
Verilog Fundamentals
Shubham Singh

Junior Undergrad.

Electrical Engineering

VERILOG FUNDAMENTALS

HDLs HISTORY
HOW FPGA & VERILOG ARE

RELATED
CODING IN VERILOG

HDLs HISTORY
HDL – HARDWARE DESCRIPTION LANGUAGE

EARLIER DESIGNERS USED BREADBOARDS
FOR DESIGNING

PRINTED CIRCUIT
BOARD

SOLDERLESS
BREADBOARD

HDLs ENABLED LOGIC LEVEL SIMULATION
AND TESTING

MANUAL

SIMULATE

GATE LEVEL
DESCRIPTION

THEN DESIGNERS BEGAN TO USE HDLs
FOR HIGHER LEVEL DESIGN

MANUAL

MANUAL

MANUAL

SIMUALTE

SIMULATE

SIMULATE

BEHAVIOURAL
ALGORITHM

REGISTER
TRANSFER
LEVEL

GATE LEVEL

HDLs LED TO TOOLS FOR AUTOMATIC
TRANSLATION

AUTOPLACE & ROUTE

GATE LEVEL

REGISTER
TRANSFER LEVEL

LOGIC SYNTHESIS

MANUAL

BEHAVIOURAL
ALGORITHM

SIMULATE

SIMULATE

SIMULATE

THE CURRENT SITUATION

C,C++ BEHAVIOURAL
VERILOG

MATLAB

STRUCTURAL
VERILOG

GATE
LEVEL

COMPILERS ARE NOT
AVAILABLE TO CONVERT
BEHAVIOURAL LEVEL TO
REGISTER TRANSFER
LEVEL

LOGIC SYNTHESIS

MUX 4 : GATE LEVEL DESIGNING
modulemux4(input a,b,c,d, input[1:0] sel, output out);
wire[1:0] sel_b;
not not0(sel_b[0], sel[0]);
not not1(sel_b[1], sel[1]);
wire n0, n1, n2, n3;
and and0(n0, c, sel[1]);
and and1(n1, a, sel_b[1]);
and and2(n2, d, sel[1]);
and and3(n3, b, sel_b[1]);
wirex0, x1;
nor nor0(x0, n0, n1);
nor nor1(x1, n2, n3);
wirey0, y1;
or or0(y0, x0, sel[0]);
or or1(y1, x1, sel_b[0]);
nand nand0(out, y0, y1);
endmodule

MUX 4 : REGISTER TRANSFER LEVEL

Module mux4(input a, b, c, d
input[1:0] sel,
Output out);

wire out, t0, t1;

assign out = (sel == 0) ? a :
(sel == 1) ? b :

 (sel == 2) ? c :
 (sel == 3) ? d : 1’bx;

endmodule

VERILOG & FPGAs

VERILOG

Verilog is a HARDWARE DESCRIPTION
LANGUAGE.

HDLs are used to describe a digital system
Not a programming language despite the

syntax being similar to C
Synthesized (analogous to compiled for C)

to give the circuit logic diagram

FPGAs

 Field Programmable Gate Array
 A Fully configurable IC
 FPGAs contain programmable logic components called

logic blocks.
 Contain hierarchy of reconfigurable interconnects that

allow the blocks to be wired together.
 Logic Blocks can be configured to any complex circuit.
 FPGA can be made to work as a Xor gate, a Counter or

even bigger- an entire Processor!

An FPGA

Logic Blocks

HOW TO PROGRAM FPGAs

 Configured using a Hardware Description
Language

 Can be configured by any way by the user
 Basic Idea :

BEHAVIOURAL DESCRIPTION
OF REQUIRED CIRCUIT

A COMPLETE CIRCUIT
DIAGRAM

VERILOG
SYNTHESISER

Synthesis of VERILOG :

CODING IN VERILOG

• BREAKING CIRCUITS INTO VARIOUS
BUILDING BLOCKS CALLED “MODULE”

• DEFINING MODULE

• CONNECTING VARIOUS MODULES

CODING IN VERILOG

Communication between a module and its
environment is achieved by using Ports

Ports are of three types: input, output,
inout

AN EXAMPLE : 4029 COUNTER

• Name: 4029
• Input Ports: One
• Output Ports: Four
• Size
• Driver type
• Internal Logic: At every rising edge of the
clock, increment the output by one

MODULE

A “Black Box” in Verilog with inputs,
outputs and internal logic working.

So, a module can be used to implement a
counter.

A module is defined as

 module <specific type>(<port list>);

DEFINING 4029 MODULE

 Way 1:

 module 4029(clk,out,reset,enable);
 Way 2:

 module 4029(clk, a, b, c, d, reset, enable);
 Input and Output Ports in each of the above?
 EVERY PORT MUST HAVE A DIRECTION AND BITWIDTH
 Every module ends with the statement

 endmodule

DECLARING PORTS

Way 1:
 input clk;

 input reset;

 input enable;

 output a,b,c,d;

Way 2:
 input clk;

 input reset;

 input enable;

 output [3:0] out;

DRIVERS IN VERILOG
 We need drivers for this module in order to interact with

the ports and describe its logical working.

 Two types of drivers:

• Can store a value (for example, flip-flop) : REG
• Cannot store a value, but connects two points (for

 example, a wire) : WIRE

DRIVERS IN 4029

 Ports defined as wires?

• clk

• reset

• enable

We do not need to stores the values of these ports in our
logical block.

 Ports defined as reg?

• a,b,c,d

• out

We need to store them so that we could modify their values
when

required.

DEFINING DRIVERS FOR 4029
 Way 1:

wire clk;

wire reset;

wire enable;

reg a,b.c,d;

 Way 2:

wire clk;

wire reset;

wire enable;

reg [3:0] out;

Defining Internal Logic

OPERATORS AND CONDITIONAL
OPERATORS

All the arithmetic as well as logical
operators in Verilog are similar to C, except
++ and -- which are not available in Verilog.

Conditional statements are also similar to C
with following modifications:

• { is replaced by begin.

• } is replaced by end.

COMBINATIONAL CIRCUITS

Combinational circuits are acyclic
interconnections of gates.

And, Or, Not, Xor, Nand, Nor ……

Multiplexers, Decoders, Encoders ….

OUTPUT IS A FUNCTION OF PRESENT
INPUT ONLY

How are these gates, muxs etc. abstracted
in Verilog?

Gates, Add, Multiply … : by simple operators
like in C

Multiplexers … : by control statements like if-
else, case, etc

Gate level implementation of above high
level operators done by Verilog synthesizer.

SEQUENTIAL CIRCUITS

Circuits containing state elements are
called sequential circuits

OUTPUT DEPENDS ON THE PRESENT INPUT
AS WELL AS ON ITS PRESENT STATE.

How do you implement such an element in
Verilog?

always block

 Syntax

always @(condition)

begin

//Code

end
 Blocks starting with keyword always run

simultaneously.
 @ symbol is used to specify the condition which

should be satisfied for the execution of this block.

Usage of always block

 always

The code in this block will keep on executing.

 always @(a)

The code in this block will be executed every time
the value of a changes.

 always @(posedge clk)

This block is executed at every positive edge of
 clk.

always @ BLOCK

 It is an abstraction provided in Verilog to
mainly implement sequential circuits.

Also used for combinational circuits.

BLOCKING AND NON-BLOCKING
ASSIGNMENTS

 Non-blocking assignments happen in parallel.

always @ (#sensitivity list #) begin

B <= A ;

C <= B ; (A,B) = (1,2) -> (B,C) = (1,2)

end

 Blocking assignments happen sequentially.

always @ (#sensitivity list #) begin

B = A ;

C = B ; (A,B) = (1,2) -> (B,C) = (1,1)

end

POINTS TO NOTE

Use always@(*) block with blocking
assignments for combinational circuits

Use always@(posedge CLK) block with non-
blocking assignments for sequential
circuits.

Do not mix blocking and non-blocking
assignments.

A COMPLETE 4029 MODULE

module 4029 (input wire clk,

input wire reset,

input wire enable,

output [3:0] reg out);

//You can declare direction as well as data type

//in the module definition.

always @(posedge clk)
begin
if (reset == 0 && enable == 0)
begin
out <= out +1;
end
end

always @(reset or enable)
begin
if (reset == 1’b1)
begin
out <= 0;
end
end
endmodule

AN EXAMPLE

ANOTHER EXAMPLE

WRONG SOLUTION

ANOTHER WAY : MULTIPLE always BLOCK

WRONG SOLUTION

Connecting Various Modules

Various modules are interconnected to
make a larger circuit (or module).

Each sub-module has a separate
Verilog file.

A sub-module may have another sub-
module in its circuit.

One needs to indicate the top level
module before synthesis.

EXAMPLE

module 4029(input wire clk, output
[3:0]reg out);

module 7447(input [3:0] reg in, output
[6:0] reg bcd);

module TOP(input wire clk, output
[6:0] reg bcd);

INSTANTIATION
 USED TO INTERCONNECT VARIOUS MODULES

 In the above example, we need to instantiate the
two sub-modules in the top level module

 THIS IS DONE AS FOLLOWS:

 wire [3:0] c;

 4029 counter (.clk(clk), .out(c));

 7447 decoder (.in(c), .bcd(bcd));

Problem Statement

 Level 1 : Theoretical Questions on basic syntax of
Verilog

 Level 2 : Design a digital system using Verilog .
(weightage will be given to how much modular
your circuit is)

	Slide 1
	VERILOG FUNDAMENTALS
	HDLs HISTORY
	EARLIER DESIGNERS USED BREADBOARDS FOR DESIGNING
	HDLs ENABLED LOGIC LEVEL SIMULATION AND TESTING
	THEN DESIGNERS BEGAN TO USE HDLs FOR HIGHER LEVEL DESIGN
	HDLs LED TO TOOLS FOR AUTOMATIC TRANSLATION
	THE CURRENT SITUATION
	MUX 4 : GATE LEVEL DESIGNING
	MUX 4 : REGISTER TRANSFER LEVEL
	VERILOG & FPGAs
	VERILOG
	FPGAs
	An FPGA
	Logic Blocks
	HOW TO PROGRAM FPGAs
	Synthesis of VERILOG :
	CODING IN VERILOG
	CODING IN VERILOG
	AN EXAMPLE : 4029 COUNTER
	MODULE
	DEFINING 4029 MODULE
	DECLARING PORTS
	DRIVERS IN VERILOG
	DRIVERS IN 4029
	DEFINING DRIVERS FOR 4029
	Slide 27
	OPERATORS AND CONDITIONAL OPERATORS
	COMBINATIONAL CIRCUITS
	Slide 30
	SEQUENTIAL CIRCUITS
	always block
	Usage of always block
	always @ BLOCK
	BLOCKING AND NON-BLOCKING ASSIGNMENTS
	POINTS TO NOTE
	A COMPLETE 4029 MODULE
	Slide 38
	Slide 39
	AN EXAMPLE
	ANOTHER EXAMPLE
	WRONG SOLUTION
	ANOTHER WAY : MULTIPLE always BLOCK
	WRONG SOLUTION
	Connecting Various Modules
	Slide 46
	EXAMPLE
	INSTANTIATION
	Problem Statement

