
VFML Reference Manual

Generated by Doxygen 1.3.2

Wed Jul 9 01:59:21 2003

Contents

1 VFML 1

1.1 Downloads . 1

1.2 Topics . 1

1.3 Moving On . 2

1.4 Appendixes . 2

1.5 Contact Us . 2

1.6 Terms Of Use . 3

2 VFML Module Index 5

2.1 VFML Modules . 5

3 VFML Data Structure Index 7

3.1 VFML Data Structures . 7

4 VFML File Index 9

4.1 VFML File List . 9

5 VFML Page Index 11

5.1 VFML Related Pages . 11

6 VFML Module Documentation 13

6.1 Core APIs . 13

6.2 Utility APIs . 15

6.3 Decision Tree Section . 16

6.4 Belief Net Section . 18

6.5 Learning Programs . 19

6.6 Other Tools . 20

7 VFML Data Structure Documentation 21

7.1 BeliefNet Struct Reference . 21

ii CONTENTS

7.2 BeliefNetNode Struct Reference . 22

7.3 BITFIELD Struct Reference . 23

7.4 DecisionTree Struct Reference . 24

7.5 Example Struct Reference . 25

7.6 ExampleGenerator Struct Reference . 26

7.7 ExampleGroupStats Struct Reference . 27

7.8 ExampleSpec Struct Reference . 28

7.9 StatTracker Struct Reference . 29

7.10 VFDT Struct Reference . 30

7.11 FloatListPtr Struct Reference . 31

7.12 HashTable Struct Reference . 32

7.13 IntListPtr Struct Reference . 33

7.14 VoidListPtr Struct Reference . 34

8 VFML File Documentation 35

8.1 AttributeTracker.h File Reference . 35

8.2 batchtest File Reference . 38

8.3 BeliefNet.h File Reference . 40

8.4 beliefnetcorrupt File Reference . 53

8.5 beliefnetdata File Reference . 55

8.6 beliefnetscore File Reference . 56

8.7 bindata File Reference . 57

8.8 bitfield.h File Reference . 59

8.9 bnlearn File Reference . 61

8.10 bnlearn-engine.h File Reference . 62

8.11 C45interface.h File Reference . 63

8.12 c45wrapper File Reference . 64

8.13 c50wrapper File Reference . 65

8.14 cleandata File Reference . 66

8.15 clusterdata File Reference . 67

8.16 combinedata File Reference . 68

8.17 cvfdt File Reference . 69

8.18 Debug.h File Reference . 70

8.19 decisionstump File Reference . 72

8.20 DecisionTree.h File Reference . 73

8.21 doxygen.h File Reference . 81

8.22 Example.h File Reference . 82

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

CONTENTS iii

8.23 ExampleGenerator.h File Reference . 88

8.24 ExampleGroupStats.h File Reference . 90

8.25 ExampleSpec.h File Reference . 99

8.26 folddata File Reference . 105

8.27 HashTable.h File Reference . 107

8.28 kmeans File Reference . 109

8.29 lists.h File Reference . 110

8.30 memory.h File Reference . 113

8.31 mostcommonclass File Reference . 116

8.32 naivebayes File Reference . 117

8.33 random.h File Reference . 118

8.34 REPrune.h File Reference . 120

8.35 sampledata File Reference . 121

8.36 shuffledata File Reference . 122

8.37 sprint File Reference . 123

8.38 stats.h File Reference . 124

8.39 treedata File Reference . 128

8.40 uRunner File Reference . 129

8.41 vfbn1 File Reference . 131

8.42 vfbn2 File Reference . 132

8.43 vfdt File Reference . 133

8.44 vfdt-engine.h File Reference . 134

8.45 vfem File Reference . 139

8.46 vfkm File Reference . 140

8.47 xvalidate File Reference . 141

9 VFML Page Documentation 143

9.1 Thanks . 143

9.2 Wish List . 144

9.3 Bug List . 146

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

Chapter 1

VFML

Welcome to the VFML (Very Fast Machine Learning toolkit) for mining high-speed data streams
and very large data sets. VFML is made up of three main components. The first is a collection
of tools and APIs that help a user develop new learning algorithms. The second component
is a collection of implementations of important learning algorithms. The third component is
a collection of scalable learning algorithms that were developed by Pedro Domingos and Geoff
Hulten (with the help of several other people see Thanks). VFML is written in standard C (and
a bit of Python), and provide a series of tutorials and examples as well as extensive in source
documentation in JavaDoc format. VFML is being distributed under the LGPL license.

To quickly begin using the system, you should look at the Getting Started With VFML document.
If you are going to be developing new tools with the VFML toolkit you should also see Loading
Data, the Scan-Dataset example, and then modify the implement-learner example to make
your own learner.

1.1 Downloads

� See the Getting Started page for links to the software.

� UCI Datasets

� Benchmark Bayesian Networks

1.2 Topics

These links take you to some tutorials and example code on parts of the VFML system.

� Getting Started with VFML

� A tutorial on loading data

� A detailed example on loading data sets

� An overview of what you will need to do to create your own learner

� A detailed example of how to implement a learner

� A tutorial on comparing learning algorithms

2 VFML

� A detailed example on using batchtest to compare learning algorithms

� An example on how to interface with C4.5 in your programs

� A brief description of how to use the learners in VFML to mine data streams.

1.3 Moving On

The following sections contain links to the documentation for all of the tools, learners and APIs
that you might find useful. You might like to download the reference manual (which contains all
this information) in pdf format.

� The Core APIs describes learning related APIs and ADTs.

� The Utility APIs describes generic APIs that may help you.

� The Tools Section describes all the data manipulation and generation tools contained in
VFML.

� The Learners Section describes all of the learners that are included in VFML.

� The Decision Tree Section contains documentation for the parts of VFML that are rele-
vant to working with decision trees.

� The Belief Net Section contains documentation for the parts of VFML that are relevant
to working with belief nets.

1.4 Appendixes

� C4.5 Format

� Bayesian Interchange Format

1.5 Contact Us

If you have any comments, suggestions, or bug reports, please feel free to send us email:
ghulten@cs.washington.edu and pedrod@cs.washington.edu

Thanks
VFML was made possible by a gift from the Ford Motor Company.

See Thanks for a list of additional people that have contributed to VFML.

Wish List
The windows distribution needs to be brought up to date.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

1.6 Terms Of Use 3

1.6 Terms Of Use

VFML - Very Fast Machine Learning toolkit Copyright (C) 2003 Geoff Hulten and Pedro Domingos

This library is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

4 VFML

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

Chapter 2

VFML Module Index

2.1 VFML Modules

Here is a list of all modules:

Core APIs . 13
Utility APIs . 15
Decision Tree Section . 16
Belief Net Section . 18
Learning Programs . 19
Other Tools . 20

6 VFML Module Index

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

Chapter 3

VFML Data Structure Index

3.1 VFML Data Structures

Here are the data structures with brief descriptions:

BeliefNet (Belief network ADT) . 21
BeliefNetNode (Belief net node with full CPTs for local models) 22
BITFIELD (ADT for compactly representing a bit field) 23
DecisionTree (ADT for working with decision trees) 24
Example (ADT for working with examples) . 25
ExampleGenerator (Holds the information needed to reproducibly make a random

data set. See ExampleGenerator.h for more detail) 26
ExampleGroupStats (Sufficient statistics for Entropy and Gini) 27
ExampleSpec (Schema for training data) . 28
StatTracker (Holds simple summary statistics of a sample) 29
VFDT (Holds the information needed to learn decision trees from data streams) . . 30

FloatListPtr (An ADT for a list that holds floats) . 31
HashTable (A hash table ADT) . 32
IntListPtr (An ADT for a list that holds void ints) 33
VoidListPtr (An ADT for a list that holds void pointers) 34

8 VFML Data Structure Index

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

Chapter 4

VFML File Index

4.1 VFML File List

Here is a list of all documented files with brief descriptions:

AttributeTracker.h (Keep a record of which attributes are active) 35
batchtest (Performs cross validation of a collection of learners on a collection of datasets) 38
BeliefNet.h (A Belief Net Structure with CPT local models) 40
beliefnetcorrupt (Makes some random changes to a BeliefNet) 53
beliefnetdata (Creates a data set by sampling from a Bayesian Network) 55
beliefnetscore (Tests a BeliefNet in several ways) . 56
bindata (Converts continuous attributes into discrete ones) 57
bitfield.h (Compactly represent a bit field) . 59
bnlearn (Learns the structure of a BeliefNet from a data set) 61
bnlearn-engine.h (Learn the structure of a BeliefNet from data) 62
C45interface.h (Calls the C4.5 decision tree learning system and returns the learned

tree) . 63
c45wrapper (Calls C4.5 and tests the learned tree) . 64
c50wrapper (Calls C5.0 and tests the learned tree) . 65
cleandata (Cleans up a data set in several ways) . 66
clusterdata (Creates a synthetic data set from randomly generated clusters) 67
combinedata (Combines a series of data sets into a single large one) 68
cvfdt (Learns a DecisionTree from a high-speed time-changing data stream (or very large

data set)) . 69
Debug.h (A set of functions that help your programs produce debugging output in a

consistent way) . 70
decisionstump (Learns a decision stump (a DecisionTree with only one split)) 72
DecisionTree.h (A Decision Tree Structure) . 73
doxygen.h (Used to hold doxygen documentation. Ignore this file) 81
Example.h (ADT for training (and testing, etc.) data) 82
ExampleGenerator.h (Generate a random (but reproducible) data set) 88
ExampleGroupStats.h (Sufficient statistics for Entropy and Gini) 90
ExampleSpec.h (Schema for training data) . 99
folddata (Randomly splits a data set into a collection of train/test pairs) 105
HashTable.h (A hash table) . 107
kmeans (Performs k-means clustering) . 109
lists.h (Generic list functions) . 110
memory.h (Tracks the size of allocations made) . 113

10 VFML File Index

mostcommonclass (Predicts the most common class in the training data) 116
naivebayes (A Naive Bayes learner) . 117
random.h (Generates random numbers in a number of ways, and has support for saving

and restoring the state of the random number generator) 118
REPrune.h (Peforms reduced error pruning on a decision tree) 120
sampledata (Draws a sample from a data set) . 121
shuffledata (Randomizes the order of a data set and rewrites it) 122
sprint (Learn a decision tree from data sets that do not fit in RAM) 123
stats.h (Some statistical functions) . 124
treedata (Creates a synthetic data set by sampling from a randomly generated Decision-

Tree) . 128
uRunner (Distribute a collection of jobs across a cluster of computers) 129
vfbn1 (Learns the structure of a BeliefNet from a very large data set using sampling) . 131
vfbn2 (Learns the structure of a BeliefNet from a very large data set using sampling and

a new search proceedure) . 132
vfdt (Learns a decision tree from a high-speed data stream or very large data set) . . . 133
vfdt-engine.h (An API which lets your program learn a DecisionTree from a high-speed

data stream) . 134
vfem (Performs EM clustering) . 139
vfkm (Performs k-means clustering accelerated with sampling) 140
xvalidate (Performs cross validation of a learner on a data set) 141

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

Chapter 5

VFML Page Index

5.1 VFML Related Pages

Here is a list of all related documentation pages:

Thanks . 143
Wish List . 144
Bug List . 146

12 VFML Page Index

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

Chapter 6

VFML Module Documentation

6.1 Core APIs

6.1.1 Detailed Description

These sections should be used as reference for details on the interfaces you can use in your pro-
grams. They contain detailed information on all of the APIs that VFML offers.

Files

� file AttributeTracker.h

Keep a record of which attributes are active.

� file BeliefNet.h

A Belief Net Structure with CPT local models.

� file bnlearn-engine.h

Learn the structure of a BeliefNet from data.

� file C45interface.h

Calls the C4.5 decision tree learning system and returns the learned tree.

� file DecisionTree.h

A Decision Tree Structure.

� file Example.h

ADT for training (and testing, etc.) data.

� file ExampleGenerator.h

Generate a random (but reproducible) data set.

� file ExampleGroupStats.h

Sufficient statistics for Entropy and Gini.

� file ExampleSpec.h

14 VFML Module Documentation

Schema for training data.

� file REPrune.h

Peforms reduced error pruning on a decision tree.

� file vfdt-engine.h

An API which lets your program learn a DecisionTree from a high-speed data stream.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

6.2 Utility APIs 15

6.2 Utility APIs

6.2.1 Detailed Description

Some utility code that is used by VFML. You may find it useful or not. If you plan on modifying
the internals of VFML you will certainly care about these. (There are a few places where some of
these are exposed in an API too.)

Files

� file bitfield.h

Compactly represent a bit field.

� file Debug.h

A set of functions that help your programs produce debugging output in a consistent way.

� file HashTable.h

A hash table.

� file lists.h

Generic list functions.

� file memory.h

Tracks the size of allocations made.

� file random.h

Generates random numbers in a number of ways, and has support for saving and restoring the
state of the random number generator.

� file stats.h

Some statistical functions.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

16 VFML Module Documentation

6.3 Decision Tree Section

6.3.1 Detailed Description

All of these are related to the use and construction of decision trees.

Files

� file AttributeTracker.h

Keep a record of which attributes are active.

� file C45interface.h

Calls the C4.5 decision tree learning system and returns the learned tree.

� file c45wrapper

Calls C4.5 and tests the learned tree.

� file c50wrapper

Calls C5.0 and tests the learned tree.

� file cvfdt

Learns a DecisionTree from a high-speed time-changing data stream (or very large data set).

� file decisionstump

Learns a decision stump (a DecisionTree with only one split).

� file DecisionTree.h

A Decision Tree Structure.

� file Example.h

ADT for training (and testing, etc.) data.

� file ExampleGroupStats.h

Sufficient statistics for Entropy and Gini.

� file ExampleSpec.h

Schema for training data.

� file REPrune.h

Peforms reduced error pruning on a decision tree.

� file sprint

Learn a decision tree from data sets that do not fit in RAM.

� file treedata

Creates a synthetic data set by sampling from a randomly generated DecisionTree.

� file vfdt

Learns a decision tree from a high-speed data stream or very large data set.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

6.3 Decision Tree Section 17

� file vfdt-engine.h

An API which lets your program learn a DecisionTree from a high-speed data stream.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

18 VFML Module Documentation

6.4 Belief Net Section

6.4.1 Detailed Description

All of these are related to the use and construction of belief nets.

Files

� file BeliefNet.h

A Belief Net Structure with CPT local models.

� file beliefnetcorrupt

Makes some random changes to a BeliefNet.

� file beliefnetdata

Creates a data set by sampling from a Bayesian Network.

� file beliefnetscore

Tests a BeliefNet in several ways.

� file bnlearn

Learns the structure of a BeliefNet from a data set.

� file bnlearn-engine.h

Learn the structure of a BeliefNet from data.

� file Example.h

ADT for training (and testing, etc.) data.

� file ExampleSpec.h

Schema for training data.

� file vfbn1

Learns the structure of a BeliefNet from a very large data set using sampling.

� file vfbn2

Learns the structure of a BeliefNet from a very large data set using sampling and a new search
proceedure.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

6.5 Learning Programs 19

6.5 Learning Programs

6.5.1 Detailed Description

Learning programs that are included with VFML.

Files

� file bnlearn
Learns the structure of a BeliefNet from a data set.

� file c45wrapper
Calls C4.5 and tests the learned tree.

� file c50wrapper
Calls C5.0 and tests the learned tree.

� file cvfdt
Learns a DecisionTree from a high-speed time-changing data stream (or very large data set).

� file decisionstump
Learns a decision stump (a DecisionTree with only one split).

� file kmeans
Performs k-means clustering.

� file mostcommonclass
Predicts the most common class in the training data.

� file naivebayes
A Naive Bayes learner.

� file sprint
Learn a decision tree from data sets that do not fit in RAM.

� file vfbn1
Learns the structure of a BeliefNet from a very large data set using sampling.

� file vfbn2
Learns the structure of a BeliefNet from a very large data set using sampling and a new search
proceedure.

� file vfdt
Learns a decision tree from a high-speed data stream or very large data set.

� file vfem
Performs EM clustering.

� file vfkm
Performs k-means clustering accelerated with sampling.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

20 VFML Module Documentation

6.6 Other Tools

6.6.1 Detailed Description

Some tools to help you work with data sets and learners.

Files

� file batchtest
Performs cross validation of a collection of learners on a collection of datasets.

� file beliefnetcorrupt
Makes some random changes to a BeliefNet.

� file beliefnetdata
Creates a data set by sampling from a Bayesian Network.

� file beliefnetscore
Tests a BeliefNet in several ways.

� file bindata
Converts continuous attributes into discrete ones.

� file cleandata
Cleans up a data set in several ways.

� file clusterdata
Creates a synthetic data set from randomly generated clusters.

� file combinedata
Combines a series of data sets into a single large one.

� file folddata
Randomly splits a data set into a collection of train/test pairs.

� file sampledata
Draws a sample from a data set.

� file shuffledata
Randomizes the order of a data set and rewrites it.

� file treedata
Creates a synthetic data set by sampling from a randomly generated DecisionTree.

� file uRunner
Distribute a collection of jobs across a cluster of computers.

� file xvalidate
Performs cross validation of a learner on a data set.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

Chapter 7

VFML Data Structure
Documentation

7.1 BeliefNet Struct Reference

7.1.1 Detailed Description

Belief network ADT.

See BeliefNet.h for more detail.

The documentation for this struct was generated from the following file:

� BeliefNet.h

22 VFML Data Structure Documentation

7.2 BeliefNetNode Struct Reference

7.2.1 Detailed Description

Belief net node with full CPTs for local models.

See BeliefNet.h for more detail.

The documentation for this struct was generated from the following file:

� BeliefNet.h

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

7.3 BITFIELD Struct Reference 23

7.3 BITFIELD Struct Reference

7.3.1 Detailed Description

ADT for compactly representing a bit field.

See bitfield.h for more detail.

The documentation for this struct was generated from the following file:

� bitfield.h

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

24 VFML Data Structure Documentation

7.4 DecisionTree Struct Reference

7.4.1 Detailed Description

ADT for working with decision trees.

See DecisionTree.h for more detail.

The documentation for this struct was generated from the following file:

� DecisionTree.h

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

7.5 Example Struct Reference 25

7.5 Example Struct Reference

7.5.1 Detailed Description

ADT for working with examples.

See Example.h for more detail.

The documentation for this struct was generated from the following file:

� Example.h

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

26 VFML Data Structure Documentation

7.6 ExampleGenerator Struct Reference

7.6.1 Detailed Description

Holds the information needed to reproducibly make a random data set. See Example-
Generator.h for more detail.

The documentation for this struct was generated from the following file:

� ExampleGenerator.h

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

7.7 ExampleGroupStats Struct Reference 27

7.7 ExampleGroupStats Struct Reference

7.7.1 Detailed Description

Sufficient statistics for Entropy and Gini.

The documentation for this struct was generated from the following file:

� ExampleGroupStats.h

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

28 VFML Data Structure Documentation

7.8 ExampleSpec Struct Reference

7.8.1 Detailed Description

Schema for training data.

The documentation for this struct was generated from the following file:

� ExampleSpec.h

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

7.9 StatTracker Struct Reference 29

7.9 StatTracker Struct Reference

7.9.1 Detailed Description

Holds simple summary statistics of a sample.

See stats.h for more detail.

The documentation for this struct was generated from the following file:

� stats.h

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

30 VFML Data Structure Documentation

7.10 VFDT Struct Reference

7.10.1 Detailed Description

Holds the information needed to learn decision trees from data streams.

The documentation for this struct was generated from the following file:

� vfdt-engine.h

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

7.11 FloatListPtr Struct Reference 31

7.11 FloatListPtr Struct Reference

7.11.1 Detailed Description

An ADT for a list that holds floats.

See lists.h for more detail.

The documentation for this struct was generated from the following file:

� lists.h

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

32 VFML Data Structure Documentation

7.12 HashTable Struct Reference

7.12.1 Detailed Description

A hash table ADT.

See HashTable.h for more detail.

The documentation for this struct was generated from the following file:

� HashTable.h

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

7.13 IntListPtr Struct Reference 33

7.13 IntListPtr Struct Reference

7.13.1 Detailed Description

An ADT for a list that holds void ints.

See lists.h for more detail.

The documentation for this struct was generated from the following file:

� lists.h

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

34 VFML Data Structure Documentation

7.14 VoidListPtr Struct Reference

7.14.1 Detailed Description

An ADT for a list that holds void pointers.

See lists.h for more detail.

The documentation for this struct was generated from the following file:

� lists.h

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

Chapter 8

VFML File Documentation

8.1 AttributeTracker.h File Reference

8.1.1 Detailed Description

Keep a record of which attributes are active.

Sometimes you need to keep track of which attributes you have already considered, and which are
still available for consideration. The attribute tracker interface helps you efficiently acomplish this
task; you can think of it as a wrapper around a bit field.

For example, when learning a decision tree, each split on a discrete attribute deactivates an
attribute from further consideration. In this situation you would deactivate the attribute, and
then make one clone for each child.

Functions

� AttributeTrackerPtr AttributeTrackerNew (int numAttributes)

Allocates memory for a new AttributeTracker structure.

� void AttributeTrackerFree (AttributeTrackerPtr at)

Frees the memory associated with the attribute tracker.

� AttributeTrackerPtr AttributeTrackerInitial (ExampleSpecPtr es)

Respects ’ignore’s in the ExampleSpec.

� AttributeTrackerPtr AttributeTrackerClone (AttributeTrackerPtr at)

Creates a copy of the passed AttributeTracker and returns the copy.

� void AttributeTrackerMarkActive (AttributeTrackerPtr at, int attNum)

Marks the specified attribute as active.

� void AttributeTrackerMarkInactive (AttributeTrackerPtr at, int attNum)

Marks the specified attribute as inactive.

� int AttributeTrackerIsActive (AttributeTrackerPtr at, int attNum)

36 VFML File Documentation

Returns 1 if the specified attribute is active.

� int AttributeTrackerAreAllInactive (AttributeTrackerPtr at)
Returns 1 if none of the attributes are active.

� int AttributeTrackerNumActive (AttributeTrackerPtr at)
Returns a count of at’s active attributes.

8.1.2 Function Documentation

8.1.2.1 int AttributeTrackerAreAllInactive (AttributeTrackerPtr at)

Returns 1 if none of the attributes are active.

This is a constant time operation (it does not depend on the number of attributes).

8.1.2.2 AttributeTrackerPtr AttributeTrackerClone (AttributeTrackerPtr at)

Creates a copy of the passed AttributeTracker and returns the copy.

8.1.2.3 void AttributeTrackerFree (AttributeTrackerPtr at)

Frees the memory associated with the attribute tracker.

8.1.2.4 AttributeTrackerPtr AttributeTrackerInitial (ExampleSpecPtr es)

Respects ’ignore’s in the ExampleSpec.

Creates an attribute tracker to track the attributes in the passed ExampleSpec. Any of es’s
attributes marked as ignore will be initially set to inactive.

8.1.2.5 int AttributeTrackerIsActive (AttributeTrackerPtr at, int attNum)

Returns 1 if the specified attribute is active.

8.1.2.6 void AttributeTrackerMarkActive (AttributeTrackerPtr at, int attNum)

Marks the specified attribute as active.

8.1.2.7 void AttributeTrackerMarkInactive (AttributeTrackerPtr at, int attNum)

Marks the specified attribute as inactive.

8.1.2.8 AttributeTrackerPtr AttributeTrackerNew (int numAttributes)

Allocates memory for a new AttributeTracker structure.

Creates a new attribute tracker with one bit for each of numAttributes. All the attributes are
initially marked as active.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.1 AttributeTracker.h File Reference 37

8.1.2.9 int AttributeTrackerNumActive (AttributeTrackerPtr at)

Returns a count of at’s active attributes.

This is a constant time operation (it does not depend on the number of attributes).

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

38 VFML File Documentation

8.2 batchtest File Reference

8.2.1 Detailed Description

Performs cross validation of a collection of learners on a collection of datasets.

Requires: xvalidate and folddata be in your path.

You can use batchtest with large datasets, but you will need enough disk space to hold ’folds’
copies of the largest dataset. Of course, the learners you use with batchtest must also be able to
work with the large datasets.

Batchtest expects to find two input files: one that contains descriptions of the datasets it should
use, and one that contains descriptions of the learners it should run on them. In these files blank
lines are ignored and lines beginning with ’#’ as the first character on the line are ignored as
comments; every other line contains a description of a learner or a dataset. In the dataset file, the
description lines have the following format:

[path to the directory holding the dataset] :: [file stem of the dataset]

In the learners file, the description lines should contain the command to run with the appro-
priate arguments. When batchtest invokes a learner, it will run the exact line from the learners
file with the <filestem> of the current cross-validation fold of the current dataset appended.
The learner should be prepared to look for input in in C4.5 format in <filestem>.names and
<filestem>.data; it should test on the examples in <filestem>.test and print the following
to standard out:

error-rate size

The learner’s error rate on the test set, followed by some whitespace, followed by the size of the
learned model (in whatever unit you want), followed by a newline.

Batchtest will collect the output of the runs of the learners, average them and report:

mean-error-rate (standard deviation of error rate) mean-size (standard deviation
of size) average-utime (standard deviation of utime) average-stime (standard
deviation of stime)

for example:

26.111 (5.500) 0.000 (0.000) 0.013 (0.005) 0.010 (0.008)

The times are very accurate on UNIX. Under CYGNUS (windows) utime will be a good estimate,
but not as accurate and stime will be zero.

Wish List
I think the input format for batchtest is a little brittle and it could use some improvement

Arguments

� -data <dataset file>

– Set the path to the file containing the dataset descriptions (default datasets)

� -learn <learner file>

– Set the path to the file containing the learner descriptions (default learners)

� -folds <n>

– Sets the number of train/test sets to create (default 10)

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.2 batchtest File Reference 39

� -seed <n>

– Sets the random seed, multiple runs with the same seed will produce the same datasets
(defaults to a random seed). If you use a random seed, the value of the randomly selected
seed will be printed at the start of the run. You can later use that seed to repeat
the experiment. You can pass the same seed to xvalidate to focus on a particular
learner/dataset combination for debugging. If that doesn’t help enough, you can pass
the same seed to folddata to recreate the exact test/training sets for closer inspection.

� -v

– Can be used multiple times to increase the debugging output

Example

Contents of datasets file:

<p># Here are the datasets

../../datasets/mushroom/ :: mushroom

../../datasets/voting/ :: voting</p>

Contents of the learners file:

<p># A simple learner to set a baseline

mostcommonclass -u -f

My fancy learner with a couple different parameter sets

deep-thought -tc 4.7 -e 1.1 -u -f

deep-thought -tc 2 -e 5 -u -f</p>

batchtest -data datasets -learn learners -folds 15 -seed 100

Does 15-fold cross-validation of the learners in the learners file on the datasets in the datasets file.
It will use a seeded random number generator so the exact experiment could be reproduced. The
actual calls to the learners will look something like this:

<p>mostcommonclass -u -f mushroom0

mostcommonclass -u -f mushroom1

mostcommonclass -u -f mushroom2

...

deep-thought -tc 4.7 -e 1.1 -u -f mushroom0

deep-thought -tc 4.7 -e 1.1 -u -f mushroom1

...

etc...</p>

You should see the using-batchtest example for a more detailed example complete with sample
-data and -learn files.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

40 VFML File Documentation

8.3 BeliefNet.h File Reference

8.3.1 Detailed Description

A Belief Net Structure with CPT local models.

This is the interface for creating, using, printing, & serializing Belief Nets (aka Bayesian Networks).
This document will first describe the properties of BeliefNets and then of BeliefNetNodes. A
belief net is a compact representation of a joint probability distribution of all of the variables in
a domain. For each variable there is a local model (represented by a BeliefNetNode) that models
the probability of the various values of that varable given the values of the variables that affect
them. A BeliefNet is an acyclic graph of the nodes, where an edge represets (loosely) that the
variable at the source affects the varable at the target. The exact semantics of an edge are a bit
more complex. For a more detailed discussion see David Heckerman’s Tutorial

Wish List
A version of this that uses DecisionTree local models instead of full CPTs. This would also
need a new structure learning tool (a modification of bnlearn).

Data Structures

� struct BeliefNet

Belief network ADT.

� struct BeliefNetNode

Belief net node with full CPTs for local models.

BeliefNetNode

� typedef BeliefNetNode BeliefNetNodeStruct

Belief net node with full CPTs for local models.

� typedef BeliefNetNode ∗ BeliefNetNode

Belief net node with full CPTs for local models.

� void BNNodeAddParent (BeliefNetNode bnn, BeliefNetNode parent)
Adds the specified node as a parent to bnn.

� int BNNodeLookupParentIndex (BeliefNetNode bnn, BeliefNetNode parent)
Returns the index of parent in bnn’s parent list.

� int BNNodeLookupParentIndexByID (BeliefNetNode bnn, int id)
Looks through the parent list of bnn for a node with node id of ’id’.

� void BNNodeRemoveParent (BeliefNetNode bnn, int parentIndex)
Removes the node with index ’parentIndex’ from bnn’s parent list.

� BeliefNetNode BNNodeGetParent (BeliefNetNode bnn, int parentIndex)
Returns the parent at position ’index’ in the node’s parent list.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.3 BeliefNet.h File Reference 41

� int BNNodeGetParentID (BeliefNetNode bnn, int parentIndex)
Returns the node id of the node at position ’index’ in the node’s parent list.

� int BNNodeGetNumParents (BeliefNetNode bnn)
Returns the number of nodes in the target node’s parent list.

� int BNNodeGetNumChildren (BeliefNetNode bnn)
Returns the number of nodes in the target node’s child list.

� int BNNodeHasParent (BeliefNetNode bnn, BeliefNetNode parent)
Returns 1 if and only if parent is in the node’s parent list.

� int BNNodeHasParentID (BeliefNetNode bnn, int parentID)
Returns 1 if and only if one of the node’s parents has the specified node id.

� int BNNodeGetNumValues (BeliefNetNode bnn)
Returns the number of values that the variable represented by the node can take.

� int BNNodeGetNumParameters (BeliefNetNode bnn)
Returns the number of parameters in the node’s CPT.

� char ∗ BNNodeGetName (BeliefNetNode bnn)
Returns the name of the node.

� int BNNodeStructureEqual (BeliefNetNode bnn, BeliefNetNode otherNode)
Returns 1 if and only if the two nodes have the same parents in the same order.

� void BNNodeInitCPT (BeliefNetNode bnn)
Allocates memory for bnn’s CPT and zeros the values.

� void BNNodeZeroCPT (BeliefNetNode bnn)
Sets the value of all CPT entries to zero.

� void BNNodeFreeCPT (BeliefNetNode bnn)
Frees any memory being used by the node’s CPTs.

� void BNNodeAddSample (BeliefNetNode bnn, ExamplePtr e)
Increments the count of the appropriate CPT element by 1.

� void BNNodeAddSamples (BeliefNetNode bnn, VoidListPtr samples)
Calls BNNodeAddSample for each example in the list.

� void BNNodeAddFractionalSample (BeliefNetNode bnn, ExamplePtr e, float
weight)

Increments the count of the appropriate CPT element by weight.

� void BNNodeAddFractionalSamples (BeliefNetNode bnn, VoidListPtr samples,
float weight)

Calls BNNodeAddFractionalSample for each example in the list.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

42 VFML File Documentation

� float BNNodeGetCPTRowCount (BeliefNetNode bnn, ExamplePtr e)
Returns the number of samples that have been added to the node with the same parent combination
as in e.

� float BNNodeGetP (BeliefNetNode bnn, int value)
Returns the marginal probability of the appropriate value of the variable.

� float BNNodeGetCP (BeliefNetNode bnn, ExamplePtr e)
Get the probability of the value of the target variable given the values of the parent variables.

� void BNNodeSetCP (BeliefNetNode bnn, ExamplePtr e, float probability)
Sets the probability without affecting the sum of the CPT row for the parent combination.

� float BNNodeGetNumSamples (BeliefNetNode bnn)
Returns the number of samples that have been added to the belief net node.

� int BNNodeGetNumCPTRows (BeliefNetNode bnn)
Returns the number rows in the node’s CPT. This is the number of parent combinations.

BeliefNet

� #define BNGetUserData(bn) (((BeliefNet)bn) → userData)
Allows you to store an arbitrary pointer on the BeliefNet.

� typedef BeliefNet BeliefNetStruct
Belief network ADT.

� typedef BeliefNet ∗ BeliefNet
Belief network ADT.

� BeliefNet BNNew (void)
Creates a new belief net with no nodes.

� void BNFree (BeliefNet bn)
Frees the memory associated with the belief net and all nodes.

� BeliefNet BNClone (BeliefNet bn)
Makes a copy of the belief net and all nodes.

� BeliefNet BNCloneNoCPTs (BeliefNet bn)
Makes a copy of the belief net and all nodes, but does not copy the local models at the nodes.

� BeliefNet BNNewFromSpec (ExampleSpecPtr es)
Makes a new belief net from the example spec.

� int BNGetSimStructureDifference (BeliefNet bn, BeliefNet otherNet)
Returns the symetric difference in the structures.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.3 BeliefNet.h File Reference 43

� void BNSetName (BeliefNet bn, char ∗name)
Set’s the Belief net’s name.

� ExampleSpec ∗ BNGetExampleSpec (BeliefNet bn)
Returns the ExampleSepc that is associated with the belief net.

� BeliefNetNode BNGetNodeByID (BeliefNet bn, int id)
Gets the node with the associated index.

� int BNGetNumNodes (BeliefNet bn)
Returns the number of nodes in the Belief Net.

� BeliefNetNode BNGetNodeByElimOrder (BeliefNet bn, int index)
Returns nodes by their order in a topological sort.

� int BNHasCycle (BeliefNet bn)
Returns 1 if and only if there is a cycle in the graphical structure of the belief net.

� void BNFlushStructureCache (BeliefNet bn)
Needs to be called anytime you change network structure.

� void BNAddSample (BeliefNet bn, ExamplePtr e)
Modifies all the CPTs in the network by adding a count to the approprite parameters.

� void BNAddSamples (BeliefNet bn, VoidListPtr samples)
Calls BNAddSample for every example in the list.

� void BNAddFractionalSample (BeliefNet bn, ExamplePtr e, float weight)
Modifies all the CPTs in the network by adding a weighted count to the approprite parameters.

� void BNAddFractionalSamples (BeliefNet bn, VoidListPtr samples, float weight)
Calls BNAddFractionalSample for every example in the list.

� long BNGetNumIndependentParameters (BeliefNet bn)
Returns the sum over all nodes of the number of independent parameters in the CPTs.

� long BNGetNumParameters (BeliefNet bn)
Returns the sum over all nodes of the number of parameters in the CPTs.

� long BNGetMaxNodeParameters (BeliefNet bn)
Returns the number of parameters in the node with the most parameters.

� ExamplePtr BNGenerateSample (BeliefNet bn)
Samples from the distribution represented by bn.

� void BNSetPriorStrength (BeliefNet bn, double strength)
Sets prior parameter strength as if some examples have been seen.

� void BNSmoothProbabilities (BeliefNet bn, double strength)
Adds a number of samples equal to strength to each CPT entry in the network.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

44 VFML File Documentation

� void BNSetUserData (BeliefNet bn, void ∗data)
Allows you to store an arbitrary pointer on the BeliefNet.

� BeliefNet BNReadBIF (char ∗fileName)
Reads a Belief net from the named file.

� BeliefNet BNReadBIFFILEP (FILE ∗file)
Reads a Belief net from a file pointer.

� void BNWriteBIF (BeliefNet bn, FILE ∗out)
Writes the belief net to the file.

� void BNPrintStats (BeliefNet bn)
Prints some information about the net to stdout.

Inference with Likelihood Sampling

The idea of likelihood sampling is that you have a set of query variables (specified by an example
with some of the values unknown) and the system randomly generates samples for the query
variables given the values of the non-query variables. After ’enough’ samples the distribution
of the samples generated for the query variables will be a good match to the ’true’ distribution
according to the net. The number of samples required can be very large, especially when dealing
with events that don’t occur often.

� BeliefNet BNInitLikelihoodSampling (BeliefNet bn, ExamplePtr e)
Set up likelihood sampling and return place holder network.

� void BNAddLikelihoodSamples (BeliefNet bn, BeliefNet newNet, ExamplePtr e, int
numSamples)

Adds the requested number of samples to newNet.

� BeliefNet BNLikelihoodSampleNTimes (BeliefNet bn, ExamplePtr e, int num-
Samples)

Combines a call to BNInitiLikelihoodSampling with a call to BNAddLikelihoodSamples.

8.3.2 Define Documentation

8.3.2.1 #define BNGetUserData(bn) (((BeliefNet)bn) → userData)

Allows you to store an arbitrary pointer on the BeliefNet.

You are responsible for managing any memory that it points to.

8.3.3 Typedef Documentation

8.3.3.1 typedef struct BeliefNet ∗ BeliefNet

Belief network ADT.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.3 BeliefNet.h File Reference 45

See BeliefNet.h for more detail.

8.3.3.2 typedef struct BeliefNetNode ∗ BeliefNetNode

Belief net node with full CPTs for local models.

See BeliefNet.h for more detail.

8.3.3.3 typedef struct BeliefNetNode BeliefNetNodeStruct

Belief net node with full CPTs for local models.

See BeliefNet.h for more detail.

8.3.3.4 typedef struct BeliefNet BeliefNetStruct

Belief network ADT.

See BeliefNet.h for more detail.

8.3.4 Function Documentation

8.3.4.1 void BNAddFractionalSample (BeliefNet bn, ExamplePtr e, float weight)

Modifies all the CPTs in the network by adding a weighted count to the approprite parameters.

See the BeliefNetNode functions for a more detailed description of how the CPTs are represented
and handled.

8.3.4.2 void BNAddFractionalSamples (BeliefNet bn, VoidListPtr samples, float
weight)

Calls BNAddFractionalSample for every example in the list.

8.3.4.3 void BNAddLikelihoodSamples (BeliefNet bn, BeliefNet newNet,
ExamplePtr e, int numSamples)

Adds the requested number of samples to newNet.

newNet should have been created by a call to BNInitiLikelihoodSampling. Adds the requested
number of samples for the unknown variables in e using the distributions in bn.

8.3.4.4 void BNAddSample (BeliefNet bn, ExamplePtr e)

Modifies all the CPTs in the network by adding a count to the approprite parameters.

See the BeliefNetNode functions for a more detailed description of how the CPTs are represented
and handled.

8.3.4.5 void BNAddSamples (BeliefNet bn, VoidListPtr samples)

Calls BNAddSample for every example in the list.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

46 VFML File Documentation

8.3.4.6 BeliefNet BNClone (BeliefNet bn)

Makes a copy of the belief net and all nodes.

8.3.4.7 BeliefNet BNCloneNoCPTs (BeliefNet bn)

Makes a copy of the belief net and all nodes, but does not copy the local models at the nodes.

8.3.4.8 void BNFlushStructureCache (BeliefNet bn)

Needs to be called anytime you change network structure.

That is, any time you add nodes, add or remove edges after calling BNHasCycle, or any ElimOrder
stuff. The reason is that these two classes of functions cache topological sorts of the network and
changing the structure invalidates these caches. In prinicipal, all of the functions that modify
structure could be modified to automatically call this. I think things were done this way for
efficiency (but I am not sure it actually helps efficiency...

8.3.4.9 void BNFree (BeliefNet bn)

Frees the memory associated with the belief net and all nodes.

8.3.4.10 ExamplePtr BNGenerateSample (BeliefNet bn)

Samples from the distribution represented by bn.

You are responsible for freeing the returned example (using ExampleFree when you are done with
it.

8.3.4.11 ExampleSpec∗ BNGetExampleSpec (BeliefNet bn)

Returns the ExampleSepc that is associated with the belief net.

The spec will be automatically created when you read the network from disk or as you add nodes
to the net and values to the nodes.

8.3.4.12 long BNGetMaxNodeParameters (BeliefNet bn)

Returns the number of parameters in the node with the most parameters.

8.3.4.13 BeliefNetNode BNGetNodeByElimOrder (BeliefNet bn, int index)

Returns nodes by their order in a topological sort.

If the nodes can not be topologically sorted (perhaps because there is a cycle) this function returns
0.

Note that this function caches (and uses a cache) of the topological sort and that you might want
to call BNFlushStructureCache before calling this if you’ve changed the structure of the net since
the cache was filled.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.3 BeliefNet.h File Reference 47

8.3.4.14 BeliefNetNode BNGetNodeByID (BeliefNet bn, int id)

Gets the node with the associated index.

This is 0 based (like a C array).

8.3.4.15 long BNGetNumIndependentParameters (BeliefNet bn)

Returns the sum over all nodes of the number of independent parameters in the CPTs.

This is different from the total number of parameters because one of the parameters in each row
can be determined from the values of the others, and so is not independent.

8.3.4.16 int BNGetNumNodes (BeliefNet bn)

Returns the number of nodes in the Belief Net.

8.3.4.17 long BNGetNumParameters (BeliefNet bn)

Returns the sum over all nodes of the number of parameters in the CPTs.

8.3.4.18 int BNGetSimStructureDifference (BeliefNet bn, BeliefNet otherNet)

Returns the symetric difference in the structures.

This is defined as the sum for i in nodes of the number of parents that node i of bn has but node
i of otherBN does not have plus the number of parents that node i of otherBN has that node i of
bn does not have.

8.3.4.19 int BNHasCycle (BeliefNet bn)

Returns 1 if and only if there is a cycle in the graphical structure of the belief net.

Note that this function caches (and uses a cache) of the topological sort and that you might want
to call BNFlushStructureCache before calling this if you’ve changed the structure of the net since
the cache was filled.

8.3.4.20 BeliefNet BNInitLikelihoodSampling (BeliefNet bn, ExamplePtr e)

Set up likelihood sampling and return place holder network.

Returns a new belief net with CPT set to start to acumulate samples for the unknown variables
in e, you should free this net when you are done with it. Once the net is created you should add
as many samples to it as you like using BNAddLikelihoodSamples and then check the CPTs at
the appropriate nodes for the generated distributions.

8.3.4.21 BeliefNet BNLikelihoodSampleNTimes (BeliefNet bn, ExamplePtr e, int
numSamples)

Combines a call to BNInitiLikelihoodSampling with a call to BNAddLikelihoodSamples.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

48 VFML File Documentation

8.3.4.22 BeliefNet BNNew (void)

Creates a new belief net with no nodes.

8.3.4.23 BeliefNet BNNewFromSpec (ExampleSpecPtr es)

Makes a new belief net from the example spec.

All attributes in the spec should be discrete. This adds a node, with the appropriate values, to
the net for each variable in the spec. The resulting network has no edges and zeroed CPTs

8.3.4.24 void BNNodeAddFractionalSample (BeliefNetNode bnn, ExamplePtr e,
float weight)

Increments the count of the appropriate CPT element by weight.

Looks in example to get the values for the parents and the value for the variable. If any of these are
unknown changes nothing, prints a low priority warning message, and returns -1 where applicable.

8.3.4.25 void BNNodeAddFractionalSamples (BeliefNetNode bnn, VoidListPtr
samples, float weight)

Calls BNNodeAddFractionalSample for each example in the list.

8.3.4.26 void BNNodeAddParent (BeliefNetNode bnn, BeliefNetNode parent)

Adds the specified node as a parent to bnn.

Both nodes should be from the same BeliefNet structure.

8.3.4.27 void BNNodeAddSample (BeliefNetNode bnn, ExamplePtr e)

Increments the count of the appropriate CPT element by 1.

Looks in example to get the values for the parents and the value for the variable. If any of these are
unknown changes nothing, prints a low priority warning message, and returns -1 where applicable.

8.3.4.28 void BNNodeAddSamples (BeliefNetNode bnn, VoidListPtr samples)

Calls BNNodeAddSample for each example in the list.

8.3.4.29 void BNNodeFreeCPT (BeliefNetNode bnn)

Frees any memory being used by the node’s CPTs.

This should be called before changing the node’s parents. After a call to this function, you should
call BNNodeInitCPT for the node before making any calls that might try to access the CPT
(adding samples, doing inference, smoothing probability, comparin networks, etc).

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.3 BeliefNet.h File Reference 49

8.3.4.30 float BNNodeGetCP (BeliefNetNode bnn, ExamplePtr e)

Get the probability of the value of the target variable given the values of the parent variables.

Looks in example to get the values for the parents and the value for the variable. If any of these are
unknown changes nothing, prints a low priority warning message, and returns -1 where applicable.

8.3.4.31 float BNNodeGetCPTRowCount (BeliefNetNode bnn, ExamplePtr e)

Returns the number of samples that have been added to the node with the same parent combination
as in e.

Looks in example to get the values for the parents and the value for the variable. If any of these are
unknown changes nothing, prints a low priority warning message, and returns -1 where applicable.

8.3.4.32 char∗ BNNodeGetName (BeliefNetNode bnn)

Returns the name of the node.

8.3.4.33 int BNNodeGetNumChildren (BeliefNetNode bnn)

Returns the number of nodes in the target node’s child list.

8.3.4.34 int BNNodeGetNumCPTRows (BeliefNetNode bnn)

Returns the number rows in the node’s CPT. This is the number of parent combinations.

8.3.4.35 int BNNodeGetNumParameters (BeliefNetNode bnn)

Returns the number of parameters in the node’s CPT.

8.3.4.36 int BNNodeGetNumParents (BeliefNetNode bnn)

Returns the number of nodes in the target node’s parent list.

8.3.4.37 float BNNodeGetNumSamples (BeliefNetNode bnn)

Returns the number of samples that have been added to the belief net node.

8.3.4.38 int BNNodeGetNumValues (BeliefNetNode bnn)

Returns the number of values that the variable represented by the node can take.

8.3.4.39 float BNNodeGetP (BeliefNetNode bnn, int value)

Returns the marginal probability of the appropriate value of the variable.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

50 VFML File Documentation

That is, the sum over all rows of the number of counts for that value divided by the sum over all
rows of the number of counts in the row.

Looks in example to get the values for the parents and the value for the variable. If any of these are
unknown changes nothing, prints a low priority warning message, and returns -1 where applicable.

8.3.4.40 BeliefNetNode BNNodeGetParent (BeliefNetNode bnn, int parentIndex)

Returns the parent at position ’index’ in the node’s parent list.

8.3.4.41 int BNNodeGetParentID (BeliefNetNode bnn, int parentIndex)

Returns the node id of the node at position ’index’ in the node’s parent list.

8.3.4.42 int BNNodeHasParent (BeliefNetNode bnn, BeliefNetNode parent)

Returns 1 if and only if parent is in the node’s parent list.

8.3.4.43 int BNNodeHasParentID (BeliefNetNode bnn, int parentID)

Returns 1 if and only if one of the node’s parents has the specified node id.

8.3.4.44 void BNNodeInitCPT (BeliefNetNode bnn)

Allocates memory for bnn’s CPT and zeros the values.

This allocates enough memory to hold one float for each value of the variable associated with the
node for each parent combination (an amount of memory that is exponential in the number of
parents). This should be called once all parents are in place.

8.3.4.45 int BNNodeLookupParentIndex (BeliefNetNode bnn, BeliefNetNode
parent)

Returns the index of parent in bnn’s parent list.

Returns -1 if parent is not one of node’s parents.

8.3.4.46 int BNNodeLookupParentIndexByID (BeliefNetNode bnn, int id)

Looks through the parent list of bnn for a node with node id of ’id’.

See BNNodeGetID for more info.

8.3.4.47 void BNNodeRemoveParent (BeliefNetNode bnn, int parentIndex)

Removes the node with index ’parentIndex’ from bnn’s parent list.

To remove the node ’parent’ call BNNodeRemoveParent(bnn, BNNodeLookupParentIndex(bnn,
parent)).

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.3 BeliefNet.h File Reference 51

8.3.4.48 void BNNodeSetCP (BeliefNetNode bnn, ExamplePtr e, float probability)

Sets the probability without affecting the sum of the CPT row for the parent combination.

This means that the probability has the same prior weight before and after a call to this. Put
another way, the set probability is equivilant to having seen the same number of samples at the
new probability as at the old.

Looks in example to get the values for the parents and the value for the variable. If any of these are
unknown changes nothing, prints a low priority warning message, and returns -1 where applicable.

8.3.4.49 int BNNodeStructureEqual (BeliefNetNode bnn, BeliefNetNode
otherNode)

Returns 1 if and only if the two nodes have the same parents in the same order.

Bug
Only returns 1 if the parents are in the same order, but the order probably shouldn’t matter.

8.3.4.50 void BNNodeZeroCPT (BeliefNetNode bnn)

Sets the value of all CPT entries to zero.

Can be called after InitCPT to reset all the table’s values to 0.

8.3.4.51 void BNPrintStats (BeliefNet bn)

Prints some information about the net to stdout.

The information includes num nodes, min max avg num parents, etc.

8.3.4.52 BeliefNet BNReadBIF (char ∗ fileName)

Reads a Belief net from the named file.

The file should contain a net in Bayesian Interchange Format (BIF).

8.3.4.53 BeliefNet BNReadBIFFILEP (FILE ∗ file)

Reads a Belief net from a file pointer.

The file pointer should be opened for reading and should contain a net in Bayesian Interchange
Format (BIF).

8.3.4.54 void BNSetName (BeliefNet bn, char ∗ name)

Set’s the Belief net’s name.

This doesn’t really affect anything (except it is recorded if you write out the belief net), but using
it may make you feel better.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

52 VFML File Documentation

8.3.4.55 void BNSetPriorStrength (BeliefNet bn, double strength)

Sets prior parameter strength as if some examples have been seen.

Multiplies all the counts in all of the network’s CPTs so that each parent combination has the
equivilant of strength samples, divided acording to that combination’s distribution in the network.

Hrm, does that confuse you too?

8.3.4.56 void BNSetUserData (BeliefNet bn, void ∗ data)

Allows you to store an arbitrary pointer on the BeliefNet.

You are responsible for managing any memory that it points to.

8.3.4.57 void BNSmoothProbabilities (BeliefNet bn, double strength)

Adds a number of samples equal to strength to each CPT entry in the network.

This effectivly smooths the probabilities towards uniform.

8.3.4.58 void BNWriteBIF (BeliefNet bn, FILE ∗ out)

Writes the belief net to the file.

Out should be a file open for writing, pass stdout to write to the console. The net it written in
Bayesian Interchange Format (BIF).

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.4 beliefnetcorrupt File Reference 53

8.4 beliefnetcorrupt File Reference

8.4.1 Detailed Description

Makes some random changes to a BeliefNet.

This program loading an existing belief network (in BIF format) and corrupts it in several, user
controlable, ways. This can be used to generate prior networks for structure learning, or to create
several similar synthetic concepts (with the help of beliefnetdata) from a single benchmark
network.

Multiple runs with the same seed parameter produce the same results.

VFML comes with a collection of benchmark belief nets, and you may want more information
on these.

Wish List
This tool does not do anything smart with parameters when it changes the structure, and it
should.

Arguments

� -f <file name for output>

– (default DFOut.bif)

� -target <dir>

– Set the directory to contain the output dataset (default ’.’)

� -bnf <file containing belief net>

– (default DF.bif)

� -stdout

– output the new net to stdout (default to <stem>.data)

� -startFromEmpty

– Remove all links from net before making any changes (default start from the net the
way it is)

� -epsilon <val>

– Change every parameter in the network by adding or subtracing (with even probability)
a number selected randomly in the range 0 – val . The CPTs in the network are then
renormalized. This step is taken before any structure changes are made. The default
is to leave parameters unchanged and to only change structure.

� -maxParentsPerNode <num>

– Limit each node to <num> parents (default no limit)

� -numChanges <num>

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

54 VFML File Documentation

– Randomly add 2∗num, then remove 2∗num, then reverse 2∗num links (default num
defaults to 4). Each of these changes affects the parameters in the network. The
current version of this tool does not do anything smart with these, so once this option
is invoked do not trust the parameter values. This option will not introduce changes
that violate the maxParentsPerNode parameter, or that introduce cycles. If it is trying
to add or reverse a link and can not without violating these constraints after trying
100 random operations beliefnetcorrupt will give up on the change and move on to the
next one. This option is overridden by the -random option if it is used.

� -random <num>

– Random starting net with <num> links. This option will override the (default) num-
Changes behavior. More specifically, this option starts by removing all edges from the
net, and then adding random edges (so that no changes add a cycle or violate the
maxParents constraint).

� -seed <seed>

– Sets the random seed, multiple runs with the same options and seed will produce the
same network (defaults to a random seed)

� -h

– Run with this argument to get a list of arguments and their meanings.

� -v

– Can be used multiple times to increase the debugging output

Example

beliefnetcorrupt -f corrupted -bnf alarm.bif -numChanges 2 -seed 111

Creates a network based on the alarm network by adding 2 links, then removing 2 links, then
reversing 2 links. Reproduce the same network everytime the same arguments are used (thanks
to the seed parameter).

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.5 beliefnetdata File Reference 55

8.5 beliefnetdata File Reference

8.5.1 Detailed Description

Creates a data set by sampling from a Bayesian Network.

>This program creates a synthetic data set by loading an existing belief network (in BIF format)
and sampling from it, possibly introducing noise. This program will also create a .names file for
the resulting data set. More specifically, belifnetdata reads the network, generates samples from
it with BNGenerateSample, and adds noise to them (if requested) with ExampleAddNoise.

Multiple runs with the same seed parameter produce the same results. Also note that running
this command with one level of -v will output some statistics about the belif net which you might
find useful.

VFML comes with a collection of benchmark belief nets, and you may want more information
on these.

Arguments

� -h

– Run with this argument to get a list of arguments and their meanings.

Example

beliefnetdata -f train -bnf alarm.bif -train 1000 -seed 111 -noise 5

Creates 1000 samples from the alarm network, randomly corrupts 5% of their values, write the
resulting samples to train.data (and create a file train.names) and reproduce the same data set
everytime the same arguments are used (thanks to the seed parameter)

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

56 VFML File Documentation

8.6 beliefnetscore File Reference

8.6.1 Detailed Description

Tests a BeliefNet in several ways.

This program determines the log-likelihood of a data set given a belief net. It can also compare
the structure of two networks. In log-likelihood mode it loads the belief net, and then scans the
data set, accumulating the likelihood of each example in the data set given the network.

beliefnetscore can smooth the parameters in the network before computing this likelihood. (Run
beliefnetscore -h for the precice parameters to use.) This smoothing works as follows. Each
parameter in the network is multiplied by the desired strength, and then 1 is added to each local
model is renormalized. If you do not use this argument, and there is a 0 probability in the network,
but that even occurs in the data set, beliefnetscore will crash.

In comparison mode it loads both networks and the outputs the structural difference between the
two networks. This is sometimes known as the symetric difference and is measured by iterating
over the nodes in each network and counting the number of times that the node has a parent that
the coresponding node in the other network does not have.

Wish List
Move the comparision mode from this tool into a new tool, beliefnetcompare, and have that
tool do more interesting comparisions (e.g. measure the KL-distance between the distriutions
encoded in the networks).

Arguments

� -h

– Run with this argument to get a list of arguments and their meanings.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.7 bindata File Reference 57

8.7 bindata File Reference

8.7.1 Detailed Description

Converts continuous attributes into discrete ones.

Converts all continuous attributes in a data set to categorical ones. Uses two passes over data,
one to gather the stats needed to pick bin boundaries, and one to do the conversion (although the
first pass can be done on a sample with the -samples argument below).

bindata uses one of two methods to select bin boundaries. The first is to find the range of each
attribute (by identifing its highest and lowest value) and then dividing the range into even with
bins. This is the default method. The other method assumes that the attribute was generated from
a Gaussian, estimates the mean and variance of the Gaussian from data, and sets bin boundaries
so that each bin holds an even amount of the Gaussian’s probability mass.

Thanks
to Chun-Hsiang Hung for doing the core development work for this tool.

Wish List
that this tool would have more methods for selecting bin boundaries, for example to reduce
entropy.

Arguments

� -f <filestem>

– Set the stem name (default DF)

� -fout <filestem>

– Set the name of the output dataset (default DF-out)

� -source <dir>

– Set the directory that contains the dataset (default ’.’)

� -target <dir>

– Set the directory to contain the output dataset (default ’.’)

� -test

– Also converts the test set (but does not use the test set to pick boundaries)

� -samples <n>

– Use the first n examples to pick bin boundaries (default use the whole train set)

� -bins <n>

– Sets the number of bins (default 10)

� -gaussian

– Pick bin boundaries by fitting a Gaussian and making even probability bins

� -h

– Display usage information and exit.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

58 VFML File Documentation

� -v

– Can be used multiple times to increase the debugging output

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.8 bitfield.h File Reference 59

8.8 bitfield.h File Reference

8.8.1 Detailed Description

Compactly represent a bit field.

Data Structures

� struct BITFIELD

ADT for compactly representing a bit field.

Typedefs

� typedef BITFIELD BitFieldStruct

ADT for compactly representing a bit field.

� typedef BITFIELD ∗ BitFieldPtr

ADT for compactly representing a bit field.

Functions

� BitField BitFieldNew (int byteSize)

Create a new BitField with the specified number of bits.

� void BitFieldFree (BitField b)

Frees the memory associated with the BitField.

� int BitFieldGetNumBytes (BitField b)

Returns the number of bytes being used to represent the BitField.

� int BitFieldGetBit (BitField b, long offset)

Returns the value of the specifed bit.

� void BitFieldSetBit (BitField b, long offset, int val)

Sets the value of the specified bit.

8.8.2 Typedef Documentation

8.8.2.1 typedef struct BITFIELD ∗ BitFieldPtr

ADT for compactly representing a bit field.

See bitfield.h for more detail.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

60 VFML File Documentation

8.8.2.2 typedef struct BITFIELD BitFieldStruct

ADT for compactly representing a bit field.

See bitfield.h for more detail.

8.8.3 Function Documentation

8.8.3.1 void BitFieldFree (BitField b)

Frees the memory associated with the BitField.

8.8.3.2 int BitFieldGetBit (BitField b, long offset)

Returns the value of the specifed bit.

8.8.3.3 int BitFieldGetNumBytes (BitField b)

Returns the number of bytes being used to represent the BitField.

8.8.3.4 BitField BitFieldNew (int byteSize)

Create a new BitField with the specified number of bits.

8.8.3.5 void BitFieldSetBit (BitField b, long offset, int val)

Sets the value of the specified bit.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.9 bnlearn File Reference 61

8.9 bnlearn File Reference

8.9.1 Detailed Description

Learns the structure of a BeliefNet from a data set.

Learns the structure and parameters of a Bayesian network using the standard method. The
structural prior is set by using P(S) = kappa ∧ (symetric difference between the net and the prior
net). The parameter prior is K2. This is basically a wrapper around the code in bnlearn-engine.h

bnlearn can load training data into RAM, if space is available, or it can scan data repeatedly from
disk.

See the documentation for the bnlearn-engine for more information about the parameters and
their meanings.

bnlearn takes input and does output in c4.5 format. It expects to find the files <stem>.names
and <stem>.data.

Thanks
to Matt Richardson for making substantial optimizations to the bnlearn program.

Wish List
A version of this program that is intelligent about dealing with unobserved (or partially
observed) variables.

Arguments

� -h

– Run bnlearn -h for a list of the arguments and their meanings.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

62 VFML File Documentation

8.10 bnlearn-engine.h File Reference

8.10.1 Detailed Description

Learn the structure of a BeliefNet from data.

An API to VFML’s Belief Net structure learning engine. The bnlearn program is basically a
wrapper around this interface. You can use this interface to avoid making system calls to learn
belief nets, or the callbacks in this interface may allow you to modify the learner’s behavior enough
so that you don’t have to edit any code.

Learns the structure and parameters of a Bayesian network using the standard method. The
structural prior is set by using P(S) = kappa ∧ (symetric difference between the net and the prior
net). The parameter prior is K2.

To use this interface you generate a parameters structure using the BNLearn NewParams method,
fill in any parameters you want (to identify prior networks, callbacks, training data, etc), then call
the BN Learn method, extract what you want from the parameters structure, and then free the
structure with BNLearn FreeParams. See the header file for the details of the available parameters.

Thanks
to Matthew Richardson for extracting this interface from the bnlearn learner.

Functions

� BNLearnParams ∗ BNLearn NewParams ()
Makes a new parameters structure with some default values.

� void BNLearn FreeParams (BNLearnParams ∗params)
Frees the parameters structure.

� void BNLearn (BNLearnParams ∗params)
Do the learning.

8.10.2 Function Documentation

8.10.2.1 void BNLearn (BNLearnParams ∗ params)

Do the learning.

8.10.2.2 void BNLearn FreeParams (BNLearnParams ∗ params)

Frees the parameters structure.

You are responsible for freeing any additonal memory that may have been allocated by the run
(for example any learned BeliefNet).

8.10.2.3 BNLearnParams∗ BNLearn NewParams ()

Makes a new parameters structure with some default values.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.11 C45interface.h File Reference 63

8.11 C45interface.h File Reference

8.11.1 Detailed Description

Calls the C4.5 decision tree learning system and returns the learned tree.

An interface that writes the examples to a file, calls C4.5 on them, and returns the tree that
C4.5 learns. See the example program for more information on how to use this interface. C4.5
must be in your path for this to work, you can grab it from Professor Quinlan’s homepage at
http://www.cse.unsw.edu.au/∼quinlan/.

Functions

� DecisionTreePtr C45Learn (ExampleSpecPtr es, VoidListPtr examples)
Makes the call and returns the tree.

8.11.2 Function Documentation

8.11.2.1 DecisionTreePtr C45Learn (ExampleSpecPtr es, VoidListPtr examples)

Makes the call and returns the tree.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

64 VFML File Documentation

8.12 c45wrapper File Reference

8.12.1 Detailed Description

Calls C4.5 and tests the learned tree.

A wrapper that calls C4.5 to learn a decision tree, times its execution, and extracts the important
bits from its output. C4.5 must be in your path for this learner to work, you can get it from
Professor Quinlan’s homepage at http://www.cse.unsw.edu.au/∼quinlan/.

This wrapper runs C4.5, tests the learned tree on the test data (if appropriate) and outputs: test
set error rate <whitespace> size of tree <whitespace> seconds.

You might also be interested in the DecisionTreeReadC45 function.

Arguments

� -f <filestem>

– Set the stem name (default DF)

� -args <string>

– Passes these additional arguments to C4.5 (default none)

� -noPrune

– Reports the results from c4.5’s unpurned tree (default reports from pruned tree)

� -noTest

– Suppress the -u argument, which makes C4.5 output accuracy on the training set (de-
fault test accuracy on the <filestem>.test file)

� -v

– Can be used multiple times to increase the debugging output

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.13 c50wrapper File Reference 65

8.13 c50wrapper File Reference

8.13.1 Detailed Description

Calls C5.0 and tests the learned tree.

A wrapper that calls C5.0 to learn a decision tree, times its execution, and extracts the important
bits from its output. C5.0 must be in your path for this learner to work. It is a commercial
product and you can get information about purchasing it from Professor Quinlan’s homepage at
http://www.cse.unsw.edu.au/∼quinlan/.

This wrapper runs C5.0, tests the lerned tree on the test data (if appropriate) and outputs: test
set error rate <whitespace> size of tree <whitespace> seconds.

Arguments

� -f <filestem> -Set the stem name (default DF)

� -args <string>

– Passes these additional arguments to C4.5 (default none)

� -v

– Can be used multiple times to increase the debugging output

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

66 VFML File Documentation

8.14 cleandata File Reference

8.14.1 Detailed Description

Cleans up a data set in several ways.

This tool cleans a data set in several ways, and outputs the cleaned data. It will scan the training
data and gather some simple stats about it (if needed, see below). It then does a pass over training
and testing data, filling in missing categorical attribute values with the most common value given
the class, and filling in missing continuous attribute values with the average value given the class.

The tool can also add a new attribute value to each categorical attribe, called ’u’ (short for
unknown) and rewrite the data set as appropriate.

The tool can also remove every attribute in the data set that is marked ignored.

cleandata accepts an input stem and expects to find a file stem.data and stem.names and optionally
one called stem.test. cleandata outputs a file named stem-clean.data, stem-clean.names, and
optionally stem-clan.test.

cleandata will work with a single pass over the data set if and only if you use -addValue and there
are no continuous attributes. Otherwise it usues an additional pass.

Thanks
to Chun-Hsiang Hung for doing the core development work for this tool.

Arguments

� -f <filestem>

– Set the stem name (default DF)

� -source <dir>

– Set the directory that contains the dataset (default ’.’)

� -addValue

– Adds a ’u’ for unknown value to all categorical attributes (default fill in the most
common value)

� -removeIgnore

– removes every attribute marked ’ignored’ in names from the data set (default leave
them in)

� -h

– Display usage information and exit.

� -v

– Can be used multiple times to increase the debugging output

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.15 clusterdata File Reference 67

8.15 clusterdata File Reference

8.15.1 Detailed Description

Creates a synthetic data set from randomly generated clusters.

This program creates a synthetic data set by selecting cluster centroids and generating samples
by ranomly picking a centroid and sampling from a spherical gaussian with the centroid as its
mean and a user specified standard deviation. This data generator has been used to evaluate the
VFKM and VFEM systems.

The centroids are randomly placed uniformly in a N dimensional unit hypercube (where N is the
number of continuous dimensions), except that if any centroid is placed closer than: (sqrt(N)
/ (num centroids + 1)) ∗ std deviation to an already placed one its location is resampled.
(If any centroid can not be placed after 1000 resamples and error is reported.) Note that ’unit
hypercube’ means that each dimension ranges from 0 - 1.0.

Finally, training samples are generated by randomly selecting a centroid and sampling from a
Gaussian with it as the mean and the specified standard deviation (specified by a parameter to
the program) for each dimension. Note that the value of a sample’s dimension may fall outside
the 0 - 1.0 range.

Arguments

� -h

– Run with this argument to get a list of arguments and their meanings.

Example

clusterdata -continuous 20 -clusters 3 -stdev 0.05 -conceptSeed 21 -seed 1234
-train 1000

Creates 1000 samples in 20 dimensions by sampling from a mixture of 3 Gaussians with a standard
deviation of 0.05. This same data set could be recreated by using the same seed and conceptSeed
flags.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

68 VFML File Documentation

8.16 combinedata File Reference

8.16.1 Detailed Description

Combines a series of data sets into a single large one.

Sometimes you may need to combine a collection of small data files into one large one. Usually
this could be accomplished with the unix cat utility, but sometimes it will not be available and
sometimes it may not perfrom as needed (for example, when the source files do not end with
newlines). combinedata was created for those situations.

combinedata reads a collection of files as specified by the required -dataFiles argument and writes
them to the name specified by the -fout argument.

Arguments

� -names <filename>

– Set the names file (default DF.names)

� -fout <filename>

– Set the name of the output dataset (default DF-out)

� -target <dir>

– Set the output directory (default ’.’)

� -source <dir>

– Set the directory that contains the dataset (default ’.’)

� -h

– Display usage information and exit

� -v

– Can be used multiple times to increase the debugging output

� -dataFiles <list of files>

– till the end of the line list the files to combine (REQUIRED)

Example

combinedata -names test -fout big-data -dataFiles small-data0 small-data1
small-data2

Will create a file called big-data.data which contains the examples from the three specified files.
All data files had better share the format specified in test.names.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.17 cvfdt File Reference 69

8.17 cvfdt File Reference

8.17.1 Detailed Description

Learns a DecisionTree from a high-speed time-changing data stream (or very large data set).

Learns a decision tree from a high-speed time-changing data stream or a very large data set as
described in this paper. cvfdt does not work with continuous attributes.

cvfdt takes input and does output in c4.5 format. It expects to find the files <stem>.names
and <stem>.data.

Thanks
to Laurie Spencer for doing the core development work for cvfdt.

Wish List
Modify this learner to work with continuous attributes.
An API to this learner like the one to learning BeliefNet structure in beliefnet-engine.h

Arguments

� -h

– Run cvfdt -h for a list of the arguments and their meanings.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

70 VFML File Documentation

8.18 Debug.h File Reference

8.18.1 Detailed Description

A set of functions that help your programs produce debugging output in a consistent way.

Functions

� void DebugWarn (int condition, char ∗str)
Outputs string to the current target if condition is non-zero.

� void DebugError (int condidion, char ∗str)
If condition is non-zero outputs string to the current target and halts the program.

� void DebugSetMessageLevel (int level)
Sets the level of message that will be reported by DebugMessage.

� int DebugGetMessageLevel (void)
Returns the current message level.

� void DebugMessage (int condition, int level, char ∗str,...)
Formats and prints a message if conditions are met.

� void DebugSetTarget (FILE ∗target)
Sets the target for debugging output.

� FILE ∗ DebugGetTarget (void)
Gets the current target for debugging output.

8.18.2 Function Documentation

8.18.2.1 void DebugError (int condidion, char ∗ str)

If condition is non-zero outputs string to the current target and halts the program.

8.18.2.2 int DebugGetMessageLevel (void)

Returns the current message level.

8.18.2.3 FILE∗ DebugGetTarget (void)

Gets the current target for debugging output.

8.18.2.4 void DebugMessage (int condition, int level, char ∗ str, ...)

Formats and prints a message if conditions are met.

If the condition is non-zero and the current message level is greater than level this calls printf with
str as the format string, and any additional arguments as arguments.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.18 Debug.h File Reference 71

8.18.2.5 void DebugSetMessageLevel (int level)

Sets the level of message that will be reported by DebugMessage.

Defaults to 0.

8.18.2.6 void DebugSetTarget (FILE ∗ target)

Sets the target for debugging output.

Defaults to stdout. All future calls to the Debug functions will sent output to the specified file.

8.18.2.7 void DebugWarn (int condition, char ∗ str)

Outputs string to the current target if condition is non-zero.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

72 VFML File Documentation

8.19 decisionstump File Reference

8.19.1 Detailed Description

Learns a decision stump (a DecisionTree with only one split).

This is a very simple learner, but it may be useful as a baseline to compare your learner against.

The decisionstump learner works in time proportional to the number of training examples. It also
requires memory that is proportional to the number of classes ∗ number attributes ∗ number of
values. Note that this can be very large for continuous attributes (which, in the worst case, have
a separate value for each training example). The maxThresholds argument can be used to control
this.

The learner takes input and does output in c4.5 format. It expects to find the files
<stem>.names and <stem>.data. Depending on command line argument, it will either output
the decision stump or test its error rate on <stem>.test.

Arguments

� -f <filestem>

– Set the stem name (default DF)

� -source <dir>

– Set the directory that contains the dataset (default ’.’)

� -u

– Test on the examples in <stem>.test and output in a format appropriate for interface
with xvalidate and batchtest (defaults to off)

� -a

– Outputs the name of the selected attribute

� -outputGains

– Outputs the information gain (and best threshold) for each attribute

� -outputStump

– Prints the learned stump. Defaults to output without the -u flag and not output with
it

� -maxThresholds <num>

– Use the first num values from the training set as thresholds for continuous attributes,
allows this program to be run on very large data sets (default use all values)

� -v

– Can be used multiple times to increase the debugging output

Example

decisionstump -f banana -source datasets/banana

Looks for a dataset named ’banana’ in the ’datasets/banana’ directory. Outputs the decision stump
learned from the data set.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.20 DecisionTree.h File Reference 73

8.20 DecisionTree.h File Reference

8.20.1 Detailed Description

A Decision Tree Structure.

This is the interface for creating, using, printing, & serializing Decision Trees. A decision tree
is a recursive structure. Each internal node partitions the data based on the values of an at-
tribute. Each leaf contains a prediction for the distinguished target attribute. For a more detailed
discussion see chapter 3 of Tom Mitchell’s book on machine learning.

Note that all the DecisionTrees created with an ExampleSpec maintain a pointer to the it; you
shouldn’t free or modify the ExampleSpec until you are done with all the DecisionTrees referencing
it.

Wish List
A standard in memroy decision tree induction algorithm. Maybe the best starting point would
be the decisionstump learner.
This isn’t the right place for this wish, but it would be nice to have a RuleSet structure similar
to this DecisionTree structure

Data Structures

� struct DecisionTree

ADT for working with decision trees.

Typedefs

� typedef DecisionTree DecisionTree

ADT for working with decision trees.

� typedef DecisionTree ∗ DecisionTreePtr

ADT for working with decision trees.

Functions

� DecisionTreePtr DecisionTreeNew (ExampleSpecPtr spec)
Creates a new decision tree node.

� void DecisionTreeFree (DecisionTreePtr dt)
Frees the memory associated with the decision tree and all of its children.

� DecisionTreePtr DecisionTreeClone (DecisionTreePtr dt)
Recursively creates a copy of dt and returns it.

� int DecisionTreeIsLeaf (DecisionTreePtr dt)
Returns 1 if dt is a leaf node and 0 otherwise.

� int DecisionTreeIsTreeGrowing (DecisionTreePtr dt)

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

74 VFML File Documentation

Returns 1 if dt is a growing node has any children which are, and 0 otherwise.

� int DecisionTreeIsNodeGrowing (DecisionTreePtr dt)
Returns 1 if dt is a growing node and 0 otherwise.

� int DecisionTreeGetClass (DecisionTreePtr dt)
Returns the index of the class which dt predicts.

� void DecisionTreeSetClass (DecisionTreePtr dt, int theClass)
Sets dt’s class prediction to theClass.

� void DecisionTreeAddToClassDistribution (DecisionTreePtr dt, ExamplePtr e)
Put the example in the class distribution at the node.

� float DecisionTreeGetClassProb (DecisionTreePtr dt, int theClass)
Returns the probability of the class.

� void DecisionTreeSetClassProb (DecisionTreePtr dt, int theClass, float prob)
Sets the probability of the class.

� float DecisionTreeGetClassDistributionSampleCount (DecisionTreePtr dt)
Returns the number of samples added to the node’s distribution.

� void DecisionTreeZeroClassDistribution (DecisionTreePtr dt)
Sets the nodes distribution to zeros.

� void DecisionTreeSetTypeLeaf (DecisionTreePtr dt)
Changes dt into a leaf node without changing its class prediction.

� void DecisionTreeSetTypeGrowing (DecisionTreePtr dt)
Changes dt into a growing node.

� void DecisionTreeSplitOnDiscreteAttribute (DecisionTreePtr dt, int attNum)
Changes dt into a discrete split.

� void DecisionTreeSplitOnContinuousAttribute (DecisionTreePtr dt, int attNum,
float threshold)

Changes dt into a continuous split.

� int DecisionTreeGetChildCount (DecisionTreePtr dt)
Returns a count of the direct decendants of dt.

� DecisionTreePtr DecisionTreeGetChild (DecisionTreePtr dt, int index)
Returns one of the direct decendants of dt.

� DecisionTreePtr DecisionTreeOneStepClassify (DecisionTreePtr dt, ExamplePtr
e)

Does one step of classifing e with dt.

� int DecisionTreeClassify (DecisionTreePtr dt, ExamplePtr e)

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.20 DecisionTree.h File Reference 75

Uses dt to classify e and returns the index of the predicted class.

� void DecisionTreeGatherGrowingNodes (DecisionTreePtr dt, VoidAListPtr list)

Searches dt and appends all its growing nodes to the passed list.

� void DecisionTreeGatherLeaves (DecisionTreePtr dt, VoidAListPtr list)

Searches dt and appends all its leaf nodes to the passed list.

� int DecisionTreeCountNodes (DecisionTreePtr dt)

Returns a count of the number of nodes (of any type) in dt.

� int DecisionTreeGetMostCommonClass (DecisionTreePtr dt)

Return the index of the class that is predicted most commonly by leaf nodes in dt.

� void DecisionTreeSetGrowingData (DecisionTreePtr dt, void ∗data)

Each decision tree node has a pointer reserved for your use.

� void ∗ DecisionTreeGetGrowingData (DecisionTreePtr dt)

Each decision tree node has a pointer reserved for your use.

� void DecisionTreePrint (DecisionTreePtr dt, FILE ∗out)

Prints the decision tree to the passed file.

� void DecisionTreePrintStats (DecisionTreePtr dt, FILE ∗out)

Prints counts of leaves at each level of the tree.

� DecisionTreePtr DecisionTreeReadC45 (FILE ∗in, ExampleSpecPtr spec)

Attempts to read a decision tree from the passed file.

� DecisionTreePtr DecisionTreeRead (FILE ∗in, ExampleSpecPtr spec)

Attempts to read a decision tree from the passed file.

� void DecisionTreeWrite (DecisionTreePtr dt, FILE ∗out)

Writes the decision tree to the passed file.

8.20.2 Typedef Documentation

8.20.2.1 typedef struct DecisionTree DecisionTree

ADT for working with decision trees.

See DecisionTree.h for more detail.

8.20.2.2 typedef struct DecisionTree ∗ DecisionTreePtr

ADT for working with decision trees.

See DecisionTree.h for more detail.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

76 VFML File Documentation

8.20.3 Function Documentation

8.20.3.1 void DecisionTreeAddToClassDistribution (DecisionTreePtr dt,
ExamplePtr e)

Put the example in the class distribution at the node.

Updates the class distribution at the node with the class of the example. This does not make
recursive calls, so you should use DecisionTreeOneStepClassify and add it everywhere until you
get to a leaf (if that is what you intend).

8.20.3.2 int DecisionTreeClassify (DecisionTreePtr dt, ExamplePtr e)

Uses dt to classify e and returns the index of the predicted class.

8.20.3.3 DecisionTreePtr DecisionTreeClone (DecisionTreePtr dt)

Recursively creates a copy of dt and returns it.

This function copies the user data pointers, but doesn’t copy the data they point to.

8.20.3.4 int DecisionTreeCountNodes (DecisionTreePtr dt)

Returns a count of the number of nodes (of any type) in dt.

8.20.3.5 void DecisionTreeFree (DecisionTreePtr dt)

Frees the memory associated with the decision tree and all of its children.

This function doesn’t do anything with user growing data you may have attached using Decision-
TreeSetGrowingData; you must deal with that before calling this function.

8.20.3.6 void DecisionTreeGatherGrowingNodes (DecisionTreePtr dt,
VoidAListPtr list)

Searches dt and appends all its growing nodes to the passed list.

8.20.3.7 void DecisionTreeGatherLeaves (DecisionTreePtr dt, VoidAListPtr list)

Searches dt and appends all its leaf nodes to the passed list.

8.20.3.8 DecisionTreePtr DecisionTreeGetChild (DecisionTreePtr dt, int index)

Returns one of the direct decendants of dt.

Index should be between 0 and DecisionTreeGetChildCount(dt) - 1. For nodes that split on
continuous attributes use index 0 for the left child (<) and index 1 for the right child (>=).

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.20 DecisionTree.h File Reference 77

8.20.3.9 int DecisionTreeGetChildCount (DecisionTreePtr dt)

Returns a count of the direct decendants of dt.

That is, return a count of all the nodes that you can reach from dt by taking one step towards
the leaves.

8.20.3.10 int DecisionTreeGetClass (DecisionTreePtr dt)

Returns the index of the class which dt predicts.

This makes the most sense if dt is a Leaf node, but may be useful at other times as well.

8.20.3.11 float DecisionTreeGetClassDistributionSampleCount (DecisionTreePtr
dt)

Returns the number of samples added to the node’s distribution.

8.20.3.12 float DecisionTreeGetClassProb (DecisionTreePtr dt, int theClass)

Returns the probability of the class.

Returns what portion of the examples that were added to the class distribution at this node have
the associated class.

8.20.3.13 void∗ DecisionTreeGetGrowingData (DecisionTreePtr dt)

Each decision tree node has a pointer reserved for your use.

Use the GetGrowingData function to access the value of the pointer.

8.20.3.14 int DecisionTreeGetMostCommonClass (DecisionTreePtr dt)

Return the index of the class that is predicted most commonly by leaf nodes in dt.

8.20.3.15 int DecisionTreeIsLeaf (DecisionTreePtr dt)

Returns 1 if dt is a leaf node and 0 otherwise.

8.20.3.16 int DecisionTreeIsNodeGrowing (DecisionTreePtr dt)

Returns 1 if dt is a growing node and 0 otherwise.

8.20.3.17 int DecisionTreeIsTreeGrowing (DecisionTreePtr dt)

Returns 1 if dt is a growing node has any children which are, and 0 otherwise.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

78 VFML File Documentation

8.20.3.18 DecisionTreePtr DecisionTreeNew (ExampleSpecPtr spec)

Creates a new decision tree node.

You should use the accessor methods to initialize it and attach it to an existing DecisionTree as
needed.

8.20.3.19 DecisionTreePtr DecisionTreeOneStepClassify (DecisionTreePtr dt,
ExamplePtr e)

Does one step of classifing e with dt.

Returns the direct decendant of dt corresponding to the correct value of dt’s test attribute. If dt
is a leaf or growing node this function will return dt.

8.20.3.20 void DecisionTreePrint (DecisionTreePtr dt, FILE ∗ out)

Prints the decision tree to the passed file.

FILE ∗ should be opened for writing. The decision tree will be written so as to be understandable
by humans. Your mileage may vary.

Note that you could pass STDOUT to the function to write a decision tree to the console.

8.20.3.21 void DecisionTreePrintStats (DecisionTreePtr dt, FILE ∗ out)

Prints counts of leaves at each level of the tree.

The passed FILE ∗ should be opened for writing. Note that you could pass STDOUT to the
function to write the stats to the console.

8.20.3.22 DecisionTreePtr DecisionTreeRead (FILE ∗ in, ExampleSpecPtr spec)

Attempts to read a decision tree from the passed file.

FILE ∗ should be opened for reading. Attaches the ExampleSpec to the read decision tree.

This function allocates memory which should be freed by calling DecisionTreeFree.

8.20.3.23 DecisionTreePtr DecisionTreeReadC45 (FILE ∗ in, ExampleSpecPtr
spec)

Attempts to read a decision tree from the passed file.

FILE ∗ should be opened for reading. The file, in, should contain a decision tree written in C4.5’s
binary format, not the pretty-printed text format. A run of C4.5 with its default arguments will
produce 2 such files, stem.tree and stem.unpruned.

This function handles leaves, continuous splits, and discrete splits and will not be able to read
trees built with C4.5’s subsetting options.

8.20.3.24 void DecisionTreeSetClass (DecisionTreePtr dt, int theClass)

Sets dt’s class prediction to theClass.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.20 DecisionTree.h File Reference 79

Does not change dt’s type to leaf node. This might be useful for anytime algorithms where a
growing node needs to contain a reasonable prediction at all times.

8.20.3.25 void DecisionTreeSetClassProb (DecisionTreePtr dt, int theClass, float
prob)

Sets the probability of the class.

Changes the probability of the class without changing the sample count (unless the sample count
was zero in which case it is set to 1).

8.20.3.26 void DecisionTreeSetGrowingData (DecisionTreePtr dt, void ∗ data)

Each decision tree node has a pointer reserved for your use.

Use the SetGrowingData function to change the value of the pointer. You can set the pointer to
anything you like (for example, to store sufficient statistics on growing nodes), but remember that
you are responsible to manage any memory that it points to.

8.20.3.27 void DecisionTreeSetTypeGrowing (DecisionTreePtr dt)

Changes dt into a growing node.

8.20.3.28 void DecisionTreeSetTypeLeaf (DecisionTreePtr dt)

Changes dt into a leaf node without changing its class prediction.

If dt is not a growing node this function also frees all of dt’s children. Remember that you are
responsible for anything stored in any of dt’s children’s growing pointers and you should clean up
these pointers before calling this function.

8.20.3.29 void DecisionTreeSplitOnContinuousAttribute (DecisionTreePtr dt, int
attNum, float threshold)

Changes dt into a continuous split.

The new node splits on a threshold on a continuous attribute and adds children to dt for values
of attNum < and >= the threshold. The created children start as growing nodes.

8.20.3.30 void DecisionTreeSplitOnDiscreteAttribute (DecisionTreePtr dt, int
attNum)

Changes dt into a discrete split.

The new node splits on the values of a discrete attribute and adds one child to dt for each value
of attribute attNum. The created children start as growing nodes.

8.20.3.31 void DecisionTreeWrite (DecisionTreePtr dt, FILE ∗ out)

Writes the decision tree to the passed file.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

80 VFML File Documentation

FILE ∗ should be opened for writing. The decision tree will be written in a binary format suitable
to be read by DecisionTreeRead, but this function ignores any growing data that you’ve associated
with dt – if you need to save growing data you will need to serialize it some other way.

Note that you could pass STDOUT to the function to write an example to the console.

8.20.3.32 void DecisionTreeZeroClassDistribution (DecisionTreePtr dt)

Sets the nodes distribution to zeros.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.21 doxygen.h File Reference 81

8.21 doxygen.h File Reference

8.21.1 Detailed Description

Used to hold doxygen documentation. Ignore this file.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

82 VFML File Documentation

8.22 Example.h File Reference

8.22.1 Detailed Description

ADT for training (and testing, etc.) data.

This is the interface for working with instances of the Example ADT. Note that all access to
attributes is 0 based (just like C arrays).

Note that all the Examples created with an ExampleSpec maintain a pointer to the ExampleSpec,
so you shouldn’t free it or modify the ExampleSpec until you are done with all the Examples
referencing it.

Data Structures

� struct Example

ADT for working with examples.

Defines

� #define ExampleIsAttributeUnknown(e, attNum) (VALIndex(e → attributes, attNum)
== 0)

Returns 1 if the specified attribute is marked as unknown and 0 otherwise.

� #define ExampleGetNumAttributes(e) (VALLength(((ExamplePtr)e) → at-
tributes))

Returns the number of attributes that this example has.

� #define ExampleGetClass(e) (((ExamplePtr)e) → myclass)
Returns the value of the example’s class.

Typedefs

� typedef Example Example

ADT for working with examples.

� typedef Example ∗ ExamplePtr

ADT for working with examples.

Functions

� ExamplePtr ExampleNew (ExampleSpecPtr es)
Programmatically creates a new example.

� void ExampleFree (ExamplePtr e)
Frees all the memory being used by the passed example.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.22 Example.h File Reference 83

� ExamplePtr ExampleClone (ExamplePtr e)

Allocates memory and copies the example into it.

� void ExampleSetAttributeUnknown (ExamplePtr e, int attNum)

Marks the specified attribute value as unknown.

� void ExampleSetDiscreteAttributeValue (ExamplePtr e, int attNum, int value)

Considers the specified attribute to be discrete and sets its value to the specified value.

� void ExampleSetContinuousAttributeValue (ExamplePtr e, int attNum, double
value)

Considers the specified attribute to be continuous and sets its value to the specified value.

� void ExampleSetClass (ExamplePtr e, int theClass)

Sets the example’s class to the specified class.

� void ExampleSetClassUnknown (ExamplePtr e)

Marks the example’s class as unknown.

� void ExampleAddNoise (ExamplePtr e, float p, int doClass, int attrib)

Randomly corrupts the attributes and class of the example.

� ExamplePtr ExampleRead (FILE ∗file, ExampleSpecPtr es)

Attempts to read an example from the passed file pointer.

� VoidListPtr ExamplesRead (FILE ∗file, ExampleSpecPtr es)

Reads as many examples as possible from the file pointer.

� int ExampleIsAttributeDiscrete (ExamplePtr e, int attNum)

Returns 1 if the specified attribute is discrete and 0 otherwise.

� int ExampleIsAttributeContinuous (ExamplePtr e, int attNum)

Returns 1 if the specified attribute is continuous and 0 otherwise.

� int ExampleGetDiscreteAttributeValue (ExamplePtr e, int attNum)

Returns the value of the indicated discrete attribute.

� double ExampleGetContinuousAttributeValue (ExamplePtr e, int attNum)

Returns the value of the indicated continuous attribute.

� int ExampleIsClassUnknown (ExamplePtr e)

Returns 1 if the value of the example’s class is known, and 0 otherwise.

� float ExampleDistance (ExamplePtr e, ExamplePtr dst)

Returns the euclidian distance between the two examples.

� void ExampleWrite (ExamplePtr e, FILE ∗out)

Writes the example to the passed file point.er.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

84 VFML File Documentation

8.22.2 Define Documentation

8.22.2.1 #define ExampleGetClass(e) (((ExamplePtr)e) → myclass)

Returns the value of the example’s class.

If the value of the example’s class is known this returns the value, otherwise this returns -1.

8.22.2.2 #define ExampleGetNumAttributes(e) (VALLength(((ExamplePtr)e) →
attributes))

Returns the number of attributes that this example has.

This will be equal to the number of attributes that were in the ExampleSpec used to construct
the example.

8.22.2.3 #define ExampleIsAttributeUnknown(e, attNum) (VALIndex(e →
attributes, attNum) == 0)

Returns 1 if the specified attribute is marked as unknown and 0 otherwise.

Be sure not to ask for an attNum >= ExampleGetNumAttributes(e).

8.22.3 Typedef Documentation

8.22.3.1 typedef struct Example Example

ADT for working with examples.

See Example.h for more detail.

8.22.3.2 typedef struct Example ∗ ExamplePtr

ADT for working with examples.

See Example.h for more detail.

8.22.4 Function Documentation

8.22.4.1 void ExampleAddNoise (ExamplePtr e, float p, int doClass, int attrib)

Randomly corrupts the attributes and class of the example.

p should be a number between 0-1, which is interpreted as a probability (e.g. a value of .732
would be interpreted as 73.2%). class and attrib are flags which should be 1 if you want noise
added to that part of the example and 0 otherwise. Then, for each discrete thing selected by the
flags, this function will have the specified probability of changing it, without replacement, to a
randomly selected value. This function changes the value of each continuous attribute by adding
to it a value drawn from a normal distribution with mean 0 and with standard deviation p.

8.22.4.2 ExamplePtr ExampleClone (ExamplePtr e)

Allocates memory and copies the example into it.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.22 Example.h File Reference 85

8.22.4.3 float ExampleDistance (ExamplePtr e, ExamplePtr dst)

Returns the euclidian distance between the two examples.

This ignores discrete attributes.

8.22.4.4 void ExampleFree (ExamplePtr e)

Frees all the memory being used by the passed example.

8.22.4.5 double ExampleGetContinuousAttributeValue (ExamplePtr e, int
attNum)

Returns the value of the indicated continuous attribute.

If the attNum is valid, and ExampleGetAttributeUnknown(e, attNum) returns 0, and Example-
IsAttributeContinuous(e, attNum) returns 1, this function will return the value of the attribute.
If the conditions aren’t met, there is a good chance that calling this will crash your program.

8.22.4.6 int ExampleGetDiscreteAttributeValue (ExamplePtr e, int attNum)

Returns the value of the indicated discrete attribute.

If the attNum is valid, and ExampleGetAttributeUnknown(e, attNum) returns 0, and Example-
IsAttributeDiscrete(e, attNum) returns 1, this function will return the value of the attribute. If
the conditions aren’t met, there is a good chance that calling this will crash your program.

8.22.4.7 int ExampleIsAttributeContinuous (ExamplePtr e, int attNum)

Returns 1 if the specified attribute is continuous and 0 otherwise.

Be sure not to ask for an attNum >= ExampleGetNumAttributes(e).

8.22.4.8 int ExampleIsAttributeDiscrete (ExamplePtr e, int attNum)

Returns 1 if the specified attribute is discrete and 0 otherwise.

Be sure not to ask for an attNum >= ExampleGetNumAttributes(e).

8.22.4.9 int ExampleIsClassUnknown (ExamplePtr e)

Returns 1 if the value of the example’s class is known, and 0 otherwise.

8.22.4.10 ExamplePtr ExampleNew (ExampleSpecPtr es)

Programmatically creates a new example.

Allocates enough memory to hold all the attributes mentioned in the ExampleSpec passed. Use
the ExampleSetFoo functions (see below) to set the values of the attributes and class.

This function allocates memory which should be freed by calling ExampleFree.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

86 VFML File Documentation

8.22.4.11 ExamplePtr ExampleRead (FILE ∗ file, ExampleSpecPtr es)

Attempts to read an example from the passed file pointer.

FILE ∗ should be opened for reading. The file should contain examples in C4.5 format. Uses the
ExampleSpec to determine how many, what types, and how to interpret the attributes it needs to
read.

This function will return 0 (NULL) if it is unable to read an example from the file (bad input or
EOF). If the input is badly formed, the function will also output an error to the console.

Note that you could pass STDIN to the function to read an example from the console.

This function allocates memory which should be freed by calling ExampleFree.

8.22.4.12 void ExampleSetAttributeUnknown (ExamplePtr e, int attNum)

Marks the specified attribute value as unknown.

Future calls to ExampleGetAttributeUnknown for that attribute will return 1.

8.22.4.13 void ExampleSetClass (ExamplePtr e, int theClass)

Sets the example’s class to the specified class.

The function doesn’t do much error checking so be sure that you call it consistent with Example-
SpecGetNumClasses. If you don’t, there is a chance the example could cause your program to
crash.

8.22.4.14 void ExampleSetClassUnknown (ExamplePtr e)

Marks the example’s class as unknown.

8.22.4.15 void ExampleSetContinuousAttributeValue (ExamplePtr e, int attNum,
double value)

Considers the specified attribute to be continuous and sets its value to the specified value.

This function doesn’t do much error checking so be sure that you call it consistent with ExampleIs-
AttributeDiscrete, and ExampleIsAttributeContinuous. If you don’t, there is a chance the example
could cause your program to crash.

8.22.4.16 void ExampleSetDiscreteAttributeValue (ExamplePtr e, int attNum, int
value)

Considers the specified attribute to be discrete and sets its value to the specified value.

This function doesn’t do much error checking so be sure that you call it consistent with ExampleIs-
AttributeDiscrete, ExampleIsAttributeContinuous and ExampleSpecGetAttributeValueCount. If
you don’t, there is a chance the example could cause your program to crash.

8.22.4.17 VoidListPtr ExamplesRead (FILE ∗ file, ExampleSpecPtr es)

Reads as many examples as possible from the file pointer.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.22 Example.h File Reference 87

Calls ExampleRead until it gets a 0, allocates a list and adds each example to it. You are
responsible for freeing the examples and the list.

8.22.4.18 void ExampleWrite (ExamplePtr e, FILE ∗ out)

Writes the example to the passed file point.er.

FILE ∗ should be opened for writing. The example will be written in C4.5 format, and could later
be read in using ExampleRead.

Note that you could pass stdout to the function to write an example to the console.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

88 VFML File Documentation

8.23 ExampleGenerator.h File Reference

8.23.1 Detailed Description

Generate a random (but reproducible) data set.

Randomly, but reproducably, create a series of examples. These examples could then be classified
with some known model and used as a synthetic dataset to test a learner. This uses the Random-
SetState() functions so that it will produce the same series of examples for the same seed no
matter what the rest of your program does with the random number generators.

Data Structures

� struct ExampleGenerator

Holds the information needed to reproducibly make a random data set. See Example-
Generator.h for more detail.

Typedefs

� typedef ExampleGenerator ExampleGenerator

Holds the information needed to reproducibly make a random data set. See Example-
Generator.h for more detail.

� typedef ExampleGenerator ∗ ExampleGeneratorPtr

Holds the information needed to reproducibly make a random data set. See Example-
Generator.h for more detail.

Functions

� ExampleGeneratorPtr ExampleGeneratorNew (ExampleSpecPtr es, int seed)

Creates a new example generator.

� void ExampleGeneratorFree (ExampleGeneratorPtr eg)

Frees the memory associated with the example generator.

� ExamplePtr ExampleGeneratorGenerate (ExampleGeneratorPtr eg)

Makes a random example.

8.23.2 Typedef Documentation

8.23.2.1 typedef struct ExampleGenerator ExampleGenerator

Holds the information needed to reproducibly make a random data set. See Example-
Generator.h for more detail.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.23 ExampleGenerator.h File Reference 89

8.23.2.2 typedef struct ExampleGenerator ∗ ExampleGeneratorPtr

Holds the information needed to reproducibly make a random data set. See Example-
Generator.h for more detail.

8.23.3 Function Documentation

8.23.3.1 void ExampleGeneratorFree (ExampleGeneratorPtr eg)

Frees the memory associated with the example generator.

8.23.3.2 ExamplePtr ExampleGeneratorGenerate (ExampleGeneratorPtr eg)

Makes a random example.

Allocates an example, randomly sets the values of its attributes, and returns it. Uses uniform
distributions for all of its decisions. For continuous attributes it uniformly generates a value
between 0 and 1.0; you might like to scale this value to fit your needs.

You are must free the ExamplePtr when you are finished with it by calling ExampleFree.

8.23.3.3 ExampleGeneratorPtr ExampleGeneratorNew (ExampleSpecPtr es, int
seed)

Creates a new example generator.

The generator will generate examples conforming to es using a seeded random number generator.
If the value of seed is -1 this will select a random initial seed (But you’ll need to initialize the
random number generator on your system for this to work; The function RandomInit() will do
the job).

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

90 VFML File Documentation

8.24 ExampleGroupStats.h File Reference

8.24.1 Detailed Description

Sufficient statistics for Entropy and Gini.

Tracks and maintains the sufficient statistics needed to calculate Entropy and Gini of discrete and
continuous attributes, as well as make some queries about the probability of events in the data.

Data Structures

� struct ExampleGroupStats

Sufficient statistics for Entropy and Gini.

Typedefs

� typedef ExampleGroupStats ExampleGroupStats

Sufficient statistics for Entropy and Gini.

� typedef ExampleGroupStats ∗ ExampleGroupStatsPtr

Sufficient statistics for Entropy and Gini.

Functions

� ExampleGroupStatsPtr ExampleGroupStatsNew (ExampleSpecPtr es, Attribute-
TrackerPtr at)

Creates a structure to track sufficient statistics.

� void ExampleGroupStatsFree (ExampleGroupStatsPtr egs)

Frees all the memory that was being used by the structure.

� void ExampleGroupStatsDeactivate (ExampleGroupStatsPtr egs)

Temporarily frees the memory being used to hold statistics.

� void ExampleGroupStatsReactivate (ExampleGroupStatsPtr egs)

Reallocates the memory that is freed by a call to ExampleGroupStatsDeactivate.

� void ExampleGroupStatsAddExample (ExampleGroupStatsPtr egs, ExamplePtr
e)

Adds the information from the example to the statistics structure.

� void ExampleGroupStatsWrite (ExampleGroupStatsPtr egs, FILE ∗out)

A debugging function that prints a representation of the stats structure to specified file.

� long ExampleGroupStatsNumExamplesSeen (ExampleGroupStatsPtr egs)

Number of examples being tracked by the structure.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.24 ExampleGroupStats.h File Reference 91

� AttributeTrackerPtr ExampleGroupStatsGetAttributeTracker (ExampleGroup-
StatsPtr egs)

Returns the attribute tracker associated with the structure.

� int ExampleGroupStatsIsAttributeActive (ExampleGroupStatsPtr egs, int num)
Tests if the attribute is active.

� void ExampleGroupStatsIgnoreAttribute (ExampleGroupStatsPtr egs, int num)
Frees the memory being used by the attribute and stops tracking it.

� int ExampleGroupStatsGetMostCommonClassLaplace (ExampleGroupStatsPtr
egs, int addClass, int addCount)

Returns the index of the most common class, but adds addCount samples to addClass.

� int ExampleGroupStatsGetMostCommonClass (ExampleGroupStatsPtr egs)
Returns the index of the most common class.

� long ExampleGroupStatsGetMostCommonClassCount (ExampleGroupStatsPtr
egs)

Returns the number of examples with the most common class that were seen by the structure.

� int ExampleGroupStatsGetMostCommonClassForAttVal (ExampleGroupStats-
Ptr egs, int att, int val)

Returns the most common class among examples where the specified attribute has the specified
value.

� int ExampleGroupStatsIsPure (ExampleGroupStatsPtr egs)
Returns 1 if all the examples shown to the structure have the same class.

� float ExampleGroupStatsGetValuePercent (ExampleGroupStatsPtr egs, int att-
Num, int valNum)

Returns the fraction of examples that have the specified value for the specified attribute.

� double ExampleGroupStatsGetValueGivenClassMEstimate (ExampleGroup-
StatsPtr egs, int attNum, int valNum, int classNum)

Returns P(att = value | class).

� float ExampleGroupStatsGetClassPercent (ExampleGroupStatsPtr egs, int class-
Num)

Returns P(class).

� float ExampleGroupStatsGetPercentBelowThreshold (ExampleGroupStatsPtr
egs, int attNum, float thresh)

Returns the fraction of examples with a value below the specified threshold.

� double ExampleGroupStatsGetValueGivenClassMEstimateLogP (Example-
GroupStatsPtr egs, int attNum, int valNum, int classNum)

Returns a smoothed P(att = value | class).

� double ExampleGroupStatsGetClassLogP (ExampleGroupStatsPtr egs, int class-
Num)

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

92 VFML File Documentation

Returns the log of the fraction of examples that have the specified class.

� float ExampleGroupStatsEntropyTotal (ExampleGroupStatsPtr egs)

Returns the entropy of the class attribute of all examples seen so far.

� float ExampleGroupStatsEntropyDiscreteAttributeSplit (ExampleGroupStats-
Ptr egs, int attNum)

Returns the weighted entropy of the class attribute after partitoning the data by the values of the
specified attribute.

� void ExampleGroupStatsEntropyContinuousAttributeSplit (ExampleGroup-
StatsPtr egs, int attNum, float ∗firstIndex, float ∗firstThresh, float ∗secondIndex, float
∗secondThresh)

Finds the entropy of the best split thresholds.

� float ExampleGroupStatsGiniTotal (ExampleGroupStatsPtr egs)

Returns the gini index of the class attribute of all examples seen so far.

� float ExampleGroupStatsGiniDiscreteAttributeSplit (ExampleGroupStatsPtr
egs, int attNum)

Returns the weighted gini of the class attribute after partitoning the data by the values of the
specified attribute.

� void ExampleGroupStatsGiniContinuousAttributeSplit (ExampleGroupStatsPtr
egs, int attNum, float ∗firstIndex, float ∗firstThresh, float ∗secondIndex, float ∗second-
Thresh)

Finds the Gini index of the best split thresholds.

� void ExampleGroupStatsIgnoreSplitsWorseThanEntropy (ExampleGroupStats-
Ptr egs, int attNum, float entropyThresh)

Stop monitoring some thresholds.

� void ExampleGroupStatsIgnoreSplitsWorseThanGini (ExampleGroupStatsPtr
egs, int attNum, float giniThresh)

Stop monitoring some thresholds.

� int ExampleGroupStatsLimitSplitsEntropy (ExampleGroupStatsPtr egs, int att-
Num, int maxSplits, int pruneDownTo)

Reduce the number of thresholds being considered if above the max.

� void ExampleGroupStatsStopAddingSplits (ExampleGroupStatsPtr egs, int att-
Num)

Stop adding new split thresholds, but continue to use future examples to evaluate the existing
ones.

� int ExampleGroupStatsNumSplitThresholds (ExampleGroupStatsPtr egs, int att-
Num)

Returns the number of thresholds that are being monitored for the specified attribute.

� int ExampleGroupStatsGetMostCommonClassAboveThreshold (Example-
GroupStatsPtr egs, int attNum, float threshold)

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.24 ExampleGroupStats.h File Reference 93

Returns the most common class above the specified value.

� int ExampleGroupStatsGetMostCommonClassBelowThreshold (ExampleGroup-
StatsPtr egs, int attNum, float threshold)

Returns the most common class below the specified value.

8.24.2 Typedef Documentation

8.24.2.1 typedef struct ExampleGroupStats ExampleGroupStats

Sufficient statistics for Entropy and Gini.

8.24.2.2 typedef struct ExampleGroupStats ∗ ExampleGroupStatsPtr

Sufficient statistics for Entropy and Gini.

8.24.3 Function Documentation

8.24.3.1 void ExampleGroupStatsAddExample (ExampleGroupStatsPtr egs,
ExamplePtr e)

Adds the information from the example to the statistics structure.

8.24.3.2 void ExampleGroupStatsDeactivate (ExampleGroupStatsPtr egs)

Temporarily frees the memory being used to hold statistics.

Does not free the whole structure. A later call to ExampleGroupStatsReactivate will restore the
memory (but not the counts that used to be there). This is a convienient way to focus RAM usage
(and learning) in one part of the instance space while keeping the book keeping around to quickly
resume learning in another. You shouldn’t try to add examples to a deactiveated structure.

8.24.3.3 void ExampleGroupStatsEntropyContinuousAttributeSplit
(ExampleGroupStatsPtr egs, int attNum, float ∗ firstIndex, float ∗
firstThresh, float ∗ secondIndex, float ∗ secondThresh)

Finds the entropy of the best split thresholds.

Calculates the entropy of splitting the specified attribute by every threshold under consideration
(values are sorted and then a threshold is considered between each pair of adjacent values that
have different class). The remaining arguments return the entropy of the best and second best
thresholds, along with the thresholds themselves.

This function adds an MDL penelty similar to the one Quinlan uses in C4.5.

Should only be called for continuous attributes.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

94 VFML File Documentation

8.24.3.4 float ExampleGroupStatsEntropyDiscreteAttributeSplit
(ExampleGroupStatsPtr egs, int attNum)

Returns the weighted entropy of the class attribute after partitoning the data by the values of the
specified attribute.

Should only be called for discrete attributes.

8.24.3.5 float ExampleGroupStatsEntropyTotal (ExampleGroupStatsPtr egs)

Returns the entropy of the class attribute of all examples seen so far.

8.24.3.6 void ExampleGroupStatsFree (ExampleGroupStatsPtr egs)

Frees all the memory that was being used by the structure.

8.24.3.7 AttributeTrackerPtr ExampleGroupStatsGetAttributeTracker
(ExampleGroupStatsPtr egs)

Returns the attribute tracker associated with the structure.

8.24.3.8 double ExampleGroupStatsGetClassLogP (ExampleGroupStatsPtr egs,
int classNum)

Returns the log of the fraction of examples that have the specified class.

8.24.3.9 float ExampleGroupStatsGetClassPercent (ExampleGroupStatsPtr egs,
int classNum)

Returns P(class).

8.24.3.10 int ExampleGroupStatsGetMostCommonClass (ExampleGroupStatsPtr
egs)

Returns the index of the most common class.

8.24.3.11 int ExampleGroupStatsGetMostCommonClassAboveThreshold
(ExampleGroupStatsPtr egs, int attNum, float threshold)

Returns the most common class above the specified value.

Should only be called for continuous attributes.

8.24.3.12 int ExampleGroupStatsGetMostCommonClassBelowThreshold
(ExampleGroupStatsPtr egs, int attNum, float threshold)

Returns the most common class below the specified value.

Should only be called for continuous attributes.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.24 ExampleGroupStats.h File Reference 95

8.24.3.13 long ExampleGroupStatsGetMostCommonClassCount
(ExampleGroupStatsPtr egs)

Returns the number of examples with the most common class that were seen by the structure.

8.24.3.14 int ExampleGroupStatsGetMostCommonClassForAttVal
(ExampleGroupStatsPtr egs, int att, int val)

Returns the most common class among examples where the specified attribute has the specified
value.

Should only be called for discrete attributes.

8.24.3.15 int ExampleGroupStatsGetMostCommonClassLaplace
(ExampleGroupStatsPtr egs, int addClass, int addCount)

Returns the index of the most common class, but adds addCount samples to addClass.

Use addClass of -1 for no addition (or just call ExampleGroupStatsGetMostCommonClass). This
adding allows you to, for example, smooth the class towards the parent class during decision tree
induction.

8.24.3.16 float ExampleGroupStatsGetPercentBelowThreshold
(ExampleGroupStatsPtr egs, int attNum, float thresh)

Returns the fraction of examples with a value below the specified threshold.

Should only be called for continuous attributes.

8.24.3.17 double ExampleGroupStatsGetValueGivenClassMEstimate
(ExampleGroupStatsPtr egs, int attNum, int valNum, int classNum)

Returns P(att = value | class).

Returns the fraction of examples among those that have the specified class that have the specified
value for the specified attribute, but smooths the return value by adding a small amount (that
decreases with the number of samples seen) to each class count first.

Should only be called for discrete attributes.

8.24.3.18 double ExampleGroupStatsGetValueGivenClassMEstimateLogP
(ExampleGroupStatsPtr egs, int attNum, int valNum, int classNum)

Returns a smoothed P(att = value | class).

Returns the log of the fraction of examples among those that have the specified class that have the
specified value for the specified attribute, but smooths the return value by adding a small amount
(that decreases with the number of samples seen) to each class count first.

Should only be called for discrete attributes.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

96 VFML File Documentation

8.24.3.19 float ExampleGroupStatsGetValuePercent (ExampleGroupStatsPtr egs,
int attNum, int valNum)

Returns the fraction of examples that have the specified value for the specified attribute.

Should only be called for discrete attributes.

8.24.3.20 void ExampleGroupStatsGiniContinuousAttributeSplit
(ExampleGroupStatsPtr egs, int attNum, float ∗ firstIndex, float ∗
firstThresh, float ∗ secondIndex, float ∗ secondThresh)

Finds the Gini index of the best split thresholds.

Calculates the gini of splitting the specified attribute by every threshold under consideration
(values are sorted and then a threshold is considered between each pair of adjacent values that have
different class). The remaining arguments return the gini of the best and second best thresholds,
along with the thresholds themselves.

Should only be called for continuous attributes.

8.24.3.21 float ExampleGroupStatsGiniDiscreteAttributeSplit
(ExampleGroupStatsPtr egs, int attNum)

Returns the weighted gini of the class attribute after partitoning the data by the values of the
specified attribute.

Should only be called for discrete attributes.

8.24.3.22 float ExampleGroupStatsGiniTotal (ExampleGroupStatsPtr egs)

Returns the gini index of the class attribute of all examples seen so far.

8.24.3.23 void ExampleGroupStatsIgnoreAttribute (ExampleGroupStatsPtr egs,
int num)

Frees the memory being used by the attribute and stops tracking it.

This is useful if you decide that some attribute will not be used (perhaps using some statistical
tests) and would like to use the memory elsewhere.

8.24.3.24 void ExampleGroupStatsIgnoreSplitsWorseThanEntropy
(ExampleGroupStatsPtr egs, int attNum, float entropyThresh)

Stop monitoring some thresholds.

Stop monitoring every threshold with an entropy worse than the specified value. This frees some
memory, but adding future values to the egs may require some interpolation to estimate the
position of the new value in the array of all values for the attribute (and so this introduces some
error into future calls for the Entropy or Gini of the attribute).

Should only be called for continuous attributes.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.24 ExampleGroupStats.h File Reference 97

8.24.3.25 void ExampleGroupStatsIgnoreSplitsWorseThanGini
(ExampleGroupStatsPtr egs, int attNum, float giniThresh)

Stop monitoring some thresholds.

Stop monitoring every threshold with an Gini worse than the specified value. This frees some
memory, but adding future values to the egs may require some interpolation to estimate the
position of the new value in the array of all values for the attribute (and so this introduces some
error into future calls for the Entropy or Gini of the attribute).

Should only be called for continuous attributes.

8.24.3.26 int ExampleGroupStatsIsAttributeActive (ExampleGroupStatsPtr egs,
int num)

Tests if the attribute is active.

Returns 1 if the attribute was active in the initial attribute tracker and has not been ignored by
a call to ExampleGroupStatsIgnoreAttribute since then.

8.24.3.27 int ExampleGroupStatsIsPure (ExampleGroupStatsPtr egs)

Returns 1 if all the examples shown to the structure have the same class.

8.24.3.28 int ExampleGroupStatsLimitSplitsEntropy (ExampleGroupStatsPtr egs,
int attNum, int maxSplits, int pruneDownTo)

Reduce the number of thresholds being considered if above the max.

If the attribute is monitoring more than ’maxSplits’ split thresholds this function will find the
best ’pruneDownTo’ based on entropy and start ignoring all the rest. This frees some memory,
but adding future values to the egs may require some interpolation to estimate the position of the
new value in the array of all values for the attribute (and so this introduces some error into future
calls for the Entropy or Gini of the attribute).

Returns the number of thresholds that were pruned.

Should only be called for continuous attributes.

8.24.3.29 ExampleGroupStatsPtr ExampleGroupStatsNew (ExampleSpecPtr es,
AttributeTrackerPtr at)

Creates a structure to track sufficient statistics.

Creates a structure to track the statistics needed to cacluate several common machine metrics
for the attributes that are active in the AttributeTracker. This function takes over the memory
for the AttributeTracker and will free it when ExampleGroupStatsFree For categorical attributes
this uses memory proportional to the number of classes ∗ the number of values of the attribute.
For continuous attributes this uses constant memory at first, but as examples are added with
ExampleGroupStatsAddExample the memory grows proportionally with the number of unique
values of the attribute.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

98 VFML File Documentation

8.24.3.30 long ExampleGroupStatsNumExamplesSeen (ExampleGroupStatsPtr
egs)

Number of examples being tracked by the structure.

Outputs the number of examples added to the structure with ExampleGroupStatsAddExample
since the last call to ExampleGroupStatsReactivate.

8.24.3.31 int ExampleGroupStatsNumSplitThresholds (ExampleGroupStatsPtr
egs, int attNum)

Returns the number of thresholds that are being monitored for the specified attribute.

Should only be called for continuous attributes.

8.24.3.32 void ExampleGroupStatsReactivate (ExampleGroupStatsPtr egs)

Reallocates the memory that is freed by a call to ExampleGroupStatsDeactivate.

8.24.3.33 void ExampleGroupStatsStopAddingSplits (ExampleGroupStatsPtr egs,
int attNum)

Stop adding new split thresholds, but continue to use future examples to evaluate the existing
ones.

Should only be called for continuous attributes.

8.24.3.34 void ExampleGroupStatsWrite (ExampleGroupStatsPtr egs, FILE ∗ out)

A debugging function that prints a representation of the stats structure to specified file.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.25 ExampleSpec.h File Reference 99

8.25 ExampleSpec.h File Reference

8.25.1 Detailed Description

Schema for training data.

This is based off of Ross Quinlan’s C4.5 format and can read and write that format to disk.

Bug
Under Cygnus (and windows) lex doesn’t seem to do the right thing with EOF rules, so you
need to put an extra return at the end of your .names files.

Data Structures

� struct ExampleSpec

Schema for training data.

Defines

� #define ExampleSpecGetAttributeType(es, num) (AttributeSpecGet-
Type(((AttributeSpecPtr)VALIndex(es → attributes, num))))

Returns the type of the specified attribute.

� #define ExampleSpecGetAttributeValueCount(es, attNum) (AttributeSpecGetNum-
Values(((AttributeSpecPtr)VALIndex(es → attributes, attNum))))

Returns the number of values of the attribute.

� #define ExampleSpecGetAttributeValueName(es, attNum, valNum) ((char
∗)AttributeSpecGetValueName(((AttributeSpecPtr)VALIndex(es → attributes, attNum)),
valNum))

Return the name of the specified value of the specified attribute.

Typedefs

� typedef ExampleSpec ExampleSpec

Schema for training data.

� typedef ExampleSpec ∗ ExampleSpecPtr

Schema for training data.

Functions

� ExampleSpecPtr ExampleSpecNew (void)

Programmatically creates a new ExampleSpec.

� void ExampleSpecFree (ExampleSpecPtr es)

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

100 VFML File Documentation

Frees all the memory being used by the ExampleSpec.

� void ExampleSpecAddClass (ExampleSpecPtr es, char ∗className)
Adds a new class to the ExampleSpec and gives it the specified name.

� int ExampleSpecAddDiscreteAttribute (ExampleSpecPtr es, char ∗name)
Adds a new discrete attribute to the ExampleSpec and gives it the specified name.

� int ExampleSpecAddContinuousAttribute (ExampleSpecPtr es, char ∗name)
Adds a new continuous attribute to the ExampleSpec and gives it the specified name.

� void ExampleSpecAddAttributeValue (ExampleSpecPtr es, int attNum, char
∗name)

Adds a new value to the specified attribute and gives it the specified name.

� ExampleSpecPtr ExampleSpecRead (char ∗fileName)
Reads a .names formated file and build an ExampleSpec.

� int ExampleSpecGetNumAttributes (ExampleSpecPtr es)
Returns the number of attributes that the example spec contains.

� int ExampleSpecIsAttributeDiscrete (ExampleSpecPtr es, int num)
Returns 1 if the specified attribute is discrete and 0 otherwise.

� int ExampleSpecIsAttributeContinuous (ExampleSpecPtr es, int num)
Returns 1 if the specified attribute is continuous and 0 otherwise.

� int ExampleSpecIsAttributeIgnored (ExampleSpecPtr es, int num)
Returns 1 if the specified attribute should be ignored and 0 otherwise.

� char ∗ ExampleSpecGetAttributeName (ExampleSpecPtr es, int attNum)
If the attNum is valid, this returns the name of the associated attribute.

� int ExampleSpecLookupAttributeName (ExampleSpecPtr es, char ∗valName)
Returns the index of the named attribute.

� int ExampleSpecLookupAttributeValueName (ExampleSpecPtr es, int attNum,
char ∗valName)

Returns the index of the named value.

� int ExampleSpecLookupClassName (ExampleSpecPtr es, char ∗name)
If name is a valid class name, this returns the index associated with the class.

� char ∗ ExampleSpecGetClassValueName (ExampleSpecPtr es, int classNum)
If the classNum is valid, this returns the name of the associated class.

� int ExampleSpecGetNumClasses (ExampleSpecPtr es)
Returns the number of classes in the ExampleSpec.

� void ExampleSpecWrite (ExampleSpecPtr es, FILE ∗out)
Outputs the ExampleSpec in .names format.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.25 ExampleSpec.h File Reference 101

8.25.2 Define Documentation

8.25.2.1 #define ExampleSpecGetAttributeType(es, num) (AttributeSpec-
GetType(((AttributeSpecPtr)VALIndex(es → attributes, num)))
)

Returns the type of the specified attribute.

There are currently four supported types:

� asIgnore

� asContinuous

� asDiscreteNamed

� asDiscreteNoName

The programmatic construction interface only supports asIgnore, asContinuous, and asDiscrete-
Named, but the other is needed to fully support the C4.5 format.

8.25.2.2 #define ExampleSpecGetAttributeValueCount(es, attNum) (
AttributeSpecGetNumValues(((AttributeSpecPtr)VALIndex(es →
attributes, attNum))))

Returns the number of values of the attribute.

If the attNum is valid and ExampleSpecIsAttributeDiscrete(es, attNum) returns 1, this function
will return the number of values that attribute has. Remember that these values will be 0 indexed.

8.25.2.3 #define ExampleSpecGetAttributeValueName(es, attNum, valNum) (
(char ∗)AttributeSpecGetValueName(((AttributeSpecPtr)VALIndex(es →
attributes, attNum)), valNum))

Return the name of the specified value of the specified attribute.

If attNum is valid, and ExampleSpecIsAttributeDiscrete(es, attNum) returns 1, and valNum is
valid, this returns the name of the specified value of the specified attribute.

8.25.3 Typedef Documentation

8.25.3.1 typedef struct ExampleSpec ExampleSpec

Schema for training data.

8.25.3.2 typedef struct ExampleSpec ∗ ExampleSpecPtr

Schema for training data.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

102 VFML File Documentation

8.25.4 Function Documentation

8.25.4.1 void ExampleSpecAddAttributeValue (ExampleSpecPtr es, int attNum,
char ∗ name)

Adds a new value to the specified attribute and gives it the specified name.

The specified attribute had better be a discrete attribute. The main use of the name is to
read/write Examples and ExampleSpecs in human readable format.

Note that this function takes over the memory associated with the name argument and will free it
later. This means that you shouldn’t pass in static strings, or strings that were allocated on the
stack.

8.25.4.2 void ExampleSpecAddClass (ExampleSpecPtr es, char ∗ className)

Adds a new class to the ExampleSpec and gives it the specified name.

The main use of the name is to read/write Examples and ExampleSpecs in human readable format.
The new class is assigned a value which you can retrieve by calling: ExampleSpecLookupClass-
Name(es, className).

Note that this function takes over the memory associated with the className argument and will
free it later. This means that you shouldn’t pass in static strings, or strings that were allocated
on the stack.

8.25.4.3 int ExampleSpecAddContinuousAttribute (ExampleSpecPtr es, char ∗
name)

Adds a new continuous attribute to the ExampleSpec and gives it the specified name.

The main use of the name is to read/write ExampleSpecs in human readable format. The function
returns the index of the new attribute.

Note that this function takes over the memory associated with the name argument and will free it
later. This means that you shouldn’t pass in static strings, or strings that were allocated on the
stack.

8.25.4.4 int ExampleSpecAddDiscreteAttribute (ExampleSpecPtr es, char ∗ name)

Adds a new discrete attribute to the ExampleSpec and gives it the specified name.

The main use of the name is to read/write ExampleSpecs in human readable format. The function
returns the index of the new attribute, you can use the index to add values to the attribute using
ExampleSpecAddAttributeValue.

Note that this function takes over the memory associated with the name argument and will free it
later. This means that you shouldn’t pass in static strings, or strings that were allocated on the
stack.

8.25.4.5 void ExampleSpecFree (ExampleSpecPtr es)

Frees all the memory being used by the ExampleSpec.

Note that all the Examples created with an ExampleSpec maintain a pointer to the ExampleSpec,
so you shouldn’t free it or modify the ExampleSpec until you are done with all the Examples

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.25 ExampleSpec.h File Reference 103

referencing it.

8.25.4.6 char∗ ExampleSpecGetAttributeName (ExampleSpecPtr es, int attNum)

If the attNum is valid, this returns the name of the associated attribute.

8.25.4.7 char∗ ExampleSpecGetClassValueName (ExampleSpecPtr es, int
classNum)

If the classNum is valid, this returns the name of the associated class.

8.25.4.8 int ExampleSpecGetNumAttributes (ExampleSpecPtr es)

Returns the number of attributes that the example spec contains.

Remember that the attributes are indexed in a 0-based fashion (like C arrays) so the actual valid
index for the attributes will be from 0 to ExampleSpecGetNumAttributes(es) - 1.

8.25.4.9 int ExampleSpecGetNumClasses (ExampleSpecPtr es)

Returns the number of classes in the ExampleSpec.

Remember that the classes will have indexes 0 - ExampleSpecGetNumClasses(es) - 1.

8.25.4.10 int ExampleSpecIsAttributeContinuous (ExampleSpecPtr es, int num)

Returns 1 if the specified attribute is continuous and 0 otherwise.

Be sure not to ask for an attribute numbered >= ExampleSpecGetNumAttributes(es).

8.25.4.11 int ExampleSpecIsAttributeDiscrete (ExampleSpecPtr es, int num)

Returns 1 if the specified attribute is discrete and 0 otherwise.

Be sure not to ask for an attribute numbered >= ExampleSpecGetNumAttributes(es).

8.25.4.12 int ExampleSpecIsAttributeIgnored (ExampleSpecPtr es, int num)

Returns 1 if the specified attribute should be ignored and 0 otherwise.

Be sure not to ask for an attribute numbered >= ExampleSpecGetNumAttributes(es).

8.25.4.13 int ExampleSpecLookupAttributeName (ExampleSpecPtr es, char ∗
valName)

Returns the index of the named attribute.

Does a linear search through the ExampleSpec’s attributes looking for the first one named
attributeName. Returns the index of the first matching attribute or -1 if there is no match.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

104 VFML File Documentation

8.25.4.14 int ExampleSpecLookupAttributeValueName (ExampleSpecPtr es, int
attNum, char ∗ valName)

Returns the index of the named value.

If attribNum is a valid attribute index this does a linear search through the associated attribute’s
values for one named attributeName. Returns the index or -1 if there is no match.

8.25.4.15 int ExampleSpecLookupClassName (ExampleSpecPtr es, char ∗ name)

If name is a valid class name, this returns the index associated with the class.

8.25.4.16 ExampleSpecPtr ExampleSpecNew (void)

Programmatically creates a new ExampleSpec.

Use the ExampleSpecAddFOO functions to add classes, attributes, and their values to the spec.

This function allocates memory which should be freed by calling ExampleSpecFree.

8.25.4.17 ExampleSpecPtr ExampleSpecRead (char ∗ fileName)

Reads a .names formated file and build an ExampleSpec.

Attempts to read an example from the passed FILE ∗, which should be opened for reading. The
file should contain an ExampleSpec in C4.5 format, that is the file should be a C4.5 names file.

This function will return 0 (NULL) if it is unable to read an ExampleSpec from the file (bad input
or the file does not exist). If the input is badly formed, the function will also output an error to
the console.

Note that you could pass stdin to the function to read an ExampleSpec from the console.

This function allocates memory which should be freed by calling ExampleSpecFree.

8.25.4.18 void ExampleSpecWrite (ExampleSpecPtr es, FILE ∗ out)

Outputs the ExampleSpec in .names format.

Writes the example to the passed FILE ∗, which should be opened for writing. The example will
be written in C4.5 names format, and could later be read in using ExampleSpecRead.

Note that you could pass stdout to the function to write an ExampleSpec to the console.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.26 folddata File Reference 105

8.26 folddata File Reference

8.26.1 Detailed Description

Randomly splits a data set into a collection of train/test pairs.

The folddata tool

This tool is used by the xvalidate tool; you may find it useful. For example, your algorithm
might perform very poorly on a specific cross validation run, you could use this tool to reproduce
the datasets and try to track down the problem.

Folddata splits a dataset into a number of testing and training sets as needed for doing cross-
validation. It takes each example in the original dataset and randomly assigns it to one of the
’folds’ is it creating (note that this randomness means that the folds won’t be exactly evenly
sized). Folddata then outputs one dataset for each fold with the examples from the fold as the test
set and the examples in all the other folds as the training set.

Folddata works efficiently on large datasets, but will require enough disk space to hold ’folds’
copies of the dataset.

Folddata takes input and does output in c4.5 format. It expects to find the files <stem>.names
and <stem>.data and outputs <stem>[0 - n].[names, data, test].

Arguments

� -f <filestem>

– Set the stem name (default DF)

� -target <dir>

– Set the output directory (default ’.’)

� -source <dir>

– Set the directory that contains the dataset (default ’.’)

� -folds <n>

– Sets the number of train/test sets to create (default 10)

� -seed <n>

– Sets the random seed, multiple runs with the same seed will produce the same datasets
(defaults to a random seed)

� -h

– Display usage information and exit

� -v

– Can be used multiple times to increase the debugging output

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

106 VFML File Documentation

Example

folddata -f test -target output -folds 15 -seed 10

Will create 15 folds from test.names and test.data and put them in the directory named output
as test[0-14].names, test[0-14].data, and test[0-14].test. It will use a seeded random generator, so
that the exact same dataset could be reproduced.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.27 HashTable.h File Reference 107

8.27 HashTable.h File Reference

8.27.1 Detailed Description

A hash table.

Thanks
to Chun-Hsiang Hung for implementing the HashTable ADT.

Wish List
A cleaner hash table interface (without the compare function). I think that the sprint learner
is the only thing that uses this currently so there isn’t much to change to fix this.

Data Structures

� struct HashTable

A hash table ADT.

Functions

� HashTable ∗ HashTableNew (int size)

Creates a new hash table with the specified number of entries.

� void HashTableInsert (HashTable ∗table, int index, void ∗element)

Inserts the element into the has table at the appropriate place.

� void ∗HashTableFind (HashTable ∗table, int index, int(∗cmp)(const void ∗, const int))

Looks up index in the hash table.

� void HashTableFree (HashTable ∗table)

Frees the memory being used by the hash table.

� void ∗ HashTableRemove (HashTable ∗table, int index, int(∗cmp)(const void ∗, const
int))

Removes the element from the hash table.

8.27.2 Function Documentation

8.27.2.1 void∗ HashTableFind (HashTable ∗ table, int index, int(∗ cmp)(const void
∗, const int))

Looks up index in the hash table.

Not only must you use the same index, but you must also supply a function that returns non-zero
when passed the element you want to find and the index (which you passed to the function in the
first place...)

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

108 VFML File Documentation

8.27.2.2 void HashTableFree (HashTable ∗ table)

Frees the memory being used by the hash table.

But doesn’t touch the memory being used by the elements in the table. It is your responsibility
to free these if you like.

8.27.2.3 void HashTableInsert (HashTable ∗ table, int index, void ∗ element)

Inserts the element into the has table at the appropriate place.

8.27.2.4 HashTable∗ HashTableNew (int size)

Creates a new hash table with the specified number of entries.

8.27.2.5 void∗ HashTableRemove (HashTable ∗ table, int index, int(∗ cmp)(const
void ∗, const int))

Removes the element from the hash table.

Not only must you use the same index, but you must also supply a function that returns non-zero
when passed the element you want to find and the index (which you passed to the function in the
first place...)

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.28 kmeans File Reference 109

8.28 kmeans File Reference

8.28.1 Detailed Description

Performs k-means clustering.

Performs k-mean clustering on the continuous attributes in a data set (ignoring any discrete
attributes).

The learner takes input and does output in c4.5 format. It expects to find the files
<stem>.names and <stem>.data. and outputs the learned centers to a file called
<stem>.centers.

Evaluates the learned centers by comparing to the centers found in <stem>.test as follows.
Learned centers are greedily matched to the closest of the test centers until each center has a
match, and then the evaluation is the sum of the squared distance between each test center and
its matched learned center.

You can find a more full-featured kmeans clustering algorithm by running vfkm with the -batch
argument (for example you can set initial centroid locations, etc.

Wish List
Modify this learner to work with discrete attributes.
Move the features from vfkm into this learner because this learner will be much easier to
modify than that one for new users.

Arguments

� -f <filestem>

– Set the stem name (default DF)

� -source <dir>

– Set the directory that contains the dataset (default ’.’)

� -clusters <dir>

– Sets the number of clusters to look for, this argument is required.

� -threshold <threshold>

– Iterate until every centroid moves less than this threshold.

� -u

– Test by comparing to the centroids in <threshold>.test

� -v

– Can be used multiple times to increase the debugging output

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

110 VFML File Documentation

8.29 lists.h File Reference

8.29.1 Detailed Description

Generic list functions.

Void lists store untyped objects (void pointers) and Int and Float lists are special cased to work
with appropriately typed data. The interfaces for the three are the same except all functions
for VoidLists are prefaced with ’VL’, IntList with ’IL’, and FloatList with ’FL’. Important The
documentation says ’VAL’ instead of just ’VL’ as a prefix to all functions, macros do the expansion
to the array version of lists by default so these are the same in practice.

And since these list data structures are basically arrays that are dynamically sized, inserting or
removing elements is O(N) but accessing elements is O(1).

This module also has linked lists which are used very very rarely in VFML. You can access them
by adding an additional L to the name, for example VLNew() -> VLLNew()

Examples

To iterate over the values in a VoidList:

VoidListPtr list = (some existing list);

void *e;

int i;

for(i = 0 ; i < VLLength(list) ; i++) {

e = VLIndex(list, i);

}

The same thing with a FloatList:

FloatListPtr list = (some existing list);

float f;

int i;

for(i = 0 ; i < FLLength(list) ; i++) {

f = FLIndex(list, i);

}

Defines

� #define VALLength(list) (((VoidAListPtr)(list)) → size)
Returns the number of elements in the list.

� #define VALIndex(list, index) ((index < ((VoidAListPtr)list) → size) ? (((VoidAList-
Ptr)list) → array[index]) : (0))

Returns the element at the index (zero based).

Functions

� VoidAListPtr VALNew (void)
Creates a new list of the specified type.

� void VALAppend (VoidAListPtr list, void ∗element)

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.29 lists.h File Reference 111

Append the element to the end of the list.

� void VALPush (VoidAListPtr list, void ∗element)

Push element on the head of the list.

� void VALSort (VoidAListPtr list, int(∗cmp)(const void ∗, const void ∗))
Uses quick sort to sort the list in place with the passed comparision function.

� void ∗ VALRemove (VoidAListPtr list, long index)

Removes the item at the specified index and returns it.

� void VALInsert (VoidAListPtr list, void ∗element, long index)

Inserts the element at the specified index.

� void VALSet (VoidAListPtr list, long index, void ∗newVal)

Sets the value at the specified index.

� void VALFree (VoidAListPtr list)

Frees the memory associated with the list.

8.29.2 Define Documentation

8.29.2.1 #define VALIndex(list, index) ((index < ((VoidAListPtr)list) → size) ?
(((VoidAListPtr)list) → array[index]) : (0))

Returns the element at the index (zero based).

Note that the indexing is 0 based (like a C array).

8.29.2.2 #define VALLength(list) (((VoidAListPtr)(list)) → size)

Returns the number of elements in the list.

8.29.3 Function Documentation

8.29.3.1 void VALAppend (VoidAListPtr list, void ∗ element)

Append the element to the end of the list.

8.29.3.2 void VALFree (VoidAListPtr list)

Frees the memory associated with the list.

You are responsible for any memory used by the elements of the list.

8.29.3.3 void VALInsert (VoidAListPtr list, void ∗ element, long index)

Inserts the element at the specified index.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

112 VFML File Documentation

The element that used to have that index will have an index one higher (that is, it shifts later
elements over). Note that the indexing is 0 based (like a C array).

8.29.3.4 VoidAListPtr VALNew (void)

Creates a new list of the specified type.

8.29.3.5 void VALPush (VoidAListPtr list, void ∗ element)

Push element on the head of the list.

8.29.3.6 void∗ VALRemove (VoidAListPtr list, long index)

Removes the item at the specified index and returns it.

Shifts later elements over. Note that the indexing is 0 based (like a C array).

8.29.3.7 void VALSet (VoidAListPtr list, long index, void ∗ newVal)

Sets the value at the specified index.

The previous value at the index is overwritten. Note that the indexing is 0 based (like a C array).

8.29.3.8 void VALSort (VoidAListPtr list, int(∗ cmp)(const void ∗, const void ∗))

Uses quick sort to sort the list in place with the passed comparision function.

Note this is not implemented for FloatLists.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.30 memory.h File Reference 113

8.30 memory.h File Reference

8.30.1 Detailed Description

Tracks the size of allocations made.

A wrapper for the standard memory manager that tracks the size of the allocations made using it.
This requires an extra 8 bytes per allocation. You can turn this off by editing the memory.h file
and commenting out the definition of DEBUGMEMORY, but this will cause some of the features
of some of the research learners to fail in unpredictable ways.

Defines

� #define MMemMove(dst, src, bytes) SystemMoveMemory(dst, src, bytes)
Wrapper for memmove that works with pointers allocated by this memory module.

Functions

� void ∗ MNewPtr (int size)
A wrapper around Malloc that tracks the size of the allocation.

� void MFreePtr (void ∗ptr)
Frees the memory held by the pointer and tracks the change in the module’s records.

� void MSetAllocFailFunction (void(∗AllocFail)(int allocationSize))
Sets a function that is called if an allocation fails.

� long MGetTotalAllocation (void)
Returns the number of bytes that are currently allocated by the module.

� void MSetActivePool (int poolID)
Set the pool to track future memory allocations.

� int MGetActivePool (void)
Find which pool is being used to track memory.

� long MGetPoolAllocation (int poolID)
Returns the number of bytes that are currently allocated in the specified pool.

� void MMovePtrToPool (void ∗ptr, int poolID)
Moves the memory from one pool to another.

8.30.2 Define Documentation

8.30.2.1 #define MMemMove(dst, src, bytes) SystemMoveMemory(dst, src,
bytes)

Wrapper for memmove that works with pointers allocated by this memory module.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

114 VFML File Documentation

8.30.3 Function Documentation

8.30.3.1 void MFreePtr (void ∗ ptr)

Frees the memory held by the pointer and tracks the change in the module’s records.

8.30.3.2 int MGetActivePool (void)

Find which pool is being used to track memory.

The module supports up to 9 pools of memory, with id 1-9. You can get more fine grained tracking
by setting the pool and using MGetPoolAllocation. There is also a special pool, with id 0, and
any allocations made when that pool are set are tracked in the pool but will not show up in
MGetTotalAllocation. The default pool id is 1.

8.30.3.3 long MGetPoolAllocation (int poolID)

Returns the number of bytes that are currently allocated in the specified pool.

The module supports up to 9 pools of memory, with id 1-9. You can get more fine grained tracking
by setting the pool and using MGetPoolAllocation. There is also a special pool, with id 0, and
any allocations made when that pool are set are tracked in the pool but will not show up in
MGetTotalAllocation. The default pool id is 1.

8.30.3.4 long MGetTotalAllocation (void)

Returns the number of bytes that are currently allocated by the module.

8.30.3.5 void MMovePtrToPool (void ∗ ptr, int poolID)

Moves the memory from one pool to another.

Changes (if needed) the tracking of the ptr so that it is now counted against the new pool instead
of the pool it was allocated into.

8.30.3.6 void∗ MNewPtr (int size)

A wrapper around Malloc that tracks the size of the allocation.

Make sure you use MFreePtr to free any memory allocated by this call or your program will
probably crash.

8.30.3.7 void MSetActivePool (int poolID)

Set the pool to track future memory allocations.

The module supports up to 9 pools of memory, with id 1-9. You can get more fine grained tracking
by setting the pool and using MGetPoolAllocation. There is also a special pool, with id 0, and
any allocations made when that pool are set are tracked in the pool but will not show up in
MGetTotalAllocation. The default pool id is 1.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.30 memory.h File Reference 115

8.30.3.8 void MSetAllocFailFunction (void(∗ AllocFail)(int allocationSize))

Sets a function that is called if an allocation fails.

If you call this, then your AllocFail function will be called if an allocation fails. After your function
returns the memory module will try the allocation agian, if the allocation fails again, the memory
module returns a NULL pointer. You could use AllocFail to flush caches, or clean up the program
and quit.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

116 VFML File Documentation

8.31 mostcommonclass File Reference

8.31.1 Detailed Description

Predicts the most common class in the training data.

This is a very simple ’learner’, but it may be useful as a baseline to compare your learner against;
predicting with 99% accuracy isn’t impressive if 98% of the examples have the same class.

The mostcommonclass learner works in time proportional to the number of training examples and
uses space proportional to the number of classes. It should be able to work on large datasets.

The learner takes input and does output in c4.5 format. It expects to find the files
<stem>.names and <stem>.data. Depending on command line argument, it will either output
the most common class or test its error rate on <stem>.test.

Arguments

� -f <filestem>

– Set the stem name (default DF)

� -source <dir>

– Set the directory that contains the dataset (default ’.’)

� -u

– Test on the examples in <stem>.test and output in a format appropriate for interface
with xvalidate and batchtest (defaults to off)

� -v

– Can be used multiple times to increase the debugging output

Example

mostcommonclass -f banana -source datasets/banana

Looks for a dataset named ’banana’ in the ’datasets/banana’ directory. Outputs the name of the
most common class in the dataset.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.32 naivebayes File Reference 117

8.32 naivebayes File Reference

8.32.1 Detailed Description

A Naive Bayes learner.

An implementation of Naive Bayes that works with categorical attributes. This learner works in
time proportional to the number of training examples. It also requires memory that is proportional
to the number of classes ∗ number attributes ∗ number of values.

The learner takes input and does output in c4.5 format. It expects to find the files
<stem>.names and <stem>.data. Depending on command line argument, it will either output
the model if you use the -v argument enough or test its error rate on <stem>.test.

Wish List
Modify this learner to work with continuous attributes.

Arguments

� -f <filestem>

– Set the stem name (default DF)

� -source <dir>

– Set the directory that contains the dataset (default ’.’)

� -u

– Test on the examples in <stem>.test and output in a format appropriate for interface
with xvalidate and batchtest (defaults to off)

� -v

– Can be used multiple times to increase the debugging output

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

118 VFML File Documentation

8.33 random.h File Reference

8.33.1 Detailed Description

Generates random numbers in a number of ways, and has support for saving and restoring the
state of the random number generator.

Functions

� void RandomInit (void)
Should be called before calling other random functions.

� int RandomRange (int min, int max)
Returns a number between the min and max (inclusive).

� long RandomLong (void)
Returns a random long integer.

� double RandomDouble (void)
Returns a random double from 0 - 1.

� double RandomGaussian (double mean, double stdev)
Samples from a Gaussian with the specified parameters.

� double RandomStandardNormal (void)
Samples from the standard normal distribution.

� void RandomSeed (unsigned int seed)
Seeds the random number generator.

� void ∗ RandomNewState (unsigned int seed)
Creates a new random state to use with RandomSetState.

� void ∗ RandomSetState (void ∗state)
Sets the current random state.

� void RandomFreeState (void ∗state)
Use this to free any state made with RandomNewState.

8.33.2 Function Documentation

8.33.2.1 double RandomDouble (void)

Returns a random double from 0 - 1.

8.33.2.2 void RandomFreeState (void ∗ state)

Use this to free any state made with RandomNewState.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.33 random.h File Reference 119

8.33.2.3 double RandomGaussian (double mean, double stdev)

Samples from a Gaussian with the specified parameters.

8.33.2.4 void RandomInit (void)

Should be called before calling other random functions.

8.33.2.5 long RandomLong (void)

Returns a random long integer.

8.33.2.6 void∗ RandomNewState (unsigned int seed)

Creates a new random state to use with RandomSetState.

Each state represents a separate stream of repeatable random numbers. This is implemented with
initstate and setstate on Unix and is currently not supported on windows.

8.33.2.7 int RandomRange (int min, int max)

Returns a number between the min and max (inclusive).

8.33.2.8 void RandomSeed (unsigned int seed)

Seeds the random number generator.

8.33.2.9 void∗ RandomSetState (void ∗ state)

Sets the current random state.

The state parameter should have been made by RandomNewState. This allows you to have
multiple repeatable random number sequences at once. Returns the previous state.

8.33.2.10 double RandomStandardNormal (void)

Samples from the standard normal distribution.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

120 VFML File Documentation

8.34 REPrune.h File Reference

8.34.1 Detailed Description

Peforms reduced error pruning on a decision tree.

Takes a decision tree and a collection of examples and prunes every portion of the tree that does
not contribute to an increase of accuracy on the data set. This requires a single pass over the
prune set, and then on order of one pass over the tree for each node that is pruned.

REPrune uses the growing data fields of the decision tree, so it will overwrite anything that you
may have there. If you want to trying pruning a tree and then continue growing it you should
make a clone of the tree and pass the clone to this interface so that the origional will remain
untouched.

Functions

� void REPruneBatch (DecisionTreePtr dt, VoidAListPtr examples)
Get the prune set from the in-memory list.

� void REPruneBatchFile (DecisionTreePtr dt, FILE ∗exampleIn, long pruneMax)
Get the prune set from the file.

8.34.2 Function Documentation

8.34.2.1 void REPruneBatch (DecisionTreePtr dt, VoidAListPtr examples)

Get the prune set from the in-memory list.

8.34.2.2 void REPruneBatchFile (DecisionTreePtr dt, FILE ∗ exampleIn, long
pruneMax)

Get the prune set from the file.

Do not use more than pruneMax of the examples from the file for pruning; setting pruneMax to
0 means ’no max’ (and uses all examples from the file for pruning).

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.35 sampledata File Reference 121

8.35 sampledata File Reference

8.35.1 Detailed Description

Draws a sample from a data set.

sampledata does a scan over a data set and draws a sample from it by including each example in
the sample with a user specified probability.

Arguments

� -f <filestem>

– Set the stem name (default DF)

� -fout <filestem>

– Set the name of the output dataset (default DF-out)

� -source <dir>

– Set the directory that contains the dataset (default ’.’)

� -target <dir>

– Set the directory to contain the output dataset (default ’.’)

� -seed <seed>

– Sets the random seed, multiple runs with the same seed will produce the same datasets
(defaults to a random seed)

� -sample <n>

– Sets the percentage of the data to sample (default .8 – that’s 80%)

� -stdin

– Read examples from standard in (default read file)

� -stdout

– Writes examples to standard out (default write to file)

� -h

– Display usage information and exit.

� -v

– Can be used multiple times to increase the debugging output

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

122 VFML File Documentation

8.36 shuffledata File Reference

8.36.1 Detailed Description

Randomizes the order of a data set and rewrites it.

shuffledata reads a data set into RAM and outputs it in random order. Data sets that do not fit
in RAM are difficult to randomize and VFML does not have a tool to deal with such data sets.

Wish List
for a version of this tool that works on disk and does not need to load data into RAM.

Arguments

� -f <filestem>

– Set the stem name (default DF)

� -fout <filestem>

– Set the name of the output dataset (default shuffled)

� -source <dir>

– Set the directory that contains the dataset (default ’.’)

� -target <dir>

– Set the directory to contain the output dataset (default ’.’)

� -seed <seed>

– Sets the random seed, multiple runs with the same seed will produce the same datasets
(defaults to a random seed)

� -h

– Display usage information and exit.

� -v

– Can be used multiple times to increase the debugging output

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.37 sprint File Reference 123

8.37 sprint File Reference

8.37.1 Detailed Description

Learn a decision tree from data sets that do not fit in RAM.

Learns a decision tree from a data set that is larger than RAM as described in this paper.

sprint takes input and does output in c4.5 format. It expects to find the files <stem>.names
and <stem>.data.

Thanks
to Chun-Hsiang Hung for doing the core development work for sprint.

Arguments

� -h

– Run sprint -h for a list of the arguments and their meanings.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

124 VFML File Documentation

8.38 stats.h File Reference

8.38.1 Detailed Description

Some statistical functions.

The stat module has some basic statistical functions and the StatTracker type, which watches
a series of samples, keeps some simple summary statistics (sum and sumSquare in the current
implementation), and can report on the mean, variance, stdev, etc. of the sample.

Wish List
The StatTracker would track more interesting things.

Data Structures

� struct StatTracker

Holds simple summary statistics of a sample.

Typedefs

� typedef StatTracker StatTrackerStruct

Holds simple summary statistics of a sample.

� typedef StatTracker ∗ StatTracker

Holds simple summary statistics of a sample.

Functions

� StatTracker StatTrackerNew (void)

Creates a new stat tracker that is ready to have samples added to it.

� void StatTrackerFree (StatTracker st)

Frees the memory associated with the StatTracker.

� void StatTrackerAddSample (StatTracker st, double x)

Records the sample in the tracker.

� double StatTrackerGetMean (StatTracker st)

Returns the mean of the samples that have been shown to the tracker.

� double StatTrackerGetVariance (StatTracker st)

Returns the variance of the samples that have been shown to the tracker.

� double StatTrackerGetStdev (StatTracker st)

Returns the standard deviation of the samples that have been shown to the tracker.

� long StatTrackerGetNumSamples (StatTracker st)

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.38 stats.h File Reference 125

Returns the number of samples shown to the stat tracker.

� double StatTrackerGetNormalBound (StatTracker st, double delta)

Assume Gaussian and return a high confidence bound of the sample .

� double StatGetNormalBound (double variance, long n, double delta)

Return a high confidence bound from the normal distribution.

� double StatHoeffdingBoundOne (double range, double delta, long n)

Returns the one sided Hoeffding bound.

� double StatHoeffdingBoundTwo (double range, double delta, long n)

Returns the two sided Hoeffding bound.

� float StatLogGamma (float xx)

Returns the log of the gamma function of xx.

8.38.2 Typedef Documentation

8.38.2.1 typedef struct StatTracker ∗ StatTracker

Holds simple summary statistics of a sample.

See stats.h for more detail.

8.38.2.2 typedef struct StatTracker StatTrackerStruct

Holds simple summary statistics of a sample.

See stats.h for more detail.

8.38.3 Function Documentation

8.38.3.1 double StatGetNormalBound (double variance, long n, double delta)

Return a high confidence bound from the normal distribution.

Assumes a Gaussian distribution and returns the distance from the mean within which 1 - delta
of the mass lies (esentially the same function as StatTrackerGetNormalBound).

8.38.3.2 double StatHoeffdingBoundOne (double range, double delta, long n)

Returns the one sided Hoeffding bound.

With n observations of a variable with the specified range. That is, the true value is less than the
observed mean + this function’s result with probability 1 - delta.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

126 VFML File Documentation

8.38.3.3 double StatHoeffdingBoundTwo (double range, double delta, long n)

Returns the two sided Hoeffding bound.

With n observations of a variable with the specified range. That is, the true value is within this
function’s result of the obseved mean with probability 1 - delta.

8.38.3.4 float StatLogGamma (float xx)

Returns the log of the gamma function of xx.

This function is lifted from Numerical Recipes in C.

8.38.3.5 void StatTrackerAddSample (StatTracker st, double x)

Records the sample in the tracker.

8.38.3.6 void StatTrackerFree (StatTracker st)

Frees the memory associated with the StatTracker.

8.38.3.7 double StatTrackerGetMean (StatTracker st)

Returns the mean of the samples that have been shown to the tracker.

If you have not shown the tracker any samples this will probably crash.

8.38.3.8 double StatTrackerGetNormalBound (StatTracker st, double delta)

Assume Gaussian and return a high confidence bound of the sample .

Assumes a Gaussian distribution and returns the distance from the mean within which 1 - delta
of the mass lies. This calls the GetStdev function internally and will crash if that crashes.

8.38.3.9 long StatTrackerGetNumSamples (StatTracker st)

Returns the number of samples shown to the stat tracker.

8.38.3.10 double StatTrackerGetStdev (StatTracker st)

Returns the standard deviation of the samples that have been shown to the tracker.

If you have not shown the tracker at least two samples this will probably crash.

8.38.3.11 double StatTrackerGetVariance (StatTracker st)

Returns the variance of the samples that have been shown to the tracker.

If you have not shown the tracker at least two samples this will probably crash.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.38 stats.h File Reference 127

8.38.3.12 StatTracker StatTrackerNew (void)

Creates a new stat tracker that is ready to have samples added to it.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

128 VFML File Documentation

8.39 treedata File Reference

8.39.1 Detailed Description

Creates a synthetic data set by sampling from a randomly generated DecisionTree.

This program creates a synthetic binary tree and then uses it to label data which can then be
used to evaluate learning algorithms. It has been used to evaluate the vfdt system.

The synthetic tree is generated starting from a single node as follows. A leaf is selected and is
either split on one of the active attributes (each discrete attribute is used at most once on a path
from the root to a leaf) or it is pruned. The probability of pruning is set by the prunePercent
parameter but is 0 if the leaf is not below firstPruneLevel and is 1 if the leaf is below maxPrune-
Level . If the attribute selected for a split is continuous a threshold is generated uniformly in the
range 0-1 except that Tree Data ensures that the chosen threshold is not redundant with an earlier
split.

Once the tree’s structure is created (all leaves have been pruned) a class label is randomly assigned
to each leaf and then redundant subtrees (where every leaf has the same classification) are pruned.

Data (training, testing, and pruning) is generated by creating an example and setting its attributes
with uniform probability. The tree is used to label the data, and then the class and discrete lables
are resampled with uniform probability (without replacement) as specified by the noise parameter
and continuous attributes are changed by sampling from a gaussian with mean of their current
value and standard deviation of noise.

Using the same conceptSeed (along with the same other parameter) results in the same concept
being created. The same seed results in data being generated the same (so experiments are easily
repeatable).

This program also outputs some additional statistics into the stem.stats file.

Arguments

� -h

– Run with this argument to get a list of arguments and their meanings.

Example

treedata -discrete 10 -continuous 0 -noise 15 -conceptSeed 21 -seed 1234 -prune-
Percent 15 -train 100 -test 100 -prune 100

Creates 100 training, 100 testing, and 100 pruning examples from a concept tree made with 15%
chance of pruning each node past level 3 and 100% chance of pruning past level 18. 15% noise is
added to the data. Finally, the same data set will be produced by multiple calls to the function
because of the seed arguments.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.40 uRunner File Reference 129

8.40 uRunner File Reference

8.40.1 Detailed Description

Distribute a collection of jobs across a cluster of computers.

This tool is used to take a collection of jobs and easily execute them across a cluster of computers.
The tool is actually two programs: the server program, uRunner and the client program, uRunner-
Client. You provide a config file and a job queue, then execute the server. The server starts the
clients on the selected hosts and they begin taking and executing jobs from the queue (using a
safe locking mechanism).

The Config File

[GLOBAL]

experimentname = cluster-runs

scratchdir = /scratch/%(experimentname)s/%(host)s/

jobsdir = .

lockdir = %(jobsdir)s/

queuefile = %(jobsdir)s/queue

resultdir = %(jobsdir)s/results/

clients = calypso poseidon helios rhea apollo

The [GLOBAL] statement is required but has no semantics (it comes from the python config parser
that uRunner uses). Other than that, the required fields are scratchdir, lockdir, queuefile,
resultdir, and clients. Each of these may contain text and substitutions of previous variables.
The syntax for a substitution is (variablename)s (the s let it know you want to sub in a string,
another artifact of the python config parser). You can also use the host variable which is set to
the host that the client is running on (different for each client).

Scratch Directory The uRunnerClient makes the directory scratchdir (and any directories it
needs to leading up to it) and frees it (and them) after each job. This means that if you specify a
scratch dir that doesn’t exist the uRunner cleans it after each run, if it does exist uRunner doesn’t
change it (or its contents). uRunner changes directory to this scratch directory before running
any jobs. You might want to make the scratch directory on local disk so your program will have
faster access to it. One common idiom is to copy (or generate) a dataset to a localy mounted
disk and run several similar algorithms on the data in a single job. It might also be convienient
because multiple copies of the same program won’t have conflicts with temporary files.

Lock Directory This must be a network mounted directory and all the clients must be able
to access it. During the run clients create lockfiles in this directory so they don’t corrupt the
queuefile by accessing it simultaneously.

Result Directory This directory must be a network mounted directory and all the clients must
be able to access it. If it doesn’t exist it will be created. Jobs should copy the results of the
programs they execute to this directory so the results won’t be lost when the Scratch Directory is
cleaned up.

List of Clients A copy of uRunnerClient will be executed on each of these clients via a call to
rsh.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

130 VFML File Documentation

The Queue File

Experiment12-18-0.0300

nice -5 $rundir/clusterdata -continuous 12 -clusters 18 -stdev 0.0300 -train 10000000 -seed 9177 -conceptSeed 18354

nice -5 $rundir/vfkm -progressive -allowBadConverge -clusters 18 -dbSize 10000000 -converge 0.021600 -seed 9178 > output

echo "d12 k18 0.0300 " "‘cat output‘" >> $resultdir/results-vfkm

rm output

nice -5 $rundir/vfkm -progressive -allowBadConverge -clusters 18 -dbSize 10000000 -normalApprox -converge 0.021600 -seed 9178 > output

echo "d12 k18 0.0300 " "‘cat output‘" >> $resultdir/results-pvfkm

rm output

nice -5 $rundir/vfkm -batch -clusters 18 -dbSize 10000000 -normalApprox -converge 0.021600 -seed 9178 > output

echo "d12 k18 0.0300 " "‘cat output‘" >> $resultdir/results-km

rm output

The queue file is a series of jobs, see the example above. First note that each job is surrounded
by --- (which means --- will appear twice between jobs). The first line of each job is the job’s
name, which can be accessed via the $jobname environment variable. The $rundir environment
variable is also available, and points to the directory from which uRunner was executed. The other
available environment variables are $resultdir, $scratchdir, and $host. Note, additional variables
you declare in the config file are not available.

The example above shows several useful idioms. First, before starting the run, copies of the
binaries involved are made in $rundir. This allows development to continue while the experiment
is executing. The example first runs ’clusterdata’ to create a very large dataset (remember this
will be in the scratch directory). It then calls a learning algorithm ’vfkm’ with three different
but related parameter settings. It concatinates the output of each learner onto a file in the result
directory, and cleans up after itself. Notice that the scratch directory mechinism will clean up
after the entire run is complete, but within the run some cleaning is needed as well (removing the
output file). Also notice that there are some kinda odd constructs which have to do with the shell
that python executes, I think you need to make sure your commands are in sh (check this).

Notes

On the UW computers you need some kind of kerberos tickits to rsh. I’m not 100% sure how this
works, but you seem to get a bunch of tickets when you first log in, so if you get errors about
permission denied try logging out and back in or run the kinit command to get some more.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.41 vfbn1 File Reference 131

8.41 vfbn1 File Reference

8.41.1 Detailed Description

Learns the structure of a BeliefNet from a very large data set using sampling.

Learns the structure and parameters of a Bayesian network, accelerated with sampling as described
in this paper. All variables must be categorical.

vfbn1 takes input and does output in c4.5 format. It expects to find the files <stem>.names
and <stem>.data.

Wish List
An API to this learner like the one to learning BeliefNet structure in beliefnet-engine.h

Arguments

� -h

– Run vfbn1 -h for a list of the arguments and their meanings.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

132 VFML File Documentation

8.42 vfbn2 File Reference

8.42.1 Detailed Description

Learns the structure of a BeliefNet from a very large data set using sampling and a new search
proceedure.

Learns the structure and parameters of a Bayesian network, accelerated with sampling as described
in this paper. All variables must be categorical.

vfbn2 takes input and does output in c4.5 format. It expects to find the files <stem>.names
and <stem>.data.

Wish List
An API to this learner like the one to learning BeliefNet structure in beliefnet-engine.h

Arguments

� -h

– Run vfbn2 -h for a list of the arguments and their meanings.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.43 vfdt File Reference 133

8.43 vfdt File Reference

8.43.1 Detailed Description

Learns a decision tree from a high-speed data stream or very large data set.

vfdt is described in this paper. (This version of VFDT has many extensions since that paper
was written, including the ability to learn from domains with continuous attributes, we hope to
have a more up-to-date paper to cite here soon).

vfdt takes input and does output in c4.5 format. It expects to find the files <stem>.names and
<stem>.data.

You might also be interested in the vfdt-engine::h interface, which provides an API to the
learning engine used in this program.

Arguments

� -h

– Run vfdt -h for a list of the arguments and their meanings.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

134 VFML File Documentation

8.44 vfdt-engine.h File Reference

8.44.1 Detailed Description

An API which lets your program learn a DecisionTree from a high-speed data stream.

An API to VFML’s engine for learning decision trees from high-speed data streams. The vfdt
program is basically a wrapper around this interface. You can use this interface to learn decision
trees from a stream of data as it arrives, and use the tree in a parallel to make predictions.

To use this interface you generate a VFDTPtr using the VFDTNew method, set any parameters
you want to use to control the learning using the functions that are described below, and then
repeatedly feed examples to the VFDTPtr using the VFDTProcessExample method. You can call
VFDTGetLearnedTree at anytime to get a copy of the current learned tree. Note that vfdt-engine
will take over the memory of any examples feed to it, and you should not free them or your
program will crash.

Wish List
A method that checkpoints the learning procedure to disk so that it can be restored at a later
time. I think the hard part of this would be checkpointing the ExampleGroupStats structure.

Data Structures

� struct VFDT
Holds the information needed to learn decision trees from data streams.

Typedefs

� typedef VFDT VFDT
Holds the information needed to learn decision trees from data streams.

� typedef VFDT ∗ VFDTPtr
Holds the information needed to learn decision trees from data streams.

Functions

� VFDTPtr VFDTNew (ExampleSpecPtr spec, float splitConfidence, float tie-
Confidence)

Allocate memory to learn a decision tree from a data stream.

� void VFDTFree (VFDTPtr vfdt)
frees all the memory being used by the learning process.

� void VFDTSetMessageLevel (VFDTPtr vfdt, int value)
Higher message levels print more output to the console.

� void VFDTSetMaxAllocationMegs (VFDTPtr vfdt, int value)
Put a limit on the dynamic memory used by the program.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.44 vfdt-engine.h File Reference 135

� void VFDTSetProcessChunkSize (VFDTPtr vfdt, int value)

Sets the number of examples before checks for tree growth.

� void VFDTSetUseGini (VFDTPtr vfdt, int value)

Set the evaluation function to Gini (default is Entropy).

� void VFDTSetRestartLeaves (VFDTPtr vfdt, int value)

Consider reactivating leaves where growing was stopped to save RAM.

� void VFDTSetCacheTrainingExamples (VFDTPtr vfdt, int value)

Use extra RAM to cache training examples.

� void VFDTSetPrePruneTau (VFDTPtr vfdt, float value)

Set the pre-prune parameter.

� void VFDTSetLaplace (VFDTPtr vfdt, int value)

Set how many examples worth of smoothing to do in class probability estimates.

� void VFDTProcessExamples (VFDTPtr vfdt, FILE ∗input)

Read as many examples as possible from the file and learn from them.

� void VFDTProcessExamplesBatch (VFDTPtr vfdt, FILE ∗input)

Learn from the examples in batch mode.

� void VFDTProcessExampleBatch (VFDTPtr vfdt, ExamplePtr e)

Add the example to the learner without checking for splits.

� void VFDTBatchExamplesDone (VFDTPtr vfdt)

Forces vfdt-engine to make as many splits as possible using traditional methods.

� void VFDTProcessExample (VFDTPtr vfdt, ExamplePtr e)

Adds another example to the learning process.

� int VFDTIsDoneLearning (VFDTPtr vfdt)

Returns 1 if no nodes in the tree are still active.

� long VFDTGetNumGrowing (VFDTPtr vfdt)

Returns the number of nodes that are growing.

� long VFDTGetNumBoundsUsed (VFDTPtr vfdt)

Returns the number of statistical tests made.

� void VFDTPrintStats (VFDTPtr vfdt, FILE ∗out)

Prints some information about the growing nodes to the file.

� DecisionTreePtr VFDTGetLearnedTree (VFDTPtr vfdt)

Returns the current tree.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

136 VFML File Documentation

8.44.2 Typedef Documentation

8.44.2.1 typedef struct VFDT VFDT

Holds the information needed to learn decision trees from data streams.

8.44.2.2 typedef struct VFDT ∗ VFDTPtr

Holds the information needed to learn decision trees from data streams.

8.44.3 Function Documentation

8.44.3.1 void VFDTBatchExamplesDone (VFDTPtr vfdt)

Forces vfdt-engine to make as many splits as possible using traditional methods.

8.44.3.2 void VFDTFree (VFDTPtr vfdt)

frees all the memory being used by the learning process.

8.44.3.3 DecisionTreePtr VFDTGetLearnedTree (VFDTPtr vfdt)

Returns the current tree.

This will guess on which class to predict at the growing leaves (smoothing with strength of the
lapace paramterer towards the distribution seen at the parent). Returns a copy of the internally
growing decision tree, and so vfdt-engine can continue to learn on the internal tree unaffected.

8.44.3.4 long VFDTGetNumBoundsUsed (VFDTPtr vfdt)

Returns the number of statistical tests made.

8.44.3.5 long VFDTGetNumGrowing (VFDTPtr vfdt)

Returns the number of nodes that are growing.

8.44.3.6 int VFDTIsDoneLearning (VFDTPtr vfdt)

Returns 1 if no nodes in the tree are still active.

This may happen because RAM runs out, or because everything was pre-pruned.

8.44.3.7 VFDTPtr VFDTNew (ExampleSpecPtr spec, float splitConfidence, float
tieConfidence)

Allocate memory to learn a decision tree from a data stream.

Sets up the learning, makes an initial tree with a single node. splitConfidence is the delta parameter
from our paper (the probability of making a mistake with the sampling we use) and the tie-
Confidence is tau (the minimum difference in gain that you care about). splitConfidence should

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.44 vfdt-engine.h File Reference 137

be a small non-zero number, maybe 10∧-7. And tieConfidence should be something in the range
of 0 - .1 (although slightly bigger values may be useful).

8.44.3.8 void VFDTPrintStats (VFDTPtr vfdt, FILE ∗ out)

Prints some information about the growing nodes to the file.

8.44.3.9 void VFDTProcessExample (VFDTPtr vfdt, ExamplePtr e)

Adds another example to the learning process.

Check for splits as needed (according to the chunk size).

8.44.3.10 void VFDTProcessExampleBatch (VFDTPtr vfdt, ExamplePtr e)

Add the example to the learner without checking for splits.

When you have added all the examples you want call VFDTBatchExamplesDone to tell vfdt-engine
it is time to make splits.

8.44.3.11 void VFDTProcessExamples (VFDTPtr vfdt, FILE ∗ input)

Read as many examples as possible from the file and learn from them.

This will repeatedly read and learn from examples in the file until it can not read any more. Note
that this function will block until that time.

8.44.3.12 void VFDTProcessExamplesBatch (VFDTPtr vfdt, FILE ∗ input)

Learn from the examples in batch mode.

That is, read them all into RAM and use every example to make every learning decision.

8.44.3.13 void VFDTSetCacheTrainingExamples (VFDTPtr vfdt, int value)

Use extra RAM to cache training examples.

Default is to cache. This keeps examples in memory to possibly use them to help make several
decisions, speeding up the induction. When RAM is full vfdt-engine starts deactivating example
caches at the least promising leaves. All caches will be deactivated before any leaves are deactived.

8.44.3.14 void VFDTSetLaplace (VFDTPtr vfdt, int value)

Set how many examples worth of smoothing to do in class probability estimates.

8.44.3.15 void VFDTSetMaxAllocationMegs (VFDTPtr vfdt, int value)

Put a limit on the dynamic memory used by the program.

This requires that DEBUGMEMORY is defined in memory.h (which is the default). By setting
this you limit the amount of memory allocated with calls to MemNewPtr by either your program

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

138 VFML File Documentation

and by vfdt-engine. This means any other calls you make to VFML functions (e.g. reading
examples from disk) will be counted against vfdt’s total. (you can use MSetActivePool with pool
id 0 to get around this).

If this memory threshold is crossed vfdt-engine starts purging its allocations by first throwing
away cahed examples and then disabling learning at the least promising leaves.

8.44.3.16 void VFDTSetMessageLevel (VFDTPtr vfdt, int value)

Higher message levels print more output to the console.

Levels above 2 print a lot of output. More than you want. I promise.

8.44.3.17 void VFDTSetPrePruneTau (VFDTPtr vfdt, float value)

Set the pre-prune parameter.

The default is 0.0, which means no pre-pruning. If the gain of all attributes is less than this value
then pre-prune. Also, do not call a tie unless an attribute beats another by at least this much.

8.44.3.18 void VFDTSetProcessChunkSize (VFDTPtr vfdt, int value)

Sets the number of examples before checks for tree growth.

Check for growth at a leaf once every time it accumulates this many examples. Default is 300.

8.44.3.19 void VFDTSetRestartLeaves (VFDTPtr vfdt, int value)

Consider reactivating leaves where growing was stopped to save RAM.

The default value for this is true, so periodically vfdt-engine looks at all the deactivated leaves to
see if any of them are more promising than any of the currently active ones, and makes adjustments.
If set to false any leaf that is deactivated is effectively pre-pruned.

8.44.3.20 void VFDTSetUseGini (VFDTPtr vfdt, int value)

Set the evaluation function to Gini (default is Entropy).

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.45 vfem File Reference 139

8.45 vfem File Reference

8.45.1 Detailed Description

Performs EM clustering.

Performs EM clustering for sphirical gaussians accelerated with sampling as described in this
paper. This learner ignores categorical attributes.

VFEM takes input and does output in c4.5 format. It expects to find the files <stem>.names
and <stem>.data. and outputs the learned centers to a file called <stem>.centers.

It evaluates the learned centers by comparing to the centers found in <stem>.test as follows.
Learned centers are greedily matched to the closest of the test centers until each center has a
match, and then the evaluation is the sum of the squared distance between each test center and
its matched learned center.

Arguments

� -h

– Run vfem -h for a list of the arguments and their meanings.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

140 VFML File Documentation

8.46 vfkm File Reference

8.46.1 Detailed Description

Performs k-means clustering accelerated with sampling.

Performs k-mean clustering accelerated with sampling as described in this paper. This learner
ignores categorical attributes.

The learner takes input and does output in c4.5 format. It expects to find the files
<stem>.names and <stem>.data. and outputs the learned centers to a file called
<stem>.centers.

It evaluates the learned centers by comparing to the centers found in <stem>.test as follows.
Learned centers are greedily matched to the closest of the test centers until each center has a
match, and then the evaluation is the sum of the squared distance between each test center and
its matched learned center.

Arguments

� -h

– Run vfkm -h for a list of the arguments and their meanings.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

8.47 xvalidate File Reference 141

8.47 xvalidate File Reference

8.47.1 Detailed Description

Performs cross validation of a learner on a data set.

You will probably want to use the batchtest tool for large experiments; xvalidate will help you
to quickly test things, perhaps as a debugging aid.

You can use xvalidate with large datasets, but you will need enough disk space to hold ’folds’ copies
of the data. The learner you use with xvalidate must also be able to work with large datasets.

Xvalidate takes input in C4.5 format and uses folddata, which must be in your path. You use
the -c option to tell xvalidate how to run the learner. Xvalidate will append the names of the
folds of the datasets to the end of the -c string, the learner must accept the name and read input
appropriately.

Xvalidate expects the learner to output results in the following format:

error-rate size

The learner’s error rate on the test set, followed by some whitespace, followed by the size of the
learned model (in whatever unit you want), followed by a newline.

Xvalidate will collect the output of the runs of the learner, average them, and report:

mean-error-rate (standard deviation of error rate) mean-size (standard deviation
of size) average-utime (standard deviation of utime) average-stime (standard
deviation of stime)

for example:

26.111 (5.500) 0.000 (0.000) 0.013 (0.005) 0.010 (0.008)

The times are very accurate on UNIX. Under CYGNUS (windows) utime will be slightly overes-
timated and stime will be zero.

Arguments

� -f <filestem>

– Set the name of the dataset (default DF)

� -source <dir>

– Set the source data directory (default ’.’)

� -c <command>

– Set the learner command. The name of the dataset will be appended to the end of this
string and used to invoke the learner (This is a required argument)

� -folds <n>

– Sets the number of train/test sets to create (default 10)

� -seed <n>

– Sets the random seed, multiple runs with the same seed will produce the same datasets
(defaults to a random seed). If you use a random seed, the value of the randomly
selected seed will be printed at the start of the run. You can later use that seed to
repeat the experiment. You can also pass the same seed to folddata to recreate the
exact test/training sets for closer inspection.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

142 VFML File Documentation

� -v

– Can be used multiple times to increase the debugging output

Example

xvalidate -source datasets/mushroom -f mushroom -folds 15 -seed 100 -c
’’mostcommonclass -u -f’’

Does 15-fold cross-validation of the ’mostcommonclass’ learner on the dataset called ’mush-
room’ in the ’datasets/mushroom’ directory. The mostcommonclass learner will be invoked
as: mostcommonclass -u -f <constructed-dataset-name> for each of the 15 constructed
datasets. It will use a seeded random number generator so the exact experiment could be re-
produced.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

Chapter 9

VFML Page Documentation

9.1 Thanks

page VFML VFML was made possible by a gift from the Ford Motor Company.

File bindata to Chun-Hsiang Hung for doing the core development work for this tool.

File bnlearn to Matt Richardson for making substantial optimizations to the bnlearn program.

File bnlearn-engine.h to Matthew Richardson for extracting this interface from the bnlearn
learner.

File cleandata to Chun-Hsiang Hung for doing the core development work for this tool.

File cvfdt to Laurie Spencer for doing the core development work for cvfdt.

File HashTable.h to Chun-Hsiang Hung for implementing the HashTable ADT.

File sprint to Chun-Hsiang Hung for doing the core development work for sprint.

144 VFML Page Documentation

9.2 Wish List

page VFML The windows distribution needs to be brought up to date.

File batchtest I think the input format for batchtest is a little brittle and it could use some
improvement

File BeliefNet.h A version of this that uses DecisionTree local models instead of full CPTs.
This would also need a new structure learning tool (a modification of bnlearn).

File beliefnetcorrupt This tool does not do anything smart with parameters when it changes
the structure, and it should.

File beliefnetscore Move the comparision mode from this tool into a new tool, beliefnetcom-
pare, and have that tool do more interesting comparisions (e.g. measure the KL-distance
between the distriutions encoded in the networks).

File bindata that this tool would have more methods for selecting bin boundaries, for example
to reduce entropy.

File bnlearn A version of this program that is intelligent about dealing with unobserved (or
partially observed) variables.

File cvfdt Modify this learner to work with continuous attributes.

An API to this learner like the one to learning BeliefNet structure in beliefnet-engine.h

File DecisionTree.h A standard in memroy decision tree induction algorithm. Maybe the best
starting point would be the decisionstump learner.

This isn’t the right place for this wish, but it would be nice to have a RuleSet structure
similar to this DecisionTree structure

File HashTable.h A cleaner hash table interface (without the compare function). I think that
the sprint learner is the only thing that uses this currently so there isn’t much to change to
fix this.

File kmeans Modify this learner to work with discrete attributes.

Move the features from vfkm into this learner because this learner will be much easier to
modify than that one for new users.

File naivebayes Modify this learner to work with continuous attributes.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

9.2 Wish List 145

File shuffledata for a version of this tool that works on disk and does not need to load data
into RAM.

File stats.h The StatTracker would track more interesting things.

File vfbn1 An API to this learner like the one to learning BeliefNet structure in beliefnet-
engine.h

File vfbn2 An API to this learner like the one to learning BeliefNet structure in beliefnet-
engine.h

File vfdt-engine.h A method that checkpoints the learning procedure to disk so that it can be
restored at a later time. I think the hard part of this would be checkpointing the Example-
GroupStats structure.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

146 VFML Page Documentation

9.3 Bug List

Global BNNodeStructureEqual(BeliefNetNode bnn, BeliefNetNode otherNode)
Only returns 1 if the parents are in the same order, but the order probably shouldn’t
matter.

File ExampleSpec.h Under Cygnus (and windows) lex doesn’t seem to do the right thing with
EOF rules, so you need to put an extra return at the end of your .names files.

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

Index

BITFIELD , 23
BeliefNetNode , 22
BeliefNet , 21
DecisionTree , 24
ExampleGenerator , 26
ExampleGroupStats , 27
ExampleSpec , 28
Example , 25
StatTracker , 29
VFDT , 30

AttributeTracker.h, 35
AttributeTracker.h

AttributeTrackerAreAllInactive, 36
AttributeTrackerClone, 36
AttributeTrackerFree, 36
AttributeTrackerInitial, 36
AttributeTrackerIsActive, 36
AttributeTrackerMarkActive, 36
AttributeTrackerMarkInactive, 36
AttributeTrackerNew, 36
AttributeTrackerNumActive, 36

AttributeTrackerAreAllInactive
AttributeTracker.h, 36

AttributeTrackerClone
AttributeTracker.h, 36

AttributeTrackerFree
AttributeTracker.h, 36

AttributeTrackerInitial
AttributeTracker.h, 36

AttributeTrackerIsActive
AttributeTracker.h, 36

AttributeTrackerMarkActive
AttributeTracker.h, 36

AttributeTrackerMarkInactive
AttributeTracker.h, 36

AttributeTrackerNew
AttributeTracker.h, 36

AttributeTrackerNumActive
AttributeTracker.h, 36

batchtest, 38
Belief Net Section, 18
BeliefNet

BeliefNet.h, 44

BeliefNet.h, 40
BeliefNet.h

BeliefNet, 44
BeliefNetNode, 45
BeliefNetNodeStruct, 45
BeliefNetStruct, 45
BNAddFractionalSample, 45
BNAddFractionalSamples, 45
BNAddLikelihoodSamples, 45
BNAddSample, 45
BNAddSamples, 45
BNClone, 45
BNCloneNoCPTs, 46
BNFlushStructureCache, 46
BNFree, 46
BNGenerateSample, 46
BNGetExampleSpec, 46
BNGetMaxNodeParameters, 46
BNGetNodeByElimOrder, 46
BNGetNodeByID, 46
BNGetNumIndependentParameters, 47
BNGetNumNodes, 47
BNGetNumParameters, 47
BNGetSimStructureDifference, 47
BNGetUserData, 44
BNHasCycle, 47
BNInitLikelihoodSampling, 47
BNLikelihoodSampleNTimes, 47
BNNew, 47
BNNewFromSpec, 48
BNNodeAddFractionalSample, 48
BNNodeAddFractionalSamples, 48
BNNodeAddParent, 48
BNNodeAddSample, 48
BNNodeAddSamples, 48
BNNodeFreeCPT, 48
BNNodeGetCP, 48
BNNodeGetCPTRowCount, 49
BNNodeGetName, 49
BNNodeGetNumChildren, 49
BNNodeGetNumCPTRows, 49
BNNodeGetNumParameters, 49
BNNodeGetNumParents, 49
BNNodeGetNumSamples, 49
BNNodeGetNumValues, 49

148 INDEX

BNNodeGetP, 49
BNNodeGetParent, 50
BNNodeGetParentID, 50
BNNodeHasParent, 50
BNNodeHasParentID, 50
BNNodeInitCPT, 50
BNNodeLookupParentIndex, 50
BNNodeLookupParentIndexByID, 50
BNNodeRemoveParent, 50
BNNodeSetCP, 50
BNNodeStructureEqual, 51
BNNodeZeroCPT, 51
BNPrintStats, 51
BNReadBIF, 51
BNReadBIFFILEP, 51
BNSetName, 51
BNSetPriorStrength, 51
BNSetUserData, 52
BNSmoothProbabilities, 52
BNWriteBIF, 52

beliefnetcorrupt, 53
beliefnetdata, 55
BeliefNetNode

BeliefNet.h, 45
BeliefNetNodeStruct

BeliefNet.h, 45
beliefnetscore, 56
BeliefNetStruct

BeliefNet.h, 45
bindata, 57
bitfield.h, 59

BitFieldFree, 60
BitFieldGetBit, 60
BitFieldGetNumBytes, 60
BitFieldNew, 60
BitFieldPtr, 59
BitFieldSetBit, 60
BitFieldStruct, 59

BitFieldFree
bitfield.h, 60

BitFieldGetBit
bitfield.h, 60

BitFieldGetNumBytes
bitfield.h, 60

BitFieldNew
bitfield.h, 60

BitFieldPtr
bitfield.h, 59

BitFieldSetBit
bitfield.h, 60

BitFieldStruct
bitfield.h, 59

BNAddFractionalSample
BeliefNet.h, 45

BNAddFractionalSamples
BeliefNet.h, 45

BNAddLikelihoodSamples
BeliefNet.h, 45

BNAddSample
BeliefNet.h, 45

BNAddSamples
BeliefNet.h, 45

BNClone
BeliefNet.h, 45

BNCloneNoCPTs
BeliefNet.h, 46

BNFlushStructureCache
BeliefNet.h, 46

BNFree
BeliefNet.h, 46

BNGenerateSample
BeliefNet.h, 46

BNGetExampleSpec
BeliefNet.h, 46

BNGetMaxNodeParameters
BeliefNet.h, 46

BNGetNodeByElimOrder
BeliefNet.h, 46

BNGetNodeByID
BeliefNet.h, 46

BNGetNumIndependentParameters
BeliefNet.h, 47

BNGetNumNodes
BeliefNet.h, 47

BNGetNumParameters
BeliefNet.h, 47

BNGetSimStructureDifference
BeliefNet.h, 47

BNGetUserData
BeliefNet.h, 44

BNHasCycle
BeliefNet.h, 47

BNInitLikelihoodSampling
BeliefNet.h, 47

BNLearn
bnlearn-engine.h, 62

bnlearn, 61
bnlearn-engine.h, 62

BNLearn, 62
BNLearn FreeParams, 62
BNLearn NewParams, 62

BNLearn FreeParams
bnlearn-engine.h, 62

BNLearn NewParams
bnlearn-engine.h, 62

BNLikelihoodSampleNTimes
BeliefNet.h, 47

BNNew

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

INDEX 149

BeliefNet.h, 47
BNNewFromSpec

BeliefNet.h, 48
BNNodeAddFractionalSample

BeliefNet.h, 48
BNNodeAddFractionalSamples

BeliefNet.h, 48
BNNodeAddParent

BeliefNet.h, 48
BNNodeAddSample

BeliefNet.h, 48
BNNodeAddSamples

BeliefNet.h, 48
BNNodeFreeCPT

BeliefNet.h, 48
BNNodeGetCP

BeliefNet.h, 48
BNNodeGetCPTRowCount

BeliefNet.h, 49
BNNodeGetName

BeliefNet.h, 49
BNNodeGetNumChildren

BeliefNet.h, 49
BNNodeGetNumCPTRows

BeliefNet.h, 49
BNNodeGetNumParameters

BeliefNet.h, 49
BNNodeGetNumParents

BeliefNet.h, 49
BNNodeGetNumSamples

BeliefNet.h, 49
BNNodeGetNumValues

BeliefNet.h, 49
BNNodeGetP

BeliefNet.h, 49
BNNodeGetParent

BeliefNet.h, 50
BNNodeGetParentID

BeliefNet.h, 50
BNNodeHasParent

BeliefNet.h, 50
BNNodeHasParentID

BeliefNet.h, 50
BNNodeInitCPT

BeliefNet.h, 50
BNNodeLookupParentIndex

BeliefNet.h, 50
BNNodeLookupParentIndexByID

BeliefNet.h, 50
BNNodeRemoveParent

BeliefNet.h, 50
BNNodeSetCP

BeliefNet.h, 50
BNNodeStructureEqual

BeliefNet.h, 51
BNNodeZeroCPT

BeliefNet.h, 51
BNPrintStats

BeliefNet.h, 51
BNReadBIF

BeliefNet.h, 51
BNReadBIFFILEP

BeliefNet.h, 51
BNSetName

BeliefNet.h, 51
BNSetPriorStrength

BeliefNet.h, 51
BNSetUserData

BeliefNet.h, 52
BNSmoothProbabilities

BeliefNet.h, 52
BNWriteBIF

BeliefNet.h, 52

C45interface.h, 63
C45Learn, 63

C45Learn
C45interface.h, 63

c45wrapper, 64
c50wrapper, 65
cleandata, 66
clusterdata, 67
combinedata, 68
Core APIs, 13
cvfdt, 69

Debug.h, 70
DebugError, 70
DebugGetMessageLevel, 70
DebugGetTarget, 70
DebugMessage, 70
DebugSetMessageLevel, 70
DebugSetTarget, 71
DebugWarn, 71

DebugError
Debug.h, 70

DebugGetMessageLevel
Debug.h, 70

DebugGetTarget
Debug.h, 70

DebugMessage
Debug.h, 70

DebugSetMessageLevel
Debug.h, 70

DebugSetTarget
Debug.h, 71

DebugWarn
Debug.h, 71

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

150 INDEX

Decision Tree Section, 16
decisionstump, 72
DecisionTree

DecisionTree.h, 75
DecisionTree.h, 73
DecisionTree.h

DecisionTree, 75
DecisionTreeAddToClassDistribution,

76
DecisionTreeClassify, 76
DecisionTreeClone, 76
DecisionTreeCountNodes, 76
DecisionTreeFree, 76
DecisionTreeGatherGrowingNodes, 76
DecisionTreeGatherLeaves, 76
DecisionTreeGetChild, 76
DecisionTreeGetChildCount, 76
DecisionTreeGetClass, 77
DecisionTreeGetClassDistributionSam-

pleCount, 77
DecisionTreeGetClassProb, 77
DecisionTreeGetGrowingData, 77
DecisionTreeGetMostCommonClass, 77
DecisionTreeIsLeaf, 77
DecisionTreeIsNodeGrowing, 77
DecisionTreeIsTreeGrowing, 77
DecisionTreeNew, 77
DecisionTreeOneStepClassify, 78
DecisionTreePrint, 78
DecisionTreePrintStats, 78
DecisionTreePtr, 75
DecisionTreeRead, 78
DecisionTreeReadC45, 78
DecisionTreeSetClass, 78
DecisionTreeSetClassProb, 79
DecisionTreeSetGrowingData, 79
DecisionTreeSetTypeGrowing, 79
DecisionTreeSetTypeLeaf, 79
DecisionTreeSplitOnContinuousAt-

tribute, 79
DecisionTreeSplitOnDiscreteAttribute,

79
DecisionTreeWrite, 79
DecisionTreeZeroClassDistribution, 80

DecisionTreeAddToClassDistribution
DecisionTree.h, 76

DecisionTreeClassify
DecisionTree.h, 76

DecisionTreeClone
DecisionTree.h, 76

DecisionTreeCountNodes
DecisionTree.h, 76

DecisionTreeFree
DecisionTree.h, 76

DecisionTreeGatherGrowingNodes
DecisionTree.h, 76

DecisionTreeGatherLeaves
DecisionTree.h, 76

DecisionTreeGetChild
DecisionTree.h, 76

DecisionTreeGetChildCount
DecisionTree.h, 76

DecisionTreeGetClass
DecisionTree.h, 77

DecisionTreeGetClassDistributionSampleCount
DecisionTree.h, 77

DecisionTreeGetClassProb
DecisionTree.h, 77

DecisionTreeGetGrowingData
DecisionTree.h, 77

DecisionTreeGetMostCommonClass
DecisionTree.h, 77

DecisionTreeIsLeaf
DecisionTree.h, 77

DecisionTreeIsNodeGrowing
DecisionTree.h, 77

DecisionTreeIsTreeGrowing
DecisionTree.h, 77

DecisionTreeNew
DecisionTree.h, 77

DecisionTreeOneStepClassify
DecisionTree.h, 78

DecisionTreePrint
DecisionTree.h, 78

DecisionTreePrintStats
DecisionTree.h, 78

DecisionTreePtr
DecisionTree.h, 75

DecisionTreeRead
DecisionTree.h, 78

DecisionTreeReadC45
DecisionTree.h, 78

DecisionTreeSetClass
DecisionTree.h, 78

DecisionTreeSetClassProb
DecisionTree.h, 79

DecisionTreeSetGrowingData
DecisionTree.h, 79

DecisionTreeSetTypeGrowing
DecisionTree.h, 79

DecisionTreeSetTypeLeaf
DecisionTree.h, 79

DecisionTreeSplitOnContinuousAttribute
DecisionTree.h, 79

DecisionTreeSplitOnDiscreteAttribute
DecisionTree.h, 79

DecisionTreeWrite
DecisionTree.h, 79

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

INDEX 151

DecisionTreeZeroClassDistribution
DecisionTree.h, 80

doxygen.h, 81

Example
Example.h, 84

Example.h, 82
Example, 84
ExampleAddNoise, 84
ExampleClone, 84
ExampleDistance, 84
ExampleFree, 85
ExampleGetClass, 84
ExampleGetContinuousAttributeValue,

85
ExampleGetDiscreteAttributeValue, 85
ExampleGetNumAttributes, 84
ExampleIsAttributeContinuous, 85
ExampleIsAttributeDiscrete, 85
ExampleIsAttributeUnknown, 84
ExampleIsClassUnknown, 85
ExampleNew, 85
ExamplePtr, 84
ExampleRead, 85
ExampleSetAttributeUnknown, 86
ExampleSetClass, 86
ExampleSetClassUnknown, 86
ExampleSetContinuousAttributeValue,

86
ExampleSetDiscreteAttributeValue, 86
ExamplesRead, 86
ExampleWrite, 87

ExampleAddNoise
Example.h, 84

ExampleClone
Example.h, 84

ExampleDistance
Example.h, 84

ExampleFree
Example.h, 85

ExampleGenerator
ExampleGenerator.h, 88

ExampleGenerator.h, 88
ExampleGenerator.h

ExampleGenerator, 88
ExampleGeneratorFree, 89
ExampleGeneratorGenerate, 89
ExampleGeneratorNew, 89
ExampleGeneratorPtr, 88

ExampleGeneratorFree
ExampleGenerator.h, 89

ExampleGeneratorGenerate
ExampleGenerator.h, 89

ExampleGeneratorNew

ExampleGenerator.h, 89
ExampleGeneratorPtr

ExampleGenerator.h, 88
ExampleGetClass

Example.h, 84
ExampleGetContinuousAttributeValue

Example.h, 85
ExampleGetDiscreteAttributeValue

Example.h, 85
ExampleGetNumAttributes

Example.h, 84
ExampleGroupStats

ExampleGroupStats.h, 93
ExampleGroupStats.h, 90
ExampleGroupStats.h

ExampleGroupStats, 93
ExampleGroupStatsAddExample, 93
ExampleGroupStatsDeactivate, 93
ExampleGroupStatsEntropyContinu-

ousAttributeSplit, 93
ExampleGroupStatsEntropyDiscreteAt-

tributeSplit, 93
ExampleGroupStatsEntropyTotal, 94
ExampleGroupStatsFree, 94
ExampleGroupStatsGetAttribute-

Tracker, 94
ExampleGroupStatsGetClassLogP, 94
ExampleGroupStatsGetClassPercent,

94
ExampleGroupStatsGetMostCommon-

Class, 94
ExampleGroupStatsGetMostCommon-

ClassAboveThreshold, 94
ExampleGroupStatsGetMostCommon-

ClassBelowThreshold, 94
ExampleGroupStatsGetMostCommon-

ClassCount, 94
ExampleGroupStatsGetMostCommon-

ClassForAttVal, 95
ExampleGroupStatsGetMostCommon-

ClassLaplace, 95
ExampleGroupStatsGetPercentBe-

lowThreshold, 95
ExampleGroupStatsGetValueGiven-

ClassMEstimate, 95
ExampleGroupStatsGetValueGiven-

ClassMEstimateLogP, 95
ExampleGroupStatsGetValuePercent,

95
ExampleGroupStatsGiniContinuousAt-

tributeSplit, 96
ExampleGroupStatsGiniDiscreteAt-

tributeSplit, 96
ExampleGroupStatsGiniTotal, 96

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

152 INDEX

ExampleGroupStatsIgnoreAttribute, 96
ExampleGroupStatsIgnoreS-

plitsWorseThanEntropy, 96
ExampleGroupStatsIgnoreS-

plitsWorseThanGini, 96
ExampleGroupStatsIsAttributeActive,

97
ExampleGroupStatsIsPure, 97
ExampleGroupStatsLimitSplitsEntropy,

97
ExampleGroupStatsNew, 97
ExampleGroupStatsNumExamplesSeen,

97
ExampleGroupStatsNumSplitThresh-

olds, 98
ExampleGroupStatsPtr, 93
ExampleGroupStatsReactivate, 98
ExampleGroupStatsStopAddingSplits,

98
ExampleGroupStatsWrite, 98

ExampleGroupStatsAddExample
ExampleGroupStats.h, 93

ExampleGroupStatsDeactivate
ExampleGroupStats.h, 93

ExampleGroupStatsEntropyContinuousAttributeSplit
ExampleGroupStats.h, 93

ExampleGroupStatsEntropyDiscreteAttributeSplit
ExampleGroupStats.h, 93

ExampleGroupStatsEntropyTotal
ExampleGroupStats.h, 94

ExampleGroupStatsFree
ExampleGroupStats.h, 94

ExampleGroupStatsGetAttributeTracker
ExampleGroupStats.h, 94

ExampleGroupStatsGetClassLogP
ExampleGroupStats.h, 94

ExampleGroupStatsGetClassPercent
ExampleGroupStats.h, 94

ExampleGroupStatsGetMostCommonClass
ExampleGroupStats.h, 94

ExampleGroupStatsGetMostCommonClassAboveThreshold
ExampleGroupStats.h, 94

ExampleGroupStatsGetMostCommonClassBelowThreshold
ExampleGroupStats.h, 94

ExampleGroupStatsGetMostCommonClassCount
ExampleGroupStats.h, 94

ExampleGroupStatsGetMostCommonClassForAttVal
ExampleGroupStats.h, 95

ExampleGroupStatsGetMostCommonClassLaplace
ExampleGroupStats.h, 95

ExampleGroupStatsGetPercentBelowThreshold
ExampleGroupStats.h, 95

ExampleGroupStatsGetValueGivenClassMEstimate
ExampleGroupStats.h, 95

ExampleGroupStatsGetValueGivenClassMEstimateLogP
ExampleGroupStats.h, 95

ExampleGroupStatsGetValuePercent
ExampleGroupStats.h, 95

ExampleGroupStatsGiniContinuousAttributeSplit
ExampleGroupStats.h, 96

ExampleGroupStatsGiniDiscreteAttributeSplit
ExampleGroupStats.h, 96

ExampleGroupStatsGiniTotal
ExampleGroupStats.h, 96

ExampleGroupStatsIgnoreAttribute
ExampleGroupStats.h, 96

ExampleGroupStatsIgnoreSplitsWorseThanEntropy
ExampleGroupStats.h, 96

ExampleGroupStatsIgnoreSplitsWorseThanGini
ExampleGroupStats.h, 96

ExampleGroupStatsIsAttributeActive
ExampleGroupStats.h, 97

ExampleGroupStatsIsPure
ExampleGroupStats.h, 97

ExampleGroupStatsLimitSplitsEntropy
ExampleGroupStats.h, 97

ExampleGroupStatsNew
ExampleGroupStats.h, 97

ExampleGroupStatsNumExamplesSeen
ExampleGroupStats.h, 97

ExampleGroupStatsNumSplitThresholds
ExampleGroupStats.h, 98

ExampleGroupStatsPtr
ExampleGroupStats.h, 93

ExampleGroupStatsReactivate
ExampleGroupStats.h, 98

ExampleGroupStatsStopAddingSplits
ExampleGroupStats.h, 98

ExampleGroupStatsWrite
ExampleGroupStats.h, 98

ExampleIsAttributeContinuous
Example.h, 85

ExampleIsAttributeDiscrete
Example.h, 85

ExampleIsAttributeUnknown
Example.h, 84

ExampleIsClassUnknown
Example.h, 85

ExampleNew
Example.h, 85

ExamplePtr
Example.h, 84

ExampleRead
Example.h, 85

ExampleSetAttributeUnknown
Example.h, 86

ExampleSetClass
Example.h, 86

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

INDEX 153

ExampleSetClassUnknown
Example.h, 86

ExampleSetContinuousAttributeValue
Example.h, 86

ExampleSetDiscreteAttributeValue
Example.h, 86

ExampleSpec
ExampleSpec.h, 101

ExampleSpec.h, 99
ExampleSpec.h

ExampleSpec, 101
ExampleSpecAddAttributeValue, 102
ExampleSpecAddClass, 102
ExampleSpecAddContinuousAttribute,

102
ExampleSpecAddDiscreteAttribute, 102
ExampleSpecFree, 102
ExampleSpecGetAttributeName, 103
ExampleSpecGetAttributeType, 101
ExampleSpecGetAttributeValueCount,

101
ExampleSpecGetAttributeValueName,

101
ExampleSpecGetClassValueName, 103
ExampleSpecGetNumAttributes, 103
ExampleSpecGetNumClasses, 103
ExampleSpecIsAttributeContinuous,

103
ExampleSpecIsAttributeDiscrete, 103
ExampleSpecIsAttributeIgnored, 103
ExampleSpecLookupAttributeName,

103
ExampleSpecLookupAttributeValue-

Name, 103
ExampleSpecLookupClassName, 104
ExampleSpecNew, 104
ExampleSpecPtr, 101
ExampleSpecRead, 104
ExampleSpecWrite, 104

ExampleSpecAddAttributeValue
ExampleSpec.h, 102

ExampleSpecAddClass
ExampleSpec.h, 102

ExampleSpecAddContinuousAttribute
ExampleSpec.h, 102

ExampleSpecAddDiscreteAttribute
ExampleSpec.h, 102

ExampleSpecFree
ExampleSpec.h, 102

ExampleSpecGetAttributeName
ExampleSpec.h, 103

ExampleSpecGetAttributeType
ExampleSpec.h, 101

ExampleSpecGetAttributeValueCount

ExampleSpec.h, 101
ExampleSpecGetAttributeValueName

ExampleSpec.h, 101
ExampleSpecGetClassValueName

ExampleSpec.h, 103
ExampleSpecGetNumAttributes

ExampleSpec.h, 103
ExampleSpecGetNumClasses

ExampleSpec.h, 103
ExampleSpecIsAttributeContinuous

ExampleSpec.h, 103
ExampleSpecIsAttributeDiscrete

ExampleSpec.h, 103
ExampleSpecIsAttributeIgnored

ExampleSpec.h, 103
ExampleSpecLookupAttributeName

ExampleSpec.h, 103
ExampleSpecLookupAttributeValueName

ExampleSpec.h, 103
ExampleSpecLookupClassName

ExampleSpec.h, 104
ExampleSpecNew

ExampleSpec.h, 104
ExampleSpecPtr

ExampleSpec.h, 101
ExampleSpecRead

ExampleSpec.h, 104
ExampleSpecWrite

ExampleSpec.h, 104
ExamplesRead

Example.h, 86
ExampleWrite

Example.h, 87

FloatListPtr, 31
folddata, 105

HashTable, 32
HashTable.h, 107
HashTable.h

HashTableFind, 107
HashTableFree, 107
HashTableInsert, 108
HashTableNew, 108
HashTableRemove, 108

HashTableFind
HashTable.h, 107

HashTableFree
HashTable.h, 107

HashTableInsert
HashTable.h, 108

HashTableNew
HashTable.h, 108

HashTableRemove

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

154 INDEX

HashTable.h, 108

IntListPtr, 33

kmeans, 109

Learning Programs, 19
lists.h, 110

VALAppend, 111
VALFree, 111
VALIndex, 111
VALInsert, 111
VALLength, 111
VALNew, 112
VALPush, 112
VALRemove, 112
VALSet, 112
VALSort, 112

memory.h, 113
MFreePtr, 114
MGetActivePool, 114
MGetPoolAllocation, 114
MGetTotalAllocation, 114
MMemMove, 113
MMovePtrToPool, 114
MNewPtr, 114
MSetActivePool, 114
MSetAllocFailFunction, 114

MFreePtr
memory.h, 114

MGetActivePool
memory.h, 114

MGetPoolAllocation
memory.h, 114

MGetTotalAllocation
memory.h, 114

MMemMove
memory.h, 113

MMovePtrToPool
memory.h, 114

MNewPtr
memory.h, 114

mostcommonclass, 116
MSetActivePool

memory.h, 114
MSetAllocFailFunction

memory.h, 114

naivebayes, 117

Other Tools, 20

random.h, 118
RandomDouble, 118

RandomFreeState, 118
RandomGaussian, 118
RandomInit, 119
RandomLong, 119
RandomNewState, 119
RandomRange, 119
RandomSeed, 119
RandomSetState, 119
RandomStandardNormal, 119

RandomDouble
random.h, 118

RandomFreeState
random.h, 118

RandomGaussian
random.h, 118

RandomInit
random.h, 119

RandomLong
random.h, 119

RandomNewState
random.h, 119

RandomRange
random.h, 119

RandomSeed
random.h, 119

RandomSetState
random.h, 119

RandomStandardNormal
random.h, 119

REPrune.h, 120
REPruneBatch, 120
REPruneBatchFile, 120

REPruneBatch
REPrune.h, 120

REPruneBatchFile
REPrune.h, 120

sampledata, 121
shuffledata, 122
sprint, 123
StatGetNormalBound

stats.h, 125
StatHoeffdingBoundOne

stats.h, 125
StatHoeffdingBoundTwo

stats.h, 125
StatLogGamma

stats.h, 126
stats.h, 124

StatGetNormalBound, 125
StatHoeffdingBoundOne, 125
StatHoeffdingBoundTwo, 125
StatLogGamma, 126
StatTracker, 125

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

INDEX 155

StatTrackerAddSample, 126
StatTrackerFree, 126
StatTrackerGetMean, 126
StatTrackerGetNormalBound, 126
StatTrackerGetNumSamples, 126
StatTrackerGetStdev, 126
StatTrackerGetVariance, 126
StatTrackerNew, 126
StatTrackerStruct, 125

StatTracker
stats.h, 125

StatTrackerAddSample
stats.h, 126

StatTrackerFree
stats.h, 126

StatTrackerGetMean
stats.h, 126

StatTrackerGetNormalBound
stats.h, 126

StatTrackerGetNumSamples
stats.h, 126

StatTrackerGetStdev
stats.h, 126

StatTrackerGetVariance
stats.h, 126

StatTrackerNew
stats.h, 126

StatTrackerStruct
stats.h, 125

treedata, 128

uRunner, 129
Utility APIs, 15

VALAppend
lists.h, 111

VALFree
lists.h, 111

VALIndex
lists.h, 111

VALInsert
lists.h, 111

VALLength
lists.h, 111

VALNew
lists.h, 112

VALPush
lists.h, 112

VALRemove
lists.h, 112

VALSet
lists.h, 112

VALSort

lists.h, 112
vfbn1, 131
vfbn2, 132
VFDT

vfdt-engine.h, 136
vfdt, 133
vfdt-engine.h, 134

VFDT, 136
VFDTBatchExamplesDone, 136
VFDTFree, 136
VFDTGetLearnedTree, 136
VFDTGetNumBoundsUsed, 136
VFDTGetNumGrowing, 136
VFDTIsDoneLearning, 136
VFDTNew, 136
VFDTPrintStats, 137
VFDTProcessExample, 137
VFDTProcessExampleBatch, 137
VFDTProcessExamples, 137
VFDTProcessExamplesBatch, 137
VFDTPtr, 136
VFDTSetCacheTrainingExamples, 137
VFDTSetLaplace, 137
VFDTSetMaxAllocationMegs, 137
VFDTSetMessageLevel, 138
VFDTSetPrePruneTau, 138
VFDTSetProcessChunkSize, 138
VFDTSetRestartLeaves, 138
VFDTSetUseGini, 138

VFDTBatchExamplesDone
vfdt-engine.h, 136

VFDTFree
vfdt-engine.h, 136

VFDTGetLearnedTree
vfdt-engine.h, 136

VFDTGetNumBoundsUsed
vfdt-engine.h, 136

VFDTGetNumGrowing
vfdt-engine.h, 136

VFDTIsDoneLearning
vfdt-engine.h, 136

VFDTNew
vfdt-engine.h, 136

VFDTPrintStats
vfdt-engine.h, 137

VFDTProcessExample
vfdt-engine.h, 137

VFDTProcessExampleBatch
vfdt-engine.h, 137

VFDTProcessExamples
vfdt-engine.h, 137

VFDTProcessExamplesBatch
vfdt-engine.h, 137

VFDTPtr

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

156 INDEX

vfdt-engine.h, 136
VFDTSetCacheTrainingExamples

vfdt-engine.h, 137
VFDTSetLaplace

vfdt-engine.h, 137
VFDTSetMaxAllocationMegs

vfdt-engine.h, 137
VFDTSetMessageLevel

vfdt-engine.h, 138
VFDTSetPrePruneTau

vfdt-engine.h, 138
VFDTSetProcessChunkSize

vfdt-engine.h, 138
VFDTSetRestartLeaves

vfdt-engine.h, 138
VFDTSetUseGini

vfdt-engine.h, 138
vfem, 139
vfkm, 140
VoidListPtr, 34

xvalidate, 141

Generated on Wed Jul 9 01:59:25 2003 for VFML by Doxygen

