VFD Topics:

1. Understanding Harmonics

2. Applying VFD's to Fan Arrays

Jay Jorczak – Central Regional Sales Manager Jeff Childs – Regional Drive Specialist - Austin

YASKAWA

Harmonics

Benefits of Drives

- Electric AC Motors
 - Consume 45% of the world's electrical energy.
- Main Purpose of Drives
 - Save Energy (Power)
- Other Advantages
 - Improved Efficiency
 - Improved Process Control
 - No Inrush current
 - Reduced Maintenance on Mechanical Couplings, Belts, Motors
 - Compact Design

Benefits of VFD's

Across the Line

1 Fan Across the Line

100% Speed → 100% Flow = **100% Power**

Motor Run by a Drive

70% speed \rightarrow 70% Flow

Total Power = 34%

66% Power Reduction

VFD's and Harmonics

VFD's draw line current when needed.

- Diode rectifiers.
- Current draw only occurs when AC voltage > DC Voltage
- AC > DC at peak of AC voltage
- Resulting current draw is non-linear.

The current waveform is distorted. Distortion \rightarrow Harmonics

What are Harmonics?

Harmonics \rightarrow breakdowns of a waveform

- Math used to find a waveform's components.
- Components:
 - o Fundamental Waveform
 - o Harmonics
 - Multipliers of the fundamental frequency Ex:
 - Fund Freq: 60 Hz
 - 3rd Harmonic = 60 * 3 = 180 Hz
 - 5th Harmonic = 60 * 5 = 300 Hz
 - 7th Harmonic = 60 * 7 = 420 Hz

Input Current- Why it Matters?

- Voltage harmonics
- IEEE 519
- Conductor heating
- Transformer sizing & heating
- Power Factor reduction
- Lower efficiency
- Financial impact
 - Utility billing, fines

Non-Linear Loading

Drives are not the only non linear loads.

Other Non-linear loads:

- Electronic ballasts (lighting)
- Arc Furnaces
- UPS systems
- Medical Equipment
- Switching mode power supplies
 - Computers, servers, monitors, printers, photocopiers, Etc.
 - Data Centers

Input Current – What do we want?

- Voltage is typically supplied as a sine wave.
- Current should be drawn to match the supply voltage, i.e. current should look like a sine wave too!
- When current does not flow like the supplied voltage it is non-linear.

IEEE-519

Changes Overview

IEEE 519-2014 vs. IEEE 519-1992

- IEEE 519-1992
 - 101-page teaching document
 - PCC vaguely defined
 - Device-focused
 - Short-term measurements

- IEEE 519-2014
 - 29 page-document with no attempt to educate
 - 12 pages of intro, TOC, disclaimers, and participants
 - 10 pages of content
 - 7 pages of Annexes A-D
 - PCC clearly defined
 - System-focused
 - Long-term measurements

PCC in IEEE 519-1992

"Within an industrial plant, the PCC is the point between the nonlinear load and other loads."

PCC Excerpt from IEEE 519-2014

"The recommended limits in this clause apply only at the point of common coupling and **should not be applied** to either **individual pieces of equipment** or at **locations within a user's facility**."

Limits apply only at the PCC, NOT:

- Specific equipment
- Locations within user's facility

IEEE 519-2014 PCC for Commercial Users

• Low voltage side of the service transformer

IEEE 519-2014 PCC for Industrial Users

• High voltage side of the service transformer

Why 5% Harmonics?

The Punch Bowl Analogy

The Punch Bowl Analogy – What's it mean?

<u>One 100 Amp Fan</u> 5% Harmonics = 5 amps/fan

> Total Harmonics 5/100 = **5%**

Two 100 Amp Fans 5% Harmonics = 5 amps/fan

Still 5% Total Harmonics 10A/200A = **5%**

IEEE 519-2014 and VFDs

- Neither compliant nor non-compliant with IEEE 519-2014
- Not the only producers of harmonics
- Part of a larger user's system
 - Compliance measured at the prescribed point of common coupling
 - Harmonics estimation software available
- From IEEE 519-2014, 1.2 Purpose
 - "This recommended practice is to be used for guidance in the <u>design of power systems</u> with non-linear loads."

IEEE 519-2014 Harmonics Mitigation

"The limits in this recommended practice represent a **shared responsibility** for harmonic control between system owners or operators and users."

At the system level

- Phase-shifted buses at the service entrance (if necessary)
- Active Filters for large system loads

At the device level

- Conventional VFDs
 - Harmonic mitigation devices need to be added
- AC-to-AC and AFE VFDs
 - Harmonic levels (<5%) need no additional mitigation

Harmonic Mitigation Techniques For VFDs What We Can Do About It?

Reducing VFD Harmonics

VFD harmonics mitigation

- DC reactor (DC link choke or AC line reactor)
 - High impedance to harmonic frequencies
- Passive harmonic filters
 - LC circuit used to filter current harmonics
- Multi-pulse rectifiers and transformers
 - Phase shifts in series to lessen current pulses
- Active front end VFD's (AFE)
 - Dual-rectifier
 - AC to AC converter

Reactors

Passive Filters

Harmonic Filers

- Series tuned to offer high impedance to select harmonic frequencies
- Shunt Filter- tuned to shunt (trap) select harmonic frequencies
- Hybrid Filters combination of above
- Pro's
 - Less Costly than other methods
- Con's
 - Power Loss, and higher stresses on DC Bus Caps
 - Generally multiple sections needed to capture enough harmonic orders

24

- May not reduce iTHD enough
- Total Eff. 94%

THD≈Less than 12%

12-Pulse

Standard 12-Pulse

- Higher the order of harmonic in a waveform, lower is the amplitude of the harmonic •
- Multi-pulse technique helps in increasing the lowest harmonic order •
- h=kq+1; For a six pulse system, q=6 and lowest pair of harmonics is 5th and 7th •

25

- For a twelve pulse system, q=12 and lowest pair of harmonics is 11th and 13th •
- Pro's ۲
 - More robust •
- Con's
 - Bulky •
 - Additional rectifier ٠
- Total Eff. 94%

3-winding isolation transformer

18-Pulse

Standard 18-Pulse

- h=kq+1; For a six pulse system, q=6 and lowest pair of harmonics is 5th and 7th •
- For an eighteen pulse system, q=18 and lowest pair of harmonics is 17th and 19th •

- Pro's
 - Less than 5% iTHD
- Con's ۲
 - Cost •
 - Bulky •
 - Additional rectifier •
- Total Eff. 94% •

Active Filters

- Active Filter
 - Semiconductor switches
 - Energy storage devices
- Pro's
 - Smaller bus capacitors
 - Changes based on actual load
 - Current becomes continuous which lowers harmonics
- Con's
 - Inductor is large and bulky
 - cost
- Total Eff. 94%

Active Front End: Dual Bridge

- Good Efficiency (96%)
- Better Power Factor than passive methods
- Low Harmonics (4-5% THD)
- Smaller space, less bulky
- Some have Regen capability
- Lower Cost

Active Front End: AC-AC

- Best Efficiency (98%)
- Better Power Factor than passive filters
- Low Harmonics (4-5% THD)
- Better performance at lower loads/speeds; eco-mode
- Smaller space, less bulky
- Regen capability
- Lower cost

[9 bi-directional switches]

Active Front Ends

Harmonic Performance Comparison (AC-AC vs. AFE)

Harmonics Performance Comparison Details

Understand how to apply VFDs to fan arrays

Overview of terms that will be used Fan Array Bypass MMP (Manual Motor Protector) Redundant VFD Package

Fan Arrays – Topics

Using VFDs for fan array power and control

- What we're going to cover
 - A VFD for each motor in array
 - One VFD to power all motors in the full array or sections of the array
 - VFD with bypass to power all motors in the array
 - Redundant VFD package to power all motors in the array

Why Apply a VFD to a Fan Array?

- Energy savings
 - Operating below 60hz saves energy
- Variable torque load
 - More energy savings
 - At 50% speed, 12.5% energy consumption
- Control
 - 0 Hz +/- 240 Hz control

Fan Arrays – VFD per Motor

A VFD for each motor in the array

PRO'S:

- A VFD (or motor) failure will not take down more than the one motor it is running
- VFD provides complete motor protection
- Individual control if needed for any reason

Fan Arrays – VFD per Motor

A VFD for each motor in the array

CON's:

- It may prove costly to provide an individual VFD for each motor in the fan array.
- Potential for overvoltage faults (windmilling)
- Mounting space. You need to have enough space somewhere to mount all the VFDs.
- Need to run separate power and control wiring for each VFD. (wiring cost)
- Harmonic Considerations (micro drives)

One VFD to power all motors in the array

PRO'S:

- Minimal amount of panel space is required
- Simplified wiring power in, power out
- Definitely uniform speed for the fan array
- One motor failure does not take down unit
- VFD can run remaining motors at higher speed to compensate until motor is repaired/replaced

One VFD to power all motors in the array

(Cons)iderations:

- With sharing of VFD output, each motor requires...
 - Overload Protection
 - Short Circuit Protection

One VFD to power all motors in the array

Considerations:

- With sharing of VFD output, each motor requires...
 - Overload Protection
 - Short Circuit Protection
 - Means to remove from circuit

One VFD to power all motors in the array

Considerations:

• Fuses, Contactors, and Overloads

One VFD to power all motors in the array

Considerations:

- Fuses, Contactors, and Overloads
- MMPs (Manual Motor Protectors)

One VFD to power all motors in the array

- Conditions for MMPs in lieu of Fuses, Contactors, and Overloads?:
- 1. Circuit Breaker (or Fused Disconnect) for branch circuit protection
- 2. There is a limit to the number of motors in this arrangement, and is HP dependent

Fan Arrays – External from VFD Package

Does the motor protection have to be in the VFD enclosure?

- Not necessarily. However this may vary from region to region depending on local codes.
- Circumstances will dictate direction.
 - You can save valuable space in VFD enclosure
 - Standard packages vs. engineered packages (cost)

One VFD to power all motors in the array

Cons:

VFD is a single failure point.

VFD with Bypass

PRO'S:

 Now we have a backup means of running the motors while the VFD is "down"

VFD with Bypass

Considerations:

 Now we need to provide short circuit protection for when running across the line in bypass

VFD with Bypass

Considerations:

- Now we need to provide short circuit protection for when running across the line in bypass
- We can add fusing upstream of each motor...

VFD with Bypass

Considerations:

- Now we need to provide short circuit protection for when running across the line in bypass
- Or we can add fusing right after the breaker, or use a fused disconnect.

Fan Arrays – Redundant VFD

Requirements:

- Main Disconnect
- 2 full rated VFD's
- Branch Short circuit protection
- Output contactors
- Dual control wiring
- Optional communications

Works for single motor or multiple motor applications

Fan Arrays – Redundant VFD

Redundant VFD

PRO'S:

- VFD failure does not bring down system
- Motor failure does not bring down system
- Maintain system Efficiency and control
- System requires VFD

CON'S:

- Cost
- Package size

Questions?

Thanks

Jay Jorczak – Central Regional Sales Manager Jeff Childs – Regional Drive Specialist – Austin Area

yaskawa.com