

Versatile Experimental Autonomy Research Aircraft Technology (VEARAT)

LEARN Seminar

Contract No. NNX15AW45G 15 Oct 2015 to 31 Jan 2017

Dr. Shiv Joshi, Pl 06 Sep 2017

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the U.S. Government. Distribution authorized to U.S. Government agencies only.

Team

NextGen Aeronautics

Shiv Joshi, Matt Scott, Rob Bortolin, John Flanagan, and Robbie Snyder

• UIUC

Professor Girish Chowdhary and Girish Joshi

Virginia Tech

Professor Rakesh Kapania, Professor Joe Schetz, and Wrik Mallick

Agenda

- Opportunity
- **BASSET** (Big Antenna Small Structure Enhanced Tactical UAV)
 - Highlights
 - Limitations

• VEARAT

- Objectives
- Structure/Propulsion Modification
- Payload Integration
- Autonomous Operations
- Conclusions and Suggestions
- Open Discussion

Opportunity

- The National Research Council (NRC) Identified Technology Barriers to Autonomy
- NASA LEARN2 Project Initiated in 2015
 - Developing system architectures and technologies
 - Enabling experimental autonomous unmanned aircraft to easily integrate, verify and validate rapidly evolving hardware and software subsystems
- NextGen Initiated Development Based on an Appropriate Technology Demonstrator (BASSET)
 - Allow nontraditional technologies such as open-source software and consumer electronics products
 - Adaptive nondeterministic third party autopilot
 - Long duration autonomous operations without real-time human cognizance and control

VEARAT_LEARN Seminar_06 Sep 2017

Modification of existing research vehicle (BASSET) with interchangeable and in-flight-switchable experimentalist supplied sensors, hardware and software for autonomy research and testing

 Baseline UAV (BASSET) developed for communication subsystems testing by NextGen under Air Force funding (FA8650-08-C-3845) during 2008-2013.
 Preliminary design optimization, modification, and payload/sensors selection done under NASA LEARN2 program.

VEARAT_LEARN Seminar_06 Sep 2017

BASSET: POD-UAV for VEARAT

 Design of a small UAV (SUAV) capable of direction finding (DF) at low frequencies (30 MHz and above) using a single aircraft and with range, endurance, and overall cost comparable to or better than existing vehicles of similar size.

Concept to Design to Fabrication to 3 Flight Tests validating aero, structures, and antenna Geolocation performance – total budget < \$4M!

Concept

Show BASSET Video

BASSET Highlights

Weight	590-700 lbs
Fuel	5 gal (67 min @ full throttle)
Takeoff Distance	< 1000 ft
Stall Speed	48-52 knots
Takeoff Speed	57-62 knots
Cruise Speed	80 knots (typical)
Max Speed	120 knots
Flight Duration	<30 minutes (typical)
Test Flight Radius	<1 mile
Max Demonstrated Control Range (RC+Link+FTS)	2.5 Miles (TBD On-Site Test)
Test Flight Altitude	600-1200 feet AGL (typical)

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

BASSET Highlights (cont'd)

- Flight testing established basic flight characteristics, performance, and operations
- Modular major structural parts can be stored in a standard C-130 pallet
- Assembly from box to airborne in 30 minutes
- FTS and an autonomous/human switchable GNC system
- Original BASSET molds preserved minimal retooling for manufacturing

BASSET Limitations

- Vehicle Weight Not Optimized
- Vehicle Designed With Substantial Margins of Safety
- Current Engine Performance Below Vendor-provided Data
 - Fuel consumption up to 9.5 gal/hr at 4500 RPM. Vendor test data showed 4.75 gal/hr
 - Wood propeller blades from Europe broke at low altitude necessitating emergency landing resulting in inoperable vehicle
 - Low custom designed fuel tank capacity reducing nominal flight time to half an hour
- Only LOS Communications
- Vehicle Avoidance and Weather Subsystems Not Integrated
- Requires Operator for Takeoff and Landing Operations

VEARAT Objectives (NASA LEARN2 Program)

- 1. INCREASED ENDURANCE: 6+ hours with a payload capacity of between 50 to 100 lbs
- 2. Selection of new engine, along with prop redesign and improved engine/airframe integration
- 3. Reduce size of winglets and antennas, leading to reduced drag
- 4. BLOS COMMUNICATIONS: Accomplished with proposed GNC system
- 5. Flexibility for User to test their sensors, systems, and software
- 6. FULLY AUTONOMOUS OPERATIONS: Current system is capable of way-point navigation but requires an operator for takeoffs and landings; these can be automated, completely removing the pilot from the loop
- 7. COOPERATIVE AND NONCOOPERATIVE VEHICLE AVOIDANCE: Requires additional subsystems to be integrated in the UAV

Preliminary Specifications

- 3 to 8 antenna mounting locations
- Antenna

Operation

>50 lb of antenna payload capacity
 >2 ft³ of antenna related payload volume

- Ceiling > 17,000 ft MSL standard atmosphere conditions
- 15 to 150°F storage and 25 to 120°F operation
- Capable of takeoff/landing on minimally prepared surfaces
 - Loiter speed <100 mph
 - 6 hr or greater mission time

- Plug-and-play payloads capability
- Easy software uploading and HITL ground testing
- Deterministic and non-deterministic hierarchical and adaptive GNC baseline hardware and algorithms
- FTS
- Command transfer capability
- Multivehicle Collaboration
- Communication Relay capability
- Breakdown for storage (5 piece minimum).
 - Virginia Tech

Features

Structure/Propulsion Modification

- HKS 700E engine will be integrated for the VEARAT UAS
- Reliable, efficient 4-stroke engine: 6 hrs endurance with 75 lbs payload
- Tail boom width increased for prop performance: max diameter 64" vs. 36"
- Wing span increased proportionally, providing L/D improvement >10%
- Modular wing feature retained, attachment placed outboard of tail booms
- Carry-through optimized for engine integration, structural efficiency
- Configuration enhancement maximizes use of existing tooling

VEARAT LEARN Seminar 06 Sep 2017

VEARAT vs BASSET Configuration

Parameter	BASSET	VEARAT	Change
Wing planform area [ft ²]	50.5	58.8	16%
Wing span [ft]	22.7	25	10%
Wing MAC [ft]	2.68	2.82	5%
Wing AR	10.2	10.6	4%
H-tail planform area [ft ²]	12.8	16.8	31%
H-tail Xac [ft]	15.7	16.1	3%
H-tail volume coefficient	0.74	0.84	14%
VEARAT_LEARN Seminar_06 Sep 2017			CININOIS AT URBANA-CHAMPAIGN

VEARAT Structural Optimization

- BASSET wing was designed as a prototype
- CFD modelling is conducted to obtain updated load data following lengthening of wing at 3.35g condition
- Structural weight optimization is performed
- Design optimization study was performed using the SOL 200 module in NASTRAN
 - SOL 200 uses a gradient-based optimizer IPOPT

Optimized Wing Structure

- Optimized Thickness Distribution, 3.35 g Load Case
- Estimation of Wing Structure Resulted in Mass Savings of 55% FEM Models

Member weight	Baseline	Optimized	% Change
Front spar (lbs.)	14.861	3.6133	-75.686
Rear spar (lbs.)	7.159	2.7635	-61.398
Skin (lbs.)	6.035 (composite)	7.1000 (Al 7075-T6)	17.644
Ribs (lbs.)	8.303	2.8858	-65.569
Total (lbs.)	36.258	16.3356	-55.07

VEARAT Optimized Mass Savings

- By Using Weight Savings of the Optimized Wing Structure and Projecting that % Savings Onto Other Areas of the Vehicle, We Can Anticipate ~140 lbs Weight Reduction
- Added Fuel Capacity of 14.3 gal
- Expected Endurance with New Engine = 6.2 hrs

Detail Design Wing Structural	Weight Saving	gs after Optim	ization
	Original BV1	BV2	% Savings
Wing Weight [lb] (Both Wings)	120.0	68.2	43%

Projected Structural Weight Savings			
	Original BV1	BV2	% Savings
Fuselage Weight [lb]	91.6	52.0	43%
Tail Weight [lb]	42.3	24.0	43%
Landing Gear Weight [lb]	68.1	38.7	43%

Project Total Vehicle Structural Weight Savings [lb]
139.1

Endurance	Enhancement
New Engine Added Mass [lb]	86.5
New Fuel Capacity [us Gal]	14.3
Flight Time [hr]	6.2

VEARAT_LEARN Seminar_06 Sep 2017

Payload Integration

- VEARAT Offers Multiple Mounting Locations for Conventional Antennas and Communication Links
- Several Skin Panels are Replaceable and Can Be Tailored for Integrated Sensors or RF Transparency
- A Wide Variety of Onboard Power, Computing Capacity, and Programmable I/O for Data Fusion, Recording, and Autonomous Operations Will Be Available to Any Hosted Payload
- VEARAT Avionics Suite Will Feature Dual Stabilis Cores Along With Redundant INS Sensors; ADS-B Transceiver Will Be Added to Coordinate with Cooperative Aircraft
- RTK-GPS Will Be Implemented to Achieve the Spatial Awareness and Control Resolution Necessary for Automated Take-off and Landing
- Echodyne K-band Radar Will Be Installed at the Aircraft Nose; This K-band Radar Features a Metamaterial Phased Array, Which is Game-changing Technology for Radar Systems of SUAVs

Autonomous Operations

- Plug-and-adapt Autopilot Enabling Quick Adaptation to Platform and Mission Changes
- Easy Software Uploading and HITL Ground Testing
- Deterministic and Non-deterministic Hierarchic GNC Baseline Hardware and Algorithms
- FTS and Seamless Autonomous Human Control Handover

LEARN2-VEARAT Accomplishments

- SIL and HIL Testing
- Surrogate UAV Flight Testing
 - Manual Flight
 - Assistive Stable Flight
 - Autonomous Flight
 - Stall Recovery
 - Autonomous Takeoff and Landing

èch

Virginia

HIL-Setup

Stable Flight: Assistive Stable Mode

- Adaptive Control Performance: Online
 Disturbance Approximation in Roll and Pitch
- Adaptive Control Cancels the Actual Disturbance Using Approximated Disturbance, Thereby Enforcing the Reference Model Behavior Onto Plant
 - Autopilot commands the UAV to track the pilot stick command
 - In absence of pilot signals, the UAV holds zero attitude and maintains steady flight
 - Stable mode autopilot defines performance limits in roll and pitch to ensure safety
 - RTL capability in case of telemetry loss
 - Failsafe mode and switch to manual in case of spurious behavior of autopilot

A novice operator could fly the plane in near impossible flight conditions with cross wind of 23 knots.

Autonomous : HIL Results

- Roll and Pitch Command Tracking for Waypoint Guidance
- No Cross Wind

VEARAT_LEARN Seminar_06 Sep 2017

 HIL Tests Validate Control Design and Aid in Controller Parameter Tuning

Autonomous Flight

- Autonomous Waypoint Guidance
 - Autonomous Trajectory Tracking Defined by Waypoints
 - UAV Maintains Airspeed and Altitude Defined at Waypoints
 - HIL and Flights Tests are Conducted to Demonstrate Performance and Robustness of Controller
- Flight Condition
 - No. of Waypoints: 8, in hexagonal pattern
 - Cross winds: 23 knots

Stall Recovery

- In Stable Mode, Aircraft Was Made to Stall By Pitching Up Heavily Followed By Engine Cutoff
- Aircraft Recovered Successfully From Stall and Maintained Its Attitude Post-stall

- Phases in Landing Maneuver
 - Cruise (Constant Altitude Phase)
 - Descent Phase
 - Flare: Follows final approach phase and precedes touchdown and roll-out phases of landing; in the flare, the nose of the plane is raised, slowing the descent rate, and the proper attitude is set for touchdown
 - At start of flare, throttle is set to minimum

- NEXTGEN

AERONALITICS

- Landing Control: Aim of Controller
 - Controller Portability Across Different UAV Platforms
 - Online Adaption and Control in Presence of
 - Cross wind
 - Ground effect

Virginia

èch

- Flow Diagram Shows Control Architecture
- Altitude *h* and Altitude Drop Rate *h*⁺ is Commanded, Required Pitch Angles are Evaluated and Controlled as Follows
- Outer Loop Uses PID and Inner Loop Uses Adaptive Control to Achieve Autonomous Landing

VEARAT_LEARN Seminar_06 Sep 2017

- SIL Results: X-plane + MATLAB
- Crosswinds: 10 knots, No Ground Effect

Vehicle	Specification
Vehicle	Skyhunter
Vehicle Mass Airframe + Payloads	<10lbs
Wing Span	1.8m
Body Length	1.4m
Wing Area	3.9ft ²
Engine	Electric
Prop	9-12" prop

 UAV Attitude Angles and Body Rates While Executing Landing Maneuvers

Tech

Conclusions

- Newly Selected Engine and Larger Propeller Diameter Provide Higher Fuel Efficiency and Weight Optimization Resulting in
 - 6+ hour endurance
 - Reduced number of flights needed to complete experiments
- Autopilot with Modularized Subsystems
 - "Plug-and-Play" logic for switching subsystems with units supplied by experimenter
 - Default "sense and avoid," weather, peripheral sensors
 - Multiple communication channels
- GNC Software
 - Multi-threaded design
 - Deterministic and non-deterministic hierarchical and adaptive GNC baseline algorithms
 - Easy software uploading, HIL ground testing, and SIL inflight predictions

Suggestions

 NextGen Aeronautics, working cooperatively with NASA, can provide versatile experimental autonomy research UAV(s) available to research community at the fraction of cost needed for autonomy hardware/software verification and validation

Open Discussion

VEARAT_LEARN Seminar_06 Sep 2017

