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We report suitable surface energy‐nonlocal‐integral and ‐differential models for investigating mechanical
behavior of a nanosystem consists of double parallel nanorods with defects. By visualizing the locally caused
defects by appropriate linear springs, the equations of motion that display longitudinal vibrations of the
defected nanosystem are derived accounting for nonlocality and surface energy effects. For the nanosystem
at hand with a single defect in each nanorod, there would exist four coupled‐integro‐partial differential equa-
tions with eight boundary conditions. By evaluating the exact nonlocal‐surface energy‐based modes associated
with fixed–fixed and fixed‐free defected nanorods according to the nonlocal‐differential‐based model, Galerkin
method is implemented to assess the longitudinal frequencies. The capabilities of the nonlocal‐integral‐based
model in capturing the natural frequencies of the nonlocal‐differential‐based model for the defected nanosys-
tem with fixed–fixed and fixed‐free ends are revealed. The roles of the nonlocality, surface energy, nanorod
diameter and length, location and mechanical constants of defects as well as the constant of the elastic interface
layer on the free vibration are explained.
1. Introduction

Nanorods are one‐dimensional nanostructures of length up to one‐
hundred nanometers, which are commonly synthesized from metals
and semiconducting materials. They have many potential applica-
tions in display technology [1,2], micro‐/nano‐electromechanical sys-
tems [3,4], light‐emitting diodes [5,6], and nanosensors [7,8]. Most
of these great applications are indebted to the perfect structure of
nanorods; nevertheless, defects can be inevitably produced in nanor-
ods due to the vacancies and dislocations during the synthesis pro-
cess as well as externally applied loads. Commonly, the defects
endanger the anticipated duties of nanorods, particularly their crucial
tasks in bearing the exerted statics and dynamical loads. To optimize
the mechanical performance of defected nanorods, the influence of
defects on their free dynamic response should be appropriately
elucidated.

At the nanoscale level, vibration of each atom is commonly affected
by the dynamical motion of its nearby atoms because of inter‐atoms
bonds. From structural mechanics points of view, it means that the sta-
tus of stress at each point of the continuum does not only depend on
the stress at that point, but also on the status of the stress of its
neighboring points (i.e., nonlocality of stress field). Such a reality could
not be predicted by the classical theory of elasticity (CTE) since it is
fundamentally established based on the dependency of the stress field
at each point to the stress at that point only. To eliminate such a draw-
back of the CTE for low‐dimensional structures, several advanced con-
tinuum theories were developed by investigators over the preceding
century. One of the most common theories, which can be applicable
to any physical field, is the nonlocal theory of elasticity (NTE) of Erin-
gen [9–12]. In the context of this theory, the nonlocal stress is
expressed as the integral of the product of a kernel function and the
local stress (i.e., classical stress) over the spatial domain of the struc-
ture. The kernel function is an attenuating function with a compact
support domain whose coefficient is determined such that the integral
of the kernel function over the volume of the structure would be equal
to one. The kernel function at each point relies on the point’s distance
from the point whose stress is of concern as well as the length‐scale.
The length‐scale or small‐scale parameter for each material is gener-
ally a function of its atomic bond length. Commonly, the value of this
factor is calculated such that leads to the best correspondence between
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the predicted dispersion curves by the nonlocal model and those of a
suitable atomic methodology like molecular dynamics, density‐
functional theory, and so on. Up to now, the NTE of Eringen has been
frequently employed for mechanical analysis of various structures at
the nanoscale, including nanorods [13–19], nanobeams [20–36], and
nanoplates [37–42]; however, application of differential‐based formu-
lations of the NTE to the problems of cantilevered nanobeams leads to
some paradoxical mechanical response [43–45]. In recent years,
nonlocal‐strain gradient‐based models have been also applied to the
buckling and vibrational problems of beam‐like and plate‐like nanos-
tructures [46–49]. By this brief literature review, herein, both
nonlocal‐differential and nonlocal‐integral formulations for axial
vibration analysis of the defected nanosystem are presented.

The dynamical analysis of individual nanorods using the NTE has
been focus of attention of investigators in the past decade [50–59].
Additionally, longitudinal vibration of and wave propagation in
nanosystems consist of double or multiple elastic (viscoelastic) nanor-
ods [60–63] have been examined by employing the NTE, and an
inclusive knowledge regarding the influence of the nonlocality on
their free dynamics response is now available; however, the mechan-
ical behavior of defected nanorod systems have not been displayed
yet.

By decreasing the dimensions of structures, the ratio of the sur-
face area to the volume generally increases. It implies that if a
low‐dimensional structure could be somehow decomposed into the
surface and the bulk, the share of kinetic and strain energy of the sur-
face in the total energy would not be negligible anymore. Based on
this original idea, Gurtin and Morduch [64–67] proposed the surface
theory of elasticity (STE) of solids. In such a context, the surface is a
very thin layer with an infinitesimal thickness that has been strongly
attached to the bulk. The material constants of the surface layer,
namely residual stress in unrestrained condition as well as the Lamé
constants, are commonly determined by comparing the predicted
results by the STE and those of another atomic‐based approach.
The STE by Gurtin and Murdoch has been widely employed for cap-
turing the mechanical response of nanorods, nanobeams, and nano-
plates [68–77].

To take into account both surface energy and nonlocality in
modeling of nanorods, a wise choice is to use a nonlocal‐surface
energy‐based theory (NSTE). In this regard, Kiani [78] examined
nonlocal‐surface energy‐based axial vibrations of an elastically sup-
ported nanorod. To this end, nonlocal‐integral equations of motion
of the nanostructure were derived, and then solved via a meshless
technique as well as modal analysis for natural axial frequencies. In
contrast to the differential‐based models in which nonlocality was
incorporated into the mass and deriving forces, in the newly estab-
lished model, the nonlocality was exclusively incorporated into the
stiffness term, indicating a more reasonable and engineering sense.
In another work, Kiani [79] investigated longitudinal vibration of
functionally graded nanorods with varying cross‐section. The problem
was formulated in the context of the NSTE through developing
nonlocal‐integro equations, and then solved by the RKPM and Galerkin
approach through employing admissible modes associated with fix-
ed–fixed and fixed‐free end conditions.

Despite many conducted scientific works on vibrations of individ-
ual nanorods as well as multiple‐nanorod‐systems, the influence of
defects on their vibrations has been rarely investigated. In this
regard, Hsu et al. [80] analytically studied nonlocal axial frequencies
of clamped–clamped and clamped‐free nanorods with a single
cracked zone. The existence of the crack was introduced to the model
via an axial spring at the location of the occurrence of the crack. The
influences of the crack parameters (intensity and location) as well as
the nonlocal parameter on the fundamental frequency of the cracked
nanostructure was explained. Yayli and Cercevik [81] established an
analytical nonlocal elasticity‐based model to examine axial vibration
of cracked nanorods and carbon nanotubes with arbitrary boundary
2

conditions. Through modeling of the fractured zone by an axial
spring, the axial displacement was appropriately expressed by using
Fourier’s series accounting for the axial stiffness of ends’ springs.
Additionally, flexural and torsional vibrations of cracked nanorods
and nanobeams have been of interest of some scholars during recent
years [82–84].

This brief literature survey clearly reveals that the longitudinal
free dynamic response of locally defected double‐nanorod‐systems
has not been considered yet. To bridge this scientific gap, herein
we are interested in exclusive exploring free vibration behavior of
double‐nanorod‐systems with local defects through developing suit-
able nonlocal‐differential and nonlocal‐integral models. Using the
STE of Gurtin and Murdoch, the equations of motion are presented
according to both nonlocal‐differential and nonlocal‐integral
continuum‐based theory of Eringen. To this end, the locally caused
defects and the dynamic interactions of double nanorods have been
modeled by linear springs and an elastic interface layer, respectively.
The resulting coupled integro‐partial differential equations are then
solved by using Galerkin‐based admissible mode method. For most
common boundary conditions (i.e., fixed‐free and fixed–fixed), the
influences of crucial factors on the natural frequencies are investi-
gated. The capabilities of the nonlocal‐differential model in capturing
the frequencies of the nonlocal‐integral model are presented for par-
ticular cases. Special attention is also paid to the effects of nonlocal-
ity and surface energy on the dynamical response of the nanosystem.
The achieved results from this comprehensive study and the sug-
gested approach provide very helpful insights for dynamic analysis
of more complex nanosystems consisting of multiple‐defected
nanorods.

2. Development of a nonlocal-differential-based mathematical
model

2.1. Nonlocal-differential-surface energy-based governing equations

Consider a nanosystem consists of doubly parallel nanorods with
local defects, as shown in Fig. 1(a). The length and diameter of each
circular cylindrical nanorod are denoted by lb and D0, respectively. It
is assumed that the length of defects is fairly negligible compared to
the length of nanorods (i.e., Δc1;Δc2 ≪ lb). The distances of the locally
defected zones in the first and the second nanorods from the left end in
order are denoted by c1 and c2. The density, elastic Young’s modulus,
and cross‐sectional area of the bulk of nanorods are represented by
ρb; Eb, and Ab, respectively, while those of the surface in order are
ρ0, E0, and A0. Essentially, the constitutive nanorods of the nanosystem
could interact with each other due to existing van der Waals (vdW)
and interfacial frictional forces. The inter‐rod frictional force is
ignored in the continuing since the nanosystem’s undamped frequen-
cies are of particular concern. Further, the vdW forces between the
nanorods’ constitutive atoms are assumed to be visualized by an inter-
facial elastic layer of constant KL. Let us model the existing local
defects within the first and the second nanorods by linear axial springs
of constants k1 and k2, respectively. From now on, these are called
defect factors. Actually, the locally caused defects are assumed to be
axisymmetric, otherwise, the longitudinal and transverse vibrations
of the nanorods would be coupled with each other, and therefore,
the resulting problem would be more complicated than that which is
going to be studied in this work. By virtue of all made assumptions,
the presented nanosystem in Fig. 1(a) could be now reduced to that
demonstrated in Fig. 1(b).

By denoting the longitudinal displacement fields associated with
the left and right sides of the defect of the ith nanorod (i.e., its consti-
tutive segments) by uLi ¼ uLi x; tð Þ and uRi ¼ uRi x; tð Þ, respectively, the
kinetic energy of the nanosystem accounting for the inertia of the sur-
face layer is written as:



Fig. 1. (a) Schematic representation of a fixed-free double-nanorod-system with local defects; (b) a continuum-based representation of the locally defected
nanosystem.
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T tð Þ ¼ 1
2 ρ0A0 þ ρbAbð Þ∑

2

i¼1

R ci
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dx

� �
; ð1Þ

where t is the time parameter.
The elastic strain energy of the nanosystem consists of doubly

defected nanorods by considering nonlocality, surface effect, and lon-
gitudinally dynamic interaction for the case of c1 ⩾ c2 is expressed
by:
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and in the case of c1 ⩽ c2, it is modified to:

U tð Þ ¼ 1
2 ∑

2

i¼1

R ci
0 Nnl

i
@uLi
@x

� �
dx þ R lb

ci
Nnl

i
@uRi
@x

� �
dx

h i
þ 1

2

R c1
0 KL uL1 � uL2

� �2
dx þ 1

2

R c2
c1
KL uR1 � uL2
� �2

dx

þ 1
2

R lb
c2
KL uR2 � uR2
� �2

dx þ 1
2 ∑

2

i¼1
ki uLi ci; tð Þ � uRi ci; tð Þ� �2

;

ð3Þ

where the nonlocal‐surface energy‐based axial force within the ith
nanorod (Nnl

i ) in the differential form is governed by [78,79]:

Nnl
i � e0að Þ2 @2Nnl

i
@x2 ¼ E0A0 þ EbAbð Þ @uαi

@x þ τ0A0; α ¼ LorR; ð4Þ

in which e0a is the nonlocal parameter, and τ0 is the initial stress within
the surface under unconstrained condition. By using Hamilton’s princi-
ple,

R t
0 δT tð Þ � δU tð Þð Þdt ¼ 0, where δ is the variational symbol, the

equations of motion of the nanosystem with local defects accounting
for nonlocality and surface energy effect are obtained as follows for
the case of c1 ⩾ c2:

ρbAb þ ρ0A0ð Þ @2uL1
@t2 � e0að Þ2 @4uL1

@t2@x2

� �
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ð5aÞ
3
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and for the case of c1 < c2, the nonlocal‐surface energy‐based equations
of the locally defected nanosystem take the following form:
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where H denotes the Heaviside step function.
With regard to the continuity of the nonlocal axial force at the loca-

tion of local defects and through modeling of the defects via massless
linear springs, the following nonclassical boundary conditions could
be considered at the interface of the constitutive segments of each
nanorod:

k1 uR1 c1 ; tð Þ � uL1 c1; tð Þ� 	
¼ EbAb þ E0A0ð Þ þ e0að Þ2 ρbAb þ ρ0A0ð Þ @2

@t2

h i
@uL1
@x c1; tð Þ þ e0að Þ2 KL

@uL1
@x c1 ; tð Þ � @uR2

@x c1; tð Þ
� �

;

ð7aÞ
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;

ð7bÞ
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Eqs. (7b) and (7d) display the continuity of the nonlocal axial force of
the segments close to the consisting local defects. Furthermore, Eqs.
(7a) and (7c) relate the axial rigidity of the axisymmetric defects to
the nonlocal axial force in its nearby segments in the linear form. Also,
it should be noticed that the term τ0A0 has not been included in Eqs.
(7a) and (7c) since this results in static axial deformation within the
nanosystem which is not of our concern. For more systematic frequency
analyzing of the problem, we consider the following dimensionless
quantities:

ξ ¼ x
lb
; �uαi ¼ uαi

lb
; �ci ¼ ci

lb
; μ ¼ e0a

lb
; τ ¼ t

lb

ffiffiffiffi
Eb
ρb

q
;

�ki ¼ ki lb
EbAb

; KL ¼ KLl2b
EbAb

; χ21 ¼ ρ0A0
ρbAb

; χ22 ¼ E0A0
EbAb

:
ð8Þ

By introducing Eq. (8) to Eqs. (5a)‐(5d) as well as Eqs. (6a)‐(6d),
the dimensionless‐nonlocal‐surface energy‐based equations of motion
of the defected nanosystem in the case of �c1 ⩾ �c2 take the following
form:

1þ χ21
� � @2�uL1

@τ2 � μ2
@4�uL1
@τ2@ξ2

� �
� 1þ χ22
� � @2�uL1

@ξ2

þKL �uL1 � �uL2
� �� μ2
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@ξ2

� @2�uL2
@ξ2

� �� �
H �c2 � ξð Þ þ KL

� �uL1 � �uR2
� �� μ2

@2�uL1
@ξ2

� @2�uR2
@ξ2

� �� �
H �c1 � ξð Þ �H �c2 � ξð Þð Þ ¼ 0; 0 < ξ < �c1;

ð9aÞ
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@τ2@ξ2

� �
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@ξ2

þKL �uR1 � �uR2
� �� μ2
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@ξ2

� @2�uR2
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� �� �
¼ 0; �c1 < ξ < 1;

ð9bÞ
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� � @2�uL2
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@τ2@ξ2

� �
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� �� μ2

@2�uL2
@ξ2
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� �� �
¼ 0; 0 < ξ < �c2;

ð9cÞ
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@τ2ξ2

� �
� 1þ χ22
� � @2uR2

@ξ2
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� �� μ2
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� �� �
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� �� μ2

@2�uR2
@ξ2
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� �� �
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ð9dÞ
4

and for the case of �c1 ⩽ �c2, the governing equations of the defected
nanosystem are:

1þ χ21
� � @2�uL1

@τ2 � μ2
@4�uL1
@τ2@ξ2

� �
� 1þ χ22
� � @2�uL1

@ξ2

þKL �uL1 � �uL2
� �� μ2

@2�uL1
@ξ2

� @2�uL2
@ξ2

� �� �
¼ 0; 0 < ξ < �c1;

ð10aÞ

1þ χ21
� � @2�uR1

@τ2 � μ2
@4�uR1
@τ2ξ2

� �
� 1þ χ22
� � @2uR1
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� �� μ2

@2�uR1
@ξ2

� @2�uL2
@ξ2

� �� �
H �c2 � ξð Þ � H �c1 � ξð Þð Þ þ KL

� �uR1 � �uR2
� �� μ2

@2�uR1
@ξ2

� @2�uR2
@ξ2

� �� �
1� H �c2 � ξð Þð Þ ¼ 0; �c1 < ξ < 1;

ð10bÞ

1þ χ21
� � @2�uL2

@τ2 � μ2
@4�uL2
@τ2@ξ2

� �
� 1þ χ22
� � @2�uL2

@ξ2

þKL �uL2 � �uL1
� �� μ2

@2�uL2
@ξ2

� @2�uL1
@ξ2

� �� �
H �c1 � ξð Þ þ KL

� �uL2 � �uR1
� �� μ2

@2�uL2
@ξ2

� @2�uR1
@ξ2

� �� �
H �c2 � ξð Þ � H �c1 � ξð Þð Þ ¼ 0; 0 < ξ < �c2;

ð10cÞ

1þ χ21
� � @2�uR2

@τ2 � μ2
@4�uR2
@τ2@ξ2

� �
� 1þ χ22
� � @2�uR2

@ξ2

þKL �uR2 � �uR1
� �� μ2

@2�uR2
@ξ2

� @2�uR1
@ξ2

� �� �
¼ 0; �c2 < ξ < 1;

ð10dÞ

with the following dimensionless nonclassical conditions at the local
defects (i.e., ξ ¼ �c1and�c2):

�k1 �uR1 �c1; τð Þ � �uL1 �c1; τð Þ� 	 ¼ 1þ χ22
� �þ μ2 1þ χ21

� �
@2

@τ2

h i
@�uL1
@ξ

�c1; τð Þ

þμ2 �KL
@�uL1
@ξ

�c1; τð Þ � @�uR2
@ξ

�c1; τð Þ
� �

;
ð11aÞ

1þ χ22
� �þ μ2 1þ χ21

� �
@2

@τ2

h i
@�uL1
@ξ

�c1; τð Þ þ μ2 �KL
@�uL1
@ξ

�c1; τð Þ � @�uR2
@ξ

�c1; τð Þ
� �

¼ 1þ χ22
� �þ μ2 1þ χ21

� �
@2

@τ2

h i
@�uR1
@ξ

�c1; τð Þ þ μ2 �KL
@�uR1
@ξ

�c1; τð Þ � @�uR2
@ξ

�c1; τð Þ
� �

;

ð11bÞ

�k2 �uR2 �c2;τð Þ��uL2 �c2;τð Þ� 	¼ 1þ χ22
� �þμ2 1þχ21

� �
@2

@τ2

h i
@�uL2
@ξ

�c2;τð Þ

þμ2 �KL
@�uL2
@ξ

�c2;τð Þ� @�uL1
@ξ

�c2;τð Þ
� �

;
ð11cÞ

1þ χ22
� �þ μ2 1þ χ21

� �
@2

@τ2

h i
@�uL2
@ξ

�c2; τð Þ þ μ2 �KL
@�uL2
@ξ

�c2; τð Þ � @�uL1
@ξ

�c2; τð Þ
� �

¼ 1þ χ22
� �þ μ2 1þ χ21

� �
@2

@τ2

h i
@�uR2
@ξ

�c2; τð Þ þ μ2 �KL
@�uR2
@ξ

�c2; τð Þ � @�uL1
@ξ

�c2; τð Þ
� �

:

ð11dÞ
Eqs. (9a)–(9d) represent four coupled partial differential equations

of second‐order that should be solved with the boundary conditions
given in Eqs. (11a)–(11d). It is worth mentioning that the proposed
nonlocal‐differential‐based model can be readily reduced to the classi-
cal one as e0a ! 0.

In the following part, we employ the Galerkin approach based on
admissible modes to study free longitudinal vibration of the defected
nanosystem using the developed equations in this part.

2.2. Frequency analysis using Galerkin method on the basis of admissible
modes

Let us to discretize the dimensionless‐longitudinal displacements of
the constitutive segments of the nanosystem in terms of admissible
modes:

�uL1 ξ; τð Þ ¼ ∑
NM

i¼1
�ai τð Þφ 1Lð Þ

i ξð Þ; �uR1 ξ; τð Þ ¼ ∑
NM

i¼1

�bi τð Þφ 1Rð Þ
i ξð Þ;

�uL2 ξ; τð Þ ¼ ∑
NM

i¼1
�ci τð Þφ 2Lð Þ

i ξð Þ; �uR2 ξ; τð Þ ¼ ∑
NM

i¼1

�di τð Þφ 2Rð Þ
i ξð Þ;

ð12Þ
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where φ jLð Þ
i ξð Þ and φ jRð Þ

i ξð Þ represent the ith admissible modes of the left‐
hand‐side and right‐hand‐side of the local defect of the jth nanorod,
respectively, �ai τð Þ; �bi τð Þ;�ci τð Þ, and �di τð Þ are the time‐dependent parame-
ters, and NM is the number of considered modes. The details of evalu-
ation of the above‐mentioned admissible modes for locally defected
nanosystems with fixed–fixed and fixed‐free end conditions have been
explained in Appendix A.

The variation of the displacement fields in Eq. (12) are readily
given by:

δ�uL1 ξ; τð Þ ¼ ∑
NM

i¼1
δ�ai τð Þφ 1Lð Þ

i ξð Þ; δ�uR1 ξ; τð Þ ¼ ∑
NM

i¼1
δ�bi τð Þφ 1Rð Þ

i ξð Þ;

δ�uL2 ξ; τð Þ ¼ ∑
NM

i¼1
δ�ci τð Þφ 2Lð Þ

i ξð Þ; δ�uR2 ξ; τð Þ ¼ ∑
NM

i¼1
δ�di τð Þφ 2Rð Þ

i ξð Þ;
ð13Þ

where δ denotes the variational sign. Now Galerkin approach is
employed to reduce the partial differential equations of motion to the
ordinary differential equations. Without loss of generality, we proceed
with the case of �c1 ⩾ �c2:R �c1
0 δ�uL1 Eq: 9að Þð Þdξ ¼ 0; ð14aÞ
R 1
�c1
δ�uR1 Eq: 9bð Þð Þdξ ¼ 0; ð14bÞ

R �c2
0 δ�uL2 Eq: 9cð Þð Þdξ ¼ 0; ð14cÞ
R 1
�c2
δ�uR2 Eq: 9dð Þð Þdξ ¼ 0: ð14dÞ

By substitution of Eqs. (9a)–(9d), (12) and (13) into Eqs. (14a)–
(14d),

1þ χ21
� � R �c1

0 φ 1Lð Þ
i φ 1Lð Þ

j dξ� μ2
R �c1
0 φ 1Lð Þ

i φ 1Lð Þ
j;ξξ dξ

� �� �
�aj;ττ

þ � 1þ χ22
� � R �c1

0 φ 1Lð Þ
i φ 1Lð Þ

j;ξξ dξþ KL

R �c1

0
H �c1�ξð Þφ 1Lð Þ

i φ
1Lð Þ
j dξ�

μ2
R �c1

0
H �c1�ξð Þφ 1Lð Þ

i φ
1Lð Þ
j;ξξ dξ

 ! !
�aj

þ �KL
R �c1
0 H �c2 � ξð Þφ 1Lð Þ

i φ 2Lð Þ
j dξ� μ2

R �c1
0 H �c2 � ξð Þφ 1Lð Þ

i φ 2Lð Þ
j;ξξ dξ

� �� �
�cj

þ �KL

R �c1

0
H �c1�ξð Þ�H �c2�ξð Þð Þφ 1Lð Þ

i φ
2Rð Þ
j dξ�

μ2
R �c1

0
H �c1�ξð Þ�H �c2�ξð Þð Þφ 1Lð Þ

i φ
2Rð Þ
j;ξξ dξ

 ! !
�dj ¼ 0;

ð15aÞ

1þ χ21
� � R 1

�c1
φ 1Rð Þ
i φ 1Rð Þ

j dξ� μ2
R 1
�c1
φ 1Rð Þ
i φ 1Rð Þ

j;ξξ dξ
� �� �

�bj;ττ

þ � 1þ χ22
� � R 1

�c1
φ 1Rð Þ
i φ 1Rð Þ

j;ξξ dξþ KL

R 1

�c1
φ

1Rð Þ
i φ

1Rð Þ
j dξ�

μ2
R 1

�c1
φ

1Rð Þ
i φ

1Rð Þ
j;ξξ dξ

 ! !
�bj

þ �KL
R 1
�c1
φ 1Rð Þ
i φ 2Rð Þ

j dξ� μ2
R 1
�c1
φ 1Rð Þ
i φ 2Rð Þ

j;ξξ dξ
� �� �

�dj ¼ 0;

ð15bÞ

1þ χ21
� � R �c2

0 φ 2Lð Þ
i φ 2Lð Þ

j dξ� μ2
R �c2
0 φ 2Lð Þ

i φ 2Lð Þ
j;ξξ dξ

� �� �
�cj;ττ

þ �KL
R �c2
0 φ 2Lð Þ

i φ 1Lð Þ
j dξ� μ2

R �c2
0 φ 2Lð Þ

i φ Lð Þ
j;ξξdξ

� �� �
�aj

þ � 1þ χ22
� � R �c2

0 φ 2Lð Þ
i φ 2Lð Þ

j;ξξ dξþ KL

R �c2

0
φ

2Lð Þ
i φ

2Lð Þ
j dξ�

μ2
R �c2

0
φ

2Lð Þ
i φ

2Lð Þ
j;ξξ dξ

 ! !
�cj ¼ 0;

ð15cÞ

1þ χ21
� � R 1

�c2
φ 2Rð Þ
i φ 2Rð Þ

j dξ� μ2
R 1
�c2
φ 2Rð Þ
i φ 2Rð Þ

j;ξξ dξ
� �� �

�dj;ττ

þ �KL

R 1

�c2
H �c1�ξð Þ�H �c2�ξð Þð Þφ 2Rð Þ

i φ
1Lð Þ
j;ξξ dξ�

μ2
R 1

�c2
H �c1�ξð Þ�H �c2�ξð Þð Þφ 2Rð Þ

i φ
1Lð Þ
j;ξξ dξ

 ! !
�aj

þ �KL

R 1

�c2
1�H �c2�ξð Þð Þφ 2Rð Þ

i φ
1Rð Þ
j dξ�

μ2
R 1

�c2
1�H �c2�ξð Þð Þφ 2Rð Þ

i φ
1Rð Þ
j;ξξ dξ

 ! !
�bj

þ � 1þ χ22
� � R �c1

0 φ 2Rð Þ
i φ 2Rð Þ

j;ξξ dξþ KL

R 1

�c2
1�H �c2�ξð Þð Þφ 2Rð Þ

i φ
2Rð Þ
j dξ�

μ2
R 1

�c2
1�H �c2�ξð Þð Þφ 2Rð Þ

i φ
2Rð Þ
j;ξξ dξ

 ! !
�dj ¼ 0;

ð15dÞ
or in the matrix form:
5

M d2�x
dτ2 þK�x ¼ 0; ð16Þ

where

M ¼

�M 11ð Þ
ij

�M 12ð Þ
ij

�M 21ð Þ
ij

�M 22ð Þ
ij

�M 13ð Þ
ij

�M 14ð Þ
ij

�M 23ð Þ
ij

�M 24ð Þ
ij

�M 31ð Þ
ij

�M 32ð Þ
ij

�M 41ð Þ
ij

�M 42ð Þ
ij

�M 33ð Þ
ij

�M 34ð Þ
ij

�M 43ð Þ
ij

�M 44ð Þ
ij

0
BBBBB@

1
CCCCCA; K ¼

�K 11ð Þ
ij

�K 12ð Þ
ij

�K 21ð Þ
ij

�K 22ð Þ
ij

�K 13ð Þ
ij

�K 14ð Þ
ij

�K 23ð Þ
ij

�K 24ð Þ
ij

�K 31ð Þ
ij

�K 32ð Þ
ij

�K 41ð Þ
ij

�K 42ð Þ
ij

�K 33ð Þ
ij

�K 34ð Þ
ij

�K 43ð Þ
ij

�K 44ð Þ
ij

0
BBBBB@

1
CCCCCA; �x ¼

�a
�b
�c
�d

0
BBB@

1
CCCA;

ð17Þ

where the nonvanishing dimensionless mass and stiffness submatrices
for the case of �c1 ⩾ �c2 as well as the dimensionless vectors of the
unknown‐parameters are as:

M 11ð Þ
ij ¼ 1þ χ21

� �
1þ λ 1ð Þ

j μ
� �2� R �c1

0 φ 1Lð Þ
i φ 1Lð Þ

j dξ; ð18aÞ

M 22ð Þ
ij ¼ 1þ χ21

� �
1þ λ 1ð Þ

j μ
� �2� R 1

�c1
φ 1Rð Þ
i φ 1Rð Þ

j dξ; ð18bÞ

M 33ð Þ
ij ¼ 1þ χ21

� �
1þ λ 2ð Þ

j μ
� �2� R �c2

0 φ 2Lð Þ
i φ 2Lð Þ

j dξ; ð18cÞ

M 44ð Þ
ij ¼ 1þ χ21

� �
1þ λ 2ð Þ

j μ
� �2� R 1

�c2
φ 2Rð Þ
i φ 2Rð Þ

j dξ; ð18dÞ

K 11ð Þ
ij ¼ 1þ χ22

� �
λ 1ð Þ
j

� �2 R �c1
0 φ 1Lð Þ

i φ 1Lð Þ
j dξ

þ�KL 1þ μλ 1ð Þ
j

� �2� R �c1
0 H �c1 � ξð Þφ 1Lð Þ

i φ 1Lð Þ
j dξ;

ð18eÞ

K 13ð Þ
ij ¼ ��KL 1þ μλ 2ð Þ

j

� �2� R �c1
0 H �c2 � ξð Þφ 1Lð Þ

i φ 2Lð Þ
j dξ; ð18fÞ

K 14ð Þ
ij ¼ ��KL 1þ μλ 2ð Þ

j

� �2� R �c1
0 H �c1 � ξð Þ � H �c2 � ξð Þð Þφ 1Lð Þ

i φ 2Rð Þ
j dξ;

ð18gÞ

K 22ð Þ
ij ¼ 1þ χ22

� �þ KLμ2
� �

λ 1ð Þ
j

� �2
þ KL

� R 1
�c1
φ 1Rð Þ
i φ 1Rð Þ

j dξ; ð18hÞ

K 24ð Þ
ij ¼ ��KL 1þ μλ 2ð Þ

j

� �2� R 1
�c1
φ 1Rð Þ
i φ 2Rð Þ

j dξ; ð18iÞ

K 31ð Þ
ij ¼ ��KL 1þ μλ 1ð Þ

j

� �2� R �c2
0 φ 2Lð Þ

i φ 1Lð Þ
j dξ; ð18jÞ

K 33ð Þ
ij ¼ 1þ χ22

� �þ KLμ2
� �

λ 2ð Þ
j

� �2
þ KL

� R �c2
0 φ 2Lð Þ

i φ 2Lð Þ
j dξ; ð18kÞ

K 41ð Þ
ij ¼ ��KL 1þ μλ 1ð Þ

j

� �2� R 1
�c2

H �c1 � ξð Þ � H �c2 � ξð Þð Þφ 2Rð Þ
i φ 1Lð Þ

j dξ;

ð18lÞ

K 42ð Þ
ij ¼ ��KL 1þ μλ 1ð Þ

j

� �2� R 1
�c2

1� H �c1 � ξð Þð Þφ 2Rð Þ
i φ 1Rð Þ

j dξ; ð18mÞ

K 44ð Þ
ij ¼ 1þ χ22

� �
λ 2ð Þ
j

� �2 R 1
�c2
φ 2Rð Þ
i φ 2Rð Þ

j dξ

þ�KL 1þ μλ 2ð Þ
j

� �2� R 1
�c2

1� H �c2 � ξð Þð Þφ 2Rð Þ
i φ 2Rð Þ

j dξ;
ð18nÞ

�a τð Þ ¼< �a1 τð Þ; �a2 τð Þ; . . . ; �aNM τð Þ>T; ð18oÞ

�b τð Þ ¼< �b1 τð Þ; �b2 τð Þ; . . . ; �bNM τð Þ>T; ð18pÞ

�c τð Þ ¼< �c1 τð Þ;�c2 τð Þ; . . . ;�cNM τð Þ>T; ð18qÞ
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�d τð Þ ¼< �d1 τð Þ; �d2 τð Þ; . . . ; �dNM τð Þ>T; ð18rÞ
in which the vibration modes of the left‐hand‐side and the right‐hand‐
side of the local defect of the jth locally defected nanorod with the fix-
ed–fixed and fixed‐free ends are as follows (see Appendix A):

1. fixed–fixed:

φ jLð Þ
i ¼ sin λ jð Þ

i ξ
� �

; j ¼ 1;2;

φ jRð Þ
i ¼ sin λ jð Þ

i

� �
cos λ jð Þ

i ξ
� �

� cos λ jð Þ
i

� �
sin λ jð Þ

i ξ
� �

;
ð19Þ

1. fixed‐free:

φ jLð Þ
i ¼ sin λ jð Þ

i ξ
� �

;

φ jRð Þ
i ¼ cos λ jð Þ

i

� �
cos λ jð Þ

i ξ
� �

þ sin λ jð Þ
i

� �
sin λ jð Þ

i ξ
� �

;
ð20Þ

and the values of λ jð Þ
i are given by Eq. (A.11).

In order to solve the set of 4NM ordinary differential equations in
Eq. (16) for longitudinal frequency, the following harmonic form is
considered for the time‐dependent vector: �x ¼ �x0 eiϖτ. By substituting
this version of �x into Eq. (16), we will arrive at:
det �ϖ2MþKð Þ ¼ 0, and therefore, the linear longitudinal frequen-
cies are readily determined.

3. Development of a nonlocal-integral-based mathematical model

3.1. Nonlocal-integral-surface energy-based governing equations

Using the nonlocal‐integro‐based constitutive equations for one‐
dimensional nanorods, the nonlocal stress within the bulk and the sur-
face of the ith nanorod (i.e., σnlb;i and σnls;i) could be related to their local

values (i.e., σlb;i and σl
s;i) by:

σnl
b;i x; tð Þ ¼ RΩ Γb jx� � xj; e0að Þσl

b;i x
�; tð ÞdΩ�; ð21aÞ

σnls;i x; tð Þ ¼ R
S
Γs jx� � xj; e0að Þσls;i x�; tð ÞdS�; ð21bÞ

where jx� � xj represents the euclidean distance between two points of
coordinates x and x� from the equivalent continuum associated with the
nanorod, Γb ¼ Γb jx� � xj; e0að Þ and Γs ¼ Γs jx� � xj; e0að Þ denote the ker-
nel functions associated with the bulk and the surface. By assuming uni-
form distribution of the local axial stress across the cross‐section of the
continuum‐based nanorods, both local and nonlocal stress fields of the
constitutive nanorods of the nanosystem at hand would be only x‐
dependent.

Now by defining the kernel functions as: Γb ¼ Γb0 g jxj; e0að Þ and
Γs ¼ Γs0 g jxj; e0að Þ where g is the attenuating function, Eqs. (21a) and
(21b) can be rewritten as follows:

σnl
b;i x; tð Þ ¼ R lb

0 Γb0 g jx� � xj; e0að Þσl
b;i x

�; tð Þdx�; ð22aÞ

σnls;i x; tð Þ ¼ R lb
0 Γs0 g jx� � xj; e0að Þσls;i x�; tð Þdx�; ð22bÞ

where the most common attenuating functions are as [12]:

g x; e0að Þ ¼ exp � jxj
e0a

� �
; exp � k jxj

e0a

� �2� 
; 1� jxj

e0a

� �
H 1� jxj

e0a

� �
; ð23Þ

where k = 1.65, Γb0 ¼ Γ0=Ab and Γs0 ¼ Γ0=A0 such that

Γ0 ¼ R1
�1 g jx�j; e0að Þdx�� 	�1.

The nonlocal longitudinal force within the ith nanorod is computed
by: Nnl

i x; tð Þ ¼ RAb
σnlb;i x; tð ÞdAb þ

R
As
σnl
s;i x; tð ÞdAs. By substituting Eqs.

(22a) and (22b) into this relation, it is obtained:

Nnl
i x; tð Þ ¼ EbAb þ E0A0ð Þ R lb

x�¼0 Γ0 g jx� � xj; e0að Þ @ui
@x x�; tð Þdx�: ð24Þ
6

By introducing Eq. (24) to Eqs. (2) and (3), the elastic strain energy
of the defected nanosystem on the basis of the nonlocal‐integral‐
elasticity theory of Eringen for the case of c1 ⩾ c2 takes the following
form:

U tð Þ¼ 1
2 EbAbþE0A0ð Þ∑

2

i¼1

R ci
0

R ci
0 Γ0 g jx� �xj;e0að Þ @uLi

@x x�; tð Þ @uLi
@x x; tð Þdx�dx

þ1
2 EbAb þE0A0ð Þ∑

2

i¼1

R lb
ci

R lb
ci
Γ0 g jx� �xj;e0að Þ @uRi

@x x�; tð Þ @uRi
@x x; tð Þdx�dx

þ1
2

R c2
0 KL uL1 �uL2

� �2
dxþ 1

2

R c1
c2
KL uL1�uR2
� �2

dx

þ1
2

R lb
c1
KL uR2 �uR2
� �2

dxþ 1
2∑

2

i¼1
ki uLi ci; tð Þ�uRi ci; tð Þ� �2

;

ð25Þ

and in the case of c1 ⩽ c2, it is expressed by:

U tð Þ¼ 1
2 EbAbþE0A0ð Þ∑

2

i¼1

R ci
0

R ci
0 Γ0 g jx� �xj;e0að Þ @uLi

@x x�; tð Þ @uLi
@x x; tð Þdx�dx

þ1
2 EbAb þE0A0ð Þ∑

2

i¼1

R lb
ci

R lb
ci
Γ0 g jx� �xj;e0að Þ @uRi

@x x�; tð Þ @uRi
@x x; tð Þdx�dx

þ1
2

R c1
0 KL uL1 �uL2

� �2
dxþ 1

2

R c2
c1
KL uR1 �uL2
� �2

dx

þ1
2

R lb
c2
KL uR2 �uR2
� �2

dxþ 1
2∑

2

i¼1
ki uLi ci; tð Þ�uRi ci; tð Þ� �2

:

ð26Þ

Now by using the Hamilton’s principle, in view of the given kinetic
energy in Eq. (1), the nonlocal‐integral‐equations of motion of the con-
stitutive segments of the defected nanosystem in the case of c1 ⩾ c2
take the following form:

ρbAb þ ρ0A0ð Þ @2uL1
@t2 � EbAb þ E0A0ð Þ @

@x

R c1
0 Γ0 g jx� � xj; e0að Þ @uL1

@x x�; tð Þdx�
h i

þKL uL1 � uL2
� �

H c2 � xð Þ þ KL uL1 � uR2
� � ¼ 0; 0 < x < c1;

ð27aÞ

ρ0A0 þ ρ0A0ð Þ @2uR1
@t2 � EbAb þ E0A0ð Þ @

@x

R lb
c1
Γ0 g jx� � xj; e0að Þ @uR1

@x x�; tð Þdx�
h i

þKL uR1 � uR2
� � ¼ 0; c1 < x < lb;

ð27bÞ

ρbAb þ ρ0A0ð Þ @2uL2
@t2 � EbAb þ E0A0ð Þ @

@x

R c2
0 Γ0 g jx� � xj; e0að Þ @uL2

@x x�; tð Þdx�
h i

þKL uL2 � uL1
� �¼ 0; 0< x < c2;

ð27cÞ

ρbAb þ ρ0A0ð Þ @2uR2
@t2 � EbAb þ E0A0ð Þ @

@x

R lb
c2
Γ0 g jx� � xj; e0að Þ @uR2

@x x�; tð Þdx�
h i

þKL uR2 � uL1
� �

H c1 � xð Þ � H c2 � xð Þð Þ
þKL uR2 � uR1

� �
1� H c1 � xð Þð Þ ¼ 0; c2 < x < lb;

ð27dÞ

and in the case of c1 < c2, they are obtained as:

ρbAb þ ρ0A0ð Þ @2uL1
@t2 � EbAb þ E0A0ð Þ @

@x

R c1
0 Γ0 g jx� � xj; e0að Þ @uL1

@x x�; tð Þdx�
h i

þKL uL1 � uL2
� � ¼ 0; 0 < x < c1;

ð28aÞ

ρ0A0 þ ρ0A0ð Þ @2uR1
@t2 � EbAb þ E0A0ð Þ @

@x

R lb
c1
Γ0 g jx� � xj; e0að Þ @uR1

@x x�; tð Þdx�
h i

þKL uR1 � uL2
� �

H c2 � xð Þ �H c1 � xð Þð Þ
þKL uR1 � uR2

� �
1�H c2 � xð Þð Þ ¼ 0; c1 < x < lb;

ð28bÞ

ρbAbþρ0A0ð Þ @2uL2
@t2 � EbAbþE0A0ð Þ @

@x

R c2
0 Γ0 g jx� �xj;e0að Þ @uL2

@x x�; tð Þdx�
h i

þKL uL2�uL1
� �

H c1�xð ÞþKL uL2�uR1
� �

H c2�xð Þ�H c1�xð Þð Þ¼0; 0< x< c2;

ð28cÞ

ρbAb þ ρ0A0ð Þ @2uR2
@t2 � EbAb þ E0A0ð Þ @

@x

R lb
c2
Γ0 g jx� � xj; e0að Þ @uR2

@x x�; tð Þdx�
h i

þKL uR2 � uR1
� � ¼ 0; c2 < x < lb:

ð28dÞ
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The boundary conditions at the segments’ interfaces are as:

k1 uR1 c1; tð Þ � uL1 c1; tð Þ� �
¼ EbAb þ E0A0ð Þ R c1

0 Γ0 g jx� � c1j; e0að Þ @uL1
@x x�; tð Þdx�;

ð29aÞ

EbAb þ E0A0ð Þ R c1
0 Γ0 g jx� � c1j; e0að Þ @uL1

@x x�; tð Þdx�

¼ EbAb þ E0A0ð Þ R lb
c1
Γ0 g jx� � c1j; e0að Þ @uR1

@x x�; tð Þdx�;
ð29bÞ

k2 uR2 c2; tð Þ � uL2 c2; tð Þ� �
¼ EbAb þ E0A0ð Þ R c2

0 Γ0 g jx� � c1j; e0að Þ @uL2
@x x�; tð Þdx�;

ð29cÞ

EbAb þ E0A0ð Þ R c2
0 Γ0 g jx� � c2j; e0að Þ @uL2

@x x�; tð Þdx�

¼ EbAb þ E0A0ð Þ R lb
c2
Γ0 g jx� � c2j; e0að Þ @uR2

@x x�; tð Þdx�:
ð29dÞ

By implementing the given dimensionless quantities in Eq. (8), the
dimensionless nonlocal‐integral‐equations of motion of the defected
nanosystem in the case of c1 ⩾ c2 according to Eqs. (27a)–(27d) are
provided by:

1þ χ21
� � @2�uL1

@τ2 � 1þ χ22
� �

@
@ξ

R �c1
0 Γ0 g jξ� � ξj; μð Þ @�uL1

@ξ ξ�; τð Þdξ�
h i

þKL �uL1 � �uL2
� �

H �c2 � ξð Þ þ KL �uL1 � �uR2
� � ¼ 0; 0 < ξ < �c1;

ð30aÞ

1þ χ21
� � @2�uR1

@τ2 � 1þ χ22
� �

@
@ξ

R 1
�c1
Γ0 g jξ� � ξj; μð Þ @�uR1

@ξ ξ�; τð Þdξ�
h i

þKL �uR1 � �uR2
� � ¼ 0; �c1 < ξ < 1;

ð30bÞ

1þ χ21
� � @2�uL2

@τ2 � 1þ χ22
� �

@
@ξ

R �c2
0 Γ0 g jξ� � ξj; μð Þ @�uL2

@ξ ξ�; τð Þdξ�
h i

þKL �uL2 � �uL1
� � ¼ 0; 0 < ξ < �c2;

ð30cÞ

1þ χ21
� �@2�uR2

@τ2 � 1þ χ22
� �

@
@ξ

R 1
�c2
Γ0 g jξ� � ξj;μð Þ @�uR2

@ξ ξ�;τð Þdξ�
h i

þKL �uR2 ��uL1
� �

H �c1�ξð Þ�H �c2� ξð Þð ÞþKL �uR2 ��uR1
� �

1�H �c1� ξð Þð Þ¼0; �c2 < ξ<1;

ð30dÞ

and for the case of c1 < c2 based on Eqs. (28a)‐(28d), the dimensionless
governing equations are written by:

1þ χ21
� � @2�uL1

@τ2 � 1þ χ22
� �

@
@ξ

R �c1
0 Γ0 g jξ� � ξj; μð Þ @�uL1

@ξ ξ�; τð Þdξ�
h i

þKL �uL1 � �uL2
� � ¼ 0; 0 < ξ < �c1;

ð31aÞ

1þ χ21
� �@2�uR1

@τ2 � 1þ χ22
� �

@
@ξ

R 1
�c1
Γ0 g jξ� � ξj;μð Þ @�uR1

@ξ ξ�;τð Þdξ�
h i

þKL �uR1 ��uL2
� �

H �c2�ξð Þ�H �c1� ξð Þð ÞþKL �uR1 ��uR2
� �

1�H �c2� ξð Þð Þ¼0; �c1 < ξ<1;

ð31bÞ

1þ χ21
� � @2�uL2

@τ2 � 1þ χ22
� �

@
@ξ

R �c2
0 Γ0 g jξ� � ξj; μð Þ @�uL2

@ξ ξ�; τð Þdξ�
h i

þKL �uL2 � �uL1
� �

H �c1 � ξð Þ þ KL �uL2 � �uR1
� �

H �c2 � ξð Þ � H �c1 � ξð Þð Þ ¼ 0; 0 < x < �c2;

ð31cÞ

1þ χ21
� � @2�uR2

@τ2 � 1þ χ22
� �

@
@ξ

R 1
�c2
Γ0 g jξ� � ξj; μð Þ @�uR2

@ξ ξ�; τð Þdξ�
h i

þKL �uR2 � �uR1
� � ¼ 0; �c2 < ξ < 1:

ð31dÞ

Using Eq. (8), the given boundary conditions in Eqs. (29a)–(29d)
can be rewritten in the dimensionless form as:

�k1 �uR1 �c1; τð Þ � �uL1 �c1; τð Þ� � ¼ 1þ χ22
� � R �c1

0 Γ0 g jξ� � �c1j; μð Þ @�uL1
@ξ ξ�; τð Þdξ�;

ð32aÞ
R �c1
0 g jξ� � �c1j; μð Þ @�uL1

@ξ ξ�; τð Þdx� ¼ R 1
�c1
g jξ� � �c1j; μð Þ @�uR1

@ξ ξ�; τð Þdx�; ð32bÞ

�k1 �uR2 �c2; τð Þ � �uL2 �c1; τð Þ� � ¼ 1þ χ22
� � R �c2

0 Γ0 g jξ� � �c2j; μð Þ @�uL2
@ξ ξ�; τð Þdξ�;

ð32cÞ
7

R �c2
0 g jξ� � �c2j; μð Þ @�uL2

@ξ ξ�; τð Þdx� ¼ R 1
�c1
g jξ� � �c2j; μð Þ @�uR2

@ξ ξ�; τð Þdξ�: ð32dÞ

Eqs. (30a)‐(30d) or (31a)–(31d) display four coupled integro‐based
equations of motion of the double nanorod system with local defects
according to the nonlocal‐integral‐based elasticity theory of Eringen.
To obtain free dynamic response of the nanosystem, these equations
should be analyzed for the natural frequencies by satisfying the inter-
facial conditions given in (32a)–(32d) as well as the ends’ conditions.

It should be noticed that the suggested nonlocal‐integro‐based
model can be reduced to the classical one as the kernel function is
replaced by the Kronecker delta function.

3.2. Frequency analysis using Galerkin method on the basis of admissible
modes

In this part, evaluation of the natural frequencies of the defected
nanosystem based on the proposed nonlocal‐integral‐surface energy‐
based model in the previous section is of concern. To this end,
Galerkin approach in conjunction with admissible mode methodol-
ogy is exploited. By following up the explained procedure in Sec-
tion 2.2, we will arrive at a set of ordinary differential equations
as that provided in Eq. (16). The nonzero‐terms of the dimensionless
mass and stiffness submatrices in the case of �c1 ⩾ �c2 are expressed as
follows:

M 11ð Þ
ij ¼ 1þ χ21

� � R �c1
0 φ 1Lð Þ

i φ 1Lð Þ
j dξ; ð33aÞ

M 22ð Þ
ij ¼ 1þ χ21

� � R 1
�c1
φ 1Rð Þ
i φ 1Rð Þ

j dξ; ð33bÞ

M 33ð Þ
ij ¼ 1þ χ21

� � R �c2
0 φ 2Lð Þ

i φ 2Lð Þ
j dξ; ð33cÞ

M 44ð Þ
ij ¼ 1þ χ21

� � R 1
�c2
φ 2Rð Þ
i φ 2Rð Þ

j dξ; ð33dÞ

K 11ð Þ
ij ¼ 1þ χ22

� �
λ 1ð Þ
j

� �2 R �c1
0

R �c1
0 Γ0g jξ� � ξj; μð Þφ 1Lð Þ

i φ 1Lð Þ
j dξdξ�

þ�KL
R �c1
0 H �c1 � ξð Þφ 1Lð Þ

i φ 1Lð Þ
j dξ;

ð33eÞ

K 13ð Þ
ij ¼ ��KL

R �c1
0 H �c2 � ξð Þφ 1Lð Þ

i φ 2Lð Þ
j dξ; ð33fÞ

K 14ð Þ
ij ¼ ��KL

R �c1
0 H �c1 � ξð Þ � H �c2 � ξð Þð Þφ 1Lð Þ

i φ 2Rð Þ
j dξ; ð33gÞ

K 22ð Þ
ij ¼ 1þ χ22

� �
λ 1ð Þ
j

� �2 R 1
�c1

R 1
�c1
Γ0 g jξ� � ξj;μð Þφ 1Rð Þ

i φ 1Rð Þ
j dξdξ� þKL

R 1
�c1
φ 1Rð Þ
i φ 1Rð Þ

j dξ;

ð33hÞ

K 24ð Þ
ij ¼ ��KL

R 1
�c1
φ 1Rð Þ
i φ 2Rð Þ

j dξ; ð33iÞ

K 31ð Þ
ij ¼ ��KL

R �c2
0 φ 2Lð Þ

i φ 1Lð Þ
j dξ; ð33jÞ

K 33ð Þ
ij ¼ 1þ χ22

� �
λ 1ð Þ
j

� �2 R �c2
0

R 1
�c1
Γ0 g jξ� � ξj; μð Þφ 2Lð Þ

i φ 2Lð Þ
j dξdξ� þ KL

R �c2
0 φ 2Lð Þ

i φ 2Lð Þ
j dξ;

ð33kÞ

K 41ð Þ
ij ¼ ��KL

R 1
�c2

H �c1 � ξð Þ � H �c2 � ξð Þð Þφ 2Rð Þ
i φ 1Lð Þ

j dξ; ð33lÞ

K 42ð Þ
ij ¼ ��KL

R 1
�c2

1� H �c1 � ξð Þð Þφ 2Rð Þ
i φ 1Rð Þ

j dξ; ð33mÞ

K 44ð Þ
ij ¼ 1þ χ22

� �
λ 1ð Þ
j

� �2 R 1
�c2

R 1
�c2
Γ0 g jξ� � ξj; μð Þφ 2Rð Þ

i φ 2Rð Þ
j dξdξ� þ KL

R 1
�c2
φ 2Rð Þ
i φ 2Rð Þ

j dξ:

ð33nÞ

Subsequently, by considering a harmonic form for the unknown
coefficient vector, the dimensionless natural frequencies of the locally
defected nanosystem according to the suggested nonlocal‐integral‐
surface energy‐based model are determined.
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4. Results and discussion

Consider a nanosystem consists of doubly parallel silver nanorods
with the following data [85,86]: Eb = 76 GPa, ρb = 10,500 kg/m3,
ρ0 = 10�7 kg/m2, and E0 = 1.22 N/m. In this part, we are interested
in exploring the roles of the locations of the defects, defect factors,
length, and diameter of the nanorod on natural frequencies of the
defected‐nanorod‐system are explained and discussed in some detail.
For each parametric study, the importance of nonlocality and surface
energy effects on the obtained results is also highlighted. To this
end, the predicted results based on the classical theory of elasticity
(CTE), nonlocal‐integral theory of elasticity theory (NTE), surface the-
ory of elasticity (STE), nonlocal‐integral‐surface theory of elasticity
(NSTE) are presented, and their results are compared with each other.

4.1. Some verification studies

In a special case, the predicted results by the suggested nonlocal‐
differential‐basedmodel are checked with those of Hsu et al. [80]. They
investigated free longitudinal vibration of fixed‐free and fixed–fixed
individual nanorods accounting for only nonlocality (i.e., without con-
sidering the surface energy effect, χ1 = χ2 = 0). By ignoring the
dynamical interactions between the constitutive nanorods of the
nanosystem (i.e., KL = 0), the predicted first six longitudinal frequen-
cies by the proposed model and those of Hsu et al. [80] for both fixed‐
free and fixed–fixed boundary conditions have been given in Table 1.
As it is seen, there exists a reasonably good agreement between the
results of the present work and those of Hsu et al. [80].

In another comparison scrutiny, the capability of the proposed
nonlocal‐differential‐based model in capturing free vibration of a
defect‐free nanosystem consists of double nanorods is going to be
examined. To idealized the defect‐free condition, we set
�k1 = �k2 = 105 for a fixed‐free nanosystem. The predicted fundamental
frequencies of such a nanosystem in the lack of surface energy based
on the suggested model by Murmu and Adhikari [60] and those of
the present model are provided in Table 2. As it is seen, the present
model can accurately predict the results of Ref. [60] with a good accu-
racy such that the relative error is lower than 0.5 percent for all con-
sidered values of the nonlocal parameter.

4.2. Nonlocal-integral model vs. nonlocal-differential model

In order to show the capabilities of the proposed nonlocal‐
differential‐surface energy‐based model (NDSM) in capturing the pre-
Table 1
Verification of the predicted first six frequencies of an individual defected nanorod
�c1 = 4.004 nm, �k1 = 8.7413, χ1 = χ2 = 0).

BCs° Model i = 1 i = 2

Fixed–fixed Present work 2.9429 6.2236
Hsu et al. [80] 2.9429 6.2236

Fixed-free Present work 1.4278 4.5578
Hsu et al. [80] 1.4278 4.5576

Table 2
Verification of the fundamental frequencies of a defect-free double-nanorod-system
various small-scale parameters (KL = 8 N/nm, �k1 = �k2 = 105).

Model e0a = 0.5 nm

Ref. [60] 1.2353
present work 1.2411

8

dicted vibration behavior of the defected nanosystem by the nonlocal‐
integral‐surface energy‐based model (NISM), their results are com-
pared under various conditions. Tables 3 and 4 present the predicted
first four natural frequencies of the fixed–fixed and fixed‐free defected
nanosystems. The unit of frequencies is THz, and these are provided
for three lengths of nanorods (i.e., lb = 10, 15, and 20 nm) and four
defects’ locations (i.e., (�c1;�c2) = (0.6,0.5), (0.7,0.6), (0.8,0.7), and

(0.9,0.8)) using the attenuating function g x; e0að Þ ¼ exp � jxj
e0a

� �
. In

the case of the fixed–fixed condition, by approaching the defects to
the ends, the relative differences between the results by the NISM
and those of the NDSM reduce; however, the variation of the nanorod
length has a trivial effect on such differences. For fixed‐free defected
nanosystems, the predicted frequencies by the NDSM are closer to
those obtained by the NISM comparing with fixed–fixed defected
nanosystems. The presented results in Table 4 indicate that the maxi-
mum relative differences between the fundamental frequencies based
on the NDSM and those of the NISM are lower than 6 percent for all
considered levels of length and locations of defects.

4.3. Effect of the nonlocality

Fig. 2(a) displays the role of the small‐scale parameter on the dom-
inant frequencies of the fixed–fixed and fixed‐free defected nanosys-
tems for three levels of the defect factor (i.e., �k1 = �k2 = 4, 8, and
10,000). The plotted results show that the natural frequencies would
reduce as the small‐scale parameter increases, irrespective of the
defect factor for both boundary conditions. This fact clearly indicates
that the predicted longitudinal stiffness of the defected nanosystem
based on the NTE is smaller than that obtained by the CTE. This could
be interpreted by this reason that the diagonal elements of the mass
matrices based on the NTE are commonly greater than those predicted
by the CTE. It should be noted that we are employing a simple version
of the nonlocal elasticity theory of Eringen in this work in which the
nonlocality appears in the inertial terms as well as in the expressions
of external force and external stiffness (i.e., attached springs and elas-
tic layers). This issue is somewhat in contradiction with our sense
regarding the nonlocality and small‐scale effects. To remove this defi-
ciency, appropriate nonlocal‐integral models have been developed in
recent years [17,78,79]. The application of these sophisticated ver-
sions of the NTE of Eringen to the problem at hand could be pursued
by interested investigators. According to Fig. 2(a), as the defect factor
increases, the nanosystem becomes stiffer, and the natural frequency
would increase. Such a fact is more obvious in the absence of the non-
locality, particularly for frequencies of higher vibration modes.
by the proposed model and those obtained by Hsu et al. [80] (lb = 20 nm,

ωi (THz)

i = 3 i = 4 i = 5 i = 6

9.3014 11.5213 14.5150 18.1342
9.3013 11.5211 14.5149 18.1339

7.8540 10.4472 12.8743 16.2952
7.8540 10.4486 12.8741 16.2952

by Murmu and Adhikari [60] and those obtained by the proposed model for

ω1 (THz)

e0a = 1 nm e0a = 1.5 nm e0a = 2 nm

0.8436 0.6137 0.4764
0.8477 0.6164 0.4782



Table 3
A comparison between the predicted first four frequencies of the defected fixed–fixed nanosystem based on the NDSM and those of the NISM (�k1 = �k2 = 2, KL = 3,
D0 = 6 nm, e0a = 1 nm).

lb �c1 = 0.6, �c2 = 0.5 �c1 = 0.7, �c2 = 0.6 �c1 = 0.8, �c2 = 0.7 �c1 = 0.9, �c2 = 0.8

(nm) NDSM NISM NDSM NISM NDSM NISM NDSM NISM

10 0.7975 0.9168 0.7549 0.8099 0.7046 0.7264 0.6606 0.6595
1.0314 1.1450 1.0055 1.0461 0.9651 0.9766 0.9294 0.9253
1.1956 2.1071 1.2817 1.8468 1.4124 1.6453 1.3617 1.4837
1.3507 2.4440 1.4887 2.1059 1.5409 1.8616 1.5338 1.6782

15 0.5444 0.6253 0.5131 0.5517 0.4770 0.4943 0.4460 0.4484
0.6977 0.7767 0.6781 0.7073 0.6488 0.6589 0.6234 0.6233
0.8284 1.4386 0.8952 1.2561 1.0163 1.1160 0.9721 1.0043
0.9311 1.6773 1.0555 1.4371 1.0970 1.2647 1.0899 1.1361

20 0.4118 0.4754 0.3875 0.4190 0.3597 0.3752 0.3360 0.3402
0.5260 0.5886 0.5107 0.5350 0.4880 0.4977 0.4685 0.4704
0.6299 1.0917 0.6827 0.9515 0.7848 0.8444 0.7482 0.7594
0.7071 1.2767 0.8111 1.0904 0.8444 0.9575 0.8387 0.8589

Table 4
A comparison between the predicted first four frequencies of the defected fixed-free nanosystem based on the NDSM and those of the NISM (�k1 = �k2 = 2, KL = 3,
D0 = 6 nm, e0a = 1 nm).

lb �c1 = 0.6, �c2 = 0.5 �c1 = 0.7, �c2 = 0.6 �c1 = 0.8, �c2 = 0.7 �c1 = 0.9, �c2 = 0.8

(nm) NDSM NISM NDSM NISM NDSM NISM NDSM NISM

10 0.3501 0.3455 0.3689 0.3571 0.3889 0.3711 0.4065 0.3849
0.7525 0.7484 0.7625 0.7559 0.7718 0.7626 0.7803 0.7680
0.9581 0.9858 0.8999 0.9155 0.8912 0.8977 0.9488 0.9483
1.1700 1.1892 1.1073 1.1131 1.0904 1.0900 1.1679 1.1661

15 0.2341 0.2357 0.2469 0.2435 0.2605 0.2529 0.2726 0.2622
0.5018 0.5011 0.5087 0.5063 0.5153 0.5113 0.5212 0.5153
0.6553 0.6702 0.6121 0.6213 0.6043 0.6084 0.6438 0.6424
0.7953 0.8050 0.7477 0.7512 0.7341 0.7343 0.7907 0.7861

20 0.1758 0.1789 0.1854 0.1848 0.1957 0.1919 0.2049 0.1989
0.3764 0.3767 0.3816 0.3807 0.3867 0.3846 0.3911 0.3878
0.4959 0.5088 0.4623 0.4712 0.4559 0.4610 0.4858 0.4865
0.6007 0.6096 0.5634 0.5678 0.5525 0.5542 0.5962 0.5934
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To show the role of surface energy on the free vibration of the
locally defected nanosystem, we perform another parametric study.
In Fig. 2(b), the plots of the first three natural frequencies of the
defected nanosystem as a function of the small‐scale parameter have
been demonstrated according to the NTE and NSTE. The predicted
results by both the NTE and NSTE would lessen as the nonlocality
becomes highlighted. In most of the cases, the results of the NSTE
are greater than those of the NTE. This is basically related to the pos-
itive incorporation of the axial stiffness of the nanorod surface layer
into the whole axial stiffness of the nanosystem. Furthermore, the
impact of the surface energy on the fundamental frequency of the
nanosystem is more apparent.

4.4. Effect of the defect location

The locations of both defects could seriously influence on the free
vibration of the locally defected nanosystem. For this purpose, the
plots of the fundamental frequencies of the defected nanosystem as a
function of locations of the defects have been plotted in Fig. 3 for both
fixed–fixed and fixed‐free boundary conditions. It is observed that as
the distance of the defects from the fixed ends increase, the fundamen-
tal frequency of the defected nanosystem would increase. Based on this
fact, the maximum reduction of the longitudinal stiffness of the
defected nanosystem would occur when the damages occur nearby
the fixed supports. This fact holds true for both fixed–fixed and
fixed‐free conditions. In the case of fixed–fixed end condition, the plots
of fundamental frequency in terms of the locations of the defects take
its locally minimum points on the line c1 = c2. Actually, for a given
value of c2, the predicted nonlocal fundamental frequency of the
9

defected nanosystem would grow with c1 in the range of c1 ⩾ c2. This
fact is more visible in the demonstrated results in Fig. 4.

In the lack of the surface energy effect, the plots of the fundamental
frequency of the nanosystem as a function of the location of the local
defect in the first nanorod have been provided in Fig. 4 for three levels
of the small‐scale parameter (i.e., e0a = 0, 1, and 2 nm) in the case of
c2 = 0.1 nm. As it is seen, irrespective of the nonlocality level, the
demonstrated graphs take their peak points at a certain level of c1.
The plotted results reveal that this level is not commonly affected by
the nonlocal parameter. Additionally, for a considered value of c1,
the predicted fundamental frequencies of both fixed–fixed and fixed‐
free defected nanosystem generally reduce by growing of the nonlocal
parameter. In the case of c1 = c2, the maximum influence of the non-
locality on the fundamental frequency is observed. In other words, the
most impact of the nonlocality on the longitudinal stiffness of the
nanosystem is observed when the nanosystem is defected at its fixed
supports. Furthermore, the variation of the nonlocality has a less effect
on the variation of the nanosystem stiffness when defects occur at the
farthest places to the fixed ends.

In Fig. 5, for three levels of the location of the defect within the sec-
ond nanorod (i.e., c2 = 1, 3, and 5 nm for fixed–fixed condition and
c2 = 3, 5, and 8 nm for fixed‐free condition), the variation of the fun-
damental frequency as a function of the defect location within the first
nanorod has been plotted based on the CTE and NTE. The demon-
strated results of the fixed–fixed defected nanosystem show that the
maximum discrepancies between the predicted fundamental frequen-
cies by the CTE and those of the NTE reach their maximum values
when the defect of the second nanorod takes place at its midspan
point. For various locations of the defect in the second nanorod, the
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the defect parameter: (χ21; χ

2
2 = 0; □ð Þ �k1 = 4, }ð Þ �k1 = 8, Δð Þ�k1 = 10000, �KL = 0.7), (b) both NTE- and NSTE-based models: (lb = 20nm, D0 = 0.5nm, �KL =

0.7, �k1 = �k2 = 4; □ð Þ NTE, Δð Þ NSTE; c1 = 8 nm, c2 = 5nm; . . .ð Þ ω1; ��ð Þ ω2, (—) ω3).

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0.3

0.32

0.34

0.36

0.38

0.4

0.42

 c1

fixed−fixed

 c2

ω
1 (

T
H

z)

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0.15

0.16

0.17

0.18

0.19

0.2

0.21

 c1

fixed−free

 c2

ω
1 (

T
H

z)

Fig. 3. The nonlocal fundamental frequencies of the fixed–fixed and fixed-free defected nanosystems in terms of the locations of the defects (lb = 20nm,
D0 = 2nm, �k1 = �k2 = 2, �KL = 0.7, e0a = 2nm).

K. Kiani, K.K. _Zur Composite Structures 256 (2021) 113028

10



0 5 10
0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72
fixed−fixed

 c1 (nm)

ω
1 (

T
H

z)

0 5 10
0.33

0.335

0.34

0.345

0.35

0.355

0.36

0.365

0.37

0.375
fixed−free

 c1 (nm)

ω
1 (

T
H

z)

Fig. 4. The fundamental frequencies of the fixed–fixed and fixed-free defected nanosystems in terms of the defect location for various nonlocal parameters
(lb = 10nm, D0 = 0.5nm, c2 = 0.1nm; . . .ð Þ : CTE : e0a ¼ 0ð Þ; ��ð Þ : NTE : e0a ¼ 1ð Þ; (—): NTE : e0a ¼ 2nmð Þ; �k1 = �k2 = 4, �KL = 0.7).

K. Kiani, K.K. _Zur Composite Structures 256 (2021) 113028
minimum frequency of the fixed–fixed nanosystem is attained when
the defect within the first nanorod occurs at its ends. In all studied
cases, the maximum value of the fundamental frequency is observed
for a particular arrangement of defects for the case that the first
nanorod defect is placed just after the second nanorod defect. Concern-
ing the fixed‐free defected nanosystem, in the cases of c2 = 3 and
5 nm, the occurrence of defect at the first nanorod support leads to
the minimum possible frequency; however, in the case of
c2 = 8 nm, the longitudinal frequency reaches to its minimum level
for the case of c1 ≈ 2 nm. Among various configurations of defects,
the case of maximum frequency is associated with the nanosystem
whose defects are placed close to the free ends.

4.5. Effect of the nanorod diameter

In Fig. 6(a), the variation of the fundamental frequency of the
locally defected nanosystem in terms of the nanorod diameter has been
plotted for fixed–fixed and fixed‐free end conditions. The provided
results are for three values of the small‐scale parameter (i.e.,
e0a = 0, 1, and 2 nm) in the case of c1 = c2 = 8 nm, �k ¼ 4, and
�KL ¼ 0:7. It is so obvious that the variation of the nanorod diameter
has no influence on the variation of the fundamental frequency of the
nanosystem based on the NTE. Actually, the NTE‐based model could
not capture the influence of the nanorod diameter on the fundamental
frequency. In contrast to the NTE’s results, the predicted results by the
NSTE show that the fundamental frequency would commonly decrease
by increasing the diameter. Factually, the ratio of the surface’s strain
energy to that of the bulk would increase by reducing the nanorod
diameter. This fact is true for both fixed–fixed and fixed‐free end
conditions.
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Fig. 6(b) displays the variation of the fundamental frequency of the
defected nanosystem as a function of the nanorod diameter for five
locations of the defects (i.e., c1 = c2 = 2, 4, 6, 8, and 10 nm). In most
of the cases, the predicted results by the NSTE are greater than those of
the NTE for both fixed–fixed and fixed‐free conditions. Irrespective of
the location of the occurred defects, the fundamental frequency by the
NSTE would reduce by increasing the nanorod diameter and the
results of the NSTE approach to those of the NTE. Both the NTE and
the NSTE predict that the fundamental frequency of the defected
nanosystem would increase as the defects become far away from the
fixed ends. This issue is so apparent for both fixed–fixed and fixed‐
free end conditions. Additionally, the role of the surface energy on
the fundamental frequency of nanosystems with defects furtherer to
the fixed ends is more apparent.

4.6. Effect of the nanorod length

For various defect factors (i.e., k�i = 0.01, 1, and 100), the plots of
the fundamental frequency of the defected nanosystem as a function of
the nanorod length have been demonstrated in Fig. 7. The dimension-
less defect factor and the interface constant have been defined such
that the variation of the nanorod length has no influence on the vari-
ation of the defect factor as well as the interface constant. According to
the demonstrated results for fixed–fixed and fixed‐free boundary con-
ditions, the fundamental frequency reduces by increasing the nanorod
length. For the defected nanosystem with a higher defect factor, the
variation of the nanorod length on the variation of the fundamental
frequency is more influential, particularly in the case of the fixed‐
free boundary condition. In most cases, the predicted fundamental fre-
quencies by the NSTE are greater than those obtained by the NTE. Fur-
thermore, by increasing the nanorod length, the difference between
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these results magnify. This is mainly attributed to this issue that the
ratio of the surface elastic energy to that of the bulk generally grows
as the nanorod length increases.

5. Conclusions

Using novel nonlocal models, longitudinal vibrations of locally
defected nanosystems consist of doubly adjacent nanorods were exam-
ined. By modeling the local defects via linear springs, each nanorod
was subdivided into two separate parts. The dynamical interactions
between the constituents of two nearby nanorods were visualized by
a linear elastic layer. By employing the Hamilton’s principle, the
nonlocal‐differential and the nonlocal‐integral governing equations
with their corresponding interfacial boundary conditions were dis-
played. Through evaluating the vibration modes that satisfy both inter-
facial and ends’ conditions, we implemented the Galerkin approach
based on the admissible modes to assess the free longitudinal vibration
of the nanosystem. In a particular case, the results of the nonlocal‐
differential‐based model were checked with those of another research
work. The capabilities of the nonlocal‐differential‐surface energy‐
based model were also examined by comparing its results with those
of the nonlocal‐integral‐surface energy‐based model. The effects of
nonlocality, surface energy, locations of the locally defected zones,
mechanical properties of the defects, length and diameter of the nanor-
ods on the dominant natural frequencies of the defected nanosystems
were explained in some details.

The obtained results from this work plus to the exploited method-
ology for solving the equations of motion could be also employed for
dynamical analysis of more generalized‐defected nanosystems, partic-
ularly longitudinal vibrations of vertically aligned nanorods with mul-
tiple defects. Further, the main assumptions in the modeling of the
problem were that the defects would be local and axisymmetric as
well. The locality of defects allows us to ignore its size in comparison
to the nanosystem length while the axisymmetric condition of the
caused defects guarantee no interactions of the longitudinal modes
13
with the transverse vibrational ones. Through violating the first condi-
tion, the defected zone would be no longer modeled by axial springs
and the mixed actions of the damaged zones and the intact regions
should be appropriately taken into account.
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Appendix A. Evaluation of the vibrational modes for the
fixed–fixed and fixed-free defected nanorods

By neglecting the interactions between the constitutive nanorods,
using Eqs. (9a) and (9b), the dimensionless equations of motion of
the jth defected nanorod are stated as:

1þ χ21
� � @2�uLj

@τ2 � μ2
@4�uLj
@τ2@ξ2

� 
� 1þ χ22
� � @2�uLj

@ξ2
¼ 0; 0 < ξ < �cj; ðA:1aÞ

1þ χ21
� � @2�uRj

@τ2 � μ2
@4�uRj
@τ2@ξ2

� 
� 1þ χ22
� � @2�uRj

@ξ2
¼ 0; �cj < ξ < 1; ðA:1bÞ

with the following conditions at the defected zone (i.e., see Eqs. (11a)
and (11b) at ξ ¼ �cj):

�kj �uRj �cj; τ
� �� �uLj �cj; τ

� �h i
¼ 1þ χ22
� �þ μ2 1þ χ21

� �
@2
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h i
@�uLj
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�cj; t
� �

; ðA:2aÞ

1þ χ22
� �þ μ2 1þ χ21

� �
@2

@τ2

h i
@�uLj
@ξ

�cj; τ
� � ¼

1þ χ22
� �þ μ2 1þ χ21

� �
@2

@τ2

h i
@�uRj
@ξ

�cj; τ
� �

:
ðA:2bÞ

By considering

�uLj ξ; τð Þ ¼ �UL
j ξð Þeiϖ τ; �uRj ξ; τð Þ ¼ �UR

j ξð Þeiϖ τ; i ¼ ffiffiffiffiffiffiffi�1
p

; ðA:3Þ
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where �UL
j ξð Þ and �UR

j ξð Þ represent the dimensionless amplitudes field of
the left segment and the right segment of the jth defect nanorod, respec-
tively, and ϖ denotes its dimensionless longitudinal frequency. By
introducing this form of displacements to Eqs. (A.1a) and (A.1b), one
can arrive at:
1 0 0 0
0 0 cos λð Þ sin λð Þ

�kj cos λ�cj
� ��ϖ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χ21

p
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Eqs. (A.5a) and (A.5b) are second‐order linear‐homogeneous ordi-

nary differential equations. In the case of ϖ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þχ22ð Þ

μ2 1þχ21ð Þ
r

, the general

form of the displacements of the constitutive segments of the first
defected nanorod is given by:

�UL
j ξð Þ ¼ A1 cos λξð Þ þ A2 sin λξð Þ; 0 < ξ < �cj; ðA:6aÞ

�UR
j ξð Þ ¼ B1 cos λξð Þ þ B2 sin λξð Þ; �cj < ξ < 1; ðA:6bÞ

where Ai and Bi; i = 1 and 2 are constants whose values and their rela-
tions are commonly determined by enforcing the end conditions, and

λ2 ¼ 1þχ21ð Þϖ2

1þχ22ð Þ�μ2ϖ2 1þχ21ð Þ. In the present work, the following boundary con-

ditions are taken into account:
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Fixed� free : �UL
j 0ð Þ ¼ 0;

d�UR
j 1ð Þ
dξ ¼ 0: ðA:7bÞ

• Fixed–fixed boundary condition

By introducing conditions in Eqs. (A.2a), (A.2b), and (A.7a) to Eqs.
(A.6a) and (A.6b),
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and by setting the determinant of the coefficient matrix equal to
zero, the characteristic equation is derived as follows:
0
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Through solving Eq. (A.9), infinite longitudinal frequencies of the
jth defected nanorod in the dimensionless form are obtained (i.e.,

ϖ jð Þ
i ). By substituting these values into Eqs. (A.6a) and (A.6b), the

ith vibrational modes of the fixed–fixed defected nanorods for the
case of A2 = B1 = 1 take the following form:
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and the values of λ jð Þ
i are:
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• Fixed‐free boundary condition
By imposing the boundary conditions in Eqs. (A.2a), (A.2b), and
(A.7b), it is obtained:
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and the if and only if condition for existence of non‐trivial solu-
tion to Eq. (A.12) is that the determinant of the coefficient
should be equal to zero. Therefore, the characteristic relation
associated with fixed‐free defected nanorod is displayed by:
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�ϖ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χ21

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χ22ð Þ � μ2ϖ2 1þ χ21ð Þ

p
�

cos �cj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þχ21ð Þϖ2

1þχ22ð Þ�μ2ϖ2 1þχ21ð Þ
r� 

sin 1� �cj
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þχ21ð Þϖ2

1þχ22ð Þ�μ2ϖ2 1þχ21ð Þ
r� 

¼ 0:

ðA:13Þ
By solving Eq. (A.13) for dimensionless longitudinal frequencies,
their values are evaluated appropriately. For the ith frequency of
the jth nanorod (i.e., ϖj

i), the corresponding longitudinal vibration
modes of the fixed‐free defected nanorods are readily calculated
by using Eqs. (A.6a) and (A.6b) and setting B2=A1=1:

φ jLð Þ
i ξð Þ ¼ sin λ jð Þ

i ξ
� �

; ðA:14aÞ

φ jRð Þ
i ξð Þ ¼ cos λ jð Þ

i

� �
cos λ jð Þ

i ξ
� �

þ sin λ jð Þ
i

� �
sin λ jð Þ

i ξ
� �

: ðA:14bÞ
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