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This document describes free and forced dynamic responses of single
degree of freedom (SDOF) systems. The prototype single degree of freedom
system is a spring-mass-damper system in which the spring has no damping
or mass, the mass has no stiffness or damping, the damper has no stiffness or
mass. Furthermore, the mass is allowed to move in only one direction. The
horizontal vibrations of a single-story building can be conveniently modeled
as a single degree of freedom system. Part 1 of this document describes some
useful trigonometric identities. Part 2 shows how damped SDOF systems
vibrate freely after being released from an initial displacement with some
initial velocity. Part 3 covers the resposne of damped SDOF systems to
persistent sinusoidal forcing.

Consider the structural system shown in Figure 1, where:
f(t) = external excitation force
x(t) = displacement of the center of mass of the moving object
m = mass of the moving object, fI = d

dt(mẋ(t)) = mẍ(t)
c = linear viscous damping coefficient, fD = cẋ(t)
k = linear elastic stiffness coefficient, fS = kx(t)
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Figure 1. The proto-typical single degree of freedom oscillator.
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The kinetic energy T (x, ẋ), the potential energy, V (x), and the external forc-
ing and dissipative forces, p(x, ẋ), are

T (x, ẋ) = 1
2m(ẋ(t))2 (1)

V (x) = 1
2k(x(t))2 (2)

p(x, ẋ) = −cẋ(t) + f(t) (3)

The general form of the differential equation describing a SDOF oscillator
follows directly from Lagrange’s equation,

d

dt

∂T (x, ẋ)
∂ẋ

− ∂T (x, ẋ)
∂x

+ ∂V (x)
∂x

− p(x, ẋ) = 0 , (4)

or from simply balancing the forces on the mass,∑
F = 0 : fI + fD + fS = f(t) . (5)

Either way, the equation of motion is:

mẍ(t) + cẋ(t) + kx(t) = f(t), x(0) = do, ẋ(0) = vo (6)

where the initial displacement is do, and the initial velocity is vo.

The solution to equation (6) is the sum of a homogeneous part (free
response) and a particular part (forced response). This document describes
free responses of all types and forced responses to simple-harmonic forcing.

1 Trigonometric and Complex Exponential Expressions for Oscillations

1.1 Constant Amplitude

An oscillation, x(t), with amplitude X̄ and frequency ω can be de-
scribed by sinusoidal functions. These sinusoidal functions may be equiv-
alently written in terms of complex exponentials e±iωt with complex coeffi-
cients, X = A + iB and X∗ = A − iB. (The complex constant X∗ is called
the complex conjugate of X.)

x(t) = X̄ cos(ωt+ θ) (7)
= a cos(ωt) + b sin(ωt) (8)
= X e+iωt +X∗ e−iωt (9)
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To relate equations (7) and (8), recall the cosine of a sum of angles,

X̄ cos(ωt+ θ) = X̄ cos(θ) cos(ωt)− X̄ sin(θ) sin(ωt) (10)

Comparing equations (10) and (8), we see that

a = X̄ cos(θ) , b = −X̄ sin(θ) , and a2 + b2 = X̄2 . (11)

Also, the ratio b/a provides an equation for the phase shift, θ,

tan(θ) = − b
a

(12)
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Figure 2. A constant-amplitude oscillation.

To relate equations (8) and (9), recall the expression for a complex exponent
in terms of sines and cosines,

X e+iωt +X∗ e−iωt = (A+ iB) (cos(ωt) + i sin(ωt)) +
(A− iB) (cos(ωt)− i sin(ωt)) (13)

= A cos(ωt)−B sin(ωt) + iA sin(ωt) + iB cos(ωt) +
A cos(ωt)−B sin(ωt)− iA sin(ωt)− iB cos(ωt)

= 2A cos(ωt)− 2B sin(ωt) (14)
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Comparing equations (14) and (8), we see that

a = 2A , b = −2B , and tan(θ) = B

A
. (15)

Any sinusoidal oscillation x(t) can be expressed equivalently in terms of equa-
tions (7), (8), or (9); the choice depends on the application, and the problem
to be solved. Equations (7) and (8) are easier to interpret as describing
a sinusoidal oscillation, but equation (9) can be much easier to work with
mathematically. These notes make use of all three forms.

One way to interpret the compex exponential notation is as the sum of
complex conjugates,

Xe+iωt = [A cos(ωt)−B sin(ωt)] + i[A sin(ωt) +B cos(ωt)]

and
X∗e−iωt = [A cos(ωt)−B sin(ωt)]− i[A sin(ωt) +B cos(ωt)]

as shown in Figure 3. The sum of complex conjugate pairs is real, since the
imaginary parts cancel out.

ω
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ωA sin    t + B cos   tω

ω
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2
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ω

  X
 exp(+i   t

)  
ω

Figure 3. Complex conjugate oscillations.

The amplitude, X̄, of the oscillation x(t) can be found by finding the the
sum of the complex amplitudes |X| and |X∗|.

X̄ = |X|+ |X∗| = 2
√
A2 +B2 =

√
a2 + b2 (16)

CC BY-NC-ND H.P. Gavin

http://creativecommons.org/licenses/by-nc-nd/3.0/


Vibrations of Single Degree of Freedom Systems 5

Note, again, that equations (7), (8), and (9) are all equivalent using the
relations among (a, b), (A,B), X̄, and θ given in equations (11), (12), (15),
and (16).

1.2 Decaying Amplitude

The dynamic response of damped systems decays over time. Note that
damping may be introduced into a structure through diverse mechanisms,
including linear viscous damping, nonlinear viscous damping, visco-elastic
damping, friction damping, and plastic deformation. ll but linear viscous
damping are somewhat complicated to analyze, so we will restrict our atten-
tion to linear viscous damping, in which the damping force fD is proportional
to the velocity, fD = cẋ.

To describe an oscillation which decays with time, we can multiply the
expression for a constant amplitude oscillation by a positive-valued function
which decays with time. Here we will use a real exponential, eσt, where σ < 0.
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Figure 4. A decaying oscillation.
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Multiplying equations (7) through (9) by eσt,

x(t) = eσt X̄ (cos(ωt+ θ)) (17)
= eσt (a cos(ωt) + b sin(ωt)) (18)
= eσt (Xeiωt +X∗e−iωt) (19)
= Xe(σ+iω)t +X∗e(σ−iω)t (20)
= Xeλt +X∗eλ

∗t (21)

Again, note that all of the above equations are exactly equivalent. The expo-
nent λ is complex, λ = σ + iω and λ∗ = σ − iω. If σ is negative, then these
equations describe an oscillation with exponentially decreasing amplitudes.
Note that in equation (18) the unknown constants are σ, ω, a, and b. An-
gular frequencies, ω, have units of radians per second. Circular frequencies,
f = ω/(2π) have units of cycles per second, or Hertz. Periods, T = 2π/ω,
have units of seconds.

In the next section we will find that for an un-forced vibration, σ and
ω are determined from the mass, damping, and stiffness of the system. We
will see that the constant a equals the initial displacement do, but that the
constant b depends on the initial displacement and velocity, as well mass,
damping, and stiffness.
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2 Free response of systems with mass, stiffness and damping

Using equation (21) to describe the free response of a single degree of
freedom system, we will set f(t) = 0 and will substitute x(t) = Xeλt into
equation (6).

mẍ(t) + cẋ(t) + kx(t) = 0 , x(0) = do , ẋ(0) = vo , (22)
mλ2Xeλt + cλXeλt + kXeλt = 0 , (23)

(mλ2 + cλ+ k)Xeλt = 0 , (24)

Note that m, c, k, λ and X do not depend on time. For equation (24) to be
true for all time,

(mλ2 + cλ+ k)X = 0 . (25)

Equation (25) is trivially satisfied if X = 0. The non-trivial solution is mλ2 +
cλ+ k = 0. This is a quadratic equation in λ which has the roots,

λ1,2 = − c

2m ±
√√√√( c

2m

)2
− k

m
. (26)

The solution to a homogeneous second order ordinary differential equation
requires two independent initial conditions: an initial displacement and an
initial velocity. These two independent initial conditions are used to determine
the coefficients, X and X∗ (or A and B, or a and b) of the two linearly
independent solutions corresponding to λ1 and λ2.

The amount of damping, c, qualitatively affects the quadratic roots, λ1,2,
and the free response solutions.

• Case 1 c = 0 “undamped”
If the system has no damping, c = 0, and

λ1,2 = ±i
√
k/m = ±iωn . (27)

This is called the natural frequency of the system. Undamped systems
oscillate freely at their natural frequency, ωn. The solution in this case
is

x(t) = Xeiωnt +X∗e−iωnt = a cosωnt+ b sinωnt , (28)
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which is a real-valued function. The amplitudes depend on the initial
displacement, do, and the initial velocity, vo.

• Case 2 c = cc “critically damped”
If (c/(2m))2 = k/m, or, equivalently, if c = 2

√
mk, then the discriminant

of equation (26) is zero, This special value of damping is called the critical
damping rate, cc,

cc = 2
√
mk . (29)

The ratio of the actual damping rate to the critical damping rate is called
the damping ratio, ζ.

ζ = c

cc
. (30)

The two roots of the quadratic equation are real and are repeated at

λ1 = λ2 = −c/(2m) = −cc/(2m) = −2
√
mk/(2m) = −ωn , (31)

and the two basic solutions are equal to each other, eλ1t = eλ2t. In order
to admit solutions for arbitrary initial displacements and velocities, the
solution in this case is

x(t) = x1 e
−ωnt + x2 t e

−ωnt . (32)

where the real constants x1 and x2 are determined from the initial dis-
placement, do, and the initial velocity, vo. Details regarding this special
case are in the next section.

• Case 3 c > cc “over-damped”
If the damping is greater than the critical damping, then the roots, λ1

and λ2 are distinct and real. If the system is over-damped it will not
oscillate freely. The solution is

x(t) = x1 e
λ1t + x2 e

λ2t , (33)

which can also be expressed using hyperbolic sine and hyperbolic cosine
functions. The real constants x1 and x2 are determined from the initial
displacement, do, and the initial velocity, vo.
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• Case 4 0 < c < cc “under-damped”
If the damping rate is positive, but less than the critical damping rate, the
system will oscillate freely from some initial displacement and velocity.
The roots are complex conjugates, λ1 = λ∗2, and the solution is

x(t) = X eλt +X∗ eλ
∗t , (34)

where the complex amplitude depends on the initial displacement, do,
and the initial velocity, vo.

We can re-write the dynamic equations of motion using the new dynamic
variables for natural frequency, ωn, and damping ratio, ζ. Note that

c

m
= c

√
k√
k

1√
m
√
m

= c√
k
√
m

√
k√
m

= 2 c

2
√
km

√√√√ k

m
= 2ζωn. (35)

mẍ(t) + cẋ(t) + kx(t) = f(t), (36)

ẍ(t) + c

m
ẋ(t) + k

m
x(t) = 1

m
f(t), (37)

ẍ(t) + 2ζωn ẋ(t) + ω2
n x(t) = 1

m
f(t), (38)

The expression for the roots λ1,2, can also be written in terms of ωn and ζ.

λ1,2 = − c

2m ±
√√√√( c

2m

)2
− k

m
, (39)

= −ζωn ±
√

(ζωn)2 − ω2
n , (40)

= −ζωn ± ωn
√
ζ2 − 1 . (41)
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Some useful facts about the roots λ1 and λ2 are:

• λ1 + λ2 = −2ζωn

• λ1 − λ2 = 2 ωn
√
ζ2 − 1

• ω2
n = 1

4(λ1 + λ2)2 − 1
4(λ1 − λ2)2

• ωn =
√
λ1λ2

• ζ = −(λ1 + λ2)/(2ωn)

ω

Im

−ω

d

d
λ

λ
1

2
x

x

−ζω
n

n
ω

Re σ =     λ

ω =     λ

2.1 Free response of critically-damped systems

The solution to a homogeneous second order ordinary differential equa-
tion requires two independent initial conditions: an initial displacement and
an initial velocity. These two initial conditions are used to determine the
coefficients of the two linearly independent solutions corresponding to λ1 and
λ2. If λ1 = λ2, then the solutions eλ1t and eλ2t are not independent. In fact,
they are identical. In such a case, a new trial solution can be determined as
follows. Assume the second solution has the form

x(t) = u(t)x2e
λ2t , (42)

ẋ(t) = u̇(t)x2e
λ2t + u(t)λ2x2e

λ2t , (43)
ẍ(t) = ü(t)x2e

λ2t + 2u̇(t)λ2x2e
λ2t + u(t)λ2

2x2e
λ2t (44)

substitute these expressions into

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) = 0 ,

collect terms, and divide by x2e
λ2t, to get

ü(t) + 2ωn(ζ − 1)u̇(t) + 2ω2
n(1− ζ)u(t) = 0

or ü(t) = 0 (since ζ = 1). If the acceleration of u(t) is zero then the velocity
of u(t) must be constant, u̇(t) = C, and u(t) = Ct, from which the new trial
solution is found.

x(t) = u(t)x2e
λ2t = x2 t e

λ2t .
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So, using the complete trial solution x(t) = x1e
λt + x2te

λt, and incorporating
initial conditions x(0) = do and ẋ(0) = vo, the free response of a critically-
damped system is:

x(t) = do e
−ωnt + (vo + ωndo) t e−ωnt . (45)

2.2 Free response of underdamped systems

If the system is under-damped, then ζ < 1,
√
ζ2 − 1 is imaginary, and

λ1,2 = −ζωn ± iωn
√
|ζ2 − 1| = σ ± iω. (46)

The frequency ωn
√
|ζ2 − 1| is called the damped natural frequency, ωd,

ωd = ωn
√
|ζ2 − 1| . (47)

It is the frequency at which under-damped SDOF systems oscillate freely,
With these new dynamic variables (ζ, ωn, and ωd) we can re-write the solution
to the damped free response,

x(t) = e−ζωnt(a cosωdt+ b sinωdt), (48)
= Xeλt +X∗eλ

∗t. (49)

Now we can solve for X, (or, equivalently, A and B) in terms of the initial
conditions. At the initial point in time, t = 0, the position of the mass is
x(0) = do and the velocity of the mass is ẋ(0) = vo.

x(0) = do = Xeλ·0 +X∗eλ
∗·0 (50)

= X +X∗ (51)
= (A+ iB) + (A− iB) = 2A = a. (52)

ẋ(0) = vo = λXeλ·0 + λ∗X∗eλ
∗·0, (53)

= λX + λ∗X∗, (54)
= (σ + iωd)(A+ iB) + (σ − iωd)(A− iB), (55)
= σA+ iωdA+ iσB − ωdB +

σA− iωdA− iσB − ωdB, (56)
= 2σA− 2ωB (57)
= −ζωn do − 2 ωd B, (58)
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from which we can solve for B and b,

B = −vo + ζωndo
2ωd

and b = vo + ζωndo
ωd

. (59)

Putting this all together, the free response of an underdamped system to an
arbitrary initial condition, x(0) = do, ẋ(0) = vo is

x(t) = e−ζωnt
(
do cosωdt+ vo + ζωndo

ωd
sinωdt

)
. (60)
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Figure 5. Free response of an under-damped oscillator to an initial displacement and velocity.
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2.3 Free response of over-damped systems

If the system is over-damped, then ζ > 1, and
√
ζ2 − 1 is real, and the

roots are both real and negative

λ1,2 = −ζωn ± ωn
√
ζ2 − 1 = σ ± ωd. (61)

Substituting the initial conditions x(0) = do and ẋ(0) = vo into the
solution (equation (33)), and solving for the coefficients results in

x1 = vo + do(ζωn + ωd)
2ωd

, (62)

x2 = do − x1 . (63)

Substituting the hyperbolic sine and hyperbolic cosine expressions for the
exponentials results in

x(t) = e−ζωnt
(
do coshωdt+ vo + ζωndo

ωd
sinhωdt

)
. (64)
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Figure 6. Free response of critically-damped (yellow) and over-damped (violet) oscillators to
an initial displacement and velocity.
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The undamped free response can be found as a special case of the under-
damped free response. While special solutions exist for the critically damped
response, this response can also be found as limiting cases of the under-
damped or over-damped responses.

2.4 Finding the natural frequency from self-weight displacement

Consider a spring-mass system in which the mass is loaded by gravity,
g. The static displacement Dst is related to the natural frequency by the
constant of gravitational acceleration.

Dst = mg/k = g/ω2
n (65)

2.5 Finding the damping ratio from free response

Consider the value of two peaks of the free response of an under-damped
system, separated by n cycles of motion

x1 = x(t1) = e−ζωnt1(A) (66)
x1+n = x(t1+n) = e−ζωnt1+n(A) = e−ζωn(t1+2nπ/ωd)(A) (67)

The ratio of these amplitudes is

x1

x1+n
= e−ζωnt1

e−ζωn(t1+2nπ/ωd) = e−ζωnt1

e−ζωnt1e−2nπζωn/ωd
= e2nπζ/

√
1−ζ2

, (68)

which is independent of ωn and ωd. Defining the log decrement δ(ζ) as
ln(x1/x1+n)/n,

δ(ζ) = 2πζ√
1− ζ2 (69)

and, inversely,
ζ(δ) = δ√

4π2 + δ2 ≈
δ

2π (70)

where the approximation is accurate to within 3% for ζ < 0.2 and is accurate
to within 1.5% for ζ < 0.1.

CC BY-NC-ND H.P. Gavin

http://creativecommons.org/licenses/by-nc-nd/3.0/


Vibrations of Single Degree of Freedom Systems 15

2.6 Summary

To review, some of the important expressions relating to the free response
of a single degree of freedom oscillator are:

X̄ cos(ωt+ θ) = a cos(ωt) + b sin(ωt) = Xe+iωt +X∗e−iωt

X̄ =
√
a2 + b2; tan(θ) = −b/a; X = A+ iB; A = a/2;B = −b/2;

mẍ(t) + cẋ(t) + kx(t) = 0
ẍ(t) + 2ζωnẋ(t) + ω2

nx(t) = 0

 x(0) = do, ẋ(0) = vo

ωn =
√√√√ k

m
ζ = c

cc
= c

2
√
mk

ωd = ωn
√
|ζ2 − 1|

x(t) = e−ζωnt
(
do cosωdt+ vo + ζωndo

ωd
sinωdt

)
(0 ≤ ζ < 1)

δ = 1
n

ln
(
x1

x1+n

)
ζ(δ) = δ√

4π2 + δ2 ≈
δ

2π
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3 Response of systems with mass, stiffness, and damping to sinusoidal forcing

When subject to simple harmonic forcing with a forcing frequency ω,
dynamic systems initially respond with a combination of a transient response
at a frequency ωd and a steady-state response at a frequency ω. The transient
response at frequency ωd decays with time, leaving the steady state response
at a frequency equal to the forcing frequency, ω. This section examines three
ways of applying forcing: forcing applied directly to the mass, inertial forcing
applied through motion of the base, and forcing from a rotating eccentric
mass.

3.1 Direct Force Excitation

If the SDOF system is dynamically forced with a sinusoidal forcing func-
tion, then f(t) = F̄ cos(ωt), where ω is the frequency of the forcing, in radians
per second. If f(t) is persistent, then after several cycles the system will re-
spond only at the frequency of the external forcing, ω. Let’s suppose that
this steady-state response is described by the function

x(t) = a cosωt+ b sinωt, (71)

then
ẋ(t) = ω(−a sinωt+ b cosωt), (72)

and
ẍ(t) = ω2(−a cosωt− b sinωt). (73)

Substituting this trial solution into equation (6), we obtain

mω2 (−a cosωt− b sinωt) +
cω (−a sinωt+ b cosωt) +
k (a cosωt+ b sinωt) = F̄ cosωt. (74)

Equating the sine terms and the cosine terms

(−mω2a+ cωb+ ka) cosωt = F̄ cosωt (75)
(−mω2b− cωa+ kb) sinωt = 0, (76)
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which is a set of two equations for the two unknown constants, a and b, k −mω2 cω

−cω k −mω2

  a
b

 =
 F̄

0

 , (77)

for which the solution is

a(ω) = k −mω2

(k −mω2)2 + (cω)2 F̄ (78)

b(ω) = cω

(k −mω2)2 + (cω)2 F̄ . (79)

Referring to equations (7) and (12) in section 1.1, the forced vibration solution
(equation (71)) may be written

x(t) = a(ω) cosωt+ b(ω) sinωt = X̄(ω) cos (ωt+ θ(ω)) . (80)

The angle θ is the phase between the force f(t) and the response x(t), and

tan(θ(ω)) = − b(ω)
a(ω) = − cω

k −mω2 (81)

Note that −π < θ(ω) < 0 for all positive values of ω, meaning that the
displacement response, x(t), always lags the external forcing, F̄ cos(ωt). The
ratio of the response amplitude X̄(ω) to the forcing amplitude F̄ is

X̄(ω)
F̄

=
√
a2(ω) + b2(ω)

F̄
= 1√

(k −mω2) + (cω)2
. (82)

This equation shows how the response amplitude X̄ depends on the amplitude
of the forcing F̄ and the frequency of the forcing ω, and has units of flexibility.

Let’s re-derive this expression using complex exponential notation! The
equations of motion are

mẍ(t) + cẋ(t) + kx(t) = F̄ cosωt = F (ω)eiωt + F ∗(ω)e−iωt . (83)

In a solution of the form, x(t) = X(ω)eiωt +X∗(ω)e−iωt, the coefficient X(ω)
corresponds to the positive exponents (positive frequencies), and X∗(ω) corre-
sponds to negative exponents (negative frequencies). Positive exponent coef-
ficients and negative exponent coefficients are independent and may be found
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separately. Considering the positive exponent solution, the forcing is ex-
pressed as F (ω)eiωt and the partial solution X(ω)eiωt is substituted into the
forced equations of motion, resulting in

(−mω2 + ciω + k) X(ω) eiωt = F (ω) eiωt , (84)

from which
X(ω)
F (ω) = 1

(k −mω2) + i(cω) , (85)

which is complex-valued. This complex function has a magnitude∣∣∣∣∣∣X(ω)
F (ω)

∣∣∣∣∣∣ = 1√
(k −mω2)2 + (cω)2

, (86)

the same as equation (82) but derived using eiωt in just three simple lines.

Equation (85) may be written in terms of the dynamic variables, ωn and
ζ. Dividing the numerator and the denominator of equation (82) by k, and
noting that F/k is a static displacement, xst, we obtain

X(ω)
F (ω) = 1/k(

1− m
k ω

2
)

+ i
(
c
kω

) , (87)

X(ω) = F (ω)/k(
1−

(
ω
ωn

)2)
+ i

(
2ζ ω

ωn

) , (88)

X(Ω)
xst

= 1
(1− Ω2) + i (2ζΩ) , (89)

X̄(Ω)
xst

= 1√
(1− Ω2)2 + (2ζΩ)2 , (90)

where the frequency ratio Ω is the ratio of the forcing frequency to the natural
frequency, Ω = ω/ωn. This equation is called the dynamic amplification
factor. It is the factor by which displacement responses are amplified due to
the fact that the external forcing is dynamic, not static. See Figure 7.
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Figure 7. The dynamic amplification factor for external forcing, X̄/xst, equation (89).

To summarize, the steady state response of a simple oscillator directly
excited by a harmonic force, f(t) = F̄ cosωt, may be expressed in the form
of equation (7)

x(t) = F̄ /k√
(1− Ω2)2 + (2ζΩ)2

cos(ωt+ θ) , tan θ = −2ζΩ
1− Ω2 (91)

or, equivalently, in the form of equation (8)

x(t) = F̄ /k

(1− Ω2)2 + (2ζΩ)2 [ (1− Ω2) cosωt+ (2ζΩ) sinωt ] , (92)

where Ω = ω/ωn.

CC BY-NC-ND H.P. Gavin

http://creativecommons.org/licenses/by-nc-nd/3.0/


20 CEE 201L. Uncertainty, Design, and Optimization – Duke University – Spring 2015 – H.P. Gavin

3.2 Support Acceleration Excitation

When the dynamic loads are caused by motion of the supports (or the
ground, as in an earthquake) the forcing on the structure is the inertial force
resisting the ground acceleration, which equals the mass of the structure times
the ground acceleration, f(t) = −mz̈(t).
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Figure 8. The proto-typical SDOF oscillator subjected to base motions, z(t)

m ( ẍ(t) + z̈(t) ) + cẋ(t) + kx(t) = 0 (93)
mẍ(t) + cẋ(t) + kx(t) = −mz̈(t) (94)

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) = −z̈(t) (95)

Note that equation (95) is independent of mass. Systems of different masses
but with the same natural frequency and damping ratio have the same be-
havior and respond in exactly the same way to the same support motion.

If the ground displacements are sinusoidal z(t) = Z̄ cosωt, then the
ground accelerations are z̈(t) = −Z̄ω2 cosωt, and f(t) = mZ̄ω2 cosωt. Using
the complex exponential formulation, we can find the steady state response
as a function of the frequency of the ground motion, ω.

mẍ(t) + cẋ(t) + kx(t) = mZ̄ω2 cosωt = mZ(ω)ω2eiωt +mZ∗(ω)ω2e−iωt (96)

The steady-state response can be expressed as the sum of independent com-
plex exponentials, x(t) = X(ω)eiωt+X∗(ω)e−iωt. The positive exponent parts
are independent of the negative exponent parts and can be analyzed sepa-
rately.
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Assuming persistent excitation and ignoring the transient resposne (the
particular part of the solution), the response will be harmonic. Consider-
ing the “positive exponent” part of the forcing mZ(ω)ω2eiωt, the “positive
exponent” part of the steady-state response will have a form Xeiωt. Substi-
tuting these expressions into the differential equation (96), collecting terms,
and factoring out the exponential eiωt, the frequency response function is

X(ω)
Z(ω) = mω2

(k −mω2) + i(cω) ,

= Ω2

(1− Ω2) + i(2ζΩ) (97)

where Ω = ω/ωn (the forcing frequency over the natural frequency), and∣∣∣∣∣∣X(Ω)
Z(Ω)

∣∣∣∣∣∣ = Ω2√
(1− Ω2)2 + (2ζΩ)2

(98)

See Figure 9.

Finally, let’s consider the motion of the mass with respect to a fixed
point. This is called the total motion and is the sum of the base motion plus
the motion relative to the base, z(t) + x(t).

X + Z

Z
= X

Z
+ 1 = (1− Ω2) + i(2ζΩ) + Ω2

(1− Ω2) + i(2ζΩ)

= 1 + i(2ζΩ)
(1− Ω2) + i(2ζΩ) (99)

and ∣∣∣∣∣X + Z

Z

∣∣∣∣∣ =
√

1 + (2ζΩ)2√
(1− Ω2)2 + (2ζΩ)2

= Tr(Ω, ζ). (100)

This function is called the transmissibility ratio, Tr(Ω, ζ). It determines the
ratio between the total response amplitude X + Z and the base motion Z̄.
See figure 10.

For systems that have a longer natural period (lower natural frequency)
than the period (frequency) of the support motion, (i.e., Ω >

√
2), the trans-

missibility ratio is less than “1” especialy for low values of damping ζ. In
such systems the motion of the mass is less than the motion of the supports
and we say that the mass is isolated from motion of the supports.
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Figure 9. The dynamic amplification factor for base-excitation, X̄/Z̄, equation (97).
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Figure 10. The transmissibility ratio |(X + Z)/Z| = Tr(Ω, ζ), equation (99).
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3.3 Eccentric-Mass Excitation

Another type of sinusoidal forcing which is important to machine vibra-
tion arises from the rotation of an eccentric mass. Consider the system shown
in Figure 11 in which a mass µm is attached to the primary mass m via a rigid
link of length r and rotates at an angular velocity ω. In this single degree of
freedom analysis, the motion of the primary mass is constrained to lie along
the x coordinate and the forcing of interest is the x-component of the reactive
centrifugal force. This component is µmrω2 cos(ωt) where the angle ωt is the
counter-clockwise angle from the x coordinate. The equation of motion with
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Figure 11. The proto-typical SDOF oscillator subjected to eccentric-mass excitation.

this forcing is
mẍ(t) + cẋ(t) + kx(t) = µmrω2 cos(ωt) (101)

This expression is simply analogous to equation (83) in which F̄ = µ m r ω2.
With a few substitutions, the frequency response function is found to be

X

r
= µ Ω2

(1− Ω2) + i (2ζΩ) , (102)

which is completely analogous to equation (97). The plot of the frequency
response function of equation (102) is simply proportional to the function
plotted in Figure 9. The magnitude of the dynamic force transmitted between
a machine supported on dampened springs and the base, |fT|, is related to
the transmissibility ratio.

|fT|
kr

= µΩ2 Tr(Ω, ζ) (103)

CC BY-NC-ND H.P. Gavin

http://creativecommons.org/licenses/by-nc-nd/3.0/


24 CEE 201L. Uncertainty, Design, and Optimization – Duke University – Spring 2015 – H.P. Gavin

Unlike the transmissibility ratio asymptotically approaches “0” with increas-
ing Ω, the vibratory force transmitted from eccentric mass excitation is “0”
when Ω = 0 but increase with Ω for Ω >

√
2. This increasing effect is signifi-

cant for ζ > 0.2, as shown in Figure 12.
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Figure 12. The transmission ratio Ω2Tr(Ω, ζ), equation (103).

CC BY-NC-ND H.P. Gavin

http://creativecommons.org/licenses/by-nc-nd/3.0/


Vibrations of Single Degree of Freedom Systems 25

3.4 Finding the damping from the peak of the frequency response function

For lightly damped systems, the frequency ratio of the resonant peak,
the amplification of the resonant peak, and the width of the resonant peak
are functions to of the damping ratio only. Consider two frequency ratios
Ω1 and Ω2 such that |H(Ω1, ζ)|2 = |H(Ω2, ζ)|2 = |H|2peak/2 where |H(Ω, ζ)|
is one of the frequency response functions described in earlier sections. The
frequency ratio corresponding to the peak of these functions Ωpeak, and the
value of the peak of these functions, |H|2peak are given in Table 1. Note that
the peak coordinate depends only upon the damping ratio, ζ.

Since Ω2
2 − Ω2

1 = (Ω2 − Ω1)(Ω2 + Ω1) and since Ω2 + Ω1 ≈ 2,

ζ ≈ Ω2 − Ω1

2 (104)

which is called the “half-power bandwidth” formula for damping. For the
first, second, and fourth frequency response functions listed in Table 1 the
approximation is accurate to within 5% for ζ < 0.20 and is accurate to within
1% for ζ < 0.10.

Table 1. Peak coordinates for various frequency response functions.

H(Ω, ζ) Ωpeak |H|2peak Ω2
2 − Ω2

1

1
(1−Ω2)+i(2ζΩ)

√
1− 2ζ2 1

4ζ2(1−ζ2) 4ζ
√

1− ζ2

iΩ
(1−Ω2)+i(2ζΩ) 1 1

4ζ2 4ζ
√

1 + ζ2

Ω2
(1−Ω2)+i(2ζΩ)

1√
1−2ζ2

1
4ζ2(1−ζ2)

4ζ
√

1−ζ2

1−8ζ2(1−ζ2)

1+i(2ζΩ)
(1−Ω2)+i(2ζΩ)

((1+8ζ2)1/2−1)1/2

2ζ
8ζ4

8ζ4−4ζ2−1+
√

1+8ζ2 ouch.

CC BY-NC-ND H.P. Gavin

http://creativecommons.org/licenses/by-nc-nd/3.0/

	Trigonometric and Complex Exponential Expressions for Oscillations
	Constant Amplitude
	Decaying Amplitude

	Free response of systems with mass, stiffness and damping
	Free response of critically-damped systems
	Free response of underdamped systems
	Free response of over-damped systems
	Finding the natural frequency from self-weight displacement
	Finding the damping ratio from free response
	Summary

	Response of systems with mass, stiffness, and damping to sinusoidal forcing
	Direct Force Excitation
	Support Acceleration Excitation
	Eccentric-Mass Excitation
	 Finding the damping from the peak of the frequency response function


