A SIMULATION TOOLKIT

Version 10.4-p02

Multithreading ||

Makoto Asai (SLAC)
Geant4 tutorial course o

b l ‘ h NATI O NAL .S. DEPARTMENT OF

ACCELERATOR

QHHV LABORATORY Office of Science

Contents

(ad BV g
D N

 The challenge of MT : thread safety
e TBBand MPI

* Reading input file in multithreaded mode

Multithreading II - M. Asai (SLAC)

A SIMULATION TOOLKIT

Version 10.4-p02

The challenges of MT: thread-safety

b l ‘ h NATIONAL . 2 U.S. DEPARTMENT OF

ACCELERATOR

QHHV LABORATORY Offics of Science

Definitions

n

* Desigh to minimize changes in user-code
* Maintain APl changes at minimum

* Focus on linearity of speed-up (w.rt. #threads) is the most important metric

* Enforce use of POSIX standards to allow for integration with user preferred
parallelization frameworks (e.g. MPI TBB, ...)

Absolute throughput metric

Sequential 2 Evts/s
MT w/ | thread 1.9 Evts/s
~+=|dcal MT w/ 2 threads 3.8 Evts/s
“=Real
0
I 2 3 4
#Threads No real numbers, just illustrative

Multithreading II - M. Asai (SLAC)

Thread safety a simple example

(ad BV g
D N

* Consider a function that reads and writes a shared resource (a
global variable in this example).

double aSharedvariable;

int SomeFunction() {
int result = 0;
if (aShredVariable > 0) {
result = doSomething();
aSharedVariable = -1;
} else {
result = doSomethingElse();
aSharedVariable = 1;
}

return result;

Multithreading II - M. Asai (SLAC)

Thread safety a simple example

* Now consider two threads that execute at the same time
the function. Concurrent access to the shared resource

double aSharedVariable;

int SomeFunction() {
int result = 0;
if (aShredVariable > 0) {
result = doSomething();
aSharedVariable = -1;
} else {
result = doSomethingElse();
aSharedVariable = 1;
}

return result;

int SomeFunction() {

int result = 9;

if (aShredVariable > 0) {
result = doSomething();
aSharedVariable = -1;

} else {

result = doSomethingElse();
aSharedVariable = 1;

}

return result;

}

T1

T2

Multithreading II - M. Asai (SLAC)

(ad BV g
D N

Thread safety a simple example

(ad BV g
D N

* resultis alocal variable, exists in each thread separately 1.e. not a problem

* T1 arrives here and does something

double aSharedVariable;
int SomeFunction() { int SomeFunction() {
int result = 0; int result = 9;
if (aShredVariable > 0) { if (aShredVariable > 0) {
result = doSomething(); result = doSomething();
aSharedVariable = -1; aSharedVariable = -1;
} else { } else {
result = doSomethingElse(); result = doSomethingElse();
aSharedVariable = 1; aSharedVariable = 1;
} }
return result; return result;
} }
Tl T2

Multithreading II - M. Asai (SLAC)

Thread safety a simple example

* Now T2 starts and arrives here, the shared resource value is not yet
updated, what is the expected behavior! what is happening?

double aSharedVariable;

int SomeFunction() {
int result = 0;
if (aShredVariable > 0) {
result = doSomething();
aSharedVariable = -1;
} else {
result = doSomethingElse();
aSharedVariable = 1;
}

return result;

int SomeFunction() {
int result = 9;
if (aShredVariable > 0) {
result = doSomething();
aSharedVariable = -1;
} else {
result = doSomethingElse();
aSharedVariable = 1;
}

return result;

}

T1

T2

Multithreading II - M. Asai (SLAC)

(ad BV g
D N

Thread safety a simple example

(ad BV g
D N

e Use mutex / locks to create a barrier; T2 will not start until T| reaches UnlLock

* Significantly reduces performances (general rule in G4, not allowed in methods called
during the event loop)

http://en.wikipedia.org/wiki/Lock_(computer_science)

double aSharedVariable;
int SomeFunction() { int SomeFunction() {
int result = 9; int result = 0;
Lock(&mutex); Lock(&mutex);
if (aShredVariable > 0) { if (aShredvVariable > 0) {
result = doSomething(); result = doSomething();
aSharedVariable = -1; aSharedVariable = -1;
} else { } else {
result = doSomethingElse(); result = doSomethingElse();
aSharedVariable = 1; aSharedVariable = 1;
} }
Unlock(&mutex) Unlock(&mutex)
return result; return result;
} }

Multithreading II - M. Asai (SLAC)

Thread safety a simple example

Do we really need to share aSahredVariable?
if not, minimal change required, each thread has its own copy
Simple way to “transform” your code (but very small cpu penalty, no memory usage reduction)

General rule in G4: do not use mutex lock unless really necessary

Fouble __thread
aSharedVariable;

int SomeFunction() {

int result = 0;

if (aShredVariable > 0) {
result = doSomething();
aSharedVariable = -1;

} else {
result = doSomethingElse();
aSharedVariable = 1;

}

return result;

Fouble __thread
aSharedVariable;

int SomeFunction() {

int result = 0;

if (aShredVariable > 0) {
result = doSomething();
aSharedVariable = -1;

} else {
result = doSomethingElse();
aSharedVariable = 1;

}

return result;

}

Multithreading II - M. Asai (SLAC)

(ad BV g
D N

G4 Ver 10.0.p0|
Thread Local Storage

10% critical

Each (parallel) program has
sequential components
Protect access to
concurrent resources
Simplest solution: use mutex/lock
TLS: each thread has its own
object (no need to lock)

Supported by all modern
compilers

“just” add __thread to

, variables
/ __thread int value =
Improved support in C++1 |

standard
Drawback: increased memory
usage and small cpu penalty
(currently 19), only simple data
types for static/global variables
can be made TLS

9
8
7
6
5
4
3
2
1
0

1% critical

N threads
NB: results obtained on toy application, not real G4

The split-class mechanism concept
SLAC

* Thread-safety implemented via Thread Local Storage
* “Split-class” mechanism: reduce memory consumption

* Read-only part of most memory consuming objects shared between thread
» Geometry, Physics Tables

* Rest is thread-private

SplitClass Thread1 SplitClass Thread2
- sensitiveDetector - sensitiveDetector - sensitiveDetector

Multithreading II - M. Asai (SLAC)

Split class — case of particle definition

el A

@k N

* In Geant4, each particle type has its own dedicated object of G4ParticleDefinition class.

— Static quantities : mass, charge, life time, decay channels, etc.,

* To be shared by all threads.

— Dedicated object of G4ProcessManager : list of physics processes this particular
kind of particle undertakes.

* Physics process object must be thread-local.

<shared>

<static singleton>

G4ParticleDefinition

- G4double mass

- G4double charge
- G4double lifetime
- Decay table

-G4int

particlelndex

G4PartDefSplitter TLS pointer
- Array of TLS - Proc man*
pointers of p "
G4ProcessManager rfoc man
_ *
- TLS pointer Proc man
-TLS pointer _
, - Proc man*
- TLS pointer
>TLS pointer
- TLS pointer
- TLS pointer

Multithreading II - M. Asai (SLAC)

<thread local>

A SIMULATION TOOLKIT

Version 10.4-p02

TBB and MPI

b l ‘ h NATI O NAL \ U.S. DEPARTMENT OF

ACCELERATOR

QHHV LABORATORY = Office of Science

Integration with TBB

*Intel Thread Building Block library

* Task-based parallelism
* Freely available for Linux/Mac/WIN

* We provide an example:

*example/extended/parallel/ TBB
*Basic integration of TBB with Geant4 Version 10.0
*Basically it replaces the POSIX multi-threading system we provide

*Note: we plan to intensively work on TBB examples in 2016, we will
review and extend this example

Multithreading II - M. Asai (SLAC)

HPC Resources

n

e Since few years Geant4 provides an MPI example to:
* Show how to parallelize a G4 job using MPI
e Steer from a single Ul all MPI ranks

 With Geant4 Ver10.1 these examples have been extended to support MT:
* Scale across nodes with MPI and use MT to scale across cores

 We are working a much improved version of G4-MPI library and examples (to be
released for 10.2):

* Merging of histograms across ranks
e Better integration with cmake (easier to develop a MPI enabled application)

* We expect much easier integration of G4 jobs with HPC resources where MPI is
de-facto standard

Multithreading II - M. Asai (SLAC)

MPI| and Geant4

* MPI optimized for large (and/or frequent) messages
e Geant4 ranks have very little communication among them...

e ..still MPI is an attractive possibility for several reasons:
* excellent support from a very large community (HPC resources)
e attractive for smaller communities (simpler use w.r.t. e.g. GRID)
* preferred way of heterogeneous running on Xeon Phi systems

Master broadcasts Ul commands
and RNG seeds

Workers send back results for
merging: histograms, ntuples,
scorers

Physical view Logical view

Multithreading II - M. Asai (SLAC)

Geant4 applications from MPI point of view

(ad BV g
D N

UI Commands / macro file . g4analysis
ntuple files

_ g4analsyis
histos

RNG Seed

command
line scorers

—

— user-defined
G4Run

Data Base files Visualization

[deally all input/outputs should become MPI enabled and do not use
on filesystem

Multithreading II - M. Asai (SLAC)

Geant4 applications from MPI point of view

ey An

D AN

UI Commands / macro file . g4analysis
ntuple files

_ g4analsyis
histos

RNG Seed

5 c_ommand
line scorers

— user-defined

Data Base files G4Run

Visualization

[deally all input/outputs should become MPI enabled and do not use
on filesystem

Provided in Geant4 Version 10.3 (December 2016)

Multithreading II - M. Asai (SLAC)

More memory-efficient, more HPC friendly ., ..

D AN

Version Intercept ENZIGTCECI e Geant4 has successfully run with
a combination of MT and MPI on
96 (seq)) 115 MB (113 MB) Mira Bluegene/Q Supercomputer
10.0.p02-seq 170 MB (170 MB) (@ANL) with all of its 3 million
10.0.p02-MT 151 MB 28 MB threads
10.3.beta-MT 148 MB 9 MB — Full-CMS geometry & field
Memory space required for Intel Xeon Phi 3120A * |/Oisthe limiting factor to scale

Full-CMS geometry (GDML), 4 Tesla field, 50 GeV pi- (FTFP_BERT) |arge concurrent threads:

of CPU | # of threads |Speed-up | efficiency — Granular input data files, output
factor data/histograms, etc.
(o)
80 79 98. 8% — 2017 work item

160 Vg 98. 8% — Targeting also Cori @ NERSC
320 317 Q9. 0% 1w i s s i

640 626 97 80g €0 mimenian S—
160 1280 1251 97. 7%
320 2560 2297 89. 7%
5120 3555 69. 4%

Tachyon-2 supercomputer @ KISTI (South Korea)
FTFP_BERT physics validation benchmark

Walltime ¢ Locaton % Queue

Jobld ¢ Project s Run Time ~
B creroyreC 2 00:00:26 01:00:00 MIR-00000-7BFF1-49152 prod-capability

An interesting possibility...

System:
Intel E5-2600 @ 2.2GHz (8C/16T)
W evts/sec A (oY
5000 |]
4000 R 2 Xeon Phi cards model 3120A
8 (57C/228T)
2000 - - 1 | | r;(’
, - . Lo

MPI application started on
host and on two MICs: a
small cluster in your
desktop

“Medical” benchmark: proton 200 MeV on water phantom

Multithreading II - M. Asai (SLAC)

KNL vs. KNC

el A

CMS geometry (GDML), =~ 50 GeV (FTFP_BERT), B field (4T) - KNL

* For three years we have provided

100 |

Version 10.2-p02 on KNL
(strong-scalability)

20}

support for running Geant4 on KNC.

— ATLAS, CMS successfully
multithreaded

 We will soon extend our support to
KNL.

— With KNL, thanks to x86 binary
compatibility including the use
of gcc, work-flow is

» o 2 =) tremendously simplified.
System Time to completion (5k events)
Xeon E5-2620 @ 2.1 GHz 570's
(12 cores, 24 threads)
KNC (31s1P) @ 1.0 GHz (228 threads) 1000 s

KNL (7210, quadrant mode, MCDRAM only)
@ 1.3 GHz (255 threads)

378 s (x3 improvement w.r.t. KNC)

L] 7 ga \ * 4

KNL (shared library)

480 s (25% slower than static library)

Multithreading II - M. Asai (SLAC)

A SIMULATION TOOLKIT

Version 10.4-p02

Reading input file for primary
particles in MT mode

‘ ~ h NAT I O N A L %\ U.S. DEPARTMENT OF
1 A ENERGY

ACCELERATOR

QHHV LABORATORY [r—

Input data file for PrimaryGeneratorAction

» PrimaryGeneratorAction is a thread-local class. Thus, special attention is
required if the user needs an input file to read primary particles.

— If thread-local objects of PrimaryGeneratorAction naively open a file and
read it, they all read the file from the beginning and they all read exactly the
same input.

« The appropriate implementation of reading an input file for

PrimaryGeneratorAction depends on the use-case, more precisely, on the ratio
of the cost of accessing to the data file to the total execution time of one event

on one thread.

— If this ratio is low, i.e. execution time dominates (typically the case of high-
energy physics experiment where the energy of primary particles are high),
the file access can be shared with Mutex locking mechanism.

— If this ratio is high, i.e. file access is a significant fraction of the execution

time (typically the case of medical and space applications where the energy
of primary particles are rather low), the input data should be cached in

addition to the Mutex locking.
* To use Mutex locking mechanism, include G4AutoLock.hh header file.

Multithreading II - M. Asai (SLAC)

high-energy physics sample code with GAHEPEvtInterface A
RLAS

 Here is a high-energy physics sample code with G4AHEPEvtinterface that reads a Pyt
input file. GAHEPEvtinterface has to be a single object shared by all the
PrimaryGeneratorAction objects, and the access to
G4HEPEvtinterface::GeneratePrimaryVertex() should be protected by Mutex.

MyHepPrimaryGenAction.hh
#include "G4VUserPrimaryGeneratorAction.hh"

class GAHEPEvtInterface; Detailed example of reading
class MyHepPrimaryGenAction Pythia output file is found in
: public G4VUserPrimaryGeneratorAction examples/extended/

{ runandEvent/REQ5

public:

MyHepPrimaryGenAction(G4String fileName);
~MyHepPrimaryGenAction();

virtual void GeneratePrimaries(G4Event™ anEvent);
private:
static GAHEPEvtinterface* hepEvt;

Multithreading II - M. Asai (SLAC)

MyHepPrimaryGenAction.cc

#include "MyHepPrimaryGenAction.hh"

#include "G4HEPEvtinterface.hh"

#include "G4AutoLock.hh"

namespace { G4Mutex myHEPPrimGenMutex = GAMUTEX_INITIALIZER; }
G4HEPEvtinterface* MyHepPrimaryGenAction::hepEvt = 0;

MyHepPrimaryGenAction::MyHepPrimaryGenAction(G4String fileName)
{

G4AutoLock lock(&myHEPPrimGenMutex);

if('hepEvt) hepEvt = new G4HEPEvtinterface(fileName);

}

MyHepPrimaryGenAction::*MyHepPrimaryGenAction()
{

G4AutoLock lock(&myHEPPrimGenMutex);

if(hepEvt) { delete hepEvt; hepEvt = 0; }
}

void MyHepPrimaryGenAction::GeneratePrimaries(G4Event* anEvent)

{
G4AutoLock lock(&myHEPPrimGenMutex);

hepEvt->GeneratePrimaryVertex(anEvent);

Multithreading II - M. Asai (SLAC)

n

lower-energy sample code with G4ParticleGun

U

A 7>
 Hereis alower-energy sample code with G4ParticleGun to shoot 10 MeV electrons. The inBTft‘v

file contains list of G4ThreeVector of the momentum direction (ex, ey, ez) and it is read by a
dedicated file reader class MyFileReader. MyFileReader is shared by all threads, and reads 100
events at a time and buffers them. Primary vertex position is randomized.

* Please note that, for the simplicity of this sample code, it does not consider the end-of-file.

MyLowEPrimaryGenAction.hh

#include "G4VUserPrimaryGeneratorAction.hh"

class G4ParticleGun;

class MyFileReader;

class MyLowEPrimaryGenAction

: public G4VUserPrimaryGeneratorAction

{

public:
MyLowEPrimaryGenAction(G4String fileName);
virtual “MyLowEPrimaryGenAction();

virtual void GeneratePrimaries(G4Event™ anEvent);
private:

static MyFileReader* fileReader;

G4ParticleGun* particleGun;

Multithreading II - M. Asai (SLAC)

MyLowEPrimaryGenAction.cc — part 1/2

n

#include "G4ParticleTable.hh"

#include "G4ParticleDefinition.hh"

#include "Randomize.hh"

#include "G4AutoLock.hh"

namespace { G4Mutex myLowEPrimGenMutex = GAMUTEX_INITIALIZER; }
MyFileReader* MyLowEPrimaryGenAction::fileReader = 0; € static

MyLowEPrimaryGenAction::MyLowEPrimaryGenAction(G4String fileName)
{
G4AutoLock lock(&myLowEPrimGenMutex);
if(!fileReader) fileReader = new MyFileReader(fileName);
particleGun = new G4ParticleGun(1);
G4ParticleTable* particleTable = G4ParticleTable::GetParticleTable();
G4ParticleDefinition* particle = particleTable->FindParticle("e-");
particleGun->SetParticleDefinition(particle);
particleGun->SetParticleEnergy(10.*MeV);

}

MyLowEPrimaryGenAction::*MyLowEPrimaryGenAction()

{
G4AutoLock lock(&myLowEPrimGenMutex);

if(fileReader) { delete fileReader; fileReader = 0; }
}

Multithreading II - M. Asai (SLAC)

MyLowEPrimaryGenAction.cc — part 2/2

void MyLowEPrimaryGenAction::GeneratePrimaries(G4Event™ anEvent)
{
G4ThreeVector momDirction(0.,0.,0.);
if(fileReader)
{
G4AutoLock lock(&myLowEPrimGenMutex);
momDirection = fileReader->GetAnEvent();

}

particleGun->SetParticleMomentumDirection(momDirction);
G4double x0 = 2.* Xmax * (G4UniformRand()-0.5);

G4double y0 = 2.* Ymax * (G4UniformRand()-0.5);
particleGun->SetParticlePosition(G4ThreeVector(x0,y0,0.));
particleGun->GeneratePrimaryVertex(anEvent);

Multithreading II - M. Asai (SLAC)

MyFileReader.hh and .cc

#include <list>

#include <fstream>

class MyFileReader

{

public:
MyFileReader(G4String fileName);
~MyFileReader();

G4ThreeVector GetAnEvent();
private

std::ifstream inputFile;

std::list<G4ThreeVector> evlList;
5

n

MyFileReader::MyFileReader(G4String fileName)
{ inputFile.open(filename.data()); }

MyFileReader::*MyFileReader()
{ inputFile.close(); }

G4ThreeVector MyFileReader::GetAnEvent()

{
if(evList.size() ==0)
{
for(int i=0;i<100;i++)
{

G4double ex, ey, ez;

inputFile >> ex >> ey >> ez;

evlist.push_back(G4ThreeVector(ex,ey,ez));
}

}
G4ThreeVector ev = evlist.pop_front();

return ev;

}

Multithreading II - M. Asai (SLAC)

Additional note for low-energy case

n

* Please note that Mutex has a performance penalty.

* Thus, in case the user uses many threads and the execution time of one event is very
short, the most efficient way is splitting the input file to the number of threads so that
each thread reads its own dedicated input file without Mutex lock.

* Inthis case, the buffering shown in above-mentioned MyFileReader class should be still
used to reduce the file I/O overhead.

Multithreading II - M. Asai (SLAC)

