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VERILOG FUNDAMENTALS

HDLs HISTORY
HOW FPGA & VERILOG ARE 

RELATED
CODING IN VERILOG



HDLs HISTORY 
HDL – HARDWARE DESCRIPTION LANGUAGE
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MUX 4 : GATE LEVEL DESIGNING
modulemux4(input a,b,c,d, input[1:0] sel, output out);
wire[1:0] sel_b; 
not not0( sel_b[0], sel[0] ); 
not not1( sel_b[1], sel[1] ); 
wire n0, n1, n2, n3; 
and and0( n0, c, sel[1] ); 
and and1( n1, a, sel_b[1] ); 
and and2( n2, d, sel[1] ); 
and and3( n3, b, sel_b[1] ); 
wirex0, x1; 
nor nor0( x0, n0, n1 ); 
nor nor1( x1, n2, n3 ); 
wirey0, y1; 
or or0( y0, x0, sel[0] ); 
or or1( y1, x1, sel_b[0] ); 
nand nand0( out, y0, y1 ); 
endmodule



MUX 4 : REGISTER TRANSFER LEVEL

Module mux4( input a, b, c, d 
input[1:0] sel, 
Output out );
 
wire out, t0, t1; 

assign out =  ( sel == 0 ) ? a : 
( sel == 1 ) ? b : 

                    ( sel == 2 ) ? c : 
                    ( sel == 3 ) ? d : 1’bx; 

endmodule



VERILOG & FPGAs



VERILOG

Verilog is a HARDWARE DESCRIPTION 
LANGUAGE.

HDLs are used to describe a digital system
Not a programming language despite the 

syntax being similar to C
Synthesized (analogous to compiled for C) 

to give the circuit logic diagram



FPGAs

 Field Programmable Gate Array
 A Fully configurable IC
 FPGAs contain programmable logic components called 

logic blocks.
 Contain hierarchy of reconfigurable interconnects that 

allow the blocks to be wired together.
 Logic Blocks can be configured to any complex circuit.
 FPGA can be made to work as a Xor gate, a Counter or 

even bigger- an entire Processor!



An FPGA



Logic Blocks



HOW TO PROGRAM FPGAs

 Configured using a Hardware Description 
Language

 Can be configured by any way by the user
 Basic Idea : 
   

BEHAVIOURAL DESCRIPTION 
OF REQUIRED CIRCUIT

A COMPLETE CIRCUIT 
DIAGRAM

VERILOG 
SYNTHESISER



Synthesis of VERILOG :



CODING IN VERILOG

• BREAKING CIRCUITS INTO VARIOUS 
BUILDING BLOCKS CALLED “MODULE”

• DEFINING MODULE

• CONNECTING VARIOUS MODULES



CODING IN VERILOG 

Communication between a module and its 
environment is achieved by using Ports

Ports are of three types: input, output,   
inout



AN EXAMPLE : 4029 COUNTER

•  Name: 4029
•  Input Ports: One
•  Output Ports: Four
•  Size
•  Driver type
•   Internal Logic: At every rising edge of the    
clock, increment the output by one



MODULE

A “Black Box” in Verilog with inputs, 
outputs and internal logic working.

So, a module can be used to implement a 
counter.

A module is defined as

   module <specific type>(<port list>);



DEFINING 4029 MODULE

 Way 1:

      module 4029(clk,out,reset,enable);
 Way 2:

     module 4029(clk, a, b, c, d, reset, enable);
 Input and Output Ports in each of the above?
 EVERY PORT MUST HAVE A DIRECTION AND BITWIDTH
 Every module ends with the statement

   endmodule



DECLARING PORTS

Way 1:
     input clk;

     input reset;

     input enable;

     output a,b,c,d;

Way 2:
     input clk;

     input reset;

     input enable;

     output [3:0] out;



DRIVERS IN VERILOG
 We need drivers for this module in order to interact with 

the ports and describe its logical  working.

 Two types of drivers:

• Can store a value (for example, flip-flop) : REG
• Cannot store a value, but connects two points (for           

     example, a wire)  :  WIRE



DRIVERS IN 4029

 Ports defined as wires?

• clk

• reset

• enable

We do not need to stores the values of these ports in our 
logical block.

 Ports defined as reg?

• a,b,c,d

• out

We need to store them so that we could modify their values 
when 

required. 



DEFINING DRIVERS FOR 4029
 Way 1:

wire clk;

wire reset;

wire enable;

reg a,b.c,d;

 Way 2:

wire clk;

wire reset;

wire enable;

reg  [3:0] out; 



Defining Internal Logic



OPERATORS AND CONDITIONAL 
OPERATORS

All the arithmetic as well as logical 
operators in Verilog are similar to C, except 
++ and -- which are not available in Verilog.

Conditional statements are also similar to C 
with following modifications:

• { is replaced by begin.

• } is replaced by end.



COMBINATIONAL CIRCUITS

Combinational circuits are acyclic 
interconnections of gates.

And, Or, Not, Xor, Nand, Nor …… 

Multiplexers, Decoders, Encoders ….

OUTPUT IS A FUNCTION OF PRESENT 
INPUT ONLY



How are these gates, muxs etc. abstracted 
in Verilog?

Gates, Add, Multiply … : by simple operators 
like in C

Multiplexers … : by control statements like if-
else, case, etc

Gate level implementation of above high 
level operators done by Verilog synthesizer.



SEQUENTIAL CIRCUITS

Circuits containing state elements are 
called sequential circuits

OUTPUT DEPENDS ON THE PRESENT INPUT 
AS WELL AS ON ITS PRESENT STATE.

How do you implement such an element in 
Verilog?



always block

 Syntax

always @(condition)

begin

//Code

end
 Blocks starting with keyword always run 

simultaneously.
 @ symbol is used to specify the condition which 

should be satisfied for the execution of this block.



Usage of always block

 always

The code in this block will keep on executing.

 always @(a)

The code in this block will be executed every  time 
the value of a changes.

 always @(posedge clk)

This block is executed at every positive edge of        
 clk.



always @ BLOCK

 It is an abstraction provided in Verilog to 
mainly implement sequential circuits. 

Also used for combinational circuits.



BLOCKING AND NON-BLOCKING 
ASSIGNMENTS

 Non-blocking assignments happen in parallel. 

always @ ( #sensitivity list # ) begin

B <= A ;

C <= B ; (A,B) = (1,2) -> (B,C) = (1,2)

end

 Blocking assignments happen sequentially.

always @ ( #sensitivity list # ) begin

B = A ;

C = B ; (A,B) = (1,2) -> (B,C) = (1,1)

end



POINTS TO NOTE

Use always@(*) block with blocking 
assignments for combinational circuits

Use always@( posedge CLK) block with non-
blocking assignments for sequential 
circuits.

Do not mix blocking and non-blocking 
assignments.



A COMPLETE 4029 MODULE 

module 4029 ( input wire clk, 

input wire reset, 

input wire enable,

output [3:0] reg out);

//You can declare direction as well as data type

//in the module definition.



always @(posedge clk)
begin
if (reset == 0 && enable == 0)
begin
out <= out +1;
end
end



always @(reset or enable)
begin
if (reset == 1’b1)
begin
out <= 0;
end
end
endmodule 



AN EXAMPLE



ANOTHER EXAMPLE



WRONG SOLUTION



ANOTHER WAY : MULTIPLE always BLOCK



WRONG SOLUTION



Connecting Various Modules



Various modules are interconnected to 
make a larger circuit (or module).

Each sub-module has a separate 
Verilog file.

A sub-module may have another sub-
module in its circuit.

One needs to indicate the top level 
module before synthesis. 



EXAMPLE

module 4029(input wire clk, output 
[3:0]reg out);

module 7447(input [3:0] reg in, output 
[6:0] reg bcd);

module TOP(input wire clk, output 
[6:0] reg bcd);



INSTANTIATION
  USED TO INTERCONNECT VARIOUS MODULES

 In the above example, we need to instantiate the 
two sub-modules in the top level module

 THIS IS DONE AS FOLLOWS:

     wire [3:0] c;

     4029 counter (.clk(clk), .out(c) );

     7447 decoder (.in(c), .bcd(bcd));



Problem Statement

 Level 1 :  Theoretical Questions on basic syntax of 
Verilog

 Level 2 :  Design a digital system using Verilog . 
(weightage will be given to how much modular 
your circuit is )
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