shared-key protocol using timestamps.
Their enhanced version with timestamps is thus.

(1) A → S : A,B
(2) S → A : {B,Kab, T, {Kab,A, T}Kb}Ka

(3) A → B : {Kab,A, T}Kb

Figure 4.1: The Denning-Sacco Shared-key Protocol

This is known as the Denning-Sacco shared-key protocol. In step (2), the server
marks the message with the timestamp T which gives the current time. This
timestamp thus presents the time when session key Kab was issued. A verifies
the message by checking that the interval between current time and timestamp
T is less than the lifetime of a session key. The timestamp T is then forwarded
to B in step (3). Similarly, B verifies the message in the same way. As long as
the session key lifetime is adjusted to be less than the time interval since the last
protocol execution, the use of timestamp will achieve its goal. Of course, this
kind of timestamp-based protocols require a global synchronized clock system.

Denning and Sacco also claimed that, by adding timestamps properly in this
way, the last two steps of the Needham-Schroeder shared-key protocol can be
replaced. They believed that timestamps have the additional benefit of replac-
ing the two-step handshake [11]. However, Lowe [18] pointed out a subtle flaw
in Denning-Sacco shared-key protocol. The possible attack is shown below.

(1) A → S : A,B
(2) S → A : {B,Kab, T, {Kab,A, T}Kb}Ka

(3) A → B : {Kab,A, T}Kb

(3′) Spy(A) → B : {Kab, A, T}Kb

The spy can impersonate A and replay the message of step (3) immediately.
In this way, B believes that A is requesting for two sessions with him, while A
only set up one session with B. The reason why this attack succeeds is that
the timestamps provide only partial authentication of A: they show that A is
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currently trying to establish a session, but they don’t show how many [18].

Therefore, the nonce handshake of the last two steps in Needham-Schroeder
shared-key protocol is still necessary for the timestamp-based version. Then
Lowe modified version of Denning-Sacco shared-key protocol is shown in Fig-
ure 4.2.

(1) A → S : A,B
(2) S → A : {B,Kab, T, {Kab,A, T}Kb}Ka

(3) A → B : {Kab,A, T}Kb

(4) B → A : {Nb}Kab

(5) A → B : {dec(Nb)}Kab

Figure 4.2: The Lowe’s Modified Denning-Sacco Shared-key Protocol

Generally, a session key is considered expired if the interval between current
time and the issue time of the key is longer than the session key’s lifetime. Par-
ticularly in this protocol, the timestamp T stands for the issue time of session
key Kab. A checks the timestamp T he received by step (2), and he will send the
message of step (3) only if the session key Kab issued at time T is not expired.
Similarly, B also verifies the timestamp T before he sends the message of step
(4).

Compared with the Needham-Schroeder shared-key protocol, this version would
be considered as an extension with timestamps. It can solve the weakness in
Needham-Schroeder’s version, and avoid the multiplicity attack on Denning-
Sacco’s original version. In this thesis, we will formalize and analyze this pro-
tocol using the inductive approach.

4.2 Modelling Timestamps

To model timestamp-based cryptographic protocols using inductive approach,
it is assumed that there is a network-wide accurate clock for all the agents. As
mentioned above, in the inductive approach, a cryptographic protocol is for-
malized as a set of traces. Each trace is a list of events that present a possible
history of the occurred events on network. Therefore, Bella and Paulson [6] de-
fine current time as the current length of a trace. In this way, the current time
of an empty trace is zero, and the current time of a trace including n events is n.
This formalization is simple and straightforward, and also sufficient to express
the time as the clock in the formal protocol model.
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Timestamps are then modelled as natural numbers, and their values are possible
to guess. The constructor Number defined in datatype msg was introduced for
timestamps (see section 3.1.2). Thus, a timestamp T is formally specified as
Number T in a protocol model. Since it is guessable, the spy should be able to
synthesize timestamps. So the definition of operator synth contains Number n
∈ synth H.(see section 3.3.3)

The function CT maps a trace to the current time on that trace, which is,
in fact, the length of the list of events. The definition below is included in our
theory.

syntax CT :: "event list => nat"
translations "CT" == "length "

The natural number SesKeyLife is defined to represent the lifetime of session
keys.

consts SesKeyLife :: nat

Agents check the timestamps in the messages they received. The messages
with fresh timestamps are accepted, and the messages with expired timestamps
are dropped. This behaviour of checking is modelled by the function Expired,
which states whether the session key is expired on a given trace. Its definition
is shown below.

syntax Expired :: "[nat, event list] => bool"
translations "Expired T evs" == "SesKeyLife + T < CT evs"

Formally speaking, if Expired T evs is ture, it expresses that the interval be-
tween timestamp T and current time of trace evs is longer than the valid life of
this timpstamp. In other words, it states the timestamp T is expired on trace
evs. Since, in this protocol, the only timestamp is used to record the time of
issue of the session key, the predicate Expired T evs expresses that the session
key issued at time T is expired on trace evs.
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4.3 Formalizing the Protocol by Induction

4.3.1 Inductive Rules

As mentioned above, the protocol is formalized as a set of all possible traces.
The set of traces is defined by induction. The induction is based on an empty
trace of the set. Then each protocol step is formalized as an inductive rule that
specify all possible extensions to a given trace with the new event concerning
the protocol step. As the protocol we are going to model comprises five steps,
there will be five inductive rules in the formal specification. We transcribe the
five steps respectively as follows.

(1) If evs is a trace of the set, then evs may be extended with the event
Says A Server {| Agent A, Agent B |}.

(2) If evs is a trace containing an event of the form
Says A′ Server {| Agent A, Agent B |},

and Kab is a fresh symmetric key, then evs may be extended with the
event

Says Server A {| Agent B, Key KAB, Number Tk,
{| Key KAB, Agent A, Number Tk |}Kb |}Ka

where timestamp Tk records the current time on trace evs.

Here the server is not able to judge who is the real sender by receiv-
ing the message in assumption, so the sender is denoted as A′, which is
not used elsewhere in the rule.

(3) If evs is a trace containing two events
Says A Server {| Agent A, Agent B |} and
Says S A {| Agent B, Key K, Number Tk, X |}Ka,

and the timestamp Tk is not expired on trace evs, and A is and agent
distinct from the server, then evs may be extended with the event

Says A B X.

Here the message component encrypted with B’s key is simply denoted as
X because it is unreadable to A. But A may forward this ciphertext to
B. Moreover, in the first message in the assumption, the sender’s name
is just A because A is able to know whether he has sent such a message
sometime before. S is used to indicate the sender of the second message
because A cannot know who is the real sender of this message.

(4) If evs is a trace containing the event of the form
Says A′ B {| Key K, Agent A, Number Tk |}Kb,
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and key K is symmetric, and Tk is not expired on evs, and nonce NB is
fresh, then evs may be extended with the new event

Says B A {| Nonce NB |}K .

Similarly, B cannot know who really send the message, so the sender’s
name is shown as A′.

(5) If evs is a trace containing the two events
Says B′ A {| Nonce NB |}K and
Says S A {| Agent B, Key K, Number Tk, X |}Ka,

and K is a symmetric key, then evs may be extended with the new event
Says A B {| Nonce NB, Nonce NB |}K .

Similarly, here B′ and S are used to represent the senders, because A
cannot identify the real senders of the two messages he received. Note
that it is not necessary to decrease the nonce NB for this step in the in-
ductive model. Instead, we let A to send NB twice. We believe this way
provides equivalent effect of the protocol but keeps our modelling easier. It
does not require the extension of the spy’s capability with decrement. And
if the spy is formalized to have the capability of increment and decrement,
he would be able to fake any nonce.

In fact, there is still an unspecified last step that B decrypts the message to
check NB and then confirms the session. However, the implicit step is not nec-
essary to be formalized for this protocol. Our proof (see chapter 5) shows that
the protocol model with the five explicit steps is adequate to prove the mutual
authentication. Further discussion on this topic can be found in section 4.4

4.3.2 A Model for the Protocol

For Lowe’s modified Denning-Sacco shared-key protocol, we declare a constant
ds lowe as the set of traces that formalizes the protocol. The formal specification
of this protocol is shown in Figure 4.3.

consts ds lowe :: "event list set"
inductive "ds lowe"
intros

Nil: "[] ∈ ds lowe"

Fake: "[| evsf ∈ ds lowe; X ∈ synth (analz (spies evsf)) |]
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==> Says Spy B X # evsf ∈ ds lowe"

DS1: "[| evs1 ∈ ds lowe |]
==> Says A Server {| Agent A, Agent B |} # evs1 ∈ ds lowe"

DS2: "[| evs2 ∈ ds lowe; Key KAB /∈ used evs2; KAB ∈ symKeys;
Says A’ Server {| Agent A, Agent B |} ∈ set evs2 |]

==> Says Server A
(Crypt (shrK A)
{| Agent B, Key KAB, Number (CT evs2),
(Crypt (shrK B)
{| Key KAB, Agent A, Number (CT evs2) |}) |})

# evs2 ∈ ds lowe"

DS3: "[| evs3 ∈ ds lowe; A 6= Server;
Says S A (Crypt (shrK A)

{| Agent B, Key K, Number Tk, X |}) ∈ set evs3;
Says A Server {| Agent A, Agent B |} ∈ set evs3;
~ Expired Tk evs3 |]

==> Says A B X # evs3 ∈ ds lowe"

DS4: "[| evs4 ∈ ds lowe; Nonce NB /∈ used evs4;
K ∈ symKeys;
Says A’ B (Crypt (shrK B)

{| Key K, Agent A, Number Tk |}) ∈ set evs4;
~ Expired Tk evs4 |]

==> Says B A (Crypt K (Nonce NB)) # evs4 ∈ ds lowe"

DS5: "[| evs5 ∈ ds lowe; K ∈ symKeys;
Says B’ A (Crypt K (Nonce NB)) ∈ set evs5;
Says S A (Crypt (shrK A)

{| Agent B, Key K, Number Tk, X |}) ∈ set evs5 |]
==> Says A B (Crypt K {| Nonce NB, Nonce NB |})

# evs5 ∈ ds lowe"

Oops: "[| evso ∈ ds lowe;
Says Server A (Crypt (shrK A)

{| Agent B, Key K, Number Tk, X |}) ∈ set evso;
Expired Tk evso |]

==> Notes Spy {| Number Tk, Key K |} # evso ∈ ds lowe"

Figure 4.3: Specification of Lowe’s modified Denning-Sacco Shared-key Protocol
in Isabelle
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Recall that set evs represents the set of all events in the trace. Then an event
ev ∈ set evs indicates that the event ev has occurred on trace evs. The base case
is an empty trace representing the initial state that the protocol has not been
executed. The Nil rule admits the empty trace. Then all the following rules
inductively extend a given trace. The Fake rule models the spy’s capability that
he can send fake messages which are fabricated based on his analysis of past
traffics. These two rules are always required in modelling all protocols. The
next five rules from DS1 to DS5 formalize the five protocol steps as aforemen-
tioned.

Note that the last rule Oops is indispensable for modelling key-distribution
protocols. The Oops rule allows the leak of session keys to the spy. In particu-
lar, for this timestamp-based protocol, the Oops rule can be less permissive that
only expired session keys may be compromised. This is reasonable and realistic,
because generally the risk of losing a session key increases over time. Here the
premise of this Oops rule is that the server has issued the session key K at time
Tk, and the time Tk has been expired at the current time. The conclusion then
gives the expired session key K and its time of issue to the spy.

In the rule Fake, the notation evsf is used to denote the trace, and evs1 is
used in rule DS1, and so forth. This is for better clarity in the proving stage.
Most theorems are proved by induction, and the goal is split to several subgoals
that each corresponding to an inductive rule. In this way, the subgoal with evs2
can be easily identified that the last event is introduced by rule DS2.

In addition, the lifetime of the session key for this protocol should be assigned a
proper value. We have the specification for SesKeyLife in the theory as follows.

specification (SesKeyLife)
SesKeyLife LB [iff]: "3 <= SesKeyLife"

by blast

This states that a session key of this protocol should remain valid within at least
three events after the issue of the session key, because the protocol has three
steps to go from the issue of a session key to the successful establishment of the
session.

The full theory DS Lowe for Lowe’s modified Denning-Sacco shared-key pro-
tocol can be found in Appendix A. The theory includes the formal specification
of the protocol and the proof for security properties.
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4.4 Discussions

About the Inductive Model

As mentioned above, each inductive rule extends a given trace with new events.
Most rules extend traces with Says events. However, the rule itself does not
indicate that the message sent in this step can be received. The message might
be received. This reception is identified when the inductive rule of the next
protocol step is applied, which contains the reception of the message in the
previous step as a premise. As A attempts to send a message M to B, the in-
ductive model allows M to be lost, and allows that M is ignored or rejected by B.

Moreover, the inductive model allows interleaving of protocol sessions. An agent
is not force to respond to the newly received message immediately and it is not
forced to respond to any message. An agent may ignore messages, or respond
to a message for several times. It is also allowed to respond to old messages. In
this way, the inductive model is much permissive. Because of the same reason,
however, the inductive approach is not applicable to the analysis about denial-
of-service.

The Implicit Step

Consider our description for the Needham-Schroeder shared-key protocol [23]
(see section 2.4.1). The protocol consists of five steps (see Figure 2.5), while
our description contains six steps. This is because, by receiving the message
sent in step (5), the agent still has to decrypt it and verify the content. This is
then described as an additional implicit step. In general, such implicit step also
exists for other protocols.

Similarly, for Lowe’s modified Denning-Sacco protocol, the message sent in the
last step has the same form as the Needham-Schroeder protocol. Thus there
is also a similar implicit step for this protocol. At the end of section 4.3.1, we
mentioned that the implicit step at the end is not necessary to be formalized
for this protocol. This is because the inductive rules never explicitly express
agent’s behaviours such as decryption and verifying message content. But this
is not the whole thing. For timestamp-based protocols, agents need to check the
freshness of timestamps. The behaiviour of checking timestamps is, however,
explicitly expressed in inductive rules by functions such as Expired. In this case,
if the implicit step at the end of a protocol includes verifying a timestamp, then
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this implicit step needs to be formalized.

Consider the original Denning-Sacco shared-key protocol [11] as an example
(see Figure 4.1). This protocol only contains the first three steps of Lowe’s
modified version. In the third step of this protocol, or say the last explicit
step, A sends B the message {Kab,A, T}Kb. By receiving this message, B de-
crypts it and check the freshness of the timestamp T . If T is fresh, then he
will accept the corresponding session key Kab. This course is considered as the
implicit step of this protocol. To model this protocol using inductive approach,
this implicit step should be formalized as an additional inductive rule, as follows.

D4: "[| evs4 ∈ ds lowe; Kab ∈ symKeys;
Says A’ B (Crypt (shrK B) {| Key Kab, Agent A, Number Tk |})

∈ set evs4;
~ Expired Tk evs4 |]

==> Notes B (Crypt (shrK B) (Key Kab)) # evs4 ∈ ds lowe"

In this way, if the timestamp is verified to be fresh, the above rule extends the
trace of the model with a Notes event stating that B internally stores the session
key.

The Oops Rule

As we have mentioned above, the Oops rule formalizes the loss of session keys,
and it is indispensable for the modelling of a protocol. In general, the Oops rule
is intended to model the loss of session keys by any means [28]. Its premise is
that the sever has distributed the key for some session, and its conclusion gives
this session key to the spy by a Notes event. If we follow this general way, the
Oops rule for this protocol model would be simply like this:

Oops: "[| evso ∈ ds lowe;
Says Server A (Crypt (shrK A)

{| Agent B, Key K, Number Tk, X |}) ∈ set evso |]
==> Notes Spy {| Number Tk, Key K |} # evso ∈ ds lowe"

On the other hand, although we have not moved to the analysis stage, we can
infer that confidentiality and authentication theorems must rely on that no Oop
event occurs. Consider the session key secrecy theorem [26] which will be men-
tioned in section 5.6.2. This crucial confidentiality theorem states that if the
two participants are uncompromised agents and the session key has not been
accidentally leaked by any Oops events, then the session key issued by the server
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remains secret to the spy. It is obvious that if the participant is compromised,
then the session key is also compromised, because the agent’s long-term key has
been used to encrypt the session. And if an Oops event leaks the session key, it
is not confidential of course. These two assumptions of the theorem are also in-
dispensable assumptions for other confidentiality and authentication theorems,
because the session key will be compromised if any of them doesn’t hold.

However, these two assumptions are not able to be verified by honest agents.
An honest agent is not able to know whether other agents (or even the agent
himself) are compromised or not, and he is not able to check whether the acci-
dental loss of session key has occurred. Therefore, these two assumptions of the
theorem forms the minimal trust [5] named by Bella. Since the agents running
the protocols are not able to verify these assumptions, they could only trust
that they are preserved.

However, for timestamp-based protocols, perhaps allowing the leaking of any
session key at any time makes the model too permissive [5]. Bella [6] suggested
refining the model with a less permissive Oops rule in his verification of BAN
Kerberos. For a similar consideration, we adopt the less permissive Oops rule
for our model ds lowe (see section 4.3.2), by adding another condition Expired
Tk evs. To be specific, the refined Oops rule states that if the server has issued
the session key K at time Tk, and Tk has been expired, then K may be leaked
to the spy. This is reasonable and realistic, since the risk of losing a session key
increases over time.

Moreover, for the refined protocol model, agents are able to check whether the
Oops event has occurred. Since the agents can get the timestamp that records
the issue time of session key, they can check this timestamp. A verified fresh
timestamp can assure the agent that no Oop event occurred. In this way, agents
can verify this assumption rather than simply trust it. Therefore, the minimal
trust required by confidentiality and authentication theorems becomes lower for
the refined protocol model [5].

4.5 Update the Model

As mentioned in section 3.1.3 and 3.2.2, Bella [5] introduced message recep-
tion and agent’s knowledge to the inductive approach. The definition of agent’s
knowledge and message reception has been released with the distribution of
Isabelle. This extension enhances the inductive approach and prepares it for
analyzing new hierarchies of protocols [5], for example, non-repudiation proto-
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cols and e-commerce protocols. For basic key-distribution protocols, Paulson’s
original inductive approach is adequate for the modelling and verification. How-
ever, Bella’s extension may also improve the readability of the specifications of
such protocols and their security properties.

We updated the existing model with the event Gets and function knows, and
then completed the verification of the new model. The new specification and
proof script are included in Appendix B.

In general, to update a model with message reception, a rule named Recep-
tion should be added. For our model ds lowe, the Reception rule is stated as
follows.

Reception: "[| evsr ∈ ds lowe; Says A B X ∈ set evsr |]
==> Gets B X # evsr ∈ ds lowe"

This rule extends a trace of the protocol model with the event Gets B X, if an
event Says A B X appears on the trace. It allows the reception of a message
since it has been sent. Like other inductive rules of the model, Reception is
not forced to extend a trace, which states that the reception of a message that
was sent can not be guaranteed. A Gets event only states the message and the
receiver. The sender is not referred at all, since the claim about sender is not
reliable on a vulnerable network.

The existing inductive rules are also required for updates. If the inductive
rule has an Says event with uncertain sender as a premise, then it could be
updated with the corresponding Gets event. In the original inductive approach,
Says A′ B X is used to express that the message X reaches B but the sender is
uncertain. Here A′ which denotes the sender does not appear elsewhere in the
rule. In the new model, this case is explicitly expressed with Gets B X. More-
over, the function spies which states the spy’s knowledge should be updated with
knows Spy.

In our model ds lowe, the protocol rules DS2, DS3, DS4 and DS5 each con-
tain such Says events in their premises, and thus need to be updated. And
the Fake rule that contains the function spies is updated with knows Spy. The
updated model is shown below.

consts ds lowe :: "event list set"
inductive "ds lowe"
intros

Nil: "[] ∈ ds lowe"
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Fake: "[| evsf ∈ ds lowe; X ∈ synth (analz (knows Spy evsf)) |]
==> Says Spy B X # evsf ∈ ds lowe"

Reception: "[| evsr ∈ ds lowe; Says A B X ∈ set evsr |]
==> Gets B X # evsr ∈ ds lowe"

DS1: "[| evs1 ∈ ds lowe |]
==> Says A Server {| Agent A, Agent B |} # evs1 ∈ ds lowe"

DS2: "[| evs2 ∈ ds lowe; Key KAB /∈ used evs2; KAB ∈ symKeys;
Gets Server {| Agent A, Agent B |} ∈ set evs2 |]

==> Says Server A
(Crypt (shrK A)
{| Agent B, Key KAB, Number (CT evs2),
(Crypt (shrK B)
{| Key KAB, Agent A, Number (CT evs2) |}) |})

# evs2 ∈ ds lowe"

DS3: "[| evs3 ∈ ds lowe; A 6= Server;
Gets A (Crypt (shrK A)

{| Agent B, Key K, Number Tk, X |}) ∈ set evs3;
Says A Server {| Agent A, Agent B |} ∈ set evs3;
~ Expired Tk evs3 |]

==> Says A B X # evs3 ∈ ds lowe"

DS4: "[| evs4 ∈ ds lowe; Nonce NB /∈ used evs4;
K ∈ symKeys;
Gets B (Crypt (shrK B)

{| Key K, Agent A, Number Tk |}) ∈ set evs4;
~ Expired Tk evs4 |]

==> Says B A (Crypt K (Nonce NB)) # evs4 ∈ ds lowe"

DS5: "[| evs5 ∈ ds lowe; K ∈ symKeys;
Gets A (Crypt K (Nonce NB)) ∈ set evs5;
Gets A (Crypt (shrK A)

{| Agent B, Key K, Number Tk, X |}) ∈ set evs5 |]
==> Says A B (Crypt K {| Nonce NB, Nonce NB |})

# evs5 ∈ ds lowe"

Oops: "[| evso ∈ ds lowe;
Says Server A (Crypt (shrK A)

{| Agent B, Key K, Number Tk, X |}) ∈ set evso;
Expired Tk evso |]

==> Notes Spy {| Number Tk, Key K |} # evso ∈ ds lowe"



44 Modelling the Protocol

Figure 4.4: Updating the Model with Message Reception

Furthermore, since the new rule Reception is introduced, the trace representing
an ideal protocol execution requires the inductive rules to be applied in turns
as follows.

DS1 - Reception - DS2 - Reception - DS3 - Reception - DS4 - Reception - DS5

Each application of a rule above extends the trace with an new event. In this
way, this ideal trace is longer than the one of the old model because of the join
of those Gets events which are introduced by the Reception rule. Recall that
the current time on a trace is formalized as the length of the trace. Therefore,
the formalized lifetime of session keys should be doubled. The specification of
SesKeyLife should be updated as follows.

specification (SesKeyLife)
SesKeyLife LB [iff]: "6 ≤ SesKeyLife"

by blast

It indicates that a session key should be considered fresh within at least six
events after the issue of the session key.

At the verification stage, since the model is updated, the theorems and their
proofs are also required to be adjusted. This will be discussed in section 5.8.
The updated theory DS Lowe 2 for the protocol can be found in Appendix B.



Chapter 5

Verifying the Protocol

This chapter describes how Lowe’s modified Denning-Sacco shared-key protocol
is verified using the inductive approach. We analyze the expected security goals
for this inductive model. These security properties are then specified as several
theorems. These theorems are proved using the interactive theorem prover Is-
abelle [25], and thus the security properties are verified.

The main security properties that we have proved about this protocol are pre-
sented, including reliability (§ 5.1), regularity (§ 5.3), unicity (§ 5.4), authen-
ticity (§ 5.5), confidentiality (§ 5.6) and authentication (§ 5.7). In particular,
confidentiality and authentication properties are analyzed based on viewpoints
of individual agents. Some necessary lemmas are also introduced and proved,
as they are required for proving the main security goals. At last, we also update
the theorems and their proofs with message reception. (§ 5.8)

5.1 Proving Reliability Lemmas

In general, reliability lemmas do not directly indicate any security related prop-
erties. However, they may be used to confirm that the formal model we have
constructed for a cryptographic protocol is suitable to represent the real pro-
tocol. Verification of its reliability is indispensable because further theorem
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proving is based on the model.

The possibility property [26] is always the first lemma to prove for any pro-
tocol. It assures that there exist traces that could reach the last step of the
protocol. If the possibility property cannot be proved, it means that the model
does not have any trace which allows a complete protocol execution. In this
case, the formalization of the protocol must be incorrect, and the resulting for-
mal model is inappropriate for further verification.

The possibility property of our model ds lowe is specified and proved as fol-
lows.

lemma "[| A 6= Server; Key K /∈ used []; K ∈ symKeys |]
==> ∃ N. ∃ evs ∈ ds lowe.

Says A B (Crypt K {| Nonce N, Nonce N |}) ∈ set evs"

apply (cut tac SesKeyLife LB)
apply (intro exI bexI)
apply (rule tac [2] ds lowe.Nil [THEN ds lowe.DS1,

THEN ds lowe.DS2, THEN ds lowe.DS3,
THEN ds lowe.DS4, THEN ds lowe.DS5])

apply (possibility, simp add: used Cons)
done

For a fresh symmetric key K, there exists a nonce N and a trace evs on which
the event concerning the last step of the protocol occurs. The proof is straight-
forward, combining all protocol rules. The method possibility is provided in
theory Public, and specialized for proving possibility theorems.

Another reliability lemma states that the server only sends well-formed mes-
sages [6]. The lemma is specified and proved as follows.

lemma Says Server message form:
"[| Says Server A (Crypt K’ {| Agent B, Key K, Number Tk, X |})

∈ set evs; evs ∈ ds lowe |]
==> K /∈ range shrK &

X = (Crypt (shrK B) {| Key K, Agent A, Number Tk |}) &
K’ = shrK A"

apply (erule rev mp)
apply (erule ds lowe.induct)
apply auto
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done

The statement of the property is straightforward and the proof is simple. Induc-
tion is applied, and it splits the case to several subgoals that each corresponds
to an induction rule. Then the method auto simplifies all the subgoals.

A lemma named new_keys_not_used states that agents can never use non-
existent keys. It’s specified and proved as follows.

lemma new keys not used:
"[|Key K /∈ used evs; K ∈ symKeys; evs ∈ ds lowe|]
==> K /∈ keysFor (parts (spies evs))"

apply (erule rev mp)
apply (erule ds lowe.induct, force)
apply (drule tac [4] DS3 msg in parts spies)
apply simp all
apply (force dest!: keysFor parts insert)
apply blast+
done

Recall that used evs represents a message set consists of all message com-
ponents mentioned in trace evs and in all agents’ initial knowledges. And
K /∈ keysFor (parts (spies evs)) indicates that the key K was not used to en-
crypt any message components that appear on traffic. In this way, this lemma
states that if a symmetric key K does not belong to any agent’s initial knowl-
edge and does not appear on traffic, then K cannot ever be used to encrypt any
message component that appears on trace evs.

The above three theorems cannot guarantee entire reliability of the protocol
model, but can assure basic availability that further theorem proving can be pro-
ceeded based on the model. Moreover,the lemma Says_Server_message_form
is also useful in proving some secrecy lemma (see section 5.6), since it states
the standard form of the message portion which is not accessible by A. And
the lemma new keys not used is useful in proving authentication theorem (see
section 5.7).
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5.2 Proving Forwarding Lemmas

Forwarding lemmas concern the forward of message components. When an in-
ductive rule of the model formalizes that an agent forwards an unreadable por-
tion of the message, a forwarding lemma would be useful for reasoning about
this rule. In step (3) of the protocol, the agent A decrypts the outer layer of
encryption, and then forwards the unknown message portion to agent B, which
is encrypted by B’s shared key and thus unreadable to A. Then the forwarding
lemma for DS3 states that the message portion X is in parts of what the spy can
see. It is trivial, since the spy can see every message on traffic. The forwarding
lemma for DS3 is specified and proved simply by method blast as follows.

lemma DS3 msg in parts spies:
"Says S A (Crypt KA {| B, K, Timestamp, X |}) ∈ set evs
==> X ∈ parts (spies evs)"

by blast

We also proved a forwarding lemma for the Oops rule, as it breaks a layer
of encryption of the server’s key-distribution message and forward the session
key K to the spy. The lemma is specified and proved as follows.

lemma Oops parts spies:
"Says Server A (Crypt (shrK A) {| B, K, Timestamp, X |}) ∈ set evs
==> K ∈ parts (spies evs)"

by blast

5.3 Proving Regularity Lemmas

Regularity lemmas concern occurrences of a particular item X as a possible mes-
sage component [26]. The statements always have the form of X ∈ parts(spies evs) →
. . ..

A basic regularity lemma states that if an agent is not compromised, then its
long-term shared key will not be any component of the messages that can be
seen by the spy. If an agent is compromised, the spy holds its long-term key
from scratch. Otherwise, the spy does not know a good agent’s long-term key
at the beginning and cannot learn it by observing message traffics, because the
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protocol never allows any agent to include their long-term key in the messages.
An agent’s long-term shared key may only appear in the message of Fake case,
and if this happens, it implies the agent is compromised. The basic regularity
lemma is specified and proved by induction as follows. The proved forwarding
lemma for DS3 is used in the proving this basic regularity lemma.

lemma Spy see shrK:
"evs ∈ ds lowe ==> (Key (shrK A) ∈ parts (spies evs)) = (A ∈ bad)"

apply (erule ds lowe.induct, force)
apply (drule tac [4] DS3 msg in parts spies)
apply (simp all)
apply (blast+)
done

To explicitly specify that the spy can never get hold of a good agent’s shared
key, the operator analz is used to express the above lemma. Since we have analz
H ⊆ parts H, the proof can be trivial and simply obtained by method auto
based on the above lemma. This is shown below.

lemma Spy analz shrK:
"evs ∈ ds lowe ==> (Key (shrK A) ∈ analz (spies evs)) = (A ∈ bad)"

by auto

5.4 Proving Unicity Theorems

Cryptographic protocols usually require agents to generate fresh session keys or
nonces. Fresh means that the same session keys or nonces have not been issued
before, that is to say, a certain fresh components can be issued only once. Thus,
a fresh session key or nonce can be used to uniquely identify the message that
issues it. The unicity theorem states that if two events issue the same fresh
components, then the values of all other components in the message should be
identical as well.

For Lowe’s modified Denning-Sacco shared-key protocol, the sever is required to
generate a fresh session key and issue it at the second protocol step. The unic-
ity theorem for this protocol states that a certain session key uniquely identifies
the the server’s message. Given a fresh session key K, its issue time Tk and the
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two participants of that protocol execution are determined, as well as all other
components of the server’s message carrying this session key. This theorem is
specified and proved as follows.

lemma unique session keys:
"[| Says Server A (Crypt (shrK A)

{| Agent B, Key K, Number Tk, X |}) ∈ set evs;
Says Server A’ (Crypt (shrK A’)

{| Agent B’, Key K, Number Tk’, X’ |}) ∈ set evs;
evs ∈ ds lowe |]

==> A = A’ & B = B’ & Tk = Tk’ & X = X’"

apply (erule rev mp, erule rev mp, erule ds lowe.induct)
apply (simp all)
apply (blast+)
done

The proof is proceeded by induction and simplification. The unicity theorem
states the unicity and freshness of session keys, and it is also very useful in
proving secrecy and authentication lemmas.

5.5 Proving Authenticity Guarantees

As mentioned above, when an agent receives a message, it may not be originated
with the sender as claimed, and the agent does not know who is the real sender.
Authenticity guarantees can assure the agent that the session key he received is
authentic and really originated with the server. In other words, the authenticity
guarantees state the security goals of integrity.

For this protocol, A receives the session key by the second message of the pro-
tocol. The guarantee for A states that if A is not compromised and a message
in the form

Crypt (shrK A) {| Agent B, Key K, Number Tk, X |}

appears on traffic, then the message is originated with the server as an in-
stance of the second step of the protocol. Provided that A is not compromised,
the spy does not have A’s shared key, and thus not able to fake such message.
In this case, by receiving the message, A can confirm that the session key K
was issued at time point Tk by the server. If the timestamp Tk is not expired
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at current time, A can confirm the freshness of the key and then accept it. The
authenticity guarantee for A is specified and proved as follows. It is proved by
induction, and the aforementioned forwarding lemma is applied in the proof.

lemma A trusts K by DS2:
"[| Crypt (shrK A) {| Agent B, Key K, Number Tk, X |}

∈ parts (spies evs);
A /∈ bad; evs ∈ ds lowe |]

==> Says Server A (Crypt (shrK A)
{| Agent B, Key K, Number Tk, X |}) ∈ set evs"

apply (erule rev mp)
apply (erule ds lowe.induct, force)
apply (drule tac [4] DS3 msg in parts spies)
apply (auto)
done

Similarly, B gets hold of the session key by the third message of the proto-
col. The guarantee for B states that if B is not compromised and a message in
the form

Crypt (shrK B) {| Key K, Agent A, Number Tk|}
appears on traffic, then this message is originated with the server. Note that
the message portion carrying the session key is originated with the server and
then forwarded to B by A. The agent B has the same assurance that the session
key he received is issued by the server at time Tk, provided that B is not com-
promised. The authenticity guarantee for B is specified and proved in a similar
way, as follows.

lemma B trusts K by DS3:
"[| Crypt (shrK B) {| Key K, Agent A, Number Tk |}

∈ parts (spies evs);
B /∈ bad; evs ∈ ds lowe |]

==> Says Server A (Crypt (shrK A) {| Agent B, Key K, Number Tk,
Crypt (shrK B) {| Key K, Agent A, Number Tk|}|})∈ set evs"

apply (erule rev mp)
apply (erule ds lowe.induct, force)
apply (drule tac [4] DS3 msg in parts spies)
apply (auto)
done
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5.6 Proving Confidentiality Theorems

For any key-distribution protocol, the confidentiality of session keys is always
crucial. To prove the secrecy of session keys, some required lemmas are proved in
advance. A typical such lemma is known as the session key compromise theorem.

5.6.1 Session Key Compromise Theorem

Paulson’s session key compromise theorem [26] expresses that the loss of a ses-
sion key does not compromise the other session keys. To be specific, the theorem
states that if a session key K can be extracted from another session key K ′ and
past messages on traffic, then either K and K ′ are equivalent, or K can be
analyzed from past messages without K ′. The theorem is denoted in the form

K ∈ analz ({K ′} ∪ (spies evs)) ⇐⇒
K = K ′ ∨ Key K ∈ analz (spies evs).

To prove this session key compromise theorem, the lemma in a generalized form
has to be proved inductively. The general lemma states that if a session key K
can be obtained by analyzing a set KK of session keys and past traffic, then
either K is already in the set KK, or K can be analyzed from past traffic alone.

K ∈ analz (KK ∪ (spies evs)) ⇐⇒
K ∈ KK ∨ Key K ∈ analz (spies evs)

This general lemma is specified and proved by induction as follows.

lemma analz image freshK:
"evs ∈ ds lowe ==>

∀ K KK. KK ⊆ - (range shrK) -->
(Key K ∈ analz (Key‘KK ∪ (spies evs))) =
(K ∈ KK ∨ Key K ∈ analz (spies evs))"

apply (erule ds lowe.induct)
apply (drule tac [8] Says Server message form)
apply (erule tac [5] Says S message form [THEN disjE])
apply (analz freshK, spy analz)
apply (blast+)
done
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The proof is not such simple because confidentiality lemmas are stated in terms
of the operator analz which does not have rich and convenient rewriting rules.
However, two specialized methods can be applied in this proof. The method
analz_freshK is specialized for proving session key compromise theoroms, and
the method spy_analz is specialized for proving the Fake case when analz is
involved [1]. The lemma Says_S_message_form has to be proved previously.
Its proof is omitted here. The full proof script is included in Appendix A.

With the above lemma, the session key compromise theorem can be proved
easily. The specification and proof is shown below.

lemma analz insert freshK:
"[| evs ∈ ds lowe; KAB /∈ range shrK |]
==> (Key K ∈ analz (insert (Key KAB) (spies evs))) =

(K = KAB ∨ Key K ∈ analz (spies evs))"

apply (simp only: analz image freshK analz image freshK simps)
done

Since Lowe’s modified Denning-Sacco shared-key protocol never uses a session
key to encrypt other session keys, the loss of a session key will not compromise
other session keys. The session key compromise theorem confirms this point,
and it helps in proving the session key secrecy theorem.

5.6.2 Session Key Secrecy Theorem

Paulson’s session key secrecy theorem [26] indicates that if the two participants
are uncompromised agents, then the session key issued by the server remains
secret to the spy, provided that the session key has not been accidentally leaked
by any Oops events. In other words, the protocol steps never disclose the session
key to the spy.

In particular, the session key secrecy theorem of our model for Lowe’s modi-
fied Denning-Sacco shared-key protocol is subject to the following conditions:

• The trace evs belongs too the model ds lowe.

• A and B are not compromised agents.

• The server has sent an instance of protocol step (2) that issued the session
key K, namely the following event has occurred on trace evs:
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Says Server A( Crypt ( shrK A){| Agent B, Key K, Number Tk,
Crypt ( shrK B){| Key K, Agent A, Number Tk|} |} ).

• The session key is not expired at current time. (Since the Oops rule only
reveals expired session keys, the freshness of session key K can prevent
accidental loss of K.)

If the above assumptions hold, the theorem concludes the secrecy of session key
K to the spy:

Key K /∈ analz (spies evs).

This session key secrecy theorem is formalized as follows.

lemma secrecy lemma:
"[| Says Server A (Crypt (shrK A) {| Agent B, Key K, Number Tk,

Crypt (shrK B) {| Key K, Agent A, Number Tk |}|})
∈ set evs;

A /∈ bad; B /∈ bad; evs ∈ ds lowe |]
==> ~ Expired Tk evs -->

Key K /∈ analz (spies evs)"

Although it is not in the standard form of a session key secrecy theorem, this
alternative form would be convenient for proving following theorems.

The proof for this theorem is long and thus omitted. It is proved by induc-
tion, and several aforementioned lemmas assist this proof, such as the session
key compromise theorem, authenticity lemmas and the unicity theorem. The
full proof script can be found in Appendix A.

Although the session key secrecy theorem constitutes the main confidential-
ity result, it is still not directly applicable by the agents [5]. The assumption
that the server has sent the key-distribution message can only be checked by
the server itself, but cannot be verified by the two participants A and B, since
an agent cannot verify the events that occurred on other peers of the network.
However, every agent participating the protocol running expects some available
guarantees to confirm the confidentiality of session keys. For this consideration,
further confidentiality lemmas are introduced for each agent based on the ses-
sion key secrecy theorem, and then be proved.
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Confidentiality to the Server

If A and B are not compromised, and a trace evs of model
ds lowe contains an event in the form

Says Server A (Crypt K ′{| Agent B, Key K, Number Tk, X |} )

where the timestamp Tk is not expired on evs, then the session key K is safe
from the spy, namely

Key K /∈ analz (spies evs).

This theorem expresses the confidentiality of the session key from the server’s
point of view. The event that the server sent such a message can be verified by
the server, and since the server knows Tk, its freshness can be checked by the
server as well. This theorem is specified and proved as follows. The proof is
simple with the help of the session key secrecy theorem.

lemma Confidentiality S:
"[| Says Server A (Crypt K’ {| Agent B, Key K, Number Tk, X |})

∈ set evs;
~ Expired Tk evs;
A /∈ bad; B /∈ bad; evs ∈ ds lowe |]

==> Key K /∈ analz (spies evs)"

apply (blast dest: Says Server message form secrecy lemma)
done

Confidentiality to A

If A and B are not compromised, and for a trace evs of model ds lowe, a message
in the form

Crypt ( shrK A){| Agent B, Key K, Number Tk, X|}

appears on traffic, and the timestamp Tk is not expired on evs, then the session
key K is safe from the spy, namely

Key K /∈ analz ( spies evs).

This theorem expresses the confidentiality of the session key from A’s point
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of view. Upon his reception of the second message of the protocol, A is able to
confirm the condition that such a message appears on traffic. And since A also
obtains Tk, he can verify if it is expired.

This theorem is specified and proved as follows. The proof is helped with
the confidentiality theorem for the server and also the authenticity lemma
A_trusts_K_by_DS2.

lemma Confidentiality A:
"[| Crypt (shrK A) {| Agent B, Key K, Number Tk, X |}

∈ parts (spies evs);
~ Expired Tk evs;
A /∈ bad; B /∈ bad; evs ∈ ds lowe|]

==> Key K /∈ analz (spies evs)"

apply (blast dest!: A trusts K by DS2 Confidentiality S)
done

Confidentiality to B

If A and B are not compromised, and for a trace evs of model ds lowe, a message
component in the form

Crypt ( shrK B) {| Key K, Agent A, Number Tk|}

appears on traffic, and the timestamp Tk is not expired on evs, then the session
key K is safe from the spy, namely

Key K /∈ analz ( spies evs).

This theorem expresses the confidentiality of the session key from B’s point
of view. Upon his reception of the third message of the protocol, B is able to
confirm the condition that such a message component appears on traffic. And
since B also obtains Tk, he can verify its freshness. This theorem is specified
and proved as follows. The proof is helped with the confidentiality theorem for
the server and also the authenticity lemma B_trusts_K_by_DS3.

lemma Confidentiality B:
"[| Crypt (shrK B) {| Key K, Agent A, Number Tk |}

∈ parts (spies evs);
~ Expired Tk evs;
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A /∈ bad; B /∈ bad; evs ∈ ds lowe|]
==> Key K /∈ analz (spies evs)"

apply (blast dest!: B trusts K by DS3 Confidentiality S)
done

5.7 Proving Authentication Theorems

Besides the confidentiality of session keys, it is also significant to verify the mu-
tual authentication of the protocol. For Lowe’s modified Denning-Sacco shared-
key protocol, the initiator A should gain the authentication of the responder B
upon his reception of the fourth message of the protocol, and similarly the fifth
message should authenticate A to B. In order to achieve the authentication, the
session key which encrypts these two messages is required to keep its secrecy.
Therefore, the conditions of the confidentiality theorems should be covered in
the corresponding authentication theorems as assumptions.

Authentication of B to A

If A and B are not compromised, and for a trace evs of model ds lowe, two
messages

Crypt (shrK A){| Agent B, Key K, Number Tk, X|} and
Crypt K(Nonce NB)

appear on traffic, and the timestamp Tk is not expired on evs, then the trace
evs contains

Says B A( Crypt K(Nonce NB)),

that is to say, the fourth message is really originated with B.

The above theorem stated the authentication of B to A. According to the
aforementioned confidentiality theorem, from A’s point of view, if the second
message of the protocol appears on traffic, and the timestamp Tk he received is
not expired, then A can confirm that the session key K is confidential, provided
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that A and B are not compromised. In this case, upon his reception of the
fourth message which is encrypted with the safe session key K, A confirms that
the message could only be originated with B. In this way, A gets the evidence
that it is B who is communicating with him and sharing the session key K with
him.

The authentication theorem of B to A is specified as follows. Its proof ap-
peals to the confidentiality theorem for A, and also the unicity theorem, the
authenticity lemmas and the forwarding lemmas. The proof is long and thus
omitted here.

lemma Authentication B to A:
"[| Crypt K (Nonce NB) ∈ parts (spies evs);

Crypt (shrK A) {| Agent B, Key K, Number Tk, X |}
∈ parts (spies evs);

~ Expired Tk evs;
A /∈ bad; B /∈ bad; evs ∈ ds lowe |]

==> Says B A (Crypt K (Nonce NB)) ∈ set evs"

Authentication of A to B

If A and B are not compromised, and for a trace evs of model ds lowe, two
messages

Crypt (shrK B){| Key K, Agent A, Number Tk|} and
Crypt K{| Nonce NB, Nonce NB|}

appear on traffic, and the timestamp Tk is not expired on evs, then the trace
evs contains

Says A B( Crypt K{| Nonce NB, Nonce NB|} ),

that is to say, the message of the last protocol step is really originated with
A.

This theorem stated the authentication of A to B, and it is reasoning from
B’s point of view. According to the confidentiality theorem for B, if the third
message of the protocol appears on traffic, and the timestamp Tk sealed in this
message is not expired, then B can confirm that the session key K he received
is safe from the spy, provided that A and B are not compromised. In this case,
upon his reception of the fourth message sealed under the safe session key K, B
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can verify the double nonce NB and thus confirm that the message could only
be originated with A. In this way, B can infer that A agrees on the session key
K to communicate with him.

The authentication theorem of A to B is specified as follows. Its proof ap-
peals to the confidentiality theorem for A, and as well the unicity theorem, the
authenticity lemmas and the forwarding lemmas. The proof is long and thus
omitted. The full proof script for this protocol can be found in Appendix A.

lemma Authentication A to B:
"[| Crypt K {| Nonce NB, Nonce NB |} ∈ parts (spies evs);

Crypt (shrK B) {| Key K, Agent A, Number Tk |}
∈ parts (spies evs);

~ Expired Tk evs;
A /∈ bad; B /∈ bad; evs ∈ ds lowe |]

==> Says A B (Crypt K {| Nonce NB, Nonce NB |}) ∈ set evs"

5.8 Updating Theorems and Proofs

As we have updated the protocol model with message reception and agent’s
knowledge (see section 4.5), the theorems and their proofs are also adjusted.

Similarly, each lemma containing Says events with uncertain sender in their
premises is updated with the corresponding Gets events. For our existing lem-
mas, only Says_S_message_form and a forwarding lemma DS3_msg_in_parts_spies
are applicable. We updates all the appearances of function spies in the the-
ory with knows Spy. This is applicable to several lemmas. Our updates of
the theory also include the adjustment of some theorem names. For example,
Says S message form is changed to Gets A message form, and DS3 msg in parts spies
is changed to DS3 msg in parts knows Spy. The change of names is not neces-
sary but can improve the readability.

Besides the above updates, because the protocol model is updated with message
reception, it is very important to prove some basic lemmas. The following two
lemmas are included in our new theory.

lemma Gets imp Says [dest!]:
"[| Gets B X ∈ set evs; evs ∈ ds lowe |]
==> ∃ A. Says A B X ∈ set evs"

by (erule rev mp, erule ds lowe.induct, auto)
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lemma Gets imp knows Spy:
"[| Gets B X ∈ set evs; evs ∈ ds lowe |]
==> X ∈ knows Spy evs"

by (blast dest!: Gets imp Says Says imp knows Spy)

declare Gets imp knows Spy [THEN analz.Inj, dest]

The lemmas express that if a trace evs of our model ds lowe contains the event
Gets B X, then there exists an agent A that the event Says A B X also appears
on trace evs, and the message X is known by the spy. These two lemmas are
necessary for protocol models with Gets events and have to be proved for each
protocol separately.

Since the model and theorems have been updated, the proof for theorems needs
slight modification, especially for the basic session key secrecy theorem and the
possibility property. The updated theory DS Lowe 2 containing modeling and
full proof script can be found in Appendix B.



Chapter 6

Conclusion

Summary

The thesis concerns formal verification of security protocols and focus on Paul-
son’s inductive approach [paulson1998iav]. We started with the review of cryp-
tographic protocols. Although there exists some other methods for hiding in-
formation, such as steganography [16], most security protocols employs cryptog-
raphy to protect data. In general, security protocols are expected to provide
confidentiality, integrity and authentication, which can be considered as the
most crucial security goals. However, security protocols may contain flaws, and
informal reasoning often failed to discover those potential flaws. Several formal
methods have been developed and demonstrated their success in protocol anal-
ysis. However, they also have limitations. If a protocol can pass the verification
by BAN logic [9], it may still contain errors. BAN logic is useful in reasoning
about freshness, but it does not attempt to prove secrecy [27]. Model Checking
is effective in finding some flaws. But since it only checks limit numbers of
states, it also cannot conclude the correctness of a protocol even if no attacks
are detected by model checking.

In the inductive approach, security protocols are formalized as inductive models,
and their security properties are verified by theorem proving. Several classical
protocols have been analyzed and verified using the inductive approach, such
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as Yahalom, Otway-Rees, BAN Kerberos and so forth. In this thesis, we ver-
ified Lowe’s modified Denning-Sacco shared-key protocol using the inductive
approach, which has not been shown in other literatures. We investigated the
inductive approach including its general principles and basic constituents. Since
the protocol we selected relies on timestamps, we also investigated the modelling
of timestamps [6]. We formalized the protocol using the inductive approach, and
discuss a couple of issues about the inductive model. Since it consists of all pos-
sible traces, the inductive model is unbounded. The inductive model is also very
permissive since it never forces events to take place. In general, an Oops event
is established to allow the leak of session keys by any means [28]. In particular,
for this time-based protocol, the loss of a session key is only allowed if it has
been expired. This makes the Oops rule less permissive but lower the agent’s
minimal trust [5] required by confidentiality and authentication theorems.

Based on the inductive model, expected security properties are analyzed and
then formalized as a number of theorems. Although we concerns confidential-
ity, integrity and authentication, several other security related theorems are
still required to be proved in advance, including reliability lemmas, regularity
lemmas, unicity theorem and so on. They can be useful in proving the crucial
security theorems. Authenticity guarantees, which assure the agent that the
session key is authentic and really originated with the server, are equivalent to
the security goals of integrity. And confidentiality and authentication theorems
are expressed separately from each agent’s point of view. We have completed
the proof of these theorems, and thus the protocol is formally verified using the
inductive approach.

For the sake of comparison, we also investigate Bella’s extension with mes-
sage reception and agent’s knowledge. In the original inductive approach, the
message reception is not explicitly expressed, and only the spy’s knowledge is
stated. The extension with message reception and agent’s knowledge has been
released with the distribution of Isabelle. And it enhances the inductive ap-
proach and prepares it for analyzing new hierarchies of protocols [5], such as
non-repudiation protocols and e-commerce protocols. We have updated our pro-
tocol model with this extension, and subsequently the theorems as well. The
proof also needs to be adjusted, and we have proved those updated theorems.
Our work demonstrates the proving of confidentiality and authentication for
Lowe’s modified Denning-Sacco shared-key protocol in both ways. The results
seem to be equivalent for this protocol.

We run Isabelle 2005 with proof general 3.7 [4] under Linux Fedora 6 envi-
ronment, on a PC with 2.6GHz Intel Pentium 4. The full proof script for the
original inductive model is executed in about 33 seconds. The runtime of proof
script is approximately 37 seconds for the updated model with message recep-
tion and agent’s knowledge.
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Conlusion

The initial goal of this thesis project is to investigate Paulson’s inductive ap-
proach, and apply this formal approach to a classical security protocols which
has not been formally modelled and verified in this way.

We reviewed the theoretical background about cryptographic protocols and their
security issues. We have investigated the inductive approach including the orig-
inal version and its further extensions with modeling of timestamps, message
reception and agent’s knowledge. We have presented principles and basic con-
stituents of the inductive approach and its extensions.

Lowe’s modified Denning-Sacco share-key protocol has been chose, which em-
ploys both nonce and timestamps to give evidences of freshness. We have formal-
ized this protocol using the inductive approach, and some issues on the inductive
model have been discussed. We have analyzed expected security properties for
this protocol model and then verified them with support by the theorem prover
Isabelle. We have completed the proof of this theory, and thus this protocol has
been formally verified using the inductive approach. Since the crucial security
theorems have been proven, we may conclude this protocol preserves the corre-
sponding security properties.

For the sake of comparison, we have updated the inductive model with the
extension of message reception and agent’s knowledge. Subsequently, the theo-
rems have also been updated in this way. And we have completed the proof of
the new theory as well.

As described, we may conclude that this thesis project has achieved its goals.
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Appendix A

Verifying Lowe’s
Denning-Sacco Shared-key

Protocol

This is our Isabelle/HOL theory for modelling and verifying Lowe’s modified
Denning-Sacco shared-key Protocol. This file named DS_Lowe.thy should be
placed at $ISABELLE HOME/src/HOL/Auth in order to process this theory.
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theory DS_Lowe imports Public begin

syntax
CT :: "event list=>nat"
Expired :: "[nat, event list] => bool"

consts
SesKeyLife :: nat

specification (SesKeyLife)
SesKeyLife_LB [iff]: "3 \<le> SesKeyLife"
by blast

translations
"CT" == "length "
"Expired T evs" == "SesKeyLife + T < CT evs"

consts ds_lowe :: "event list set"
inductive "ds_lowe"
intros

Nil: "[] \<in> ds_lowe"

Fake: "[| evsf \<in> ds_lowe; X \<in> synth (analz (spies evsf)) |]
==> Says Spy B X # evsf \<in> ds_lowe"

DS1: "[| evs1 \<in> ds_lowe |]
==> Says A Server {| Agent A, Agent B |} # evs1 \<in> ds_lowe"

DS2: "[| evs2 \<in> ds_lowe;
Key KAB \<notin> used evs2; KAB \<in> symKeys;
Says A’ Server {| Agent A, Agent B |} \<in> set evs2 |]

==> Says Server A
(Crypt (shrK A)

{| Agent B, Key KAB, Number (CT evs2),
(Crypt (shrK B)

{| Key KAB, Agent A, Number (CT evs2) |}) |})
# evs2 \<in> ds_lowe"

DS3: "[| evs3 \<in> ds_lowe; A \<noteq> Server;
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Says S A (Crypt (shrK A) {| Agent B, Key K, Number Tk, X |})
\<in> set evs3;

Says A Server {| Agent A, Agent B |} \<in> set evs3;
~ Expired Tk evs3 |]

==> Says A B X # evs3 \<in> ds_lowe"

DS4: "[| evs4 \<in> ds_lowe;
Nonce NB \<notin> used evs4; K \<in> symKeys;
Says A’ B (Crypt (shrK B) {| Key K, Agent A, Number Tk |})

\<in> set evs4;
~ Expired Tk evs4 |]

==> Says B A (Crypt K (Nonce NB)) # evs4 \<in> ds_lowe"

DS5: "[| evs5 \<in> ds_lowe; K \<in> symKeys;
Says B’ A (Crypt K (Nonce NB)) \<in> set evs5;
Says S A (Crypt (shrK A) {| Agent B, Key K, Number Tk, X |})

\<in> set evs5 |]
==> Says A B (Crypt K {| Nonce NB, Nonce NB |})

# evs5 \<in> ds_lowe"

Oops: "[| evso \<in> ds_lowe;
Says Server A (Crypt (shrK A) {| Agent B, Key K, Number Tk, X |})

\<in> set evso;
Expired Tk evso |]

==> Notes Spy {| Number Tk, Key K |} # evso \<in> ds_lowe"

declare Says_imp_knows_Spy [THEN parts.Inj, dest]
declare parts.Body [dest]
declare Fake_parts_insert_in_Un [dest]
declare analz_into_parts [dest]
declare image_eq_UN [simp]

(*Possibility Property*)
lemma "[| A \<noteq> Server; Key K \<notin> used []; K \<in> symKeys |]

==> \<exists>N. \<exists>evs \<in> ds_lowe.
Says A B (Crypt K {| Nonce N, Nonce N |}) \<in> set evs"

apply (cut_tac SesKeyLife_LB)
apply (intro exI bexI)
apply (rule_tac [2] ds_lowe.Nil [THEN ds_lowe.DS1,

THEN ds_lowe.DS2, THEN ds_lowe.DS3,
THEN ds_lowe.DS4, THEN ds_lowe.DS5])



68 Appendix A

apply (possibility, simp add: used_Cons)
done

(*Forwarding lemmas*)

lemma DS3_msg_in_parts_spies:
"Says S A (Crypt KA {| B, K, Timestamp, X |}) \<in> set evs
==> X \<in> parts (spies evs)"

by blast

lemma Oops_parts_spies:
"Says Server A (Crypt (shrK A) {| B, K, Timestamp, X |}) \<in> set evs
==> K \<in> parts (spies evs)"

by blast

(*Regularity lemmas*)

lemma Spy_see_shrK [simp]:
"evs \<in> ds_lowe ==>

(Key (shrK A) \<in> parts (spies evs)) = (A \<in> bad)"

apply (erule ds_lowe.induct, force)
apply (drule_tac [4] DS3_msg_in_parts_spies)
apply simp_all
apply blast+
done

lemma Spy_analz_shrK [simp]:
"evs \<in> ds_lowe ==>

(Key (shrK A) \<in> analz (spies evs)) = (A \<in> bad)"
by auto

(*Nobody can have used non-existent keys!*)
lemma new_keys_not_used [simp]:

"[|Key K \<notin> used evs; K \<in> symKeys; evs \<in> ds_lowe|]
==> K \<notin> keysFor (parts (spies evs))"

apply (erule rev_mp)
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apply (erule ds_lowe.induct, force)
apply (drule_tac [4] DS3_msg_in_parts_spies)
apply simp_all
(* Fake *)
apply (force dest!: keysFor_parts_insert)
(* DS2, DS4, DS5 *)
apply blast+
done

(*Server only send well-formed messages*)
lemma Says_Server_message_form:

"[| Says Server A (Crypt K’ {| Agent B, Key K, Number Tk, X |})
\<in> set evs; evs \<in> ds_lowe |]

==> K \<notin> range shrK &
X = (Crypt (shrK B) {| Key K, Agent A, Number Tk |}) &
K’ = shrK A"

by (erule rev_mp, erule ds_lowe.induct, auto)

(*Authenticity Lemmas*)

lemma A_trusts_K_by_DS2:
"[| Crypt (shrK A) {| Agent B, Key K, Number Tk, X |}

\<in> parts (spies evs); A \<notin> bad; evs \<in> ds_lowe |]
==> Says Server A (Crypt (shrK A) {| Agent B, Key K, Number Tk, X |})

\<in> set evs"

apply (erule rev_mp)
apply (erule ds_lowe.induct, force)
apply (drule_tac [4] DS3_msg_in_parts_spies, auto)
done

lemma B_trusts_K_by_DS3:
"[| Crypt (shrK B) {| Key K, Agent A, Number Tk |}

\<in> parts (spies evs); B \<notin> bad; evs \<in> ds_lowe |]
==> Says Server A (Crypt (shrK A) {| Agent B, Key K, Number Tk,

Crypt (shrK B) {| Key K, Agent A, Number Tk|}|}) \<in> set evs"

apply (erule rev_mp)
apply (erule ds_lowe.induct, force)
apply (drule_tac [4] DS3_msg_in_parts_spies, auto)
done
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lemma cert_A_form:
"[| Crypt (shrK A) {| Agent B, Key K, Number Tk, X |}

\<in> parts (spies evs); A \<notin> bad; evs \<in> ds_lowe |]
==> K \<notin> range shrK &

X = (Crypt (shrK B) {| Key K, Agent A, Number Tk |})"
by (blast dest!: A_trusts_K_by_DS2 Says_Server_message_form)

lemma Says_S_message_form:
"[| Says S A (Crypt (shrK A) {| Agent B, Key K, Number Tk, X |})

\<in> set evs; evs \<in> ds_lowe |]
==> (K \<notin> range shrK

& X = (Crypt (shrK B) {| Key K, Agent A, Number Tk |}))
| X \<in> analz (spies evs)"

by (blast dest: Says_imp_knows_Spy analz_shrK_Decrypt cert_A_form analz.Inj)

(*Unicity Theorem*)
lemma unique_session_keys:

"[| Says Server A (Crypt (shrK A) {| Agent B, Key K, Number Tk, X |})
\<in> set evs;

Says Server A’ (Crypt (shrK A’) {| Agent B’, Key K, Number Tk’, X’ |})
\<in> set evs;

evs \<in> ds_lowe |]
==> A=A’ & B=B’ & Tk=Tk’ & X = X’"

apply (erule rev_mp, erule rev_mp, erule ds_lowe.induct)
apply simp_all
(* DS2, DS3 *)
apply blast+
done

(***************Confidentiality******************)

lemma analz_image_freshK [rule_format (no_asm)]:
"evs \<in> ds_lowe ==>

\<forall>K KK. KK \<subseteq> - (range shrK) -->
(Key K \<in> analz (Key‘KK Un (spies evs))) =
(K \<in> KK | Key K \<in> analz (spies evs))"
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apply (erule ds_lowe.induct)
apply (drule_tac [8] Says_Server_message_form)
apply (erule_tac [5] Says_S_message_form [THEN disjE])
apply (analz_freshK)
apply (spy_analz)
(* DS2, DS3 *)
apply blast+;
done

(*Session Key Compromise Theorem*)
lemma analz_insert_freshK:

"[| evs \<in> ds_lowe; KAB \<notin> range shrK |]
==> (Key K \<in> analz (insert (Key KAB) (spies evs))) =

(K = KAB | Key K \<in> analz (spies evs))"
apply (simp only: analz_image_freshK analz_image_freshK_simps)
done

(* Session Key Secrecy Theorem *)
lemma secrecy_lemma:

"[| Says Server A (Crypt (shrK A) {| Agent B, Key K, Number Tk,
Crypt (shrK B) {| Key K, Agent A, Number Tk |} |}) \<in> set evs;

A \<notin> bad; B \<notin> bad; evs \<in> ds_lowe |]
==> ~ Expired Tk evs -->

Key K \<notin> analz (spies evs)"

apply (erule rev_mp)
apply (erule ds_lowe.induct, force)
apply (frule_tac [7] Says_Server_message_form)
apply (frule_tac [4] Says_S_message_form)
apply (erule_tac [5] disjE)
apply (simp_all add: analz_insert_eq analz_insert_freshK

less_SucI pushes split_ifs)
apply (spy_analz)
(* DS2 *)
apply blast
prefer 3
(* Oops *)
apply (blast dest: unique_session_keys intro: less_SucI)
prefer 2
(* DS3 spy-subcase *)
apply (blast dest: unique_session_keys intro: less_SucI)
(* DS3 server-subcase *)
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apply auto
apply (blast dest: A_trusts_K_by_DS2 Crypt_Spy_analz_bad analz.Inj

Says_imp_spies unique_session_keys
intro: less_SucI)

done

(* Confidentiality of K from server’s view *)
lemma Confidentiality_S:

"[| Says Server A (Crypt K’ {| Agent B, Key K, Number Tk, X |})
\<in> set evs;

~ Expired Tk evs;
A \<notin> bad; B \<notin> bad; evs \<in> ds_lowe |]

==> Key K \<notin> analz (spies evs)"
apply (blast dest: Says_Server_message_form secrecy_lemma)
done

(* Confidentiality of K from A’s view *)
lemma Confidentiality_A:

"[| Crypt (shrK A) {| Agent B, Key K, Number Tk, X |}
\<in> parts (spies evs);

~ Expired Tk evs;
A \<notin> bad; B \<notin> bad; evs \<in> ds_lowe|]

==> Key K \<notin> analz (spies evs)"
apply (blast dest!: A_trusts_K_by_DS2 Confidentiality_S)
done

(* Confidentiality of K from B’s view *)
lemma Confidentiality_B:

"[| Crypt (shrK B) {| Key K, Agent A, Number Tk|}
\<in> parts (spies evs);

~ Expired Tk evs;
A \<notin> bad; B \<notin> bad; evs \<in> ds_lowe|]

==> Key K \<notin> analz (spies evs)"
apply (blast dest!: B_trusts_K_by_DS3 Confidentiality_S)
done

(**************Authentication***************)
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lemma lemma_B_to_A [rule_format]:
"evs \<in> ds_lowe ==>

Key K \<notin> analz (spies evs) -->
Says Server A (Crypt (shrK A) {| Agent B, Key K, Number Tk, X |})

\<in> set evs -->
Crypt K (Nonce NB) \<in> parts (spies evs) -->
Says B A (Crypt K (Nonce NB)) \<in> set evs"

apply (erule ds_lowe.induct, force)
apply (drule_tac [4] DS3_msg_in_parts_spies)
apply (analz_mono_contra)
apply simp_all
(* Fake *)
apply blast
(* DS2 *)
apply (force dest!: Crypt_imp_keysFor)
(* DS3 *)
apply blast
(* DS4 *)
apply (blast dest: B_trusts_K_by_DS3

Says_imp_knows_Spy [THEN analz.Inj]
Crypt_Spy_analz_bad unique_session_keys)

done

(* Authentication for B, from A’s view *)
lemma Authentication_B_to_A:

"[| Crypt K (Nonce NB) \<in> parts (spies evs);
Crypt (shrK A) {| Agent B, Key K, Number Tk, X |}

\<in> parts (spies evs);
~ Expired Tk evs;
A \<notin> bad; B \<notin> bad; evs \<in> ds_lowe |]

==> Says B A (Crypt K (Nonce NB)) \<in> set evs"
apply (blast intro: lemma_B_to_A

dest: A_trusts_K_by_DS2 Confidentiality_S)
done

lemma lemma_A_to_B [rule_format]:
"[| B \<notin> bad; evs \<in> ds_lowe |] ==>

Key K \<notin> analz (spies evs) -->
Says Server A
(Crypt (shrK A) {| Agent B, Key K, Number Tk,

Crypt (shrK B) {| Key K, Agent A, Number Tk |} |})
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\<in> set evs -->
Crypt K {| Nonce NB, Nonce NB |} \<in> parts (spies evs) -->
Says A B (Crypt K {| Nonce NB, Nonce NB |}) \<in> set evs"

apply (erule ds_lowe.induct, force)
apply (drule_tac [4] DS3_msg_in_parts_spies)
apply (analz_mono_contra)
apply simp_all
(* Fake *)
apply blast
(* DS2 *)
apply (blast dest!: new_keys_not_used Crypt_imp_keysFor)
(* DS3 *)
apply (blast dest!: cert_A_form)
(* DS5 *)
apply (blast dest!: A_trusts_K_by_DS2

dest: Says_imp_knows_Spy [THEN analz.Inj]
unique_session_keys Crypt_Spy_analz_bad)

done

(* Authentication of A, from B’s view *)
lemma Authentication_A_to_B:

"[| Crypt K {| Nonce NB, Nonce NB |} \<in> parts (spies evs);
Crypt (shrK B) {| Key K, Agent A, Number Tk |}

\<in> parts (spies evs);
~ Expired Tk evs;
A \<notin> bad; B \<notin> bad; evs \<in> ds_lowe |]

==> Says A B (Crypt K {| Nonce NB, Nonce NB |}) \<in> set evs"
apply (blast intro: lemma_A_to_B

dest: B_trusts_K_by_DS3 Confidentiality_S)
done

end



Appendix B

Updated Model and
Theorems with Message

Reception

This is our Isabelle/HOL theory for modelling and verifying Lowe’s modified
Denning-Sacco shared-key Protocol, which has been updated with Bella’s exten-
sion of message reception and agent’s knowledge [5]. This file named DS_Lowe_2.thy
should be placed at $ISABELLE HOME/src/HOL/Auth in order to process this the-
ory.
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theory DS_Lowe_2 imports Public begin

syntax
CT :: "event list=>nat"
Expired :: "[nat, event list] => bool"

consts
SesKeyLife :: nat

specification (SesKeyLife)
SesKeyLife_LB [iff]: "6 \<le> SesKeyLife"
by blast

translations
"CT" == "length "
"Expired T evs" == "SesKeyLife + T < CT evs"

consts ds_lowe :: "event list set"
inductive "ds_lowe"
intros

Nil: "[] \<in> ds_lowe"

Fake: "[| evsf \<in> ds_lowe;
X \<in> synth (analz (knows Spy evsf)) |]

==> Says Spy B X # evsf \<in> ds_lowe"

Reception: "[| evsr \<in> ds_lowe; Says A B X \<in> set evsr |]
==> Gets B X # evsr \<in> ds_lowe"

DS1: "[| evs1 \<in> ds_lowe |]
==> Says A Server {| Agent A, Agent B |} # evs1 \<in> ds_lowe"

DS2: "[| evs2 \<in> ds_lowe;
Key KAB \<notin> used evs2; KAB \<in> symKeys;
Gets Server {| Agent A, Agent B |} \<in> set evs2 |]

==> Says Server A
(Crypt (shrK A)
{| Agent B, Key KAB, Number (CT evs2),
(Crypt (shrK B) {| Key KAB, Agent A, Number (CT evs2)|})|})
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# evs2 \<in> ds_lowe"

DS3: "[| evs3 \<in> ds_lowe; A \<noteq> Server;
Gets A (Crypt (shrK A) {| Agent B, Key K, Number Tk, X |})

\<in> set evs3;
Says A Server {| Agent A, Agent B |} \<in> set evs3;
~ Expired Tk evs3 |]

==> Says A B X # evs3 \<in> ds_lowe"

DS4: "[| evs4 \<in> ds_lowe;
Nonce NB \<notin> used evs4; K \<in> symKeys;
Gets B (Crypt (shrK B) {| Key K, Agent A, Number Tk |})

\<in> set evs4;
~ Expired Tk evs4 |]

==> Says B A (Crypt K (Nonce NB)) # evs4 \<in> ds_lowe"

DS5: "[| evs5 \<in> ds_lowe; K \<in> symKeys;
Gets A (Crypt K (Nonce NB)) \<in> set evs5;
Gets A (Crypt (shrK A) {| Agent B, Key K, Number Tk, X |})

\<in> set evs5 |]
==> Says A B (Crypt K {| Nonce NB, Nonce NB |})

# evs5 \<in> ds_lowe"

Oops: "[| evso \<in> ds_lowe;
Says Server A (Crypt (shrK A) {| Agent B, Key K, Number Tk, X |})

\<in> set evso;
Expired Tk evso |]

==> Notes Spy {| Number Tk, Key K |} # evso \<in> ds_lowe"

declare Says_imp_knows_Spy [THEN parts.Inj, dest]
declare parts.Body [dest]
declare Fake_parts_insert_in_Un [dest]
declare analz_into_parts [dest]
declare image_eq_UN [simp]

(*Possibility Property*)
lemma "[| A \<noteq> Server; Key K \<notin> used []; K \<in> symKeys |]

==> \<exists>N. \<exists>evs \<in> ds_lowe.
Says A B (Crypt K {| Nonce N, Nonce N |}) \<in> set evs"

apply (cut_tac SesKeyLife_LB)
apply (intro exI bexI)
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apply (rule_tac [2] ds_lowe.Nil
[THEN ds_lowe.DS1, THEN ds_lowe.Reception,
THEN ds_lowe.DS2, THEN ds_lowe.Reception,
THEN ds_lowe.DS3, THEN ds_lowe.Reception,
THEN ds_lowe.DS4, THEN ds_lowe.Reception,
THEN ds_lowe.DS5])

apply (possibility, simp add: used_Cons)
done

(*Necessary lemmas for Gets*)

lemma Gets_imp_Says [dest!]:
"[| Gets B X \<in> set evs; evs \<in> ds_lowe |]
==> \<exists>A. Says A B X \<in> set evs"

by (erule rev_mp, erule ds_lowe.induct, auto)

lemma Gets_imp_knows_Spy:
"[| Gets B X \<in> set evs; evs \<in> ds_lowe |]
==> X \<in> knows Spy evs"

by (blast dest!: Gets_imp_Says Says_imp_knows_Spy)

declare Gets_imp_knows_Spy [THEN analz.Inj, dest]

(*Forwarding lemmas*)

lemma DS3_msg_in_parts_knows_Spy:
"[| Gets A (Crypt KA {| B, K, Timestamp, X |}) \<in> set evs;

evs \<in> ds_lowe |]
==> X \<in> parts (knows Spy evs)"

by blast

lemma Oops_parts_knows_Spy:
"Says Server A (Crypt (shrK A) {| B, K, Timestamp, X |}) \<in> set evs
==> K \<in> parts (knows Spy evs)"

by blast

(*Regularity lemmas*)

lemma Spy_see_shrK [simp]:
"evs \<in> ds_lowe ==>

(Key (shrK A) \<in> parts (knows Spy evs)) = (A \<in> bad)"
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apply (erule ds_lowe.induct, force)
apply (drule_tac [5] DS3_msg_in_parts_knows_Spy)
apply simp_all
apply blast+
done

lemma Spy_analz_shrK [simp]:
"evs \<in> ds_lowe ==>

(Key (shrK A) \<in> analz (knows Spy evs)) = (A \<in> bad)"
by auto

(*Nobody can have used non-existent keys!*)
lemma new_keys_not_used [simp]:

"[|Key K \<notin> used evs; K \<in> symKeys; evs \<in> ds_lowe|]
==> K \<notin> keysFor (parts (knows Spy evs))"

apply (erule rev_mp)
apply (erule ds_lowe.induct, force)
apply (drule_tac [5] DS3_msg_in_parts_knows_Spy)
apply (simp_all)
(* Fake *)
apply (force dest!: keysFor_parts_insert)
(* DS2, DS4, DS5 *)
apply (blast+)
done

(*Server only send well-formed messages*)
lemma Says_Server_message_form:

"[| Says Server A (Crypt K’ {| Agent B, Key K, Number Tk, X |})
\<in> set evs; evs \<in> ds_lowe |]

==> K \<notin> range shrK &
X = (Crypt (shrK B) {| Key K, Agent A, Number Tk |}) &
K’ = shrK A"

by (erule rev_mp, erule ds_lowe.induct, auto)

(*Authenticity Lemmas*)
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lemma A_trusts_K_by_DS2:
"[| Crypt (shrK A) {| Agent B, Key K, Number Tk, X |}

\<in> parts (knows Spy evs);
A \<notin> bad; evs \<in> ds_lowe |]

==> Says Server A (Crypt (shrK A) {| Agent B, Key K, Number Tk, X |})
\<in> set evs"

apply (erule rev_mp)
apply (erule ds_lowe.induct, force)
apply (drule_tac [5] DS3_msg_in_parts_knows_Spy)
apply (auto)
done

lemma B_trusts_K_by_DS3:
"[| Crypt (shrK B) {| Key K, Agent A, Number Tk |}

\<in> parts (knows Spy evs);
B \<notin> bad; evs \<in> ds_lowe |]

==> Says Server A (Crypt (shrK A) {| Agent B, Key K, Number Tk,
Crypt (shrK B) {| Key K, Agent A, Number Tk|}|}) \<in> set evs"

apply (erule rev_mp)
apply (erule ds_lowe.induct, force)
apply (drule_tac [5] DS3_msg_in_parts_knows_Spy, auto)
done

lemma cert_A_form:
"[| Crypt (shrK A) {| Agent B, Key K, Number Tk, X |}

\<in> parts (knows Spy evs);
A \<notin> bad; evs \<in> ds_lowe |]

==> K \<notin> range shrK &
X = (Crypt (shrK B) {| Key K, Agent A, Number Tk |})"

by (blast dest!: A_trusts_K_by_DS2 Says_Server_message_form)

lemma Gets_A_message_form:
"[| Gets A (Crypt (shrK A) {| Agent B, Key K, Number Tk, X |})

\<in> set evs; evs \<in> ds_lowe |]
==> (K \<notin> range shrK

& X = (Crypt (shrK B) {| Key K, Agent A, Number Tk |}))
| X \<in> analz (knows Spy evs)"

by (blast dest: Says_imp_knows_Spy analz_shrK_Decrypt cert_A_form analz.Inj)
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(*Unicity Lemma*)
lemma unique_session_keys:

"[| Says Server A (Crypt (shrK A) {| Agent B, Key K, Number Tk, X |})
\<in> set evs;

Says Server A’ (Crypt (shrK A’) {| Agent B’, Key K, Number Tk’, X’ |})
\<in> set evs;

evs \<in> ds_lowe |]
==> A=A’ & B=B’ & Tk=Tk’ & X = X’"

apply (erule rev_mp, erule rev_mp, erule ds_lowe.induct)
apply simp_all
(* DS2, DS3 *)
apply blast+
done

(**********************Confidentiality*****************)

lemma analz_image_freshK [rule_format (no_asm)]:
"evs \<in> ds_lowe ==>

\<forall>K KK. KK \<subseteq> - (range shrK) -->
(Key K \<in> analz (Key‘KK Un (knows Spy evs))) =
(K \<in> KK | Key K \<in> analz (knows Spy evs))"

apply (erule ds_lowe.induct)
apply (drule_tac [9] Says_Server_message_form)
apply (erule_tac [6] Gets_A_message_form [THEN disjE])
apply (analz_freshK)
apply (spy_analz)
(* DS2, DS3 *)
apply blast+;
done

(*Session Key Compromise Theorem*)
lemma analz_insert_freshK:

"[| evs \<in> ds_lowe; KAB \<notin> range shrK |]
==> (Key K \<in> analz (insert (Key KAB) (knows Spy evs))) =

(K = KAB | Key K \<in> analz (knows Spy evs))"
apply (simp only: analz_image_freshK analz_image_freshK_simps)
done
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(* Session Key Secrecy Theorem *)
lemma secrecy_lemma:

"[| Says Server A (Crypt (shrK A) {| Agent B, Key K, Number Tk,
Crypt (shrK B) {| Key K, Agent A, Number Tk |} |}) \<in> set evs;

A \<notin> bad; B \<notin> bad; evs \<in> ds_lowe |]
==> ~ Expired Tk evs -->

Key K \<notin> analz (knows Spy evs)"

apply (erule rev_mp)
apply (erule ds_lowe.induct, force)
apply (frule_tac [8] Says_Server_message_form)
apply (frule_tac [5] Gets_A_message_form)
apply (erule_tac [6] disjE)
apply (simp_all add: analz_insert_eq analz_insert_freshK

less_SucI pushes split_ifs)
apply (spy_analz)
(* DS2 *)
apply blast
prefer 3
(* Oops *)
apply (blast dest: unique_session_keys intro: less_SucI)
prefer 2
(* DS3 spy-subcase *)
apply (blast dest: unique_session_keys intro: less_SucI)
(* DS3 server-subcase *)
apply (drule_tac Gets_imp_Says)
apply auto
apply (blast dest: A_trusts_K_by_DS2 Crypt_Spy_analz_bad analz.Inj

Says_imp_knows_Spy unique_session_keys
intro: less_SucI)

done

(* Confidentiality of K from server’s view *)
lemma Confidentiality_S:

"[| Says Server A (Crypt K’ {| Agent B, Key K, Number Tk, X |})
\<in> set evs;

~ Expired Tk evs;
A \<notin> bad; B \<notin> bad; evs \<in> ds_lowe |]

==> Key K \<notin> analz (knows Spy evs)"
apply (blast dest: Says_Server_message_form secrecy_lemma)
done
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(* Confidentiality of K from A’s view *)
lemma Confidentiality_A:

"[| Crypt (shrK A) {| Agent B, Key K, Number Tk, X |}
\<in> parts (knows Spy evs);

~ Expired Tk evs;
A \<notin> bad; B \<notin> bad; evs \<in> ds_lowe|]

==> Key K \<notin> analz (knows Spy evs)"
apply (blast dest!: A_trusts_K_by_DS2 Confidentiality_S)
done

(* Confidentiality of K from B’s view *)
lemma Confidentiality_B:

"[| Crypt (shrK B) {| Key K, Agent A, Number Tk|}
\<in> parts (knows Spy evs);

~ Expired Tk evs;
A \<notin> bad; B \<notin> bad; evs \<in> ds_lowe|]

==> Key K \<notin> analz (knows Spy evs)"
apply (blast dest!: B_trusts_K_by_DS3 Confidentiality_S)
done

(***************Authentication*******************)

lemma lemma_B_to_A [rule_format]:
"evs \<in> ds_lowe ==>

Key K \<notin> analz (knows Spy evs) -->
Says Server A (Crypt (shrK A) {| Agent B, Key K, Number Tk, X |})

\<in> set evs -->
Crypt K (Nonce NB) \<in> parts (knows Spy evs) -->
Says B A (Crypt K (Nonce NB)) \<in> set evs"

apply (erule ds_lowe.induct, force)
apply (drule_tac [5] DS3_msg_in_parts_knows_Spy)
apply (analz_mono_contra)
apply simp_all
(* Fake *)
apply blast
(* DS2 *)
apply (force dest!: Crypt_imp_keysFor)
(* DS3 *)
apply blast
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(* DS4 *)
apply (blast dest: B_trusts_K_by_DS3

Says_imp_knows_Spy [THEN analz.Inj]
Crypt_Spy_analz_bad unique_session_keys)

done

(* Authentication for B, from A’s view *)
lemma Authentication_B_to_A:

"[| Crypt K (Nonce NB) \<in> parts (knows Spy evs);
Crypt (shrK A) {| Agent B, Key K, Number Tk, X |}

\<in> parts (knows Spy evs);
~ Expired Tk evs;
A \<notin> bad; B \<notin> bad; evs \<in> ds_lowe |]

==> Says B A (Crypt K (Nonce NB)) \<in> set evs"
apply (blast intro: lemma_B_to_A

dest: A_trusts_K_by_DS2 Confidentiality_S)
done

lemma lemma_A_to_B [rule_format]:
"[| B \<notin> bad; evs \<in> ds_lowe |] ==>

Key K \<notin> analz (knows Spy evs) -->
Says Server A

(Crypt (shrK A) {| Agent B, Key K, Number Tk,
Crypt (shrK B) {| Key K, Agent A, Number Tk |} |})

\<in> set evs -->
Crypt K {| Nonce NB, Nonce NB |} \<in> parts (knows Spy evs) -->
Says A B (Crypt K {| Nonce NB, Nonce NB |}) \<in> set evs"

apply (erule ds_lowe.induct, force)
apply (drule_tac [5] DS3_msg_in_parts_knows_Spy)
apply (analz_mono_contra)
apply simp_all
(* Fake *)
apply blast
(* DS2 *)
apply (blast dest!: new_keys_not_used Crypt_imp_keysFor)
(* DS3 *)
apply (blast dest!: cert_A_form)
(* DS5 *)
apply (blast dest!: A_trusts_K_by_DS2

dest: Says_imp_knows_Spy [THEN analz.Inj]
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unique_session_keys Crypt_Spy_analz_bad)
done

(* Authentication of A, from B’s view *)
lemma Authentication_A_to_B:

"[| Crypt K {| Nonce NB, Nonce NB |} \<in> parts (knows Spy evs);
Crypt (shrK B) {| Key K, Agent A, Number Tk |}

\<in> parts (knows Spy evs);
~ Expired Tk evs;
A \<notin> bad; B \<notin> bad; evs \<in> ds_lowe |]

==> Says A B (Crypt K {| Nonce NB, Nonce NB |}) \<in> set evs"
apply (blast intro: lemma_A_to_B

dest: B_trusts_K_by_DS3 Confidentiality_S)
done

end
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