
International Journal of Advanced Computer Engineering and Communication Technology (IJACECT)

 ISSN (Print): 2278-5140, Volume-2, Issue – 2, 2013
6

VHDL IMPLEMENTATION OF 1553 PROTOCOL USING ACTEL

IP CORE
1
Roopesh N.M,

2
Archana &

3
Lakshmi Narasimhan

1&2CIT, Gubbi, Karnataka, India; 3Scientist/Engineer SD, DSG, ISAC, Bangalore, Karnataka, India

Email:
1
roops.nm@gmail.com,

2
arc_telecom@yahoo.co.in,

3
lakshmin@isac.gov.in

Abstract- To implement a MIL-STD-1553 compatible

system, the options that exist are to use a stand-alone

integrated circuit or an IP core. Today, with most digital

logic being implemented on FPGAs, the choice of an IP

Core is advantageous. One such IP core is Core1553BRM

from Actel. Core1553BRM provides a complete, MIL-

STD-1553A and B Bus Controller (BC), Remote Terminal

(RT) and Monitor Terminal (MT) and is compatible with

legacy 1553 solutions.

This paper involves study of 1553 architecture and study

of various features of Core1553BRM IP core from Actel

and implementation on FPGA. A Bus Controller(BC) and

Remote Terminal (RT) are implemented on Actel FPGA

and data transfer between the BC and RT is

demonstrated.

Keywords: Bus Controller (BC); Remote Terminal(RT);

1553B; Encode; Decode

I. INTRODUCTION

Today the use of digital techniques in spacecraft

equipment has greatly increased, as have the number of

subsystems and the volume of data processed by them.

Because analog point-to-point wire bundles are

inefficient and cumbersome means of interconnecting

the sensors, computers, actuators, indicators, and other

equipment onboard the spacecraft, a serial digital

multiplexed data bus was developed. MIL-STD-1553

defines all aspects of the bus which is widely used in

aircraft systems also.

The 1553 multiplexed data bus provides integrated,

centralized system control and a standard interface for

all equipment connected to the bus. The bus concept

provides a means by which all bus traffic is available to

be accessed with a single connection for testing and

interfacing with the system. The standard defines

operation of a serial data bus that interconnects multiple

devices via a twisted, shielded pair of wires. The system

implements a command-response format.

MIL-STD-1553 gives an effective solution for

implementation of Telemetry and Telecomm and in a

spacecraft system. The main onboard computer of a

spacecraft can act as a Bus Controller and all other

subsystems can implement a 1553 remote terminal. This

paper involves the study of 1553B Protocol and

implementation of a BC and RT using IP cores in Actel

FPGA.

II. EXISTING & PROPOSED SYSTEM

The MIL-STD-1553 can be implemented in two ways,

they are, stand alone integrated circuit and using IP

Core. If it is implemented by using stand alone

integrated circuit then the overall circuit size in the

satellite is going to increase.

Implementations based on stand-alone integrated circuit

along with discrete components increase circuit size. An

IP core implementation shall be useful in reducing the

overall circuit size. So in order to decrease overall

circuit size, a single chip solution i.e. implementation

using IP Core is done.

Since the most digital logic in the satellite is being

implemented on FPGAs, the 1553 protocol can be

implemented on the same FPGA by using an IP Core on

the same which utilizes the FPGA effectively &

decreases the overall circuit size in satellite, hence the

choice of an IP Core is advantageous.

III. 1553B PROTOCOL

A. Hardware Characteristics

The MIL-STD-1553B bus has four main elements.

 A bus controller that manages the information

flow.

 Remote terminals that interface one or more

simple subsystems to the data bus and respond to

commands from the bus controller.

 Bus monitor that is used for data bus testing.

 Data bus components (bus couplers, cabling,

terminators and connectors). Data is sequentially

transmitted and received in a multiplexing

scheme over two copper wires from computer to

computer at a rate of 1 megabit per second.

B. Word Types

Three distinct word types are defined by the standard.

These are:

 Command words.

 Data words.

 Status words.

International Journal of Advanced Computer Engineering and Communication Technology (IJACECT)

 ISSN (Print): 2278-5140, Volume-2, Issue – 2, 2013
7

Each word type has a unique format, yet all three

maintain a common structure. Each word is twenty bits

in length. The first three bits are used as a

synchronization field, thereby allowing the decode lock

to re-sync at the beginning of each new word.

The next sixteen bits are the information field and are

different between the three word types. The last bit is

the parity bit. Parity is based on odd parity for the single

word. The three word types are shown in Fig. 1.

A command word shall be comprised of a sync

waveform, remote terminal address field,

transmit/receive (T/R) bit, sub address mode field, word

count/mode code field, and a parity (P) bit. A data word

shall be comprised of a sync waveform, data bits, and a

parity bit. A status word shall be comprised of a sync

waveform, RT address, message error bit,

instrumentation bit, service request bit, three reserved

bits, broadcast command received bit, busy bit,

subsystem flag bit, dynamic bus control acceptance bit,

terminal flag bit, and a parity bit.

Fig 1: Word types

C. Encoding

The data encode shall be Manchester II bi-phase level.

A logic one shall be transmitted as a bipolar coded

signal 1/0 (i.e. a positive pulse followed by a negative

pulse). A logic zero shall be a bipolar coded signal 0/l

(i.e. a negative pulse followed by a positive pulse). A

transition through zero occurs at the midpoint of each

bit time. The transmission bit rate on the bus shall be

1.0 megabit per second. The command sync waveform

shall be an invalid Manchester waveform. The width

shall be three bit times, with the sync waveform being

positive for the first one and one-half bit times, and then

negative for the following one and one-half bit times. If

the next bit following the sync waveform is a logic zero,

then the last half of the sync waveform will have an

apparent width of two clock periods due to the

Manchester encoding.

D. Message Format

The primary purpose of the data bus is to provide a

common media for the exchange of data between

systems. The exchange of data is based on message

transmissions. The standard defines ten types of

message transmission formats. All of these formats are

based on the three word types.

The messages transmitted on the data bus includes bus

controller to remote terminal transfers, remote terminal

to bus controller transfers, remote terminal to remote

terminal transfers, mode command without data word,

mode command with data word (transmit), mode

command with data word (receive), optional broadcast

command as shown in Figures 2 & 3.

Fig 2: Information transfer format

Fig 3: Information transfer format (Broadcast)

E. Mode codes

Mode Codes are defined by the standard to provide the

bus controller with data bus management and error

handling/recovery capability. The mode codes are

divided into two groups: those with, and those without,

a data word.

The data word that is associated with the mode codes

(only one word per mode code is allowed) contains

information pertinent to the control of the bus and does

not generally contain information required by the

subsystem (the exception may be the Synchronize with

Data Word Mode Code). The mode codes are defined

by bit times 15-19 of the command word. The most

significant bit (bit 15) can be used to differentiate

between the two-mode code groups.

International Journal of Advanced Computer Engineering and Communication Technology (IJACECT)

 ISSN (Print): 2278-5140, Volume-2, Issue – 2, 2013
8

IV. CORE 1553BRM

The core consists of six main blocks: a 1553 encoder,

1553 decoders, a protocol controller block, a CPU

interface, a command word legality interface, and a

backend interface as shown in Figure 4.

The core can be configured to provide all three

functions BC, RT, and MT or any combination of the

three. All core variations use all six blocks except for

the command legalization interface, which is only

required in RT functions that implement the RT

legalization function externally.

A single 1553 encoder takes each word to be

transmitted and serializes it using Manchester encoding.

Figure 4: Core1553BRM Block Diagram

The encoder also includes loopback fail logic and

independent logic to prevent Core1553BRM from

transmitting for longer than the allowed period. The

loopback logic monitors the received data and verifies

that the core has correctly received every word that it

transmits. The output of the encoder is gated with the

bus enable signals to select which busses the core

should be transmitting on.

Two decoders take the serial Manchester received data

from each bus and extract the received data words. The

decoder requires a 12, 16, 20, or 24 MHz clock to

extract the data and clock from the serial stream.

The decoder contains a digital phase-locked loop (PLL)

that generates a recovery clock used to sample the

incoming serial data. The data is then deserialized and

the 16-bit word decoded. The decoder detects whether a

command, status, or data word has been received and

checks that no Manchester encoding or parity errors

have occurred in the word.

The protocol controller block handles all the message

sequencing and error recovery for all three operating

modes BC, RT, and BM. This is a complex state

machine that processes messages based on the message

tables set up in memory, or reacts to incoming

command words. The protocol controller

implementation varies depending on which functions

are implemented.

The CPU interface allows the system CPU to access the

control registers within the core. It also allows the CPU

to directly access the memory connected to the backend

interface; this can simplify the system design. The core

includes thirty-three 16-bit registers. Of the 33 registers,

17 are used for control functions and 16 for RT

command legalization. The RT command legalization

registers can be omitted from the core, reducing device

utilization.

For 1553 receive commands (BC transmits data), the

data pointer determines the location of the data words to

be retrieved. The core will retrieve data words

sequentially from the address specified by the data

pointer. Conversely, for a transmit command (BC

receives data), the data pointer determines the memory

location for data storage.

The core stores data words sequentially starting from

this memory location. After transmission or reception,

the core will begin command post processing.

Control of the core operating as an RT is accomplished

through the use of control words stored in descriptor

blocks, and mode codes and sub addresses sent in 1553

messages. Control word information allows the core to

generate interrupts, buffer messages, and control

message processing. Moreover, the descriptor block

contains pointers to data buffers where mode codes and

sub addresses to be used by the host or subsystem in

further message processing are stored.

For receive commands, the core processes each

incoming message for correct format, word count, and

contiguous data. If a message error is detected, the core

will stop processing the remainder of the message,

suppress status word transmission, and set the message

error bit (ME, bit 9) of the status word.

The core will track the message until the end of the

message is detected.

V. DESIGN AND IMPLEMENTATION

The BC is designed and implemented as shown in

Figure 5.

Figure 5: BC configuration block diagram

International Journal of Advanced Computer Engineering and Communication Technology (IJACECT)

 ISSN (Print): 2278-5140, Volume-2, Issue – 2, 2013
9

To write values to 1553core registers and to monitor

command blocks we use Core8051, and a 2kX16

external memory is used to store command blocks and

data block. Since the same memory is used between

8051 and 1553 it is possible that Core1553 and

Core8051 read and write in the same location at the

same time. Such conflicts should be avoided by using

arbitration or multiplexer logic. PCI interface is

used to write/read TC/TM commands to FPGA TC/TM

registers.

For telecomm and, 8051 programs 1553 for BC by

programming the CPU interface registers and operation

starts by writing start execution bit. PCI writes

command words into FPGA TC registers.

On user request FPGA sends an interrupt to 8051. 8051

writes this data to shared memory and Core1553

transmits these words on the 1553 bus.

For telemetry, a periodic scheduler(counter) is run on

the FPGA once in a second. This interrupts 8051. 8051

programs Core1553BC to send TM request to RT.

Appropriate locks are put in the BC FPGA to see to it

TM and TC requests do not affect each other when they

occur simultaneously and are scheduled one after the

other. On completion, stops BC, writes status to FPGA

status register.

The RT is designed and implemented as shown in

Figure 6.

Figure 6 : RT Configuration Block Diagram

On RT side we will not use Core 8051 for initialization

and controlling instead we used state machine. Core

1553 RT receives requests on bus and if the request is

TC, it receives all data words and saves in memory

location allocated for particular sub address/mode code.

If the request word is TM, then RT takes TM data saved

in memory and sends to BC through the required bus.

BC and RT are implemented on Actel A3P1000

Proasic3 FPGA. BC is implemented on a PCI card. RT

is implemented on an FPGA kit.

An application software is designed to handle

simultaneous telemetry and telecomm and requirements,

using C++ on MS Visual Studio.

This software periodically runs a thread to access PCI

registers(TM related) and read and display Telemetry

data. A user driven thread takes command inputs from

user for Telecomm and and sends them to PCI registers

(TC related) which are then transmitted by BC to RT.

Memory Formation

Since in BC set up, Core8051 processes 8-bit data and

Core 1553 processes 16-bit data, we formed a common

memory where we can access 8-bit and 16-bit data.

Actel’s A3P1000 Proasic3 Evaluation kit supports 4k*9

memory block hence we used two 4k*9 memory blocks

to form single 2k*16 memory block as shown in Figure

7, where one block is used to access lower byte and

other block is used to access higher byte data. These

two blocks are differentiated by 8051addr(0) bit on

microcontroller side.

VI. ALGORITHM

Step1: Start

Step2: Initialize all required signals, 18-bit

Counter, Memory, flip flops, Multiplexer etc.

Step3: Design 18-bit Counter, required amount of

Memory, flip flop, Multiplexer etc.

Step 4: Divide the board clock by 4 to 8051 clock and

8051 clock by 32 to 18-bit counter using Flip Flops.

Step 5: Using counter generate a pulse for every second

for TM request.

Step 6: Write 8051 code to configure Core1553 BC

registers and to manage TM and TC operation of BC.

Step 7: On BC side write VHDL code for arbiter, to

provide signals for INT0 and INT1.

Step 8: If INT0 occurs 8051 makes 1553 BC to send

telecomm and by accessing data stored in common

memory on BC side, on receiving RT saves TC data in

its memory and generates appropriate pulses.

Step 9: If INT1 occurs 8051 makes 1553 BC to send

telemetry request to RT then RT sends a data words

stored in memory on RT side.

Step 10: Stop

VII. RESULT

BC and RT designed using Core1553 are interfaced and

tested for TM and TC. The results of simulation are

recorded. The BC sends a TC request (command word)

and 12 data words, RT receives those 12 TC words and

International Journal of Advanced Computer Engineering and Communication Technology (IJACECT)

 ISSN (Print): 2278-5140, Volume-2, Issue – 2, 2013
10

saves in it memory and generates command pulses on

the RT subsystem, and sends status word back to BC.

This is shown in Figure 8-Figure 9.

The BC sends a TM request for every 1 sec, upon

receiving this request RT sends status word and required

amount of data words as shown in Figure 10.

Figure 8 :BC sending command & data words

Figure 9 :RT sending command & data words

Figure 10 :BC requesting TM & RT replying

Next the BC and RT is implemented on FPGA kits, and

using application software TM reception and TC

sending is verified as shown in Figure 11-Figure 12.

The TC reception on RT is verified by pulses and also

we made loopback logic for verification and it is shown

in Figure 12.

Figure 11 : TM in Application Software

Figure 12 : TC & TM in Application Software

VIII. CONCLUSION

In this paper the study of 1553 architecture and study of

various features of Core1553BRM IP core from Actel

are carried out successfully. A Bus Controller(BC) and

Remote Terminal (RT) are implemented on an Actel

FPGA and data transfer between the BC and RT is

demonstrated successfully.

IX. ACKNOWLEDGEMENT

On the completion of my paper, I would like to express

my deepest gratitude to all those whose kindness and

advice have made this work possible.

I am greatly indebted to my guides N Lakshmi

Narasimhan, scientist/engineer SD, DSG, ISAC,

Bangalore and Archana sompur, Senior Lecturer, ECE

Department, CIT, Gubbi who gave me valuable

suggestions. Their effective advice, shrewd comments

have kept the paper in the right direction. I would like to

thank my friends for their constructive suggestions.

X. REFERENCES

[1] www.aim-online.com, MIL-STD-1553

TUTORIAL, AIM Gmbh

[2] www.actel.com, Core 1553BRT-EBR Enhanced

Bit Rate 1553 Remote terminal

[3] Ing. Cristian Pérez, Ing. Mauricio Principi, Lic.

Ariel Principi, Ing. Diego Fusari, Sr. Diego

Badino, “Bus Monitor Implementation for MIL-

STD 1553B protocol with FPGA device and PC

connectivity”

[4] Interfaces and Standards MIL-STD-1553/1773

Basics, NASA Office of Logic Design

[5] www.actel.com, Core 1553 BRM

[6] www.actel.com, Designing a MIL-STD-1553

System Using Core1553 and Core8051

[7] Junling Tian, Kai Hu, Huiying Zhang, Jianwei

Niu, Hong Jiang, “Design of MILSTD-1553B

International Journal of Advanced Computer Engineering and Communication Technology (IJACECT)

 ISSN (Print): 2278-5140, Volume-2, Issue – 2, 2013
11

Protocol Simulation System” 2010 3rd

International Conference on Advanced Computer

Theory and Engineering. L

[8] Iang Zhijian, “Research and Design of 1553B

Protocol Bus Control Unit” 2010 International

Conference on Educational and Network

Technology.

[9] Myung-Jin Baek, Jong-In Lee, Eun-Sup Sim,

Hak-Jung Kim, Joo-Jin Lee, “On-Board

Management of Multiple Processor Spacecraft

System” International Conference, 2002 IEEE.

[10] www.actel.com, Core 8051 Data Sheet.

[11] www.actel.com, Core 1553 Development Kit

User Guide

