Vertical Alignment Document

 MathematicsGrade 6 - Grade 8
2012-2013

§111.21. Implementation of Texas Essential Knowledge and Skills for Mathematics, Grades 6-8.

Source: The provisions of this §111.21 adopted to be effective September 1, 1998, 22 TexReg 7623; amended to be effective August 1, 2006, 30 TexReg 4479. §111.22. - §112.24. Mathematics, Grade 6 - Grade 8.
(a) Introduction.
(1) Within a well-balanced mathematics curriculum, the primary focal points at Grade 6 are using ratios to describe direct proportional relationships involving number, geometry, measurement, probability, and adding and subtracting decimals and fractions.
(1) Within a well-balanced mathematics curriculum, the primary focal points at Grade 7 are using direct proportional relationships in number, geometry, measurement, and probability; applying addition, subtraction, multiplication, and division of decimals, fractions, and integers; and using statistical measures to describe data.
> (1) Within a well-balanced mathematics curriculum, the primary focal points at Grade 8 are using basic principles of algebra to analyze and represent both proportional and nonproportional linear relationships and using probability to describe data and make predictions.
(2) Throughout mathematics in Grades 6-8, students build a foundation of basic understandings in number, operation, and quantitative reasoning; patterns, relationships, and algebraic thinking; geometry and spatial reasoning; measurement; and probability and statistics. Students use concepts, algorithms, and properties of rational numbers to explore mathematical relationships and to describe increasingly complex situations. Students use algebraic thinking to describe how a change in one quantity in a relationship results in a change in the other; and they connect verbal, numeric, graphic, and symbolic representations of relationships. Students use geometric properties and relationships, as well as spatial reasoning, to model and analyze situations and solve problems. Students communicate information about geometric figures or situations by quantifying attributes, generalize procedures from measurement experiences, and use the procedures to solve problems. Students use appropriate statistics, representations of data, reasoning, and concepts of probability to draw conclusions, evaluate arguments, and make recommendations.
(3) Problem solving in meaningful contexts, language and communication, connections within and outside mathematics, and formal and informal reasoning underlie all content areas in mathematics. Throughout mathematics in Grades 6-8, students use these processes together with graphing technology and other mathematical tools such as manipulative materials to develop conceptual understanding and solve problems as they do mathematics.

Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6		Grade 7		Grade 8
6.1	Number, operation, and quantitative reasoning. The student represents and uses rational numbers in a variety of equivalent forms. The student is expected to:	7.1	Number, operation, and quantitative reasoning. The student represents and uses numbers in a variety of equivalent forms. The student is expected to:	8.1	Number, operation, and quantitative reasoning. The student understands that different forms of numbers are appropriate for different situations. The student is expected to:
6.1 A	Compare and order non-negative rational numbers. Supporting Standard Compare, Order, Represent, Use NON-NEGATIVE RATIONAL NUMBERS Including, but not limited to: - Number sets - Natural numbers (counting) - Zero - Whole numbers - Non-negative rational numbers - Decimals (greater than or equal to zero) - Fractions (positive, unit, equivalent, proper, improper, and mixed numbers) - Relationships to benchmarks of $0, \frac{1}{2}$, and 1 - Verbal, numerical, and written expressions to compare numbers - Number lines to compare numbers (non-negative rational numbers) - Place value - Various representations of a number	7.1A	Compare and order integers and positive rational numbers. Supporting Standard Compare, Order, Represent, Use INTEGERS AND POSITIVE RATIONAL NUMBERS Including, but not limited to: - Number sets - Natural numbers (counting) - Zero - Whole numbers - Positive rational numbers - Integers - Decimals (greater than or equal to zero) - Fractions (positive, unit, equivalent, proper, improper, and mixed numbers) - Relationships to benchmarks of $0, \frac{1}{2}$, and 1 - Percents (0\% to 100%, inclusive, and greater than 100\%) - Verbal, numerical, and written expressions to compare numbers	8.1A	Compare and order rational numbers in various forms including integers, percents, and positive and negative fractions and decimals. Readiness Standard Compare, Order, Understand RATIONAL NUMBERS Including, but not limited to: - Number sets - Natural numbers (counting) - Zero - Whole numbers - Integers - Rational numbers - Decimals (greater than, less than, equal to zero) - Fractions (positive and negative, unit, equivalent, proper, improper, and mixed numbers) - Percents (0\% to 100%, inclusive, and greater than 100\%) - Verbal, numerical, and written expressions to compare numbers - Number lines to compare numbers

[^0]| Grade 6 | | GRade 7 | | GRADE 8 |
| :---: | :---: | :---: | :---: | :---: |
| that have the same value
 - Ex: 5.8 is 5 ones and 8 tenths, 5 ones and 80 hundredths, or 5 ones and 800 thousandths, etc.
 - Comparative language
 - Equality and inequality symbols (=, >, <, \geq, \leq)
 - Equality and inequality words (equal to, greater than, less than, greater than or equal to, less than or equal to)
 - Quantifying descriptors (e.g., least to greatest, ascending/descending order, slowest to fastest, etc.)
 - Multiple forms of non-negative rational numbers within a single problem
 - Real-life problems
 TxCCRS Note:
 I. Numeric Reasoning A1 - Compare real numbers. (Grade 6 only requires the students to compare non-negative rational numbers.) | | - Number lines to compare numbers (integers and positive rational numbers)
 - Place value
 - Various representations of a number that have the same value
 - Ex: 5.8 is 5 ones and 8 tenths, 5 ones and 80 hundredths, or 5 ones and 800 thousandths, etc.
 - Comparative language
 - Equality and inequality symbols (=, >, <, \geq, \leq)
 - Equality and inequality words (equal to, greater than, less than, greater than or equal to, less than or equal to)
 - Quantifying descriptors (e.g., least to greatest, ascending/descending order, slowest to fastest, etc.)
 - Multiple forms of positive rational numbers within a single problem
 - Real-life problems
 TxCCRS Note:
 I. Numeric Reasoning A1 - Compare real numbers. (Grade 7 only requires the students to compare integers and positive rational numbers.) | | (rational numbers)
 - Place value
 - Various representations of a number that have the same value
 - Ex: 5.8 is 5 ones and 8 tenths, 5 ones and 80 hundredths, or 5 ones and 800 thousandths, etc.
 - Comparative language
 - Equality and inequality symbols ($=,>,<, \geq, \leq$)
 - Equality and inequality words (equal to, greater than, less than, greater than or equal to, less than or equal to)
 - Quantifying descriptors (e.g., least to greatest, ascending/descending order, slowest to fastest, etc.)
 - Multiple forms of rational numbers within a single problem
 - Real-life problems
 TxCCRS Note:
 I. Numeric Reasoning A1 - Compare real numbers. (Grade 8 only requires the students to compare rational numbers.) |
| | | | 8.1E | Compare and order real numbers with a calculator.
 Compare, Order, Understand
 REAL NUMBERS |

Black text: Texas College and Career Readiness Standards (TxCCRS)

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Mathematics Vertical Alignment Document

	Grade 6		Grade 7		Grade 8
					TxCCRS Note: I. Numeric Reasoning A1 - Compare real numbers.
6.1B	Generate equivalent forms of rational numbers including whole numbers, fractions, and decimals. Readiness Standard Generate, Represent, Use EQUIVALENT FORMS OF NONNEGATIVE RATIONAL NUMBERS Including, but not limited to: - Whole numbers, fractions, and decimals - Various representations of equivalent forms of non-negative rational numbers - Various representations of whole numbers, fractions, and decimals - Real-life problems Note: - Grade 5 makes connections between equivalent mixed numbers and improper fractions on an abstract level.	7.1B	Convert between fractions, decimals, whole numbers, and percents mentally, on paper, or with a calculator. Readiness Standard Convert, Represent, Use POSITIVE RATIONAL NUMBERS Including, but not limited to: - Whole numbers, fractions, decimals, and percents - Various representations of whole numbers, fractions, decimals, and percents - Terminating and repeating decimals (bar notation) - Multiple forms of rational numbers within a single problem - Mental, paper/pencil, and calculator computation - Real-life problems	8.1B	Select and use appropriate forms of rational numbers to solve real-life problems including those involving proportional relationships. Supporting Standard Select, Use, Understand FORMS OF RATIONAL NUMBERS IN REAL-LIFE PROBLEM SITUATIONS Including, but not limited to: - Appropriate forms of rational numbers - Operations (+,,$- \times, \div$) on all rational numbers - Multiple forms of rational numbers within a single problem Solve REAL-LIFE PROBLEM SITUATIONS WITH RATIONAL NUMBERS Including, but not limited to: - Appropriate forms of rational numbers - Operations (+,,$- \times, \div$) on all rational numbers - Order of operations - Multiple forms of rational numbers within a single problem - Real-life problems, including

Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Mathematics Vertical Alignment Document

Mathematics Vertical Alignment Document

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

GRADE 6

- Grade 6 introduces representing integers in real-life situations.

GRade 7

GRade 8

- Pictorial models
- Number lines (horizontal and vertical)
- Multi-step problems
- Operations in real-life problems

Connect
INTEGER OPERATIONS TO ALGORITHMS

Including, but not limited to:

- Operation models
- Concrete objects
- Pictorial models
- Number lines (horizontal and vertical)
- Actions of models to algorithms
- Multi-step problems
- Multiple operations within one problem situation
- Verbal actions expressed symbolically and vice versa

Note:

- Grade 7 introduces integer computation transitioning from the concrete to the abstract.

TxCCRS Note:

I. Numeric Reasoning B1 - Perform computations with real and complex numbers. (Grade 7 only requires the

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Mathematics Vertical Alignment Document

	Grade 6	Grade 7		Grade 8
		students to perform computations with integers and positive rational numbers.)		
6.1D	Write prime factorizations using exponents. Supporting Standard Write, Represent, Use PRIME FACTORIZATION Including, but not limited to: - Positive integers - Prime and composite numbers - Factorization representations - Ex: factor trees, factor lists, arrays, prime factor tower division, etc. - Exponential notation Note: - Grade 5 introduces factor pairs. - Grade 6 introduces prime factorization. - Grade 6 uses exponents to represent numbers in prime factorization, but exponents are not used in computation with order of operations. An example would be $2^{3} \times 5^{2}=2 \times 2 \times 2 \times 5 \times 5$ and not $4^{2}-1+(17-6)=26$.		8.1D	Express numbers in scientific notation, including negative exponents, in appropriate problem situations. Supporting Standard Express, Understand SCIENTIFIC NOTATION Including, but not limited to: - Scientific notation format - Standard form to scientific notation and vice versa - Powers of ten (both positive and negative integer exponents) - Real-life problems Note: - Grade 8 is the first and only time scientific notation is introduced and addressed in mathematics. - Grade 8 introduces negative exponents and is used only as powers of ten in scientific notation. TxCCRS Note: IX. Communication and Representation A1 - Use mathematical symbols, terminology, and notation to represent given and unknown information in a problem.
6.1 E	Identify factors of a positive integer,			

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6		Grade 7	Grade 8
	common factors, and the greatest common factor of a set of positive integers. Supporting Standard Identify, Represent, Use FACTORS OF A POSITIVE INTEGER, COMMON FACTORS, AND THE GREATEST COMMON FACTOR (GCF) Including, but not limited to: - Factorization representations - Ex: factor trees, factor lists, arrays, prime factor tower division, etc. - Factors of single numbers - Factors of sets of numbers - GCF of sets of positive integers - Multiple strategies to determine GCF - Ex: factor list, Venn diagram, etc. Note: - Grade 5 introduces factor pairs. - Grade 6 introduces prime factorization.			
6.1F	Identify multiples of a positive integer and common multiples and the least common multiple of a set of positive integers. Supporting Standard Identify, Represent, Use			

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Mathematics Vertical Alignment Document

	Grade 6		Grade 7		Grade 8
	MULTIPLES OF A POSITIVE INTEGER, COMMON MULTIPLES, AND THE LEAST COMMON MULTIPLE (LCM) Including, but not limited to: - Factorization representations - Ex: factor trees, factor lists, arrays, prime factor tower division, etc. - Multiples of single numbers - Multiples of sets of numbers - LCM of sets of positive integers - Multiple strategies to determine LCM - Ex: Venn diagram, factor grid, etc. Note: - Grade 5 finds common denominators to compare fractions. - Grade 6 introduces the concept of the least common denominator.				
6.2	Number, operation, and quantitative reasoning. The student adds, subtracts, multiplies, and divides to solve problems and justify solutions. The student is expected to:	7.2	Number, operation, and quantitative reasoning. The student adds, subtracts, multiplies, or divides to solve problems and justify solutions. The student is expected to:	8.2	Number, operation, and quantitative reasoning. The student selects and uses appropriate operations to solve problems and justify solutions. The student is expected to:
6.2A	Model addition and subtraction situations involving fractions with objects, pictures, words, and numbers. Supporting Standard Model ADDITION AND SUBTRACTION SITUATIONS INVOLVING FRACTIONS	7.2A	Represent multiplication and division situations involving fractions and decimals with models, including concrete objects, pictures, words, and numbers. Supporting Standard Represent		

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Grade 6
Including, but not limited to:

- Model using objects, pictures, words, and numbers
- Addition and subtraction of fractions with like and unlike denominators
- Verbal description of mathematical process
- Proper fractions, improper fractions, and mixed numbers
- LCM to find common denominators
- GCF to simplify
- Answers in simplest form
- Place value
- Single and multi-step expressions

Solve, Justify
PROBLEM SITUATIONS INVOLVING FRACTIONS WITH ADDITION AND SUBTRACTION

Including, but not limited to:

- Model using objects, pictures, words, and numbers
- Addition and subtraction of fractions with like and unlike denominators
- Verbal description of mathematical process
- Proper fractions, improper fractions, and mixed numbers
- LCM to find common denominators

GRade 7

Grade 8

MULTIPLICATION AND DIVISION SITUATIONS INVOLVING FRACTIONS AND DECIMALS

Including, but not limited to:

- Model using concrete objects, pictures, words, and numbers
- Multiplication and division of fractions and decimals
- Verbal description of mathematical process
- Inverse relationship between multiplication and division
- Multiplicative inverse and reciprocal
- Proper fractions, improper fractions, and mixed numbers
- GCF to simplify
- Answers in simplest form
- Place value
- Single and multi-step expressions

Solve, Justify
PROBLEM SITUATIONS INVOLVING FRACTIONS AND DECIMALS WITH MULTIPLICATION AND DIVISION

Including, but not limited to:

- Model using concrete objects, pictures, words, and numbers
- Multiplication and division of fractions and decimals
- Verbal description of mathematical

Black text: Texas College and Career Readiness Standards (TxCCRS)

Mathematics Vertical Alignment Document

	Grade 6		Grade 7		Grade 8
	- GCF to simplify - Answers in simplest form - Single and multi-step expressions Note: - Grade 5 adds and subtracts fractions with like denominators transitioning from the concrete to the abstract. - Grade 5 finds common denominators to compare fractions. - Grade 6 introduces the concept of the least common denominator. TxCCRS Note: I. Numeric Reasoning B1 - Perform computations with real and complex numbers. (Grade 6 only requires the students to perform computations with nonnegative rational numbers.)		process - Multiplicative inverse and reciprocal - Proper fractions, improper fractions, and mixed numbers - GCF to simplify - Answers in simplest form - Single and multi-step expressions Note: - Grade 7 introduces multiplication and division of fractions and decimals. TxCCRS Note: I. Numeric Reasoning B1 - Perform computations with real and complex numbers. (Grade 7 only requires the students to perform computations with integers and positive rational numbers.)		
6.2B	Use addition and subtraction to solve problems involving fractions and decimals. Readiness Standard Use ADDITION AND SUBTRACTION IN PROBLEMS INVOLVING FRACTIONS AND DECIMALS Including, but not limited to: - Addition and subtraction of whole numbers, decimals, fractions (like and unlike denominators), and mixed	7.2B	Use addition, subtraction, multiplication, and division to solve problems involving fractions and decimals. Readiness Standard Use ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION IN PROBLEMS INVOLVING FRACTIONS AND DECIMALS Including, but not limited to: - Addition, subtraction, multiplication, and division of whole numbers,	8.2B	Use appropriate operations to solve problems involving rational numbers in problem situations. Readiness Standard Use APPROPRIATE OPERATIONS IN PROBLEM SITUATIONS INVOLVING RATIONAL NUMBERS Including, but not limited to: - Addition, subtraction, multiplication, and division of rational numbers

[^1]

[^2]| | Grade 6 | | GRade 7 | | GRade 8 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | subtracting with unlike denominators transitioning from the concrete to the abstract.
 TxCCRS Note:
 I. Numeric Reasoning B1 - Perform computations with real and complex numbers. (Grade 6 only requires the students to perform computations with nonnegative rational numbers.) | | TxCCRS Note:
 I. Numeric Reasoning B1 - Perform computations with real and complex numbers. (Grade 7 only requires the students to perform computations with integers and positive rational numbers.) | | |
| 6.2C | Use multiplication and division of whole numbers to solve problems including situations involving equivalent ratios and rates.
 Readiness Standard
 Use
 MULTIPLICATION AND DIVISION IN PROBLEM SITUATIONS
 Including, but not limited to:
 - Whole numbers
 - Interpretation of remainder in situations
 - Equivalent ratios
 - Real-life problems
 - Emphasis of units of measure
 Solve, Justify
 PROBLEM SITUATIONS WITH MULTIPLICATION AND DIVISION | 7.2D | Use division to find unit rates and ratios in proportional relationships such as speed, density, price, recipes, and student-teacher ratio.
 Supporting Standard
 Use, Find, Justify
 UNIT RATES AND RATIOS IN PROPORTIONAL RELATIONSHIPS WITH DIVISION
 Including, but not limited to:
 - Whole numbers, fractions, decimals
 - Inverse relationship between multiplication and division
 - Division/multiplication by unit rate
 - Various representations of ratios
 - Ratio tables
 - Verbal descriptions
 - Ex: eggs:cartons, $\frac{\text { eggs }}{\text { cartons }}$, eggs to cartons | 8.2D | Use multiplication by a given constant factor (including unit rate) to represent and solve problems involving proportional relationships, including conversions between measurement systems.
 Supporting Standard
 Use
 MULTIPLICATION BY A CONSTANT FACTOR IN PROBLEMS INVOLVING PROPORTIONAL RELATIONSHIPS
 Including, but not limited to:
 - Multiplication by a constant factor including unit rate
 - Solutions as expressions and equations
 - Representation of equivalent ratios using constant of proportionality: $\left(k=\frac{y}{x}\right)$
 - Conversions within measurement |

Black text: Texas College and Career Readiness Standards (TxCCRS)

Grade 6

Including, but not limited to:

- Whole numbers
- Interpretation of remainder in situations
- Equivalent ratios and rates
- Multi-step problems
- Multiple operations within one problem situation
- Real-life problems
- Emphasis of units of measure

TxCCRS Note:

I. Numeric Reasoning B1 - Perform computations with real and complex numbers. (Grade 6 only requires the students to perform computations with nonnegative rational numbers.)

Grade 7

- Symbolic descriptions
- Ex: $12: 1, \frac{12}{1}, 12$ to 1
- Equivalent ratios in simplest form
- Representation of equivalent ratios using constant of proportionality: ($k=\frac{y}{x}$)
- Conversions within measurement systems
- Ex: inches to feet, pounds to ounces, cups to gallons, meters to kilometers, grams to kilograms, milliliter to liters, etc.
- Dimensional analysis
- Real-life problems
- Emphasis of units of measure

TxCCRS Note:

I. Numeric Reasoning B1 - Perform computations with real and complex numbers. (Grade 7 only requires the students to perform computations with integers and positive rational numbers.)

Grade 8

systems

- Ex: inches to feet, pounds to ounces, cups to gallons, meters to kilometers, grams to kilograms, milliliter to liters, etc.
- Conversions between measurement systems
- Customary to metric
- Ex: inches to centimeters, yards to meters, pounds to kilograms, quarts to liters, etc.
- Metric to customary
- Ex: centimeters to inches, meters to yards, kilograms to pounds, liters to quarts, etc.
- Dimensional analysis
- Real-life problems
- Emphasis of units of measure

Represent, Solve, Justify
PROBLEMS INVOLVING PROPORTIONAL
RELATIONSHIPS WITH MULTIPLICATION
BY A CONSTANT FACTOR
Including, but not limited to:

- Multiplication by a constant factor including unit rate
- Solutions as expressions and equations
- Representation of equivalent ratios using constant of proportionality:

Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6		Grade 7	Grade 8
				$\left(k=\frac{y}{x}\right)$ - Conversions within measurement systems - Ex: inches to feet, pounds to ounces, cups to gallons, meters to kilometers, grams to kilograms, milliliter to liters, etc. - Conversions between measurement systems - Customary to metric - Ex: inches to centimeters, yards to meters, pounds to kilograms, quarts to liters, etc. - Metric to customary - Ex: centimeters to inches, meters to yards, kilograms to pounds, liters to quarts, etc. - Dimensional analysis - Real-life problems - Emphasis of units of measure TxCCRS Note: I. Numeric Reasoning B1 - Perform computations with real and complex numbers. (Grade 8 only requires the students to perform computations with rational numbers.) IV. Measurement Reasoning B1 - Convert from one measurement system to another.
6.2 E	Use order of operations to simplify whole number expressions (without exponents) in problem solving	7.2E	Simplify numerical expressions involving order of operations and exponents.	

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Black text: Texas College and Career Readiness Standards (TxCCRS)

Mathematics Vertical Alignment Document

Grade 6		GRade 7		GRade 8
operations - Multiplication: 3n, 3(n), 3[n], 3•n - Division: $n \div 3 ; \frac{n}{3}$ Note: - Grade 6 introduces order of operations (without exponents). Although exponents are not included in order of operations, estimating the area of circles and finding the area of a square and volume of a cube requires an understanding of how to square and/or cube a number. TxCCRS Note: I. Numeric Reasoning B1 - Perform computations with real and complex numbers. (Grade 6 only requires the students to perform computations with nonnegative rational numbers.)				
	7.2F	Select and use appropriate operations to solve problems and justify the selections. Readiness Standard Select, Use APPROPRIATE OPERATIONS FOR PROBLEMS Including, but not limited to: - Addition, subtraction, multiplication, and division	8.2A	Select appropriate operations to solve problems involving rational numbers and justify the selections. Supporting Standard Select, Use APPROPRIATE OPERATIONS FOR PROBLEMS Including, but not limited to: - Addition, subtraction, multiplication, and division of rational numbers

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

GRADE 7

- Multi-step problems
- Multiple operations within one problem situation
- Different symbols to represent operations
- Multiplication: $3 n, 3(n), 3[n], 3 \bullet n$
- Division: $n \div 3 ; \frac{n}{3}$
- Order of operations
- Appropriate expression or equation to represent a given problem situation
- Real-life problems

Solve, Justify
PROBLEMS WITH APPROPRIATE OPERATIONS

Including, but not limited to:

- Addition, subtraction, multiplication and division
- Multi-step problems
- Multiple operations within one problem situation
- Different symbols to represent operations
- Multiplication: 3n, 3(n), 3[n], 3•n
- Division: $n \div 3 ; \frac{n}{3}$
- Order of operations
- Appropriate expression or equation to

GRADE 8

- Multi-step problems
- Multiple operations within one problem situation
- Different symbols to represent operations
- Multiplication: 3n, 3(n), 3[n], 3•n
- Division: $n \div 3 ; \frac{n}{3}$
- Order of operations
- Appropriate expression or equation to represent a given problem situation
- Real-life problems

Solve, Justify
PROBLEMS WITH APPROPRIATE OPERATIONS

Including, but not limited to:

- Addition, subtraction, multiplication, and division of rational numbers
- Multi-step problems
- Multiple operations within one problem situation
- Different symbols to represent operations
- Multiplication: 3n, 3(n), 3[n], 3•n
- Division: $n \div 3 ; \frac{n}{3}$
- Order of operations
- Appropriate expression or equation to

Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6		GRade 7		GRade 8
			represent a given problem situation - Real-life problems TxCCRS Note: I. Numeric Reasoning B1 - Perform computations with real and complex numbers. (Grade 7 only requires the students to perform computations with integers and positive rational numbers.)		represent given problem situation - Real-life problems TxCCRS Note: I. Numeric Reasoning B1 - Perform computations with real and complex numbers. (Grade 8 only requires the students to perform computations with rational numbers.)
6.2D	Estimate and round to approximate reasonable results and to solve problems where exact answers are not required. Supporting Standard Estimate, Round, Approximate NON-NEGATIVE RATIONAL NUMBERS FOR REASONABLE RESULTS IN PROBLEMS Including, but not limited to: - Types of numbers - Whole numbers - Decimals - Fractions - Estimation strategies - Rounding - Compatible numbers (numbers easy to compute mentally) - Estimation prior to computation - Real-life problems	7.2G	Determine the reasonableness of a solution to a problem. Supporting Standard Determine, Justify REASONABLENESS OF A SOLUTION TO A PROBLEM Including, but not limited to: - Addition, subtraction, multiplication, and division problem situations - Problems that have information expressed as ranges of numbers in the problem itself or ranges of numbers in its solution - Justification of reasonableness in terms of the numerical answer and in context of the problem - Emphasis of units of measure - Real-life problems TxCCRS Note: I. Numeric Reasoning C1 - Use estimation to check for errors and reasonableness of	8.2C	Evaluate a solution for reasonableness. Supporting Standard Evaluate, Justify REASONABLENESS OF A SOLUTION Including, but not limited to: - Addition, subtraction, multiplication, and division problem situations - Problems that have information expressed as ranges of numbers in the problem itself or ranges of numbers in its solution - Justification of reasonableness in terms of the numerical answer and in context of the problem - Emphasis of units of measure - Real-life problems TxCCRS Note: I. Numeric Reasoning C1 - Use estimation to check for errors and reasonableness of solutions.

Black text: Texas College and Career Readiness Standards (TxCCRS)

Mathematics Vertical Alignment Document

	GRade 6		Grade 7		Grade 8
	Solve, Justify PROBLEMS FOR REASONABLE RESULTS Including, but not limited to: - Addition, subtraction, multiplication, and division problem situations - Strategies for estimation - Compatible numbers (numbers easy to compute mentally) - Rounding - Problems that have information expressed as ranges of numbers in the problem itself or ranges of numbers in its solution - Emphasis of units of measure - Real-life problems TxCCRS Note: I. Numeric Reasoning C1 - Use estimation to check for errors and reasonableness of solutions.		solutions.		
6.3	Patterns, relationships, and algebraic thinking. The student solves problems involving direct proportional relationships. The student is expected to:	7.3	Patterns, relationships, and algebraic thinking. The student solves problems involving direct proportional relationships. The student is expected to:	8.3	Patterns, relationships, and algebraic thinking. The student identifies proportional or non-proportional linear relationships in problem situations and solves problems. The student is expected to:
6.3A	Use ratios to describe proportional situations. Supporting Standard				

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6		GRade 7	GRade 8
	eggs to cartons - Symbolic descriptions - Ex: $12: 1, \frac{12}{1}, 12$ to 1 - Emphasis on order in which the ratio is stated - Emphasis of units of measure - Equivalent ratios - Real-life problems Note: - Grade 6 introduces ratios and proportions.			
6.3B	Represent ratios and percents with concrete models, fractions, and decimals. Supporting Standard Represent RATIOS AND PERCENTS Including, but not limited to: - Whole numbers, fractions, and decimals - Various representations of ratios - Concrete and pictorial models - Ratio tables - Verbal descriptions - Ex: eggs:cartons, $\frac{\text { eggs }}{\text { cartons }}$,	7.3A	Estimate and find solutions to application problems involving percent. Readiness Standard Estimate, Find SOLUTIONS TO APPLICATION PROBLEMS INVOLVING PERCENT Including, but not limited to: - Estimation of percentages before computation - Various representations of percents - Models (e.g., percent bars, hundredths grid, etc.) - Tables to bridge to algebraic notation - Ex: 20% of any given amount x	

Black text: Texas College and Career Readiness Standards (TxCCRS)

Mathematics Vertical Alignment Document

	GRade 6		GRade 7		GRade 8
	eggs to cartons - Symbolic descriptions - Ex: $12: 1, \frac{12}{1}, 12$ to 1 - Equivalent ratios in simplest form - Various representations of percents - Concrete and pictorial models (e.g., percent bars, hundredths grid, etc.) - Numeric forms - Ex: $20 \%, \frac{20}{100}, \frac{1}{5}, 0.2$ - Emphasis of units of measure - Real-life problems		equals $0.2 \bullet x$ - Numeric forms - Ex: $20 \%, \frac{20}{100}, \frac{1}{5}, 0.2$ - Multiple methods for solving problems involving percent - Models (e.g., percent bars, hundredths grid, etc.) - Decimal method (algebraic) - Proportion method: $\frac{\text { part }}{\text { whole }}=\frac{\text { percent }}{100}$ - Scale factors and equivalent ratios - Cross products - Emphasis of units of measure - Real-life problems with/without models - Ex: tax, tip, mark-up, discount, percent of change, etc.		
6.3C	Use ratios to make predictions in proportional situations. Readiness Standard Use RATIOS FOR PREDICTIONS IN PROPORTIONAL SITUATIONS Including, but not limited to: - Various representations of ratios	7.3B	Estimate and find solutions to application problems involving proportional relationships such as similarity, scaling, unit costs, and related measurement units. Readiness Standard Estimate, Find SOLUTIONS TO APPLICATION PROBLEMS INVOLVING PROPORTIONAL RELATIONSHIPS	8.3B	Estimate and find solutions to application problems involving percents and other proportional relationships such as similarity and rates. Readiness Standard Estimate, Find SOLUTIONS TO APPLICATION PROBLEMS INVOLVING PROPORTIONAL RELATIONSHIPS

Black text: Texas College and Career Readiness Standards (TxCCRS)

GRade 6

- Concrete and pictorial models
- Ratio tables
- Verbal descriptions
- Ex: eggs:cartons, $\frac{\text { eggs }}{\text { cartons }}$, eggs to cartons
- Symbolic descriptions
- Ex: $12: 1, \frac{12}{1}, 12$ to 1
- Equivalent ratios in simplest form
- Multiple methods for solving problems
- Concrete and pictorial models
- Equivalent ratios
- Ratio tables
- Cross products
- Real-life problems
- Emphasis of units of measure
- Information missing in a proportional situation

Make

PREDICTIONS IN PROPORTIONAL SITUATIONS

Including, but not limited to:

- Estimation of proportions before computation
- Multiple methods for solving problems
- Concrete and pictorial models

GRade 7

Including, but not limited to:

- Proportional relationships such as similarity, scaling, unit costs, and related measurement units
- Various representations of ratios
- Ratio tables
- Verbal descriptions
- Ex: eggs:cartons, $\frac{\text { eggs }}{\text { cartons }}$, eggs to cartons
- Symbolic descriptions
- Ex: $12: 1, \frac{12}{1}, 12$ to 1
- Equivalent ratios in simplest form
- Estimation of proportions before computation
- Multiple methods for solving direct proportional problems
- Scale factors and equivalent ratios
- Cross products
- Characteristics of direct proportional situations
- Linear
- Contains the origin $(0,0)$
- Written in the form $y=k x$
- Has a constant of proportionality:

$$
\left(k=\frac{y}{x}\right)
$$

- Real-life problems (proportional relationships involving similarity,

Grade 8
Including, but not limited to:

- Percents and other proportional relationships such as similarity and rates
- Various representations of ratios
- Verbal descriptions
- Ex: eggs:cartons, $\frac{\text { eggs }}{\text { cartons }}$, eggs to cartons
- Symbolic descriptions
- Ex: $12: 1, \frac{12}{1}, 12$ to 1
- Equivalent ratios in simplest form
- Estimation of proportions before computation
- Various representations of percents
- Models (e.g., percent bars, hundredths grid, etc.)
- Tables to bridge to algebraic notation
- Ex: 20\% of any given amount x equals $0.2 \bullet x$
- Numeric forms
- Ex: $20 \%, \frac{20}{100}, \frac{1}{5}, 0.2$
- Multiple methods for solving problems involving percent
- Decimal method (algebraic)
- Proportion method:

	Grade 6	Grade 7		Grade 8
	- Equivalent ratios - Ratio tables - Real-life problems - Emphasis on units in the problem situation	scaling, unit costs, and related measurement units) - Emphasis of units of measure Note: - Grade 6 introduces ratios and proportions. - Grade 7 introduces unit cost and scale factors. TxCCRS Note: IV. Measurement Reasoning C3 Determine indirect measurements of figures using scale drawings, similar figures, Pythagorean Theorem, and basic trigonometry. (Grade 7 is only responsible for similarity and scaling.)		$\frac{\text { part }}{\text { whole }}=\frac{\text { percent }}{100}$ - Scale factors and equivalent ratios - Cross products - Multiple methods for solving problems involving proportions - Corresponding parts of each ratio in respective positions in the proportion - Ex: The recipe to make 24 cupcakes calls for 2 eggs. How many eggs would be required to make 48 cupcakes? $\begin{aligned} & \frac{24 \text { cupcakes }}{2 \text { eggs }}=\frac{48 \text { cupcakes }}{x \text { eggs }} \\ & \frac{2 \text { eggs }}{24 \text { cupcakes }}=\frac{x \text { eggs }}{48 \text { cupcakes }} \\ & \frac{x \text { eggs }}{2 \text { eggs }}=\frac{48 \text { cupcakes }}{24 \text { cupcakes }} \\ & \frac{2 \text { eggs }}{x \text { eggs }}=\frac{24 \text { cupcakes }}{48 \text { cupcakes }} \end{aligned}$ - Real-life problems with/without models - Ex: tax, tip, mark-up, discount, percent of change, scale drawing, similarity, rate, unit price, etc. - Emphasis of units of measure
			8.3A	Compare and contrast proportional and non-proportional linear relationships. Supporting Standard

Black text: Texas College and Career Readiness Standards (TxCCRS)

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Mathematics Vertical Alignment Document

	Grade 6		Grade 7		Grade 8
					Including, but not limited to: - Various representations - Tables (horizontal and vertical) - Graphs - Verbal descriptions - Algebraic representations - Real-life problems - Proportional relationships (e.g., average speed, unit costs, and related measurement units, etc.) - Non-proportional linear relationships - Emphasis of units of measure Note: - Grade 8 introduces non-proportional relationships.
6.4	Patterns, relationships, and algebraic thinking. The student uses letters as variables in mathematical expressions to describe how one quantity changes when a related quantity changes. The student is expected to:	7.4	Patterns, relationships, and algebraic thinking. The student represents a relationship in numerical, geometric, verbal, and symbolic form. The student is expected to:	8.4	Patterns, relationships, and algebraic thinking. The student makes connections among various representations of a numerical relationship. The student is expected to:
6.4B	Use tables of data to generate formulas representing relationships involving perimeter, area, volume of a rectangular prism, etc. Supporting Standard Use, Describe, Generate FORMULAS	7.4A	Generate formulas involving unit conversions within the same system (customary and metric), perimeter, area, circumference, volume, and scaling. Supporting Standard Generate, Represent FORMULAS		

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Grade 6

Grade 8

Including, but not limited to:

- Data tables to derive formulas
- Patterns
- Proportional relationships
- Non-proportional relationships
- Geometric relationships
- Formulas
- Perimeter (square and rectangle)
- Circumference (circle)
- Area (square, rectangle, parallelogram, trapezoid, triangle, and circle)
- Volume (cube and rectangular prism)
- Approximation for Pi: $\pi=3$
- Representative equations and expressions
- Rewriting formulas on STAAR Grade 6 Mathematics Reference Materials to find indicated variables
- Ex: $P=4 s, s=\frac{P}{4}$

TxCCRS Note:

III. Geometric Reasoning C1 - Make connections between geometry and algebra.
IV. Measurement Reasoning C1 - Find the perimeter and area of two-dimensional figures.
VII. Functions C1 - Apply known function models.

Grade 7
Including, but not limited to:

- Data collection from models
- Formulas from a variety of representations
- Formulas representing
- Unit conversions within the same system
- Customary
- Ex: feet to inches, pounds to ounces, cups to gallons, etc.
- Metric
- Ex: meters to kilometers, grams to kilograms, milliliters to liters, etc.
- Perimeter (square, rectangle)
- Circumference (circle)
- Area (square, rectangle, parallelogram, trapezoid, triangle, circle)
- Volume (cube, rectangular prism, triangular prism, and cylinder)
- Scaling
- Patterns within geometric relationships
- Proportional relationships
- Constant of proportionality: k, if $y=k x$
- Formulas as expressions or equations
- Rewriting formulas on STAAR Grade 7 Mathematics Reference Materials to find indicated variables

Grade 6		Grade 7		GRade 8
IX. Communication and Representation C2 - Create and use representations to organize, record, and communicate mathematical ideas. X. Connections A1 - Connect and use multiple strands of mathematics in situations and problems.		- Ex: $C=2 \pi r, r=\frac{C}{2 \pi}$ TxCCRS Note: II. Algebraic Reasoning D2 - Translate among multiple representations of equations and relationships. III. Geometric Reasoning C1 - Make connections between geometry and algebra. IV. Measurement Reasoning B2 - Convert within a single measurement system. IV. Measurement Reasoning C1 - Find the perimeter and area of two-dimensional figures. VII. Functions C1 - Apply known function models. IX. Communication and Representation C2 - Create and use representations to organize, record, and communicate mathematical ideas. X. Connections A1 - Connect and use multiple strands of mathematics in situations and problems.		
	7.4B	Graph data to demonstrate relationships in familiar concepts such as conversions, perimeter, area, circumference, volume, and scaling. Supporting Standard Graph, Demonstrate, Represent RELATIONSHIPS IN MATHEMATICAL CONCEPTS Including, but not limited to:	8.4	Generate a different representation of data given another representation of data (such as table, graph, equation, or verbal description). Readiness Standard Generate, Connect DIFFERENT REPRESENTATIONS OF DATA Including, but not limited to:

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	GRade 6		GRade 7		GRade 8
			- Graphs (geometric) - Verbal descriptions - Algebraic representations (symbolic) - Real-life problems TxCCRS Note: II. Algebraic Reasoning D1 - Interpret multiple representations of equations and relationships. II. Algebraic Reasoning D2 - Translate among multiple representations of equations and relationships. III. Geometric Reasoning C1 - Make connections between geometry and algebra. IX. Communication and Representation C2 - Create and use representations to organize, record, and communicate mathematical ideas. X. Connections A1 - Connect and use multiple strands of mathematics in situations and problems.		IX. Communication and Representation C2 - Create and use representations to organize, record, and communicate mathematical ideas.
6.4	Patterns, relationships, and algebraic thinking. The student uses letters as variables in mathematical expressions to describe how one quantity changes when a related quantity changes. The student is expected to:	7.4	Patterns, relationships, and algebraic thinking. The student represents a relationship in numerical, geometric, verbal, and symbolic form. The student is expected to:	8.5	Patterns, relationships, and algebraic thinking. The student uses graphs, tables, and algebraic representations to make predictions and solve problems. The student is expected to:
6.4A	Use tables and symbols to represent and describe proportional and other relationships such as those involving conversions, arithmetic sequences (with a constant rate of change), perimeter and area. Readiness Standard	7.4C	Use words and symbols to describe the relationship between the terms in an arithmetic sequence (with a constant rate of change) and their positions in the sequence.	8.5B	Find and evaluate an algebraic expression to determine any term in an arithmetic sequence (with a constant rate of change). Supporting Standard Find, Evaluate, Determine, Use

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6		Grade 7		Grade 8
	sequences with constant rate of change - Perimeter relationships (square, rectangle) - Circumference relationships (circle) - Area relationships (square, rectangle, parallelogram, trapezoid, triangle, circle) - Emphasis of units of measure - Representative expressions - Real-life problems TxCCRS Note: II. Algebraic Reasoning D2 - Translate among multiple representations of equations and relationships. IV. Measurement Reasoning C1 - Find the perimeter and area of two-dimensional figures. VII. Functions B2 - Algebraically construct and analyze new functions. IX. Communication and Representation A1 - Use mathematical symbols, terminology, and notation to represent given and unknown information in a problem. IX. Communication and Representation C2 - Create and use representations to organize, record, and communicate mathematical ideas.		- Create and use representations to organize, record, and communicate mathematical ideas.		- Concrete and pictorial models - Tables - Graphs - Verbal descriptions - Algebraic representations - Relationship between term and position using words and symbols - Algebraic expressions to determine positions in a sequence and the "nth" term in a sequence - Predictions relating to terms in a sequence - Real-life problems TxCCRS Note: II. Algebraic Reasoning D2 - Translate among multiple representations of equations and relationships. VII. Functions B2 - Algebraically construct and analyze new functions. IX. Communication and Representation A1 - Use mathematical symbols, terminology, and notation to represent given and unknown information in a problem. IX. Communication and Representation C2 - Create and use representations to organize, record, and communicate mathematical ideas.
6.5	Patterns, relationships, and algebraic thinking. The student uses letters to represent an unknown in an equation. The student is expected to:	7.5	Patterns, relationships, and algebraic thinking. The student uses equations to solve problems. The student is expected to:	8.5	Patterns, relationships, and algebraic thinking. The student uses graphs, tables, and algebraic representations to make predictions and solve problems. The student is expected to:

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6		GRade 7		GRade 8
			- One-step and two-step equations - Variables on both sides of the equal sign - Strategic choice of procedures to solve equations efficiently Note: - Grade 7 introduces solving equations and uses symbols to record the actions. TxCCRS Note: II. Algebraic Reasoning A1 - Explain and differentiate between expressions and equations using words such as "solve", "evaluate", and "simplify". II. Algebraic Reasoning C1 - Recognize and use algebraic (field) properties, concepts, procedures, and algorithms to solve equations, inequalities, and systems of linear equations. (Grade 7 is only responsible for solving equations.) II. Algebraic Reasoning D2 - Translate among multiple representations of equations and relationships.		
6.5	Formulate equations from problem situations described by linear relationships. Readiness Standard Formulate, Use, Represent EQUATIONS FROM PROBLEM SITUATIONS INVOLVING LINEAR RELATIONSHIPS	7.5B	Formulate problem situations when given a simple equation and formulate an equation when given a problem situation. Readiness Standard Formulate, Solve EQUATIONS AND PROBLEM SITUATIONS	8.5A	Predict, find and justify solutions to application problems using appropriate tables, graphs, and algebraic equations. Readiness Standard Predict, Find, Justify, Solve APPLICATION PROBLEMS Including, but not limited to:

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	GRade 6		GRade 7		GRade 8
	Including, but not limited to: - Equations from problem situations - Linear relationships only - Variable(s) to represent unknown - Various representations - Tables - Graphs - Verbal descriptions - Algebraic representations - Different symbols to represent operations - Multiplication: 3n, 3(n), 3[n], 3•n - Division: $n \div 3 ; \frac{n}{3}$ - Connections to order of operations - Real-life problems Note: - Grade 5 introduces variables. TxCCRS Note: IX. Communication and Representation A1 - Use mathematical symbols, terminology, and notation to represent given and unknown information in a problem.		Including, but not limited to: - Problem situations from equations - Equations from problem situations - Variable(s) to represent unknown(s) - Various representations - Tables - Graphs - Verbal descriptions - Algebraic representations - Connections to order of operations - Real-life problems		- Variable(s) to represent unknown(s) - Various representations - Tables - Graphs - Verbal descriptions - Algebraic representations - Distinction between expressions and equations and the difference between simplifying and solving (TxCCRS) - Equations from problem situations - Connections to order of operations - Real-life problems including $d=r t$ - Reasonableness of solutions TxCCRS Note: II. Algebraic Reasoning A1 - Explain and differentiate between expressions and equations using words such as "solve", "evaluate", and "simplify". II. Algebraic Reasoning C1 - Recognize and use algebraic (field) properties, concepts, procedures, and algorithms to solve equations, inequalities, and systems of linear equations. (Grade 8 is only responsible for similarity and scaling.) II. Algebraic Reasoning D1 - Interpret multiple representations of equations and relationships. II. Algebraic Reasoning D2 - Translate among multiple representations of equations and relationships.
6.6	Geometry and spatial reasoning. The student uses geometric vocabulary to	7.6	Geometry and spatial reasoning. The student compares and classifies two-	8.6	Geometry and spatial reasoning. The student uses transformational geometry

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6		GRade 7	Grade 8
	describe angles, polygons, and circles. The student is expected to:		and three-dimensional figures using geometric vocabulary and properties. The student is expected to:	to develop spatial sense. The student is expected to:
6.6A	Use angle measurements to classify angles as acute, obtuse, or right. Supporting Standard Use, Classify, Describe ANGLE MEASUREMENTS Including, but not limited to: - Measurement of angles with a protractor - Measurement to classify angles - Acute angles (between 0 and 90 degrees) - Obtuse angles (between 90 and 180 degrees) - Right angles (90 degrees) - Straight angles (180 degrees) - Angles in objects and polygons - Angles embedded within angles - Angle labels - Angle with one letter - Ex: angle A - Angle with three letters - Ex: angle $A B C$ - Angle with a number - Ex: angle 1	7.6A	Use angle measurements to classify pairs of angles as complementary or supplementary. Supporting Standard Use, Classify, Compare ANGLE MEASUREMENTS Including, but not limited to: - Measurement of angles with a protractor - Measurement to classify angles - Acute angles (between 0 and 90 degrees) - Obtuse angles (between 90 and 180 degrees) - Right angles(90 degrees) - Straight angles (180 degrees) - Pairs of angles - Complementary angles (total 90 degrees) - Supplementary angles (total 180 degrees) - Angles in objects and polygons - Angles embedded within angles - Consecutive angles - Angle labels	

Grade 6

- Angle symbol with one letter
- Ex: $\angle A$
- Angle symbol with three letters
- Ex: $\angle A B C$
- Angle symbol with a number
- Ex: $\angle 1$
- Measurement or " m " notation indicates the measure of the angle in degrees, $m \angle 1=50^{\circ}$
- Unit measurement labels
- 50 degrees or 50°
- Box to represent 90° angle in figure

Note:

- Grade 6 introduces using a protractor to measure angles.

TxCCRS Note:

III. Geometric Reasoning A1 - Identify and represent the features of plane and space figures.
III. Geometric Reasoning A2 - Make, test, and use conjectures about one-, two- and three-dimensional figures and their properties.

Grade 7

Grade 8

- Angle with one letter
- Ex: angle A
- Angle with three letters
- Ex: angle $A B C$
- Angle with a number
- Ex: angle 1
- Angle symbol with one letter
- Ex: $\angle A$
- Angle symbol with three letters
- Ex: $\angle A B C$
- Angle symbol with a number
- Ex: $\angle 1$
- Measurement or " m " notation indicates the measure of the angle in degrees, $m \angle 1=50^{\circ}$
- Unit measurement labels
- 50 degrees or 50°
- Box to represent 90° angle in figure

Note:

- Grade 7 introduces complementary and supplementary angles.

TxCCRS Note:

III. Geometric Reasoning A1 - Identify and represent the features of plane and space figures.
III. Geometric Reasoning A2 - Make, test, and use conjectures about one-, two- and three-dimensional figures and their properties.

Black text: Texas College and Career Readiness Standards (TxCCRS)

Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

GRade 6

- Sum of all angles in any quadrilateral measures 360
- Opposite angles are congruent in a parallelogram, rhombus, rectangle, and square
- All angles are congruent in a rectangle and square
- All angles measure 90° in a rectangle and square
- Congruency of angles is related to the congruency of sides
- Finding unknown angle measures in a quadrilateral when given one or more angle measures

Note:

- Grade 6 introduces congruency marks on triangles and quadrilaterals.

TxCCRS Note:

III. Geometric Reasoning A1 - Identify and represent the features of plane and space figures.
III. Geometric Reasoning A2 - Make, test, and use conjectures about one-, two- and three-dimensional figures and their properties.

GRade 7

GRade 8

less than 90믕

- Equiangular triangle, all angles congruent, all angles measure 60°
- Side-angle classifications (e.g., isosceles, right triangle, etc.)
- Properties of quadrilaterals
- Congruency of sides is related to the congruency of angles
- Trapezoid
- Exactly one pair of opposite sides parallel
- Exactly two pairs of consecutive angles supplementary
- Parallelogram
- Both pairs of opposite sides parallel
- Both pairs of opposite sides congruent
- Both pairs of opposite angles congruent
- Consecutive angles supplementary
- Rectangle, parallelogram in which
- All pairs of adjacent sides perpendicular
- All angles right angles
- Rhombus, parallelogram in which
- All sides congruent
- Square, rectangle in which
- All sides congruent

Black text: Texas College and Career Readiness Standards (TxCCRS)

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6	GRade 7		GRade 8
		figures. III. Geometric Reasoning A2 - Make, test, and use conjectures about one-, two- and three-dimensional figures and their properties.		
	7.6D	Use critical attributes to define similarity. Readiness Standard Use, Define, Compare CRITICAL ATTRIBUTES OF SIMILAR FIGURES Including, but not limited to: - Notation for similar figures aligning corresponding angles and sides: $\triangle A B C \sim \triangle L M N$ - Corresponding parts of similar figures (alignment as indicated in similarity statement) - Corresponding angles are congruent: $\angle A \cong \angle L, \angle B \cong \angle M, \angle C \cong \angle N$ - Corresponding sides are related proportionally: $\frac{A B}{L M}=\frac{B C}{M N}=\frac{A C}{L N}$ TxCCRS Note: III. Geometric Reasoning A1 - Identify and represent the features of plane and space figures. III. Geometric Reasoning A2 - Make, test, and use conjectures about one-, two- and three-dimensional figures and their	8.6A	Generate similar figures using dilations including enlargements and reductions. Readiness Standard Generate, Use, Develop SIMILAR FIGURES Including, but not limited to: - Dilations - Enlargements (scale factor >1) - Reductions ($0<$ scale factor <1) - Congruent (scale factor = 1) - Comparison of original figure versus image - Determination of scale factor between two similar figures - Enlargement or reduction of a figure given a scale factor - Corresponding parts of similar figures - Corresponding angles are congruent - Corresponding sides are related proportionally - Notation for similar figures aligning corresponding angles and sides: $\triangle A B C \sim \triangle L M N$

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	GRade 6	GRade 7	GRade 8
		properties.	- Corresponding parts of similar figures (alignment as indicated in similarity statement) - Corresponding angles are congruent: $\angle A \cong \angle L, \angle B \cong \angle M, \angle C \cong \angle N$ - Corresponding sides are related proportionally: $\frac{A B}{L M}=\frac{B C}{M N}=\frac{A C}{L N}$ - Proportions to find missing sides of similar figures - Models on coordinate grids TxCCRS Note: III. Geometric Reasoning B1 - Identify and apply transformations to figures. III. Geometric Reasoning B3 - Use congruence transformations and dilations to investigate congruence, similarity, and symmetries of plane figures. IV. Measurement Reasoning C3 Determine indirect measurements of figures using scale drawings, similar figures, Pythagorean Theorem, and basic trigonometry. (Basic trigonometry is not addressed until high school geometry.)
6.6C	Describe the relationship between radius, diameter, and circumference of a circle. Readiness Standard Describe, Use CIRCLE RELATIONSHIPS		

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6		Grade 7		Grade 8
	Including, but not limited to: - Models - Data collection and analysis - Diameter versus radius - Circumference versus diameter - Circumference versus radius - Representations of the relationships between radius, diameter, circumference, and Pi - Tables (horizontal and vertical) - Graphs - Verbal descriptions - Algebraic representations Note: - Grade 6 introduces parts of a circle and relationships of a circle. TxCCRS Note: III. Geometric Reasoning A1 - Identify and represent the features of plane and space figures. III. Geometric Reasoning A2 - Make, test, and use conjectures about one-, two- and three-dimensional figures and their properties. VII. Functions C1 - Apply known function models.				
6.7	Geometry and spatial reasoning. The student uses coordinate geometry to identify location in two dimensions. The student is expected to:	7.7	Geometry and spatial reasoning. The student uses coordinate geometry to describe location on a plane. The student is expected to:	8.7	Geometry and spatial reasoning. The student uses geometry to model and describe the physical world. The student is expected to:

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6		Grade 7		Grade 8
6.7	Locate and name points on a coordinate plane using ordered pairs of nonnegative rational numbers. Supporting Standard Locate, Name, Use, Identify ORDERED PAIRS Including, but not limited to: - Coordinate plane (Quadrant I only) - Coordinates represented by a variety of non-negative rational numbers - Whole numbers - Fractions (e.g., $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$, etc.) - Decimals (e.g., 0.25, 1.5, 6.3, etc.) - Labels - Points - Letter label: A - Ordered Pair: $\left(1, \frac{1}{2}\right)$ - Coordinate Plane - Quadrant I - x-axis and y-axis - Coordinate graphs with different incremental units - Objects and real-life situations - Attributes of two-dimensional figures to determine missing points	7.7A	Locate and name points on a coordinate plane using ordered pairs of integers. Supporting Standard Locate, Name, Use, Describe ORDERED PAIRS Including, but not limited to: - Coordinate plane (all quadrants) - Coordinates represented by a variety of integers - Whole numbers - Integers (e.g., -2, 0, 5, etc.) - Labels - Points - Letter label: A - Ordered Pair: (2, -3) - Coordinate Plane - Quadrant I, II, III, IV - x-axis and y-axis - Coordinate graphs with different incremental units - Objects and real-life situations Note: - Grade 6 introduces graphing nonnegative rational ordered pairs in Quadrant I only. - Grade 7 introduces graphing of ordered pairs of integers Quadrants II,	8.7D	Locate and name points on a coordinate plane using ordered pairs of rational numbers. Supporting Standard Locate, Name, Use, Model, Describe ORDERED PAIRS Including, but not limited to: - Coordinate plane (all quadrants) - Coordinates represented by a variety of rational numbers - Labels - Points - Letter label: A - Ordered Pair: ($\frac{1}{2},-3$) - Coordinate Plane - Quadrant I, II, III, IV - x-axis and y-axis - Coordinate graphs with different incremental units - Inequality statements with x and y coordinates - Ex: $x<-2$ and $y>3$ which point meets or does not meet the requirements - Objects and real-life situations Note:

GRade 6		GRade 7		GRade 8
- Transformations (translations and reflections in Quadrant I only) to determine missing points Note: - Grade 5 introduces graphing whole number ordered pairs in Quadrant I only. - Grade 5 sketches and identifies transformations, including translations, rotations, and reflections in Quadrant I only. - Grade 6 introduces graphing nonnegative rational ordered pairs in Quadrant I only. - Grade 6 does not specifically address transformations, however transformations (translations and reflections in Quadrant I only) can be assessed under SE 6.7. TxCCRS Note: III. Geometric Reasoning A2 - Make, test, and use conjectures about one-, two- and three-dimensional figures and their properties. III. Geometric Reasoning C1 - Make connections between geometry and algebra. X. Connections A1 - Connect and use multiple strands of mathematics in situations and problems.		III, IV. - Grade 7 continues the graphing of order pairs of positive rational numbers in Quadrant I from Grade 6 to bridge to graphing ordered pairs of rational numbers in Grade 8. TxCCRS Note: III. Geometric Reasoning A2 - Make, test, and use conjectures about one-, two- and three-dimensional figures and their properties. III. Geometric Reasoning C1 - Make connections between geometry and algebra. X. Connections A1 - Connect and use multiple strands of mathematics in situations and problems.		- Grade 6 introduces graphing nonnegative rational coordinate points in Quadrant I only. - Grade 7 introduces graphing ordered pairs of integers on the coordinate plane and continues non-negative rational numbers from Grade 6. - Grade 8 introduces graphing ordered pairs of rational numbers in the coordinate plane. TxCCRS Note: III. Geometric Reasoning A2 - Make, test, and use conjectures about one-, two- and three-dimensional figures and their properties. III. Geometric Reasoning C1 - Make connections between geometry and algebra. X. Connections A1 - Connect and use multiple strands of mathematics in situations and problems.
	7.7	Geometry and spatial reasoning. The student uses coordinate geometry to describe location on a plane. The student is expected to:	8.6	Geometry and spatial reasoning. The student uses transformational geometry to develop spatial sense. The student is expected to:

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6		Grade 7		GRADE 8
	Note: - Grade 4 introduces translations, reflections, and rotations with concrete models only (SE 4.9A). - Grade 5 sketches and identifies translations, rotations, and reflections in Quadrant I only (SE 5.8A, 5.8B). - Grade 6 does not specifically address transformations. However transformations (translations and reflections in Quadrant I only) can be assessed under SE 6.7. - Grades 6, 7 and 8 do not address rotations in the TEKS. Geometry introduces specified angle rotation.	7.7B	Graph reflections across the horizontal or vertical axis and graph translations on a coordinate plane. Readiness Standard Graph, Use, Describe REFLECTIONS Including, but not limited to: - Line of reflection - Horizontal axis - Vertical axis - Coordinate plane (all quadrants) - Symmetry - Prime notation of image points - Coordinates of image points - Comparison of original figure versus image (congruent) Graph, Use, Describe TRANSLATIONS Including, but not limited to: - Coordinate plane (all quadrants) - Verbal description of effects of translation on points - Prime notation of image points - Coordinates of image points - Comparison of original figure versus image (congruent)	8.6B	Graph dilations, reflections, and translations on a coordinate plane. Supporting Standard Graph, Use, Develop DILATIONS Including, but not limited to: - Coordinate plane (all quadrants) - Enlargements (scale factor >1) - Reductions ($0<$ scale factor < 1) - Congruent (scale factor =1) - Prime notation of image points - Coordinates of image points - Comparison of original figure versus image (congruent) Graph, Use, Develop REFLECTIONS Including, but not limited to: - Line of reflection - Horizontal axis - Vertical axis - Other lines of reflection - Coordinate plane (all quadrants) - Symmetry - Prime notation of image points - Coordinates of image points

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Mathematics Vertical Alignment Document

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6	Grade 7		Grade 8
		TxCCRS Note: III. Geometric Reasoning A1 - Identify and represent the features of plane and space figures.		TxCCRS Note: III. Geometric Reasoning A1 - Identify and represent the features of plane and space figures.
	7.8	Geometry and spatial reasoning. The student uses geometry to model and describe the physical world. The student is expected to:	8.7	Geometry and spatial reasoning. The student uses geometry to model and describe the physical world. The student is expected to:
	7.8C	Use geometric concepts and properties to solve problems in fields such as art and architecture. Supporting Standard Use, Model, Describe GEOMETRIC CONCEPTS AND PROPERTIES IN PROBLEMS Including, but not limited to: - Two-dimensional figures - Perimeter (polygons) - Circumference (circles) - Area (polygons and circles) - Three-dimensional figures - Volume (triangular and rectangular prisms and cylinders) - Measurement with ruler using customary and SI (metric) units - Composite figures - Measurement conversions, including conversions within the same system	8.7B	Use geometric concepts and properties to solve problems in fields such as art and architecture. Supporting Standard Use, Model, Describe GEOMETRIC CONCEPTS AND PROPERTIES IN PROBLEMS Including, but not limited to: - Two-dimensional figures - Perimeter (polygons) - Circumference (circles) - Area (polygons and circles) - Three-dimensional figures - Lateral and total surface area (prisms, pyramids, cylinders) - Volume (prisms, cylinders, pyramids, spheres, and cones) - Measurement with ruler using customary and SI (metric) units - Composite figures

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Mathematics Vertical Alignment Document

	Grade 6		GRade 7	GRade 8
				addressed until high school geometry.) X. Connections A1 - Connect and use multiple strands of mathematics in situations and problems.
6.8	Measurement. The student solves application problems involving estimation and measurement of length, area, time, temperature, volume, weight, and angles. The student is expected to:	7.9	Measurement. The student solves application problems involving estimation and measurement. The student is expected to:	
6.8A	Estimate measurements (including circumference) and evaluate reasonableness of results. Supporting Standard Estimate MEASUREMENTS Including, but not limited to: - Time - Temperature - Weight - Angles - Length (including perimeter and circumference) and area - Polygons and other shapes - Square - Rectangle - Parallelogram - Triangle - Trapezoid	7.9A	Estimate measurements and solve application problems involving length (including perimeter and circumference) and area of polygons and other shapes. Readiness Standard Estimate MEASUREMENTS Including, but not limited to: - Length (including perimeter and circumference) and area - Polygons and other shapes - Square - Rectangle - Parallelogram - Triangle - Trapezoid - Circles - Composite figures - Numerical approximation for Pi:	

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

GRade 6

- Circles
- Composite figures
- Numerical approximation for Pi: $\pi \approx 3$
- Volume
- Three-dimensional figures
- Cube
- Rectangular prism
- Customary and SI (metric) units
- Measurement conversions, including conversions within the same system
- Emphasis of units of measure
- Appropriate labels
- Ex: perimeter (e.g., feet, ft)
- Ex: area (e.g., square feet, ft^{2})
- Ex: volume (e.g., cubic feet, ft^{3})
- Multi-step problems
- Multiple operations within one problem situation
- Justification of solutions for reasonableness
- Real-life problems

Evaluate

REASONABLENESS OF RESULTS

Including, but not limited to:

- Measurement involving real-life problems
- Justification of reasonableness in terms of the numerical answer and in

Grade 7

$$
\pi \approx 3.14 \text { or } \frac{22}{7}
$$

- Customary and SI (metric) units
- Measurement conversions, including conversions within the same system
- Emphasis of units of measure
- Appropriate labels
- Ex: perimeter (e.g., feet, ft)
- Ex: area (e.g., square feet, ft^{2})
- Multi-step problems
- Multiple operations within one problem situation
- Justification of solutions for reasonableness
- Real-life problems

Solve

APPLICATION PROBLEMS INVOLVING

 LENGTH AND AREAIncluding, but not limited to:

- Polygons and other shapes
- Square
- Rectangle
- Parallelogram
- Triangle
- Trapezoid
- Circles
- Composite figures

Black text: Texas College and Career Readiness Standards (TxCCRS)

Grade 6

context of the problem

- Justification of reasonableness in terms of units of measure used in the problem situation

Note:

- STAAR Grade 5 Mathematics Reference Materials uses the perimeter formula, $P=4 \times \mathrm{s}$, and the area formula, $A=s \times s$, for a square. Grade 6 transitions to the perimeter formula as $P=4 \mathrm{~s}$ and the area formula as $A=s^{2}$, for a square.
- STAAR Grade 5 Mathematics Reference Materials uses the perimeter formula, $P=(2 \times I)+(2 \times w)$, and the area formula, $A=1 \times w$, for a rectangle. Grade 6 transitions to the perimeter formula as $P=2 l+2 w$ and the area formula as both $A=I W$ and A $=b h$ for a rectangle without the use the multiplication symbol.
- Grade 6 introduces circumference.
- Grade 6 introduces area of a triangle, parallelogram, and trapezoid as well as the use of h in the formulas for each.
- Grade 6 uses both area formulas,
$A=\frac{b h}{2}$ and $A=\frac{1}{2} b h$, for a triangle and both area formulas, $A=\frac{\left(b_{1}+b_{2}\right) h}{2}$ and $A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$,for a trapezoid. These formulas develop the understanding that dividing by 2 is the

Grade 7

Grade 8

- Numerical approximation for Pi:

$$
\pi \approx 3.14 \text { or } \frac{22}{7}
$$

- Measurement conversions, including conversions within the same system
- Emphasis of units of measure
- Appropriate labels
- Ex: perimeter (e.g., feet, ft)
- Ex: area (e.g., square feet, ft^{2})
- Multi-step problems
- Multiple operations within one problem situation
- Justification of solutions for reasonableness
- Real-life problems

Note:

- STAAR Grade 5 Mathematics Reference Materials uses the perimeter formula, $P=4 \times \mathrm{s}$, and the area formula, $A=s \times s$, for a square. Grade 6 transitions to the perimeter formula as $P=4 \mathrm{~s}$ and the area formula as $A=s^{2}$, for a square.
- STAAR Grade 5 Mathematics Reference Materials uses the perimeter formula, $P=(2 \times \Lambda)+(2 \times w)$, and the area formula, $A=1 \times w$, for a rectangle. Grade 6 transitions to the perimeter formula as $P=2 /+2 w$ and the area formula as both $A=I W$ and A = bh for a rectangle without the use the

Grade 6		GRade 7		Grade 8
same as multiplying by $\frac{1}{2}$. - Grade 6 introduces area of a circle and volume of a cube. Although exponents are not included in order of operations, estimating the area of circles and finding the area of a square and the volume of a cube requires an understanding of how to square and/or cube a number. TxCCRS Note: I. Numeric Reasoning C1 - Use estimation to check for errors and reasonableness of solutions. III. Geometric Reasoning A2 - Make, test, and use conjectures about one-, two- and three-dimensional figures and their properties. III. Geometric Reasoning C3 - Make connections between geometry and measurement. IV. Measurement Reasoning A1 - Select or use the appropriate type of unit for the attribute being measured. IV. Measurement Reasoning C1 - Find the perimeter and area of two-dimensional figures. X. Connections A1 - Connect and use multiple strands of mathematics in situations and problems.		multiplication symbol. - STAAR Grade 7 Mathematics Reference Materials do not specifically reference the perimeter or area of a square; however, students are expected to classify a square as a special kind of rectangle and utilize the perimeter formula, $P=2 l+2 w$, and the area formula, $A=b h$, for a rectangle. - Grade 7 only uses the area formula $A=\frac{1}{2} b h$ for a triangle and the area formula $A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$ for a trapezoid. These formulas require the understanding that dividing by 2 is the same as multiplying by $\frac{1}{2}$. TxCCRS Note: I. Numeric Reasoning C1 - Use estimation to check for errors and reasonableness of solutions. III. Geometric Reasoning A2 - Make, test, and use conjectures about one-, two- and three-dimensional figures and their properties. III. Geometric Reasoning C3 - Make connections between geometry and measurement. IV. Measurement Reasoning A1 - Select or use the appropriate type of unit for the attribute being measured. IV. Measurement Reasoning C1 - Find the perimeter and area of two-dimensional figures.		

Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6	Grade 7		Grade 8
		X. Connections A1 - Connect and use multiple strands of mathematics in situations and problems.		
	7.8	Geometry and spatial reasoning. The student uses geometry to model and describe the physical world. The student is expected to:	8.8	Measurement. The student uses procedures to determine measures of three-dimensional figures. The student is expected to:
	$7.8 \mathrm{~B}$	Make a net (two-dimensional model) of the surface area of a three-dimensional figure. Supporting Standard Make, Use, Model, Describe NETS Including, but not limited to: - Two-dimensional model (net) of a three-dimensional figure - Pyramids - Prisms - Cylinders - Two- and three-dimensional figure properties - Real-life problems Note: - Grade 7 does not calculate surface area. - Grade 7 introduces nets of geometric figures. - Grade 8 introduces determining lateral and total surface area.	8.8A	Find lateral and total surface area of prisms, pyramids, and cylinders using concrete models and nets (twodimensional models). Supporting Standard Find, Use, Determine LATERAL AND TOTAL SURFACE AREA Including, but not limited to: - Three-dimensional concrete model and two-dimensional model (net) of a threedimensional figure - Pyramids - Prisms - Cylinders - Two- and three-dimensional figure properties - Emphasis of units of measure - Appropriate labels - Ex: area (e.g., square feet, ft^{2}) - Real-life problems Note:

Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6		Grade 7		Grade 8
			TxCCRS Note: III. Geometric Reasoning A1 - Identify and represent the features of plane and space figures.		- Grade 7 introduces nets of geometric figures. - Grade 8 introduces determining lateral and total surface area. TxCCRS Note: III. Geometric Reasoning C3 - Make connections between geometry and measurement. IV. Measurement Reasoning C1 - Find the perimeter and area of two-dimensional figures. IV. Measurement Reasoning C2 Determine the surface area and volume of three-dimensional figure. X. Connections A1 - Connect and use multiple strands of mathematics in situations and problems.
6.8	Measurement. The student solves application problems involving estimation and measurement of length, area, time, temperature, volume, weight, and angles. The student is expected to:	7.9	Measurement. The student solves application problems involving estimation and measurement. The student is expected to:	8.8	Measurement. The student uses procedures to determine measures of three-dimensional figures. The student is expected to:
		7.9B	Connect models for volume of prisms (triangular and rectangular) and cylinders to formulas of prisms (triangular and rectangular) and cylinders. Supporting Standard Connect MODELS FOR VOLUME Including, but not limited to:	8.8B	Connect models of prisms, cylinders, pyramids, spheres, and cones to formulas for volume of these objects. Supporting Standard Connect MODELS FOR VOLUME Including, but not limited to: - Prisms (triangular and rectangular) to formulas of prisms

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6		Grade 7		Grade 8
			Reference Materials. TxCCRS Note: III. Geometric Reasoning C3 - Make connections between geometry and measurement. IV. Measurement Reasoning C2 Determine the surface area and volume of three-dimensional figure. X. Connections A1 - Connect and use multiple strands of mathematics in situations and problems.		as the Area of the Base of a threedimensional figure according to the STAAR Grade 8 Mathematics Reference Materials. - Grade 8 introduces the volume formulas for pyramid, cone, and sphere. STAAR Note: - 8.8 B will be tested in STAAR even though it was not tested in TAKS. TxCCRS Note: III. Geometric Reasoning C3 - Make connections between geometry and measurement. IV. Measurement Reasoning C2 Determine the surface area and volume of three-dimensional figure. X. Connections A1 - Connect and use multiple strands of mathematics in situations and problems.
6.8B	Select and use appropriate units, tools, or formulas to measure and to solve problems involving length (including perimeter), area, time, temperature, volume, and weight. Readiness Standard Select, Use MEASUREMENT UNITS, TOOLS, OR FORMULAS Including, but not limited to:	7.9C	Estimate measurements and solve application problems involving volume of prisms (rectangular and triangular) and cylinders. Readiness Standard Estimate MEASUREMENTS Including, but not limited to: - Customary and SI (metric) units - Measurement conversions, including	8.8C	Estimate measurements and use formulas to solve application problems involving lateral and total surface area and volume. Readiness Standard Estimate, Determine MEASUREMENTS Including, but not limited to: - Customary and SI (metric) units - Measurement conversions, including

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

GRade 7

- Appropriate tools to measure
- Numerical approximation for Pi: $\pi \approx 3$
- Calendar and clock time
- Degrees Celsius and Fahrenheit
- Customary and SI (metric) units
- Measurement conversions, including conversions within the same system
- Formulas on STAAR Grade 6 Mathematics Reference Materials

Measure

LENGTH, AREA, TIME, TEMPERATURE, VOLUME, OR WEIGHT

Including, but not limited to:

- Two-dimensional figures
- Circles
- Polygons
- Composite figures
- Three-dimensional figures
- Cube
- Rectangular prism
- Calendar and clock time
- Degrees Celsius and Fahrenheit
- Customary and SI (metric) units
- Measurement conversions, including conversions within the same system
- Emphasis of units of measure
- Appropriate labels for volume (e.g.,
conversions within the same system
- Emphasis of units of measure
- Appropriate labels
- Ex: volume (e.g., cubic feet, ft^{3})
- Real-life problems

Solve

APPLICATION PROBLEMS INVOLVING VOLUME

Including, but not limited to:

- Three-dimensional figures
- Rectangular prism
- Triangular prism
- Cylinder
- Numerical approximation for Pi

$$
\pi \approx 3.14 \text { or } \frac{22}{7}
$$

- Measurement conversions, including conversions within the same system
- Emphasis of units of measure
- Appropriate labels
- Ex: Volume (e.g., cubic feet, ft^{3})
- Multi-step problems
- Multiple operations within one problem situation
- Formulas on STAAR Grade 7 Mathematics Reference Materials
- Notation for area of the base as " B
- Justification of solutions for

Grade 8

conversions within the same system and measurement conversions between systems

- Emphasis of units of measure
- Appropriate labels
- Ex: area (e.g., square feet, ft^{2})
- Ex: volume (e.g., cubic feet, ft^{3})
- Real-life problems

Use
FORMULAS

Including, but not limited to:

- Numerical approximation for Pi:

$$
\pi \approx 3.14 \text { or } \frac{22}{7}
$$

- Customary and SI (metric) units
- Measurement conversions, including conversions within the same system and measurement conversions between systems
- Emphasis of units of measure
- Appropriate labels
- Ex: area (e.g., square feet, ft^{2})
- Ex: volume (e.g., cubic feet, ft^{3})
- Multi-step problems
- Multiple operations within one problem situation
- Formulas on the STAAR Grade 8 Mathematics Reference Materials

Black text: Texas College and Career Readiness Standards (TxCCRS)

GRADE 6

- Ex: area (e.g., square feet, ft^{2})
- Ex: volume (e.g., cubic feet, ft^{3})
- Multi-step problems
- Multiple operations within one problem situation
- Formulas on STAAR Grade 6 Mathematics Reference Materials
- Appropriate tools to measure
- Justification of solutions for reasonableness
- Real-life problems

Note:

- STAAR Grade 5 Mathematics Reference Materials uses the perimeter formula, $P=4 \times \mathrm{s}$, and the area formula, $A=s \times s$, for a square. Grade 6 transitions to the perimeter formula as $P=4 \mathrm{~s}$ and the area formula as $A=s^{2}$, for a square.
- STAAR Grade 5 Mathematics Reference Materials uses the perimeter formula, $P=(2 \times \Lambda)+(2 \times w)$, and the area formula, $A=I \times w$, for a rectangle. Grade 6 transitions to the perimeter formula as $P=2 l+2 w$ and the area formula as both $A=I w$ and A $=b h$ for a rectangle without the use the multiplication symbol.
- Grade 6 introduces circumference
- Grade 6 introduces area of a triangle, parallelogram, and trapezoid as well as the use of h in the formulas for each.

GRADE 7
GRADE 8
reasonableness

- Real-life problems

Note:

- Grade 8 introduces determining lateral and total surface area.
- Grade 8 introduces " P " as the Perimeter of the Base of a threedimensional figure according to the STAAR Grade 8 Mathematics Reference Materials.

TxCCRS Note:

III. Geometric Reasoning C3 - Make connections between geometry and measurement.
IV. Measurement Reasoning C1 - Find the perimeter and area of two-dimensional figures.
V. Measurement Reasoning C2 Determine the surface area and volume of three-dimensional figures.
X. Connections A1 - Connect and use multiple strands of mathematics in situations and problems.

Black text: Texas College and Career Readiness Standards (TxCCRS)

Grade 6

Grade 7
Grade 8

- Grade 6 uses both area formulas, $A=\frac{b h}{2}$ and $A=\frac{1}{2} b h$, for a triangle and both area formulas, $A=\frac{\left(b_{1}+b_{2}\right) h}{2}$ and $A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$,for a trapezoid.
These formulas develop the understanding that dividing by 2 is the same as multiplying by $\frac{1}{2}$.
- Grade 6 is a transitional year for volume formulas with the use of both $V=I w h$ and $V=B h$ for rectangular prisms as well as without the use the multiplication symbol, according to the STAAR Grade 6 Mathematics Reference Materials.
- Grade 6 introduces area of a circle and volume of a cube. Although exponents are not included in order of operations, estimating the area of circles and finding the area of a square and the volume of a cube requires an understanding of how to square and/or cube a number.

TxCCRS Note:

III. Geometric Reasoning C3 - Make connections between geometry and measurement.
IV. Measurement Reasoning A1 - Select or use the appropriate type of unit for the attribute being measured. IV. Measurement Reasoning C1 - Find the perimeter and area of two-dimensional

Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6	Grade 7	Grade 8
6.8D	Convert measures within the same measurement system (customary and metric) based on relationships between units. Supporting Standard Convert MEASURES Including, but not limited to: - Measures within the same measurement system - Metric - Length (kilometers, meters, centimeters, millimeters) - Capacity and volume (liters, milliliters) - Mass (kilograms, grams, milligrams) - Customary - Length (miles, yards, feet, inches) - Capacity and volume (gallons, quarts, pints, cups, fluid ounces) - Weight (tons, pounds, ounces) - Time (years, months, weeks, days, hours, minutes, seconds) - Relationships between units - Proportional reasoning - Proportional relationships		

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR. Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.

Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6		GRade 7		Grade 8
	- Ex: $1 \mathrm{ft}=\frac{1}{3} \mathrm{yd}$ - Real-life problems TxCCRS Note: IV. Measurement Reasoning A1 - Select or use the appropriate type of unit for the attribute being measured. IV. Measurement Reasoning B2 - Convert within a single measurement system.				
				8.9	Measurement. The student uses indirect measurement to solve problems. The student is expected to:
				8.9A	Use the Pythagorean Theorem to solve real-life problems. Readiness Standard Use, Solve PYTHAGOREAN THEOREM IN PROBLEMS Including, but not limited to: - Real-life problems involving right triangles with missing leg or hypotenuse - Squares and square roots - Estimation prior to solving - Properties of geometric figures - Determination of perimeter of a figure after finding a missing side measurement (TxCCRS) - Decomposition of a rectangle or

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6	Grade 7		Grade 8
				situations and problems.
			8.9B	Use proportional relationships in similar two-dimensional figures or similar threedimensional figures to find missing measurements. Readiness Standard Use, Find, Solve PROPORTIONAL RELATIONSHIPS IN SIMILAR FIGURES Including, but not limited to: - Corresponding parts - Proportions to find missing measures in both two- and three-dimensional figures - Scale factors to find missing measures in both two- and three-dimensional figures - Missing measures in figures where one similar figure is repositioned - Determination of perimeter of a figure after finding a missing side measurement (TxCCRS) - Real-life problems TxCCRS Note: III. Geometric Reasoning C3 - Make connections between geometry and measurement. IV. Measurement Reasoning C1 - Find the perimeter and area of two-dimensional figures.

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6	Grade 7		Grade 8
				IV. Measurement Reasoning C3Determine indirect measurements of figures using scale drawings, similar figures, Pythagorean Theorem, and basic trigonometry. (Basic trigonometry is not addressed until high school geometry.) X. Connections A1 - Connect and use multiple strands of mathematics in situations and problems.
			8.10	Measurement. The student describes how changes in dimensions affect linear, area, and volume measures. The student is expected to:
			8.10A	Describe the resulting effects on perimeter and area when dimensions of a shape are changed proportionally. Supporting Standard Describe EFFECTS OF PROPORTIONAL DIMENSIONAL CHANGE Including, but not limited to: - Perimeter of similar shapes - Area of similar shapes - Perimeter changed proportionally - Scale factor to change dimensions - Scale factor times perimeter - Scale factor squared times area - Proportions to find missing dimensions - Patterns to generalize effects on perimeter and area if the dimensions

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6		Grade 7		GRADE 8
					always proportional (may or may not include all dimensions). TxCCRS Note: III. Geometric Reasoning A2 - Make, test, and use conjectures about one-, two- and three-dimensional figures and their properties. III. Geometric Reasoning C3 - Make connections between geometry and measurement. IV. Measurement Reasoning B2 - Convert within a single measurement system. IV. Measurement Reasoning C3 - Determine indirect measurements of figures using scale drawings, similar figures, Pythagorean Theorem, and basic trigonometry. (Basic trigonometry is not addressed until high school geometry.) X. Connections A1 - Connect and use multiple strands of mathematics in situations and problems.
6.9	Probability and statistics. The student uses experimental and theoretical probability to make predictions. The student is expected to:	7.10	Probability and statistics. The student recognizes that a physical or mathematical model (including geometric) can be used to describe the experimental and theoretical probability of real-life events. The student is expected to:	8.11	Probability and statistics. The student applies concepts of theoretical and experimental probability to make predictions. The student is expected to:
6.9A	Construct sample spaces using lists and tree diagrams. Supporting Standard Construct, Use SAMPLE SPACES	7.10A	Construct sample spaces for simple or composite experiments. Supporting Standard Construct, Describe SAMPLE SPACES		

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6		Grade 7		Grade 8
			events.) X. Connections A1 - Connect and use multiple strands of mathematics in situations and problems.		
6.9B	Find the probabilities of a simple event and its complement and describe the relationship between the two. Supporting Standard Find, Use, Describe PROBABILITIES OF A SIMPLE EVENT AND ITS COMPLEMENT Including, but not limited to: - Sample space - Lists - Tree diagrams - Tables - Fundamental Counting Principle - Experimental and theoretical probabilities - Variety of experiments - Ex: coins, drawing objects out of box without looking, spinners, choosing a random card, marbles, cubes, etc. - Representation of probability as a fraction or decimal - Relationship between a simple event and its complement expressed as a ratio and a numerical expression Make	7.10B	Find the probability of independent events. Supporting Standard Find, Use, Recognize, Describe PROBABILITY OF INDEPENDENT EVENTS Including, but not limited to: - Sample space - Lists - Tree diagrams - Tables - Fundamental Counting Principle - Experimental and theoretical probabilities - Variety of experiments - Ex: coins, drawing objects out of box without looking, spinners, choosing a random card, marbles, cubes, etc. - Representation of probability as a fraction, decimal, or percent - Simple events and complements of simple events - Events with replacement - Probability of simple and compound events	8.11A	Find the probabilities of dependent and independent events. Readiness Standard Find, Apply PROBABILITIES OF DEPENDENT AND INDEPENDENT EVENTS Including, but not limited to: - Sample space - Lists - Tree diagrams - Tables - Fundamental Counting Principle - Experimental and theoretical probabilities - Variety of experiments - Ex: coins, drawing objects out of box without looking, spinners, choosing a random card, marbles, cubes, etc. - Representation of probability as a fraction, decimal, or percent - Simple events and complements of simple events - Events with and without replacement - Probability of simple and compound events

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Mathematics Vertical Alignment Document

Grade 6		Grade 7		Grade 8
probabilistic measures to practical situations to make an informed decision. V. Probabilistic Reasoning B1 - Compute and interpret the probability of an event and its complement. X. Connections A1 - Connect and use multiple strands of mathematics in situations and problems.				
			8.11B	Use theoretical probabilities and experimental results to make predictions and decisions. Supporting Standard Make PREDICTIONS AND DECISIONS WITH THEORETICAL PROBABILITIES AND EXPERIMENTAL RESULTS Including, but not limited to: - Sample space - Lists - Tree diagrams - Tables - Fundamental Counting Principle - Experimental and theoretical probability of independent and dependent events - Variety of experiments - Ex: coins, drawing objects out of box without looking, spinners, choosing a random card, marbles, cubes, etc. - Representation of probability as a

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	GRade 6	GRADE 7		GRade 8
				TxCCRS Note: III. Geometric Reasoning C2 - Make connections between geometry, statistics, and probability. IV. Measurement Reasoning D2 - Apply probabilistic measures to practical situations to make an informed decision. V. Probabilistic Reasoning B1 - Compute and interpret the probability of an event and its complement. V. Probabilistic Reasoning B2 - Compute and interpret the probability of conditional and compound events. X. Connections A1 - Connect and use multiple strands of mathematics in situations and problems.
			8.11C	Select and use different models to simulate an event. Select, Use, Simulate MODELS OF PROBABILITY Including, but not limited to: - Sample space - Experimental and theoretical probability of independent and dependent events - Hands-on and technology to model and simulate events - Appropriate methods to reconstruct an event - Ex: flip coins, spinners, cards, number cubes, graphing calculator,

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Mathematics Vertical Alignment Document

	Grade 6		GRade 7		GRade 8
					etc. STAAR Note: - 8.11 C is not tested in STAAR. However, this student expectation is foundational for supporting and readiness standards tested in this grade level and/or other grade levels. TxCCRS Note: III. Geometric Reasoning C2 - Make connections between geometry, statistics, and probability. X. Connections A1 - Connect and use multiple strands of mathematics in situations and problems.
6.10	Probability and statistics. The student uses statistical representations to analyze data. The student is expected to:	7.11	Probability and statistics. The student understands that the way a set of data is displayed influences its interpretation. The student is expected to:	8.12	Probability and statistics. The student uses statistical procedures to describe data. The student is expected to:
6.10A	Select and use an appropriate representation for presenting and displaying different graphical representations of the same data including line plot, line graph, bar graph, and stem and leaf plot. Supporting Standard Select GRAPHICAL REPRESENTATIONS OF DATA Including, but not limited to: - Categorical data representations	7.11A	Select and use an appropriate representation for presenting and displaying relationships among collected data, including line plot, line graph, bar graph, stem and leaf plot, circle graph, and Venn diagrams, and justify the selection. Supporting Standard Select GRAPHICAL REPRESENTATIONS OF DATA Including, but not limited to:	8.12C	Select and use an appropriate representation for presenting and displaying relationships among collected data, including line plots, line graphs, stem and leaf plots, circle graphs, bar graphs, box and whisker plots, histograms, and Venn diagrams, with and without the use of technology. Supporting Standard Select GRAPHICAL REPRESENTATIONS OF DATA

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

GRADE 6

- Pictograph
- Bar graph (horizontal, vertical, single bar, and double bar)
- Numerical data representations
- Line plot
- Line graph
- Stem and leaf plot (single and double)
- Presentation and display of data relationships
- Various appropriate representations of the same data
- Technology
- Ex: computers, data collection devices, and calculators
- Analysis and justification of data representation
- Real-life problems

Use, Analyze

GRAPHICAL REPRESENTATIONS OF

 DATAIncluding, but not limited to:

- Categorical data representations (including constructions of representation)
- Pictograph
- Bar graph (horizontal, vertical, single bar, and double bar)
- Numerical data representations

GRade 7

GRADE 8

- Categorical data representations
- Pictograph
- Bar graph (horizontal, vertical, single bar, and double bar)
- Circle graph
- Venn diagram
- Numerical data representations
- Line plot
- Line graph
- Stem and leaf plot (single and double)
- Presentation and display of data relationships
- Various appropriate representations of the same data
- Technology
- Ex: computers, data collection devices, and calculators
- Analysis and justification of data representation
- Real-life problems

Use, Justify, Understand

GRAPHICAL REPRESENTATIONS OF

 DATAIncluding, but not limited to:

- Categorical data representations (including constructions of representation)

Including, but not limited to:

- Categorical data representations
- Pictograph
- Bar graph (horizontal, vertical, single bar, and double bar)
- Circle graph
- Venn diagram
- Numerical data representations
- Line plot
- Line graph
- Stem and leaf plot (single and double)
- Histogram
- Box and whisker plot
- Presentation and display of data relationships
- Various appropriate representations of the same data
- Technology
- Ex: computers, data collection devices, and calculators
- Analysis and justification of data representation
- Real-life problems

Use, Describe

GRAPHICAL REPRESENTATIONS OF

 DATAIncluding, but not limited to:

Grade 6		GRade 7		Grade 8
(including constructions of representation) - Line plot - Line graph - Stem and leaf plot (single and double) - Presentation and display of data relationships - Various appropriate representations of the same data - Technology - Ex: computers, data collection devices, and calculators - Analysis and justification of predictions and conclusions from data - Real-life problems Note: - Grade 6 introduces stem and leaf plots and line plots. TxCCRS Note: III. Geometric Reasoning C2 - Make connections between geometry, statistics, and probability. IV. Measurement Reasoning D2 - Apply probabilistic measures to practical situations to make an informed decision. VI. Statistical Reasoning A1 - Plan a study. VI. Statistical Reasoning B1 - Determine types of data. VI. Statistical Reasoning B2 - Select and apply appropriate visual representations of data.		- Pictograph - Bar graph (horizontal, vertical, single bar, and double bar) - Circle graph - Venn diagram - Numerical data representations (including constructions of representation) - Line plot - Line graph - Stem and leaf plot (single and double) - Presentation and display of data relationships - Various appropriate representations of the same data - Technology - Ex: computers, data collection devices, and calculators - Analysis and justification of predictions and conclusions from data - Real-life problems Note: - Grade 6 introduces sketches of circle graphs. - Grade 7 uses circle graphs as data representation and construction of circle graphs are expected. - Grade 7 introduces Venn diagrams.		- Categorical data representations (including constructions of representation) - Pictograph - Bar graph (horizontal, vertical, single bar, and double bar) - Circle graph - Venn diagram - Numerical data representations (including constructions of representation) - Line plot - Line graph - Stem and leaf plot (single and double) - Histogram - Box and whisker plot - Five number summary - Minimum - Q1 (median of lower 50% of data) - Median - Q3 (median of upper 50% of data) - Maximum - Interquartile range: (IQR = Q3 Q1)

GRade 6	GRade 7	GRade 8
VI. Statistical Reasoning C2 - Analyze data sets using graphs and summary statistics. VI. Statistical Reasoning C3 - Analyze relationships between paired data using spreadsheets, graphing calculators, or statistical software. IX. Communication and Representation B1 - Model and interpret mathematical ideas and concepts using multiple representations. IX. Communication and Representation B2 - Summarize and interpret mathematical information provided orally, visually, or in written form within the given context. IX. Communication and Representation C2 - Create and use representations to organize, record, and communicate mathematical ideas. X. Connections A1 - Connect and use multiple strands of mathematics in situations and problems. X. Connections B1 - Use multiple representations to demonstrate links between mathematical and real-world situations.	TxCCRS Note: III. Geometric Reasoning C2 - Make connections between geometry, statistics, and probability. IV. Measurement Reasoning D2 - Apply probabilistic measures to practical situations to make an informed decision. VI. Statistical Reasoning A1 - Plan a study. VI. Statistical Reasoning B1 - Determine types of data. VI. Statistical Reasoning B2 - Select and apply appropriate visual representations of data. VI. Statistical Reasoning C2 - Analyze data sets using graphs and summary statistics. VI. Statistical Reasoning C3 - Analyze relationships between paired data using spreadsheets, graphing calculators, or statistical software. IX. Communication and Representation B1 - Model and interpret mathematical ideas and concepts using multiple representations. IX. Communication and Representation B2 - Summarize and interpret mathematical information provided orally, visually, or in written form within the given context. IX. Communication and Representation C2 - Create and use representations to organize, record, and communicate mathematical ideas. X. Connections A1 - Connect and use multiple strands of mathematics in situations and problems. X. Connections B1 - Use multiple representations to demonstrate links between mathematical and real-world situations.	interquartile range - Presentation and display of data relationships - Various appropriate representations of the same data - Technology - Ex: computers, data collection devices, and calculators - Analysis and justification of predictions and conclusions from data - Real-life problems Note: - Grade 8 introduces box and whisker plots and histograms. TxCCRS Note: III. Geometric Reasoning C2 - Make connections between geometry, statistics, and probability. IV. Measurement Reasoning D2 - Apply probabilistic measures to practical situations to make an informed decision.

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR. Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.

Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	GRade 6	GRade 7		GRADE 8
		INFERENCES AND ARGUMENTS FROM DATA Including, but not limited to: - Given or collected data - Analysis of multiple forms of data - Analysis of parts of data representation - Titles - Labels - Scales - Graphed data - Appropriateness of representation - Analysis and justification of predictions and conclusions from data - Real-life problems TxCCRS Note: IV. Measurement Reasoning D2 - Apply probabilistic measures to practical situations to make an informed decision. VI. Statistical Reasoning A1 - Plan a study. VI. Statistical Reasoning C1 - Make predictions and draw inferences using summary statistics. VI. Statistical Reasoning C2 - Analyze data sets using graphs and summary statistics. VI. Statistical Reasoning C3 - Analyze relationships between paired data using spreadsheets, graphing calculators, or statistical software.		CONCLUSIONS FROM DATA Including, but not limited to: - Given or collected data - Analysis of multiple forms of data - Analysis of parts of data representation - Titles - Labels - Scales - Graphed data - Correlation trends in scatterplots - Positive - Negative - No correlation - Appropriateness of representation - Analysis and justification of conclusions from data - Real-life problems Make, Describe PREDICTIONS FROM DATA Including, but not limited to: - Given or collected data - Analysis of multiple forms of data - Analysis of parts of data representation - Titles - Labels - Scales

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6		GRADE 7	GRade 8
				- Graphed data - Correlation trends in scatterplots - Positive - Negative - No correlation - Appropriateness of representation - Analysis and justification of predictions from data - Real-life problems TxCCRS Note: IV. Measurement Reasoning D2 - Apply probabilistic measures to practical situations to make an informed decision. VI. Statistical Reasoning A1 - Plan a study. VI. Statistical Reasoning C1 - Make predictions and draw inferences using summary statistics. VI. Statistical Reasoning C2 - Analyze data sets using graphs and summary statistics. VI. Statistical Reasoning C3 - Analyze relationships between paired data using spreadsheets, graphing calculators, or statistical software.
6.10C	Sketch circle graphs to display data. Supporting Standard Sketch, Display, Analyze CIRCLE GRAPHS Including, but not limited to: - Data sets			

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6		GRade 7		GRade 8
	- Tables - Graphs - Verbal - Relationship between percents, fractions, and decimals in sections of a circle graph - Real-life problems Note: - Grade 6 introduces sketches of circle graphs. TxCCRS Note: III. Geometric Reasoning C2 - Make connections between geometry, statistics, and probability. VI. Statistical Reasoning B2 - Select and apply appropriate visual representations of data. VI. Statistical Reasoning C2 - Analyze data sets using graphs and summary statistics. X. Connections A1 - Connect and use multiple strands of mathematics in situations and problems.				
6.10D	Solve problems by collecting, organizing, displaying, and interpreting data. Readiness Standard Solve, Analyze PROBLEMS WITH DATA Including, but not limited to:				

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Grade 6

Grade 7
Grade 8

- Categorical data representations
- Pictograph
- Bar graph (horizontal, vertical, single bar, and double bar)
- Numerical data representations
- Line plot
- Line graph
- Stem and leaf plot (single and double)
- Display of data
- Collection and organization of data
- Interpretation of data
- Analysis of multiple forms of data
- Analysis of parts of data representation
- Titles
- Labels
- Scales
- Graphed data
- Analysis and justification of predictions and conclusions from data
- Various appropriate representations of the same data
- Technology
- Ex: computers, data collection devices, and calculators
- Real-life problems

TxCCRS Note:

IV. Measurement Reasoning D2 - Apply probabilistic measures to practical situations

[^3]Mathematics Vertical Alignment Document

	Grade 6		GRade 7		GRade 8
	to make an informed decision. VI. Statistical Reasoning A1 - Plan a study. VI. Statistical Reasoning B1 - Determine types of data. VI. Statistical Reasoning B2 - Select and apply appropriate visual representations of data. VI. Statistical Reasoning C2 - Analyze data sets using graphs and summary statistics.				
6.10	Probability and statistics. The student uses statistical representations to analyze data. The student is expected to:	7.12	Probability and statistics. The student uses measures of central tendency and variability to describe a set of data. The student is expected to:	8.12	Probability and statistics. The student uses statistical procedures to describe data. The student is expected to:
6.10B	Identify mean (using concrete objects and pictorial models), median, mode, and range of a set of data. Supporting Standard Identify, Use, Analyze CENTRAL TENDENCY AND RANGE OF A SET OF DATA Including, but not limited to: - Numerical analysis for a set of data - Mean (using concrete objects and pictorial models) - Median - Mode - Range - Data given in tables, graphs, lists, or models - Real-life problems	7.12A	Describe a set of data using mean, median, mode, and range. Supporting Standard Describe, Use CENTRAL TENDENCY AND RANGE OF A SET OF DATA Including, but not limited to: - Numerical analysis for a set of data - Mean - Median - Mode - Range - Data given in tables, graphs, lists, or models - Real-life problems Note:		

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Grade 6		GRade 7		GRADE 8
Note: - Grade 6 introduces mean using concrete objects and pictorial models. TxCCRS Note: IV. Measurement Reasoning D1 - Compute and use measures of center and spread to describe data. (In Grade 6 the mean is not computed as a measure of center.) VI. Statistical Reasoning B3 - Compute and describe summary statistics of data. (In Grade 6 the mean is not computed as a measure of center.) VI. Statistical Reasoning B4 - Describe patterns and departure from patterns in a set of data. VI. Statistical Reasoning C2 - Analyze data sets using graphs and summary statistics. IX. Communication and Representation C2 - Create and use representations to organize, record, and communicate mathematical ideas.		- Grade 7 introduces the calculation of mean. TxCCRS Note: IV. Measurement Reasoning D1 - Compute and use measures of center and spread to describe data. VI. Statistical Reasoning B3 - Compute and describe summary statistics of data. VI. Statistical Reasoning B4 - Describe patterns and departure from patterns in a set of data. VI. Statistical Reasoning C2 - Analyze data sets using graphs and summary statistics. IX. Communication and Representation C2 - Create and use representations to organize, record, and communicate mathematical ideas.		
	7.12B	Choose among mean, median, mode, or range to describe a set of data and justify the choice for a particular situation. Readiness Standard Choose, Describe, Justify, Use CENTRAL TENDENCY AND RANGE OF A SET OF DATA Including, but not limited to: - Appropriate numerical analysis for a	8.12A	Use variability (range, including interquartile range (IQR)) and select the appropriate measure of central tendency to describe a set of data and justify the choice for a particular situation. Supporting Standard Use, Select, Describe, Justify CENTRAL TENDENCY AND VARIABILITY OF A SET OF DATA Including, but not limited to:

Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6	GRade 7		GRade 8
		set of data and justification - Mean - Median - Mode - Range - Data given in models, tables, graphs or situations - Effects of changes in original data to all measurements of central tendency and/or range - Real-life problems Note: - Grade 7 introduces the calculation of mean. TxCCRS Note: IV. Measurement Reasoning D1 - Compute and use measures of center and spread to describe data. VI. Statistical Reasoning B3 - Compute and describe summary statistics of data. VI. Statistical Reasoning B4 - Describe patterns and departure from patterns in a set of data. VI. Statistical Reasoning C1 - Make predictions and draw inferences using summary statistics. VI. Statistical Reasoning C2 - Analyze data sets using graphs and summary statistics. IX. Communication and Representation C2 - Create and use representations to organize, record, and communicate mathematical ideas.		- Appropriate numerical analysis for a set of data and justification - Central tendency - Mean - Median - Mode - Variability - Range - Interquartile range (IQR) - Data given in models, tables, graphs or situations - Effects of outliers on measures of central tendency and variability - Effects of changes in original data to all measurements of central tendency and/or variability - Real-life problems Note: - Grade 8 introduces calculation of outliers. - Grade 8 introduces using outliers to determine the IQR and parameters of the box and whisker plot. TxCCRS Note: IV. Measurement Reasoning D1 - Compute and use measures of center and spread to describe data. VI. Statistical Reasoning B3 - Compute and describe summary statistics of data. VI. Statistical Reasoning B4 - Describe patterns and departure from patterns in a

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	GRade 6	GRade 7		GRade 8
				set of data. VI. Statistical Reasoning C1 - Make predictions and draw inferences using summary statistics. VI. Statistical Reasoning C2 - Analyze data sets using graphs and summary statistics. IX. Communication and Representation C2 - Create and use representations to organize, record, and communicate mathematical ideas.
			8.13	Probability and statistics. The student evaluates predictions and conclusions based on statistical data. The student is expected to:
			8.13A	Evaluate methods of sampling to determine validity of an inference made from a set of data. Supporting Standard Evaluate, Determine METHODS OF SAMPLING AND VALIDITY OF STATISTICAL ANALYSIS Including, but not limited to: - Data in various representations - Predictions and conclusions in problem situations - Sampling methods for data collection - Ex: convenience, random, systematic, voluntary, etc. - Bias in sampling - Real-life problems

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)
mathematics Vertical alignment document

	Grade 6	Grade 7		Grade 8
				TxCCRS Note: VI. Statistical Reasoning B4 - Describe patterns and departure from patterns in a set of data. VI. Statistical Reasoning C1 - Make predictions and draw inferences using summary statistics. VI. Statistical Reasoning C4 - Recognize reliability of statistical results.
			8.13B	Recognize misuses of graphical or numerical information and evaluate predictions and conclusions based on data analysis. Readiness Standard Recognize, Evaluate MISUSES OF GRAPHICAL OR NUMERICAL DATA Including, but not limited to: - Data in various representations - Ex: line plots, line graphs, stem and leaf plots, circle graphs, bar graphs, box and whisker plots, histograms, Venn diagrams, and scatterplots - Analysis of given representations - Titles - Labels - Scales - Graphed data - Predictions and conclusions based on graphical and numerical data analysis

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6		GRade 7		GRADE 8
					- Sampling methods for data collection - Ex: convenience, random, systematic, voluntary - Bias in sampling - Misleading information - Real-life problems TxCCRS Note: VI. Statistical Reasoning A1 - Plan a study. VI. Statistical Reasoning B4 - Describe patterns and departure from patterns in a set of data. VI. Statistical Reasoning C2 - Analyze data sets using graphs and summary statistics. VI. Statistical Reasoning C4 - Recognize reliability of statistical results.
6.11	Underlying processes and mathematical tools. The student applies Grade 6 mathematics to solve problems connected to everyday experiences, investigations in other disciplines, and activities in and outside of school. The student is expected to:	7.13	Underlying processes and mathematical tools. The student applies Grade 7 mathematics to solve problems connected to everyday experiences, investigations in other disciplines, and activities in and outside of school. The student is expected to:	8.14	Underlying processes and mathematical tools. The student applies Grade 8 mathematics to solve problems connected to everyday experiences, investigations in other disciplines, and activities in and outside of school. The student is expected to:
6.11A	Identify and apply mathematics to everyday experiences, to activities in and outside of school, with other disciplines, and with other mathematical topics. Identify, Apply, Solve MATHEMATICS IN EVERYDAY PROBLEM SITUATIONS Including, but not limited to:	7.13A	Identify and apply mathematics to everyday experiences, to activities in and outside of school, with other disciplines, and with other mathematical topics. Identify, Apply, Solve MATHEMATICS IN EVERYDAY PROBLEM SITUATIONS Including, but not limited to:	8.14A	Identify and apply mathematics to everyday experiences, to activities in and outside of school, with other disciplines, and with other mathematical topics. Identify, Apply, Solve MATHEMATICS IN EVERYDAY PROBLEM SITUATIONS Including, but not limited to:

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6		Grade 7		Grade 8
	- Activities in and outside of school - Other disciplines - Other mathematical topics STAAR Note: - The process skills will be incorporated into at least 75% of the test questions and will be identified along with content standards. TxCCRS Note: VIII. Problem Solving and Reasoning C1 Formulate a solution to a real world situation based on the solution to a mathematical problem. X. Connections A2 - Connect mathematics to the study of other disciplines. X. Connections B1 - Use multiple representations to demonstrate links between mathematical and real-world situations. X. Connections B3 - Know and understand the use of mathematics in a variety of careers and professions.		- Activities in and outside of school - Other disciplines - Other mathematical topics STAAR Note: - The process skills will be incorporated into at least 75% of the test questions and will be identified along with content standards. TxCCRS Note: VIII. Problem Solving and Reasoning C1 Formulate a solution to a real world situation based on the solution to a mathematical problem. X. Connections A2 - Connect mathematics to the study of other disciplines. X. Connections B1 - Use multiple representations to demonstrate links between mathematical and real-world situations. X. Connections B3 - Know and understand the use of mathematics in a variety of careers and professions.		- Activities in and outside of school - Other disciplines - Other mathematical topics STAAR Note: - The process skills will be incorporated into at least 75% of the test questions and will be identified along with content standards. TxCCRS Note: VIII. Problem Solving and Reasoning C1 - Formulate a solution to a real world situation based on the solution to a mathematical problem. X. Connections A2 - Connect mathematics to the study of other disciplines. X. Connections B1 - Use multiple representations to demonstrate links between mathematical and real-world situations. X. Connections B3 - Know and understand the use of mathematics in a variety of careers and professions.
6.11B	Use a problem-solving model that incorporates understanding the problem, making a plan, carrying out the plan, and evaluating the solution for reasonableness. Use PROBLEM-SOLVING MODEL Including, but not limited to:	7.13B	Use a problem-solving model that incorporates understanding the problem, making a plan, carrying out the plan, and evaluating the solution for reasonableness. Use PROBLEM-SOLVING MODEL Including, but not limited to:	8.14B	Use a problem-solving model that incorporates understanding the problem, making a plan, carrying out the plan, and evaluating the solution for reasonableness. Use PROBLEM-SOLVING MODEL Including, but not limited to:

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6		GRade 7		GRade 8
	- Understanding the problem - Making a plan - Carrying out the plan - Evaluating a solution for reasonableness STAAR Note: - The process skills will be incorporated into at least 75% of the test questions and will be identified along with content standards. TxCCRS Note: I. Numeric Reasoning C1 - Use estimation to check for errors and reasonableness of solutions. VI. Statistical Reasoning A1 - Plan a study. VIII. Problem Solving and Reasoning A1 Analyze given information. VIII. Problem Solving and Reasoning A2 Formulate a plan or strategy. VIII. Problem Solving and Reasoning A3 Determine a solution. VIII. Problem Solving and Reasoning A4 Justify the solution. VIII. Problem Solving and Reasoning A5 Evaluate the problem-solving process. VIII. Problem Solving and Reasoning B2 Use various types of reasoning. VIII. Problem Solving and Reasoning C3Evaluate the problem-solving process.		- Understanding the problem - Making a plan - Carrying out the plan - Evaluating a solution for reasonableness STAAR Note: - The process skills will be incorporated into at least 75% of the test questions and will be identified along with content standards. TxCCRS Note: I. Numeric Reasoning C1 - Use estimation to check for errors and reasonableness of solutions. VI. Statistical Reasoning A1 - Plan a study. VIII. Problem Solving and Reasoning A1 Analyze given information. VIII. Problem Solving and Reasoning A2 Formulate a plan or strategy. VIII. Problem Solving and Reasoning A3 Determine a solution. VIII. Problem Solving and Reasoning A4 Justify the solution. VIII. Problem Solving and Reasoning A5 Evaluate the problem-solving process. VIII. Problem Solving and Reasoning B2 Use various types of reasoning. VIII. Problem Solving and Reasoning C3 Evaluate the problem-solving process.		- Understanding the problem - Making a plan - Carrying out the plan - Evaluating a solution for reasonableness STAAR Note: - The process skills will be incorporated into at least 75% of the test questions and will be identified along with content standards. TxCCRS Note: I. Numeric Reasoning C1 - Use estimation to check for errors and reasonableness of solutions. VI. Statistical Reasoning A1 - Plan a study. VIII. Problem Solving and Reasoning A1 Analyze given information. VIII. Problem Solving and Reasoning A2 Formulate a plan or strategy. VIII. Problem Solving and Reasoning A3 Determine a solution. VIII. Problem Solving and Reasoning A4 Justify the solution. VIII. Problem Solving and Reasoning A5 Evaluate the problem-solving process. VIII. Problem Solving and Reasoning B2 Use various types of reasoning. VIII. Problem Solving and Reasoning C3 Evaluate the problem-solving process.
6.11C	Select or develop an appropriate problem-solving strategy from a variety of different types, including drawing a picture, looking for a pattern, systematic guessing and checking, acting it out,	7.13C	Select or develop an appropriate problem-solving strategy from a variety of different types, including drawing a picture, looking for a pattern, systematic guessing and checking, acting it out,	8.14C	Select or develop an appropriate problem-solving strategy from a variety of different types, including drawing a picture, looking for a pattern, systematic guessing and checking, acting it out,

[^4]

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

Mathematics Vertical Alignment Document

	Grade 6		GRade 7		GRade 8
	equations and relationships. VIII. Problem Solving and Reasoning A1 Analyze given information. VIII. Problem Solving and Reasoning A2 Formulate a plan or strategy. VIII. Problem Solving and Reasoning A3 Determine a solution. VIII. Problem Solving and Reasoning A4 Justify the solution. VIII. Problem Solving and Reasoning A5 Evaluate the problem-solving process. VIII. Problem Solving and Reasoning B2 Use various types of reasoning. VIII. Problem Solving and Reasoning C3 Evaluate the problem-solving process.		equations and relationships. VIII. Problem Solving and Reasoning A1 - Analyze given information. VIII. Problem Solving and Reasoning A2 - Formulate a plan or strategy. VIII. Problem Solving and Reasoning A3 - Determine a solution. VIII. Problem Solving and Reasoning A4 - Justify the solution. VIII. Problem Solving and Reasoning A5 - Evaluate the problem-solving process. VIII. Problem Solving and Reasoning B2 - Use various types of reasoning. VIII. Problem Solving and Reasoning C3 - Evaluate the problem-solving process.		equations and relationships. VIII. Problem Solving and Reasoning A1 - Analyze given information. VIII. Problem Solving and Reasoning A2 - Formulate a plan or strategy. VIII. Problem Solving and Reasoning A3 - Determine a solution. VIII. Problem Solving and Reasoning A4 - Justify the solution. VIII. Problem Solving and Reasoning A5 - Evaluate the problem-solving process. VIII. Problem Solving and Reasoning B2 - Use various types of reasoning. VIII. Problem Solving and Reasoning C3 - Evaluate the problem-solving process.
6.11D	Select tools such as real objects, manipulatives, paper/pencil, and technology or techniques such as mental math, estimation, and number sense to solve problems. Select TOOLS OR TECHNIQUES Including, but not limited to: - Real objects - Manipulatives - Paper/pencil - Technology - Mental math - Estimation - Number sense Solve	7.13D	Select tools such as real objects, manipulatives, paper/pencil, and technology or techniques such as mental math, estimation, and number sense to solve problems. Select TOOLS OR TECHNIQUES Including, but not limited to: - Real objects - Manipulatives - Paper/pencil - Technology - Mental math - Estimation - Number sense Solve	8.14D	Select tools such as real objects, manipulatives, paper/pencil, and technology or techniques such as mental math, estimation, and number sense to solve problems. Select TOOLS OR TECHNIQUES Including, but not limited to: - Real objects - Manipulatives - Paper/pencil - Technology - Mental math - Estimation - Number sense Solve

Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6		GRade 7		Grade 8
	MATHEMATICS IN PROBLEM SITUATIONS Including, but not limited to: - Tools - Technology or techniques STAAR Note: - The process skills will be incorporated into at least 75% of the test questions and will be identified along with content standards.		MATHEMATICS IN PROBLEM SITUATIONS Including, but not limited to: - Tools - Technology or techniques STAAR Note: - The process skills will be incorporated into at least 75% of the test questions and will be identified along with content standards.		MATHEMATICS IN PROBLEM SITUATIONS Including, but not limited to: - Tools - Technology or techniques STAAR Note: - The process skills will be incorporated into at least 75% of the test questions and will be identified along with content standards.
6.12	Underlying processes and mathematical tools. The student communicates about Grade 6 mathematics through informal and mathematical language, representations, and models. The student is expected to:	7.14	Underlying processes and mathematical tools. The student communicates about Grade 7 mathematics through informal and mathematical language, representations, and models. The student is expected to:	8.15	Underlying processes and mathematical tools. The student communicates about Grade 8 mathematics through informal and mathematical language, representations, and models. The student is expected to:
6.12A	Communicate mathematical ideas using language, efficient tools, appropriate units, and graphical, numerical, physical, or algebraic mathematical models. Communicate MATHEMATICAL IDEAS Including, but not limited to: - Mathematical language - Efficient tools - Appropriate units - Mathematical models - Graphical	7.14A	Communicate mathematical ideas using language, efficient tools, appropriate units, and graphical, numerical, physical, or algebraic mathematical models. Communicate MATHEMATICAL IDEAS Including, but not limited to: - Mathematical language - Efficient tools - Appropriate units - Mathematical models - Graphical	8.15A	Communicate mathematical ideas using language, efficient tools, appropriate units, and graphical, numerical, physical, or algebraic mathematical models. Communicate MATHEMATICAL IDEAS Including, but not limited to: - Mathematical language - Efficient tools - Appropriate units - Mathematical models - Graphical

Black text: Texas College and Career Readiness Standards (TxCCRS)

Grade 6

- Numerica
- Physical
- Algebraic

STAAR Note:

- The process skills will be incorporated into at least 75% of the test questions and will be identified along with content standards.

TxCCRS Note:

II. Algebraic Reasoning D1 - Interpret multiple representations of equations and relationships.
IX. Communication and Representation A2 - Use mathematical language to represent and communicate the mathematical concepts in a problem.
IX. Communication and Representation A3 - Use mathematics as a language for reasoning, problem solving, making connections, and generalizing.
IX. Communication and Representation B1 - Model and interpret mathematical ideas and concepts using multiple representations.
IX. Communication and Representation B2 - Summarize and interpret mathematical information provided orally, visually, or in written form within the given context. IX. Communication and Representation C1 - Communicate mathematical ideas, reasoning, and their implications using symbols, diagrams, graphs, and words. IX. Communication and Representation C3 - Explain, display, or justify mathematical ideas and arguments using precise

GRADE 7

- Numerical
- Physical
- Algebraic

STAAR Note:

- The process skills will be incorporated into at least 75% of the test questions and will be identified along with content standards.

TxCCRS Note:

II. Algebraic Reasoning D1 - Interpret multiple representations of equations and relationships.
IX. Communication and Representation A2 - Use mathematical language to represent and communicate the mathematical concepts in a problem.
IX. Communication and Representation A3 - Use mathematics as a language for reasoning, problem solving, making connections, and generalizing.
IX. Communication and Representation B1 - Model and interpret mathematical ideas and concepts using multiple representations.
IX. Communication and Representation B2 - Summarize and interpret mathematical information provided orally, visually, or in written form within the given context. IX. Communication and Representation C1 - Communicate mathematical ideas, reasoning, and their implications using symbols, diagrams, graphs, and words. IX. Communication and Representation C3 - Explain, display, or justify mathematical ideas and arguments using precise

GRADE 8

- Numerical
- Physical
- Algebraic

STAAR Note:

- The process skills will be incorporated into at least 75% of the test questions and will be identified along with content standards

TxCCRS Note:

II. Algebraic Reasoning D1 - Interpret multiple representations of equations and relationships.
IX. Communication and Representation A2 - Use mathematical language to represent and communicate the mathematical concepts in a problem
IX. Communication and Representation A3 - Use mathematics as a language for reasoning, problem solving, making connections, and generalizing.
IX. Communication and Representation B1 - Model and interpret mathematical ideas and concepts using multiple representations.
IX. Communication and Representation B2 - Summarize and interpret mathematical information provided orally, visually, or in written form within the given context. IX. Communication and Representation C1 - Communicate mathematical ideas, reasoning, and their implications using symbols, diagrams, graphs, and words. IX. Communication and Representation C3 - Explain, display, or justify mathematical ideas and arguments using precise

Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
Black text: Texas College and Career Readiness Standards (TxCCRS)

	Grade 6		GRade 7		Grade 8
	mathematical language in written or oral communications.		mathematical language in written or oral communications.		mathematical language in written or oral communications.
6.12B	Evaluate the effectiveness of different representations to communicate ideas. Evaluate EFFECTIVENESS OF MATHEMATICAL REPRESENTATIONS Including, but not limited to: - Different representations to communicate ideas TxCCRS Note: IX. Communication and Representation C2 - Create and use representations to organize, record, and communicate mathematical ideas.	7.14B	Evaluate the effectiveness of different representations to communicate ideas. Evaluate EFFECTIVENESS OF MATHEMATICAL REPRESENTATIONS Including, but not limited to: - Different representations to communicate ideas TxCCRS Note: IX. Communication and Representation C2 - Create and use representations to organize, record, and communicate mathematical ideas.	8.15B	Evaluate the effectiveness of different representations to communicate ideas. Evaluate EFFECTIVENESS OF MATHEMATICAL REPRESENTATIONS Including, but not limited to: - Different representations to communicate ideas TxCCRS Note: IX. Communication and Representation C2 - Create and use representations to organize, record, and communicate mathematical ideas.
6.13	Underlying processes and mathematical tools. The student uses logical reasoning to make conjectures and verify conclusions. The student is expected to:	7.15	Underlying processes and mathematical tools. The student uses logical reasoning to make conjectures and verify conclusions. The student is expected to:	8.16	Underlying processes and mathematical tools. The student uses logical reasoning to make conjectures and verify conclusions. The student is expected to:
6.13A	Make conjectures from patterns or sets of examples and nonexamples. Make, Verify CONJECTURES AND CONCLUSIONS BY LOGICAL REASONING Including, but not limited to: - Patterns - Sets of examples and nonexamples	7.15A	Make conjectures from patterns or sets of examples and nonexamples. Make, Verify CONJECTURES AND CONCLUSIONS BY LOGICAL REASONING Including, but not limited to: - Patterns - Sets of examples and nonexamples	8.16A	Make conjectures from patterns or sets of examples and nonexamples. Make, Verify CONJECTURES AND CONCLUSIONS BY LOGICAL REASONING Including, but not limited to: - Patterns - Sets of examples and nonexamples

[^5]
Mathematics Vertical Alignment Document

	GRade 6		Grade 7		Grade 8
	STAAR Note: - The process skills will be incorporated into at least 75% of the test questions and will be identified along with content standards. TxCCRS Note: III. Geometric Reasoning D1 - Make and validate geometric conjectures.		STAAR Note: - The process skills will be incorporated into at least 75% of the test questions and will be identified along with content standards. TxCCRS Note: III. Geometric Reasoning D1 - Make and validate geometric conjectures.		STAAR Note: - The process skills will be incorporated into at least 75% of the test questions and will be identified along with content standards. TxCCRS Note: III. Geometric Reasoning D1 - Make and validate geometric conjectures.
6.13B	Validate his/her conclusions using mathematical properties and relationships. Validate, Verify CONCLUSIONS Including, but not limited to: - Mathematical properties - Mathematical relationships STAAR Note: - The process skills will be incorporated into at least 75% of the test questions and will be identified along with content standards. TxCCRS Note: VIII. Problem Solving and Reasoning B1 Develop and evaluate convincing arguments.	7.15B	Validate his/her conclusions using mathematical properties and relationships. Validate, Verify CONCLUSIONS Including, but not limited to: - Mathematical properties - Mathematical relationships STAAR Note: - The process skills will be incorporated into at least 75% of the test questions and will be identified along with content standards. TxCCRS Note: VIII. Problem Solving and Reasoning B1 Develop and evaluate convincing arguments.	8.16B	Validate his/her conclusions using mathematical properties and relationships. Validate, Verify CONCLUSIONS Including, but not limited to: - Mathematical properties - Mathematical relationships STAAR Note: - The process skills will be incorporated into at least 75% of the test questions and will be identified along with content standards. TxCCRS Note: VIII. Problem Solving and Reasoning B1 Develop and evaluate convincing arguments.

Black text: Texas College and Career Readiness Standards (TxCCRS)

[^0]: Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
 Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
 Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
 Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
 Black text: Texas College and Career Readiness Standards (TxCCRS)

[^1]: Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
 Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
 Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
 Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
 Black text: Texas College and Career Readiness Standards (TxCCRS)

[^2]: Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
 Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
 Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR.
 Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
 Black text: Texas College and Career Readiness Standards (TxCCRS)

[^3]: Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
 Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
 Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
 Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
 Black text: Texas College and Career Readiness Standards (TxCCRS)

[^4]: Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS
 Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
 Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
 Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
 Black text: Texas College and Career Readiness Standards (TxCCRS)

[^5]: Bold, italic black: Knowledge and Skills Statement (TEKS); Bold black: Student Expectation (TEKS)
 Bold, italic red: Student Expectation identified by TEA as a Readiness Standard for STAAR.
 Bold, italic green: Student Expectation identified by TEA as a Supporting Standard for STAAR
 Blue: Supporting Information / Clarifications from CSCOPE (Specificity)
 Black text: Texas College and Career Readiness Standards (TxCCRS)

