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1 Dynamics of Rotating Machines - Finite Element Modelling,

Simulation, Analysis and Experiments

1.1 Introduction

The aim of this chapter is to introduce the basic phenomenology related to vibration and stability
in rotating machines. The Finite Element Method is presented in order to achieve mathematical
models for representing rotor-bearing lateral vibration. The dynamics of rigid and flexible rotat-
ing machines is illustrated. Comparison between theoretical and experimental results, obtained
with help of small test rigs, elucidate the most important topics related to rotor dynamics.

1.2 Mechanical Models of Rotating Machines

The basic components of a rotating machines can be seen in figure 1 and listed above:

Figure 1: Basic components of a rotating machine – Discs, shaft, blades, bearing.

• Rigid Discs

• Shaft
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• Bearings

• Blades

In the manuscript emphasis will be given to rigid discs, flexible shafts and journal bearings as
you can see in figure 2.

(a) turbine (b) mechanical model

Figure 2: Basic components of a rotating machine – rigid disc, flexible shaft, bearing; (a) steam
turbine and (b) mechanical model composed of flexible shaft and rigid disc.

1.3 Mathematical Model of Rotating Machine Elements – Kinematics

1.3.1 Inertial and Moving Referential Frames and Transformation Matrices

After three consecutive rotations it is possible to define three moving reference frames and three
transformation matrices, which allows to transform the representation of the vectors (velocity,
acceleration, force, moment etc.) from one frame to another without troubles. The three
consecutive rotations are illustrated in figures 3, 4 and 5.

• Transformation matrix TΓ (from the inertial frame I to the moving frame B1):







~i1
~j1
~k1






= TΓ







~i
~j
~k






where TΓ =





cos Γ sin Γ 0
− sin Γ cos Γ 0

0 0 1





• Transformation matrix Tβ (from the moving frame B1 to the moving frame B2):







~i2
~j2
~k2






= Tβ







~i1
~j1
~k1






where Tβ =





cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ





• Transformation matrix Tφ (from the moving frame B2 to the moving frame B3):







~i3
~j3
~k3






= Tφ







~i2
~j2
~k2






where Tφ =





1 0 0
0 cosφ sinφ
0 − sinφ cosφ





where I is the inertial reference frame, B1 is the moving reference frame (~i1,~j1,~k1) obtained
after the first rotation around Z. B2 is the second moving reference frame (~i2,~j2,~k2) obtained
after the second rotation around Y1. B3 is the third moving reference frame (~i3,~j3,~k3) obtained
after the third rotation around X2.
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1.3.2 Absolute Angular Velocity

Figure 3: Rotation Γ around Z axis of the inertial frame I.

Figure 4: Rotation β around Y1 axis of the moving frame B1.

Figure 5: Rotation φ around X2 of the moving reference frame B2.

• Relative angular velocities of the reference frames:

IΓ̇ =







0
0

Γ̇






B1
β̇ =







0

β̇
0






B2
φ̇ =







φ̇
0
0







Describing the absolute angular velocity (ω) with help of the moving reference frame B3, which
is attached to the rotor cross section, and represented by ~i3,~j3,~k3, one has:

B3
ω = B3

Γ̇ + B3
β̇ + B3

φ̇ (1)

where
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B3
Γ̇ = Tφ · Tβ · TΓ · IΓ̇

B3
β̇ = Tφ · Tβ · B1

β̇

B3
φ̇ = Tφ · B2

φ̇

With help of the transformation matrices, one writes:

B3
Γ̇ =





cosβ cos Γ cosβ sin Γ − sinβ
sinφ sinβ cos Γ sinφ sinβ sin Γ + cosφ cos Γ sinφ cosβ
cosφ sinβ cos Γ cosφ sinβ cos Γ − sinφ cos Γ cosφ cosβ











0
0

Γ̇







B3
Γ̇ = Γ̇







− sinβ
sinφ cosβ
cosφ cosβ






(2)

B3
β̇ =





cosβ 0 − sinβ
sinφ sinβ cosφ sinφ cosβ
cosφ sinβ − sinφ cosφ cosβ











0

β̇
0






⇒ B3

β̇ = β̇







0
cosφ
− sinφ






(3)

B3
φ̇ =





1 0 0
0 cosφ sinφ
0 − sinφ cosφ











φ̇
0
0






⇒ B3

φ̇ =







φ̇
0
0






(4)

Rewriting equation (1) as a function of equations (2), (3) e (4), one has:

B3
ω = Γ̇







− sinβ
sinφ cosβ
cosφ cosβ






+ β̇







0
cosφ
− sinφ






+







φ̇
0
0







Using matrix notation:







ωa
ωb
ωc






=





1 0 − sinβ
0 cosφ sinφ cosβ
0 − sinφ cosφ cosβ











φ̇

β̇

Γ̇







Setting a constant rotational speed and neglecting torsional vibrations, the spin angle φ can be
written as Ω t where Ω is the constant angular velocity of the rotor.

1.4 Mathematical Model of the Rotating Machine Elements – Equations of

Motion

1.4.1 Rigid Discs – Gears, Impellers, etc.

• Kinetic energy of a rigid disc can be written as

Ekin =
1

2

{
V̇

Ẇ

}T [
mD 0
0 mD

]{
V̇

Ẇ

}

︸ ︷︷ ︸

(I)

+
1

2







wa
wb
wc







T 



IP 0 0
0 ID 0
0 0 ID











wa
wb
wc







︸ ︷︷ ︸

(II)

(5)
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where the first term of the equation (5), term (I), is related to the linear motion of a rotating
disc and the second part, term (II), to its angular motion.

Using equation (??) and the second term (II) of (5) can be written as:

(II) 1
2







wa
wb
wc







T 



IP 0 0
0 ID 0
0 0 ID











wa
wb
wc






=

1

2







−Γ̇ sinβ + φ̇

Γ̇ cosβ sinφ+ β̇ cosφ

Γ̇ cosβ cosφ− β̇ sinφ







T 



IP 0 0
0 ID 0
0 0 ID











−Γ̇ sinβ + φ̇

Γ̇ cosβ sinφ+ β̇ cosφ

Γ̇ cosβ cosφ− β̇ sinφ






(6)

Solving eq.(6) one can get the kinetic energy related to the angular motions of the rigid disc:

(II) 1
2

{

IP

(

Γ̇2sin2β − 2Γ̇φ̇ sinβ + φ̇2
)

+ ID

(

Γ̇2cos2βsin2φ+ 2Γ̇β̇ cosφ sinφ cosβ+

β̇2cos2φ
)

+ ID

(

Γ̇2cos2βcos2φ− 2Γ̇β̇ cosφ sinφ cosβ + β̇2sin2φ
)}

(7)

For small amplitudes of β one can consider sinβ = β and cosβ = 1 and the second order terms
can be neglected. In this matter eq.(7) becomes

(II)
1

2

{

IP

(

−2Γ̇φ̇β + φ̇2
)

+ ID

(

Γ̇2sin2φ+ Γ̇2cos2φ+ β̇2cos2φ+ β̇2sin2φ
)}

(8)

The kinetic energy, equation (5), is rewritten then as:

Ekin =
1

2

{
V̇

Ẇ

}T [
mD 0
0 mD

]{
V̇

Ẇ

}

+
1

2

{
β̇

Γ̇

}T [
ID 0
0 ID

] {
β̇

Γ̇

}

− φ̇Γ̇βIP +
1

2
IP φ̇

2

(9)

Ekin =
1

2

(

V̇ 2mD + Ẇ 2mD

)

+
1

2

(

β̇2ID + Γ̇2ID

)

− φ̇Γ̇βIP +
1

2
IP φ̇

2 (10)

• Lagrange’s equation:

∂

∂t

(
∂Ekin
∂q̇i

)

−

(
∂Ekin
∂qi

)

+

(
∂Epot
∂qi

)

= Fi (i = 1, ..., n) (11)

where qi are the generalized coordinates, i = 1, 2, 3, ..., n is the number of degree of freedom.
For the rigid disc, n = 4 :

q1 = V ; q2 = W ; q3 = β ; q4 = Γ

Assuming that the disc is rigid, no potential energy due to disc deformation is stored, Epot = 0.
Combining equations (10) and (11) one achieves the equations of motion to mathematically
describe the rigid disc movements:

8



• 1st equation (q1 = V ):

d
dt

(

V̇ mD

)

= FV ⇒ V̈ mD = FV

• 2nd equation (q2 = W ):

d
dt

(

ẆmD

)

= FW ⇒ ẄmD = FW

• 3rd equation (q3 = β):

d
dt

(

β̇ · ID

)

+ φ̇Γ̇IP = Fβ ⇒ β̈ID + φ̇Γ̇IP = Fβ

• 4th equation (q4 = Γ):

d
dt

(

Γ̇ · ID − φ̇βIP

)

= FΓ ⇒ Γ̈ID − φ̇β̇IP = FΓ

Rewriting the four equations in matrix form, one has:







mD 0 0 0
0 mD 0 0
0 0 ID 0
0 0 0 ID













V̈

Ẅ

β̈

Γ̈







− Ω







0 0 0 0
0 0 0 0
0 0 0 −IP
0 0 IP 0













V̇

Ẇ

β̇

Γ̇







=







FV
FW
Fβ
FΓ







(12)

Eq.(12) can be rewritten as:

Md · q̈d − Ω · Gd · q̇d = Qd (13)

where

Md → mass matrix of the disc considering the linear and angular motions;

Gd → gyroscopic matrix of the disc;

q̈d → acceleration vector;

q̇d → velocity vector;

Qd → is a vector with forces and moments acting on the disc, including unbalance for
example.

1.4.2 Flexible Shaft Element

Recalling Beam Theory from section ??, the angular deformation of a beam can be written as

β = −
∂W

∂s
; Γ =

∂V

∂s
(14)

The minimal coordinates for representing the flexible shaft movements are: q1, q2, q3, q4, q5, q6,
q7 and q8. All them are time depending and describe the linear and angular motion of the shaft
element extremities presented in figure 6.
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Figure 6: Coordinates of the shaft elements: 4 linear deformations and 4 angular deformations.







q1
q2
q3
q4







→

linear and angular motion at s=0

q1 = linear motion in Y
q2 = linear motion in Z
q3 = angular motion around Y
q4 = angular motion around Z







q5
q6
q7
q8







→

linear and angular motion at s=l

q5 = linear motion in Y
q6 = linear motion in Z
q7 = angular motion around Y
q8 = angular motion around Z

Aiming at describing the movements of a point inside of the shaft element one can introduce to
form functions of a continuous beam (shaft element). Considering firstly the plane XY, where
translation in Y direction and rotation around Z axis can occur, one obtain four different cases
and four different form functions for representing the beam deformations, as can be seen in
figure 7.

One can write four form functions, where the main characteristic of such functions is that they
are a polynomial functions of 3rd order:

• Form function for describing the linear deformations:

ψ(s) = A+Bs+ Cs2 +Ds3

• Form function for describing the angular deformations:

θ = ∂ψ(s)
∂s

= B + 2Cs+ 3Ds2

10



Figure 7: Form functions for representing the flexible shaft deformations in the plane XY.

• 1st Case – Boundary conditions for the shaft element (plane XY ) are:

q1 = 1 ; q4 = 0 ; q5 = 0 ; q8 = 0

Finding the constants A, B, C and D:

s = 0 → ψ(0) = q1 = 1 ⇒ ψ(0) = A+B0 + C02 +D03 = 1 → A = 1

s = 0 → θ(0) = q4 = 0 ⇒ θ(0) = B + 2C0 + 3D02 = 0 → B = 0

s = l → ψ(l) = q5 = 0 ⇒ ψ(l) = A+Bl+Cl2 +Dl3 = 0 → Cl2 +Dl3 =
−1 (∗)

s = l → θ(l) = q8 = 0 ⇒ θ(l) = B + 2Cl + 3Dl2 = 0 → 2Cl + 3Dl2 =
0 (∗∗)

From (∗) and (∗∗) one gets

Cl2 +Dl3 = −1
2Cl + 3Dl2 = 0

⇒

[
l2 l3

2l 3l2

] {
C
D

}

=

{
−1
0

}

{
C
D

}

= 1
3l4−2l4

[
3l2 −l3

−2l l2

] {
−1
0

}

= 1
l4

{
−3l2

2l

}

=

{
−3
l2
2
l3

}

A = 1 B = 0 C = −3
l2

D = 2
l3

ψ1(s) = 1 − 3
l2
s2 + 2

l3
s3 and θ1(s) = − 6

l2
s+ 6

l3
s2

11



• 2nd Case – Boundary conditions for the shaft element (plane XY ) are:

q1 = 0 ; q4 = 1 ; q5 = 0 ; q8 = 0

Finding the constants A, B, C and D:

s = 0 → ψ(0) = q1 = 0 ⇒ ψ(0) = A = 0 → A = 0

s = 0 → θ(0) = q4 = 1 ⇒ θ(0) = B = 1 → B = 1

s = l → ψ(l) = q5 = 0 ⇒ Cl2 +Dl3 = −l

s = l → θ(l) = q8 = 0 ⇒ 2Cl + 3Dl2 = −1

Solving the linear system as it was done for the 1st case, one gets:

A = 0 B = 1 C = −2
l

D = 1
l2

ψ2(s) = s− 2
l
s2 + 1

l2
s3 and θ2(s) = 1 − 4

l
s+ 3

l2
s2

• 3rd Case – Boundary conditions for the shaft element (plane XY ) are:

q1 = 0 ; q4 = 0 ; q5 = 1 ; q8 = 0

Finding the constants A, B, C and D:

s = 0 → ψ(0) = q1 = 0 ⇒ ψ(0) = A = 0 → A = 0

s = 0 → θ(0) = q4 = 0 ⇒ θ(0) = B = 0 → B = 0

s = l → ψ(l) = q5 = 1 ⇒ Cl2 +Dl3 = 1

s = l → θ(l) = q8 = 0 ⇒ 2Cl + 3Dl2 = 0

A = 0 B = 0 C = 3
l2

D = −2
l3

ψ3(s) = 3 s
2

l2
− 2 s

3

l3
and θ3(s) = 6

l2
s− 6

l3
s2

12



• 4th Case – Boundary conditions for the shaft element (plane XY ) are:

q1 = 0 ; q4 = 0 ; q5 = 0 ; q8 = 1

Finding the constants A, B, C and D:

s = 0 → ψ(0) = q1 = 0 ⇒ ψ(0) = A = 0 → A = 0

s = 0 → θ(0) = q4 = 0 ⇒ θ(0) = B = 0 → B = 0

s = l → ψ(l) = q5 = 0 ⇒ Cl2 +Dl3 = 0

s = l → θ(l) = q8 = 1 ⇒ 2Cl + 3Dl2 = 1

A = 0 B = 0 C = −1
l

D = 1
l2

ψ4(s) = −s2

l
+ s3

l2
and θ4(s) = −2

l
s+ 3

l2
s2

The linear deformation inside of the shaft element can be described as a linear combination of
the four form functions and the movements of the shaft element extremities (nodes or degree of
freedom of the discrete mathematical model):

V (s, t) = ψ1(s) · q1(t) + ψ2(s) · q4(t) + ψ3(s) · q5(t) + ψ4(s) · q8(t) (15)

The angular deformation inside of the shaft element can be described as:

Γ(s, t) =
∂V (s, t)

∂s
= θ1(s) · q1(t) + θ2(s) · q4(t) + θ3(s) · q5(t) + θ4(s) · q8(t) (16)

Making the same analysis for the plane XZ, the linear deformation inside of the shaft element
can be described as:

W (s, t) = ψ1(s) · q2(t) − ψ2(s) · q3(t) + ψ3(s) · q6(t) − ψ4(s) · ·q7(t) (17)

Making the same analysis for the plane XZ, the angular deformation inside of the shaft element
can be described as:

β(s, t) = −
∂W (s, t)

∂s
= −θ1(s) · q2(t) + θ2(s) · q3(t) − θ3(s) · q6(t) + θ4(s) · q7(t) (18)

Rewriting in matrix form the linear and angular deformations of the flexible shaft in both planes,
XY as well as XZ, one achieves:
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{
V (s, t)
W (s, t)

}

= Ψ(s)qe(t) (19)

{
β(s, t)
Γ(s, t)

}

= Θ(s)qe(t) (20)

where

Ψ(s) =

[
ψ1(s) 0 0 ψ2(s) ψ3(s) 0 0 ψ4(s)

0 ψ1(s) −ψ2(s) 0 0 ψ3(s) −ψ4(s) 0

]

Θ(s) =

[
Θβ(s)
ΘΓ(s)

]

=

[
0 −θ1(s) θ2(s) 0 0 −θ3(s) θ4(s) 0

θ1(s) 0 0 θ2(s) θ3(s) 0 0 θ4(s)

]

and

qe(t) =
[
q1(t) q2(t) q3(t) q4(t) q5(t) q6(t) q7(t) q8(t)

]T

• Potential energy related to the bending motion of an infinitesimal disc:

dEe
pot =

1

2

{
V ′′

W ′′

}T [
EI 0
0 EI

]{
V ′′

W ′′

}

ds (21)

where E is the elasticity modulus of the material, I area moment of inertia, V ′′ = ∂2

∂s2
V (s, t)

and W ′′ = ∂2

∂s2
W (s, t)

• Kinetic energy related to the linear and angular motions of an infinitesimal disc:

dEe
kin =

1

2

{
V̇

Ẇ

}T [
µ 0
0 µ

] {
V̇

Ẇ

}

ds+
1

2
φ̇2Ipds+

1

2

{
β̇

Γ̇

}T [
Id 0
0 Id

]{
β̇

Γ̇

}

ds−φ̇Γ̇βIpds

(22)

where µ is distributed mass per length, V̇ = ∂V (s,t)
∂t

and Ẇ = ∂W (s,t)
∂t

.

Using equations (19) and (20) one achieves:

dEe
pot =

1

2
EI · qeT · Ψ′′T · Ψ′′ · qeds (23)

dEe
kin =

1

2
µ·q̇e

T
·ΨT ·Ψ·q̇eds+

1

2
φ̇2Ipds+

1

2
Id ·q̇e

T
·ΘT ·Θ·q̇eds −φ̇Ip ·q̇e

T
·ΘT

Γ ·Θβ ·q
eds (24)
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Aiming at obtaining the total energy related to the movements of the flexible shaft one integrates
eq.(23) and (24) with respect to the shaft length l, resulting in the following matrices:

Me

T
=

∫ l

0 µ · ΨT · Ψ ds

Me

R
=

∫ l

0 Id · Θ
T · Θ ds

Ne =
∫ l

0 Ip · Θ
T
Γ · Θβ ds

Ke

B
=

∫ l

0 EI · Ψ
′′T · Ψ′′ ds







(25)

The total potential energy related to the bending deformation of the shaft is rewritten as:

Eepot =
1

2
qeTKe

Bqe (26)

The total kinetic energy related to the linear and angular movements of the shaft is rewritten
as:

Eekin =
1

2
q̇e

T
(Me

T − Me

R) q̇e +
1

2
Ipφ̇

2 − φ̇q̇e
T
Neqe (27)

Using Lagrange’s equation 11, one can get the equation of motion of the flexible shaft element,
while considering the angular velocity φ̇ = Ω constant, and as a function of its extremities
movements:

(Me

T + Me

R) · q̈e − Ω · Ge · q̇e + Ke

B · qe = Qe (28)

where q̈e is the acceleration vector composed of the extremities of the shaft element, q̇e is
the velocity vector composed of the extremities of the shaft element, qe is the displacement
vector composed of the extremities of the shaft element and Qe excitation vector with forces
and moments acting on the extremities of the shaft element.

The matrices given in equation (28) are obtained from the integration of equation (25), and
Ge = (Ne −NeT ). For the case of a shaft element with constant cross section, one achieves the
matrices following:
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• Mass matrix of the shaft element (considering the linear motion)

Me

T
= µl

420















156
0 156
0 −22l 4l2

22l 0 0 4l2

54 0 0 13l 156
0 54 −13l 0 0 156
0 13l −3l2 0 0 22l 4l2

−13l 0 0 −3l2 −22l 0 0 4l2















Me
T = MeT

T

• Mass matrix of the shaft element (considering the angular motion)

Me

R
= µr2

120l















36
0 36
0 −3l 4l2

3l 0 0 4l2

−36 0 0 −3l 36
0 −36 3l 0 0 36
0 −3l −l2 0 0 3l 4l2

3l 0 0 −l2 −3l 0 0 4l2















Me
R = MeT

R

• Gyroscopic matrix of the shaft element

Ge = 2µr2

120l















0
36 0
−3l 0 0
0 −3l 4l2 0
0 36 −3l 0 0

−36 0 0 −3l 36 0
−3l 0 0 l2 3l 0 0
0 −3l −l2 0 0 3l 4l2 0















Ge = −GeT

• Stiffness matrix considering the bending motion of the shaft element

Ke

B
= EI

l3















12
0 12
0 −6l 4l2

6l 0 0 4l2

−12 0 0 −6l 12
0 −12 6l 0 0 12
0 −6l 2l2 0 0 6l 4l2

6l 0 0 2l2 −6l 0 0 4l2















Ke
B = KeT

B

1.4.3 Bearings

• Mechanical Model – In rotor dynamics modelling the bearings are normally represented by
springer and damper as can be seen in figure 8(a). Such mechanical elements are mathematically
quantified by means of spring and damping coefficients, as can be seen in figure 8(b).
• Mathematical Model – The equation of motion for a linear bearing is represented by the

follow equation:
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Figure 8: Mechanical model of bearings – Representation of bearing by means of springers and
dampers.

−Cb · q̇b − Kb · qb = Qb (29)

where

qb =

{
V
W

}

is the linear displacement of the center of shaft, where the bearing is mounted,

Kb =

[
Kb
V V Kb

V W

Kb
WV Kb

WW

]

is the bearing stiffness matrix,

Cb =

[
CbV V CbV W
CbWV CbWW

]

is the bearing damping matrix and

Qb → is the resultant force supported by the bearing.

The elements Kb
V V , Kb

V W , Kb
WV and Kb

WW describe the stiffness and CbV V , CbV W , CbWV and
CbWW the viscous damping. More about how to achieve such coefficients, will be presented in
section 1.8.
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1.4.4 Excitation Forces – Unbalance Mass on the Rigid Disc

Figure 9: Concentrated unbalance mass and mathematical representation in real and complex
forms.

For being completed with the notes in the classes!
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1.4.5 Excitation Forces – Distributed Unbalance along the Shaft Length

Considering a shaft element with eccentricity (η(s); ξ(s)), the unbalance force will be given by:

Qe =

∫ l

0
µ ·Ω2 ·ψT ·

({
η(s)
ξ(s)

}

· cos Ωt+

{
−ξ(s)
η(s)

}

sinΩt

)

ds = Qe

C · cosΩt+Qe

S · sinΩt (30)

For a linear distributed unbalance along the finite shaft element one has:

η(s) = ηL

(

1 −
s

l

)

+ ηR

(s

l

)

e ξ(s) = ξL

(

1 −
s

l

)

+ ξR

(s

l

)

(31)

where (ηL, ξL) and (ηR, ξR) represent the eccentricities of the center of mass in s=0 and s=l
respectively.

With help of eq.(30) and eq.(31), one can get Qec and Qes as:

Qe
c = µΩ2







7
20ηLl +

3
20ηRl

7
20ξLl +

3
20ξRl

−1
20 ξLl

2 − 1
30ξRl

2

1
20ηLl

2 + 1
30ηRl

2

3
20ηLl +

7
20ηRl

3
20ξLl +

7
20ξRl

1
30ξLl

2 + 1
20ξRl

2

−1
30 ηLl

2 − 1
20ηRl

2







Qe
s = µΩ2







−7
20 ξLl −

3
20ξRl

7
20ηLl +

3
20ηRl

−1
20 ηLl

2 − 1
30ηRl

2

−1
20 ξLl

2 − 1
30ξRl

2

−3
20 ξLl −

7
20ξRl

3
20ηLl +

7
20ηRl

1
30ηLl

2 + 1
20ηRl

2

1
30ξLl

2 + 1
20ξRl

2
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1.5 Global Model and Equation of Motion

The equation of motion of the global system will be achieved by combining the equation of motion
of discs, flexible shaft elements and bearings. One introduces here the global displacement vector
(qs) with contain the local vectors qe, qd e qb, where each qsi represents the linear and angular
motion of the nodes of the rotor discrete model. Considering 2 linear motions V e W and 2
angular motions β e Γ, each node has 4 degrees of freedom.

Each rigid disc is placed in a particular node and influences directly this node with 4 degrees
of freedom. That is the same for the bearing element, which is directly attached to a node.
The shaft element has a length l, connecting 2 different nodes. It means the shaft element will
influence 2 nodes(s=0) and (s=l), where each extremity represents one node of the mechanical
model. Thus, the shaft element has 8 degrees of freedom.

Considering the example presented in figure (10) the equation of motion can be structured as
shown in figure 11, where the sub-matrices M1 M2 M3 and M4 correspond to the shaft elements
(A, B, C e D) of fig.(10) including the bearing elements (stiffness and damping) and disc (inertia
and gyroscopic effects) located in the nodes 2, 3 and 4. The gyroscopic and damping effects are
represented in the global matrix Ds.

(a) disc-shaft system (b) Mechanical Model

Figure 10: (a) Rotating machine outside of the housing; (b) Mechanical model with 4 finite shaft
elements.

The global equation of motion can be written as:

Ms · q̈s + Ds · q̇s + Ks·qs = Qs (32)

where Ds = −(ΩGs−Cs). The global matrices Ms,Ds,Gs e Ks are mounted from the machine
elements (shaft, disc, bearing) shown in figure 10, 11 and 12.
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Figure 11: Structure of the global matrices – Equation of motion of the disc-shaft-bearing system
with 5 nodes and 20 degrees of freedom.

Figure 12: Structure of the matrix Ds for a flexible rotor with 5 nodes and 20 degrees of freedom.
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1.6 Example of Rotor-Bearing System Modelling

Figure 13: Mechanical System and Mechanical Model with 13 nodes – Flexible Rotor with 2 Discs
and 2 Bearings: (1) motor speed controller; (2) motor; (3) rolling bearing housing attached to a
flexible support and two acceleration sensors; (4) rigid disc (5) flexible shaft (6) rigid disc (7)
rolling bearing housing attached to a flexible support (8) flexible beams for generating different
stiffness coefficients in the horizontal and vertical directions.

In figure 13 it is possible to see a flexible rotating machine (laboratory prototype) built by a
flexible shaft, two rigid discs and two rolling bearing housings attached to two flexible supports.
The little test rig was designed aiming at visualizing the natural frequencies and modes shapes by
using the human eyes. The first three natural frequencies are under 40 Hz, and the rotor-bearing
system is very flexible.
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1.6.1 Rotor-Bearing Modelling using a MatLab Program

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% MACHINERY DYNAMICS LECTURES (41614) %

% MEK - DEPARTMENT OF MECHANICAL ENGINEERING %

% DTU - TECHNICAL UNIVERSITY OF DENMARK %

% %

% Copenhagen, February 10th, 2001 %

% %

% Ilmar Ferreira Santos %

% %

% ROTATING MACHINES -- NATURAL FREQUENCIES AND MODES %

% %

% EXPERIMENTAL RESULTS %

% 13.0 (horizontal) %

% 14.9 (vertical) %

% 33.6 (horizontal) %

% 43.0 (horizontal) %

% 46.0 (vertical) %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;

close all;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% DEFINITION OF THE STRUCTURE OF THE MODEL %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

NE=12; % number of shaft elements

GL = (NE+1)*4; % number of degree of freedom

ND=2; % number of discs

NM=2; % number of bearings

CD1=4; % node - disc 1

CD2=10; % node - disc 2}

CMM1=1; % node - bearing 1

CMM2=13; % node - bearing 2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% CONSTANTS %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

E = 2.0E11; % {elasticity modulus [N/m^2}

RAco = 7800; % {steel density [kg/m^3]}

RAl = 2770; % {aluminum density [kg/m^3]}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% OPERATIONAL CONDITIONS %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Omega= 0*2*pi; % angular velocity [rad/s]

Omegarpm = Omega*60/2/pi;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% GEOMETRY OF THE ROTATING MACHINE %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%

%(A) DISCS %

%%%%%%%%%%%%%%%

Rd = 6/100; % disc radius [m]

espD = 1.1/100 ; % disc thickness [m]

MasD = pi*Rd^2*espD*RAl; % disc mass [kg]

23



Id = 1/4*MasD*Rd^2+1/12*MasD*espD^2; % transversal mass moment of inertia of the disc [Kgm^2]

Ip = 1/2*MasD*Rd*Rd; % polar mass moment of inertia of the disc [Kgm^2]

%%%%%%%%%%%%%%%

%(B) BEARINGS %

%%%%%%%%%%%%%%%

MasM = 0.40698; % bearing mass [kg](housing + ball bearings)

h=1/1000; % beam thickness [m]

b=28.5/1000; % beam width [m]

Area=b*h; % beam cross section area [m^2]

I=b*h^3/12; % beam moment of inertia of area [m^4]

lr=7.5/100; % beam length [m]

Kty0=2*12*E*I/(lr^3); % equivalent beam flexural stiffness [N/m]

Ktz0=2*E*Area/lr; % equivalent bar stiffness [N/m]

% Bearing 1 - Damping

Dty1 = 0.0 ;

Dtz1 = 0.0 ;

Dry1 = 0.0 ;

Drz1 = 0.0 ;

% Bearing 2 - Damping

Dty2 = 0.0 ;

Dtz2 = 0.0 ;

Dry2 = 0.0 ;

Drz2 = 0.0 ;

% Bearing 1 - Stiffness

Kty1 = Kty0 ;

Ktz1 = Ktz0 ;

Kry1 = 0.0 ;

Krz1 = 0.0 ;

% Bearing 2 - Stiffness

Kty2 = Kty0 ;

Ktz2 = Ktz0 ;

Kry2 = 0.0 ;

Krz2 = 0.0 ;

%%%%%%%%%%%%%%%

%(C) SHAFT %

%%%%%%%%%%%%%%%

ll = 435/1000; % length of shaft elements [m]

Rext = (6/2)/1000; % shaft external radius [m]

Rint = (0/2)/1000; % shaft internal radius [m]

% length of the shaft elements [m]

l(1) = 0.140/3;

l(2) = 0.140/3;

l(3) = 0.140/3;

l(4) = 0.205/6;

l(5) = 0.205/6;

l(6) = 0.205/6;

l(7) = 0.205/6;

l(8) = 0.205/6;

l(9) = 0.205/6;

l(10) = 0.090/3;

l(11) = 0.090/3;

l(12) = 0.090/3;

% external radius of shaft elements [m]

for i=1:NE,

rx(i)=Rext;

end
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% internal radius of shaft elements [m]

for i=1:NE,

ri(i)=Rint;

end

% density of shaft elements [kg/m]

for i=1:NE,

ro(i) = RAco;

end

% transversal areal of the shaft elements [m^2]}

for i=1:NE,

St(i) = pi*(rx(i)^2-ri(i)^2);

end

% area moment of inertia of the shaft elements [m^4]}

for i=1:NE,

II(i)=pi*((rx(i)+ri(i))/2)^3*(rx(i)-ri(i));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% MOUNTING THE GLOBAL MATRICES %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

disp(’MOUNTING THE GLOBAL MATRICES - WAIT!’)

disp(’ ’)

% Defining the global matrices with zero elements

M=zeros(GL);

G=zeros(GL);

K=zeros(GL);

%%%%%%%%%%%%%%%%%%%%%%

% GLOBAL MASS MATRIX %

%%%%%%%%%%%%%%%%%%%%%%

disp(’MOUNTING THE GLOBAL MASS MATRIX - WAIT!’)

disp(’ ’)

% Mass matrices of shaft elements due to linear and angular movements

a=1; b=8;

for n=1:NE,

MteAux= [156 0 0 22*l(n) 54 0 0 -13*l(n)

0 156 -22*l(n) 0 0 54 13*l(n) 0

0 -22*l(n) 4*l(n)^2 0 0 -13*l(n) -3*l(n)^2 0

22*l(n) 0 0 4*l(n)^2 13*l(n) 0 0 -3*l(n)^2

54 0 0 13*l(n) 156 0 0 -22*l(n)

0 54 -13*l(n) 0 0 156 22*l(n) 0

0 13*l(n) -3*l(n)^2 0 0 22*l(n) 4*l(n)^2 0

-13*l(n) 0 0 -3*l(n)^2 -22*l(n) 0 0 4*l(n)^2];

Mte = ((ro(n)*St(n)*l(n))/420)*MteAux;

MreAux= [36 0 0 3*l(n) -36 0 0 3*l(n)

0 36 -3*l(n) 0 0 -36 -3*l(n) 0

0 -3*l(n) 4*l(n)^2 0 0 3*l(n) -l(n)^2 0
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3*l(n) 0 0 4*l(n)^2 -3*l(n) 0 0 -l(n)^2

-36 0 0 -3*l(n) 36 0 0 -3*l(n)

0 -36 3*l(n) 0 0 36 3*l(n) 0

0 -3*l(n) -l(n)^2 0 0 3*l(n) 4*l(n)^2 0

3*l(n) 0 0 -l(n)^2 -3*l(n) 0 0 4*l(n)^2];

Mre = ((ro(n)*II(n))/(30*l(n)))*MreAux;

MauxT=Mte+Mre;

for f=a:b,

for g=a:b,

M(f,g)=M(f,g)+MauxT(f-(n-1)*4,g-(n-1)*4);

end

end

a=a+4; b=b+4;

end

% Adding the mass matrices of the disc elements

M((CD1-1)*4+1,(CD1-1)*4+1)=M((CD1-1)*4+1,(CD1-1)*4+1)+MasD;

M((CD1-1)*4+2,(CD1-1)*4+2)=M((CD1-1)*4+2,(CD1-1)*4+2)+MasD;

M((CD1-1)*4+3,(CD1-1)*4+3)=M((CD1-1)*4+3,(CD1-1)*4+3)+Id;

M((CD1-1)*4+4,(CD1-1)*4+4)=M((CD1-1)*4+4,(CD1-1)*4+4)+Id;

M((CD2-1)*4+1,(CD2-1)*4+1)=M((CD2-1)*4+1,(CD2-1)*4+1)+MasD;

M((CD2-1)*4+2,(CD2-1)*4+2)=M((CD2-1)*4+2,(CD2-1)*4+2)+MasD;

M((CD2-1)*4+3,(CD2-1)*4+3)=M((CD2-1)*4+3,(CD2-1)*4+3)+Id;

M((CD2-1)*4+4,(CD2-1)*4+4)=M((CD2-1)*4+4,(CD2-1)*4+4)+Id;

% Adding the mass matrices of the bearing elements

M((CMM1-1)*4+1,(CMM1-1)*4+1)=M((CMM1-1)*4+1,(CMM1-1)*4+1)+MasM;

M((CMM1-1)*4+2,(CMM1-1)*4+2)=M((CMM1-1)*4+2,(CMM1-1)*4+2)+MasM;

M((CMM2-1)*4+1,(CMM2-1)*4+1)=M((CMM2-1)*4+1,(CMM2-1)*4+1)+MasM;

M((CMM2-1)*4+2,(CMM2-1)*4+2)=M((CMM2-1)*4+2,(CMM2-1)*4+2)+MasM;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% GLOBAL GYROSCOPIC MATRIX %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

disp(’MOUNTING THE GLOBAL GYROSCOPIC MATRIX - WAIT!’)

disp(’ ’)

% Gyroscopic matrix of shaft elements

a=1; b=8;

for n=1:NE,

GeAux=[0 -36 3*l(n) 0 0 36 3*l(n) 0

36 0 0 3*l(n) -36 0 0 3*l(n)

-3*l(n) 0 0 -4*l(n)^2 3*l(n) 0 0 l(n)^2

0 -3*l(n) 4*l(n)^2 0 0 3*l(n) -l(n)^2 0

0 36 -3*l(n) 0 0 -36 -3*l(n) 0

-36 0 0 -3*l(n) 36 0 0 -3*l(n)

-3*l(n) 0 0 l(n)^2 3*l(n) 0 0 -4*l(n)^2

0 -3*l(n) -l(n)^2 0 0 3*l(n) 4*l(n)^2 0 ];
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Ge=Omega*(ro(n)*II(n))/(15*l(n))*GeAux;

for f=a:b,

for g=a:b,

G(f,g)=G(f,g)+Ge(f-(n-1)*4,g-(n-1)*4);

end

end

a=a+4; b=b+4;

end

% Adding the gyroscopic matrices of the disc elements

G((CD1-1)*4+3,(CD1-1)*4+4)=G((CD1-1)*4+3,(CD1-1)*4+4)-Omega*Ip;

G((CD1-1)*4+4,(CD1-1)*4+3)=G((CD1-1)*4+4,(CD1-1)*4+3)+Omega*Ip;

G((CD2-1)*4+3,(CD2-1)*4+4)=G((CD2-1)*4+3,(CD2-1)*4+4)-Omega*Ip;

G((CD2-1)*4+4,(CD2-1)*4+3)=G((CD2-1)*4+4,(CD2-1)*4+3)+Omega*Ip;

%%%%%%%%%%%%%%%%%%%%%%%%%%%

% GLOBAL STIFFNESS MATRIX %

%%%%%%%%%%%%%%%%%%%%%%%%%%%

disp(’MOUNTING THE GLOBAL STIFFNESS MATRIX - WAIT!’)

disp(’ ’)

% Stiffness matrix of shaft elements due to bending

a=1; b=8;

for n=1:NE,

KbeAux= [12 0 0 6*l(n) -12 0 0 6*l(n)

0 12 -6*l(n) 0 0 -12 -6*l(n) 0

0 -6*l(n) 4*l(n)^2 0 0 6*l(n) 2*l(n)^2 0

6*l(n) 0 0 4*l(n)^2 -6*l(n) 0 0 2*l(n)^2

-12 0 0 -6*l(n) 12 0 0 -6*l(n)

0 -12 6*l(n) 0 0 12 6*l(n) 0

0 -6*l(n) 2*l(n)^2 0 0 6*l(n) 4*l(n)^2 0

6*l(n) 0 0 2*l(n)^2 -6*l(n) 0 0 4*l(n)^2];

Kbe = ((E*II(n))/(l(n)^3))*KbeAux;

for f=a:b,

for g=a:b,

K(f,g)=K(f,g)+Kbe(f-(n-1)*4,g-(n-1)*4);

end

end

a=a+4; b=b+4;

end

% Adding the stiffness matrices of the bearing elements

K((CMM1-1)*4+1,(CMM1-1)*4+1)=K((CMM1-1)*4+1,(CMM1-1)*4+1)+Ktz1;

K((CMM1-1)*4+2,(CMM1-1)*4+2)=K((CMM1-1)*4+2,(CMM1-1)*4+2)+Kty1;

K((CMM2-1)*4+1,(CMM2-1)*4+1)=K((CMM2-1)*4+1,(CMM2-1)*4+1)+Ktz2;

K((CMM2-1)*4+2,(CMM2-1)*4+2)=K((CMM2-1)*4+2,(CMM2-1)*4+2)+Kty2;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% GLOBAL MATHEMATICAL MODEL %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Mglob=[ G M

M zeros(size(M,1))];

Kglob=[ K zeros(size(M,1))

zeros(size(M,1)) -M ];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% MODAL ANALYSIS %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

disp(’CALCULATING NATURAL FREQUENCIES AND MODE SHAPES - WAIT!’)

disp(’ ’)

% Calculating Eigenvectors and Eigenvalues

[U,lambda]=eig(-Kglob,Mglob);

[lam,p]=sort(diag(lambda));

U=U(:,p);

% Number of divisions in time for plotting the mode shapes

nn=99;

N=size(U,1);

maximo=num2str((N-2)/2);

ModoVirt=N;

ModoVirt=input([’ Enter the number of the mode shape to be plotted, ...

zero to esc, highest mode ’,maximo,’: ’]);

% For visualizing the mode shapes:

ModoReal=2*ModoVirt;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% LOOP TO PLOT THE MODES SHAPES %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

while ModoReal>0,

% Natural frequencies

wn=imag(lam(ModoReal));

ttotal=8/abs(wn);

dt=ttotal/nn;

t=0:dt:ttotal;

% Defining v and w real e imaginary for each node

y=1:4:GL;

z=2:4:GL;

for i=1:(NE+1),

vr(i)=real(U(y(i),ModoReal));

vi(i)=imag(U(y(i),ModoReal));

wr(i)=real(U(z(i),ModoReal));

wi(i)=imag(U(z(i),ModoReal));

end
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% Calculation the modal displacements v and w

for i=1:(NE+1),

v(i,:)=vr(i)*cos(wn*t)+vi(i)*sin(wn*t);

w(i,:)=wr(i)*cos(wn*t)+wi(i)*sin(wn*t);

end

Zero=diag(zeros(length(t)))’;

Um=diag(eye(length(t)))’;

for i=1:(NE+1)

pos(i,:)=Zero+(i-1)*Um;

end

clf

hold on

for cont=1:NE+1,

plot3(pos(cont,:),w(cont,:),v(cont,:),’k’,’LineWidth’,2.5);

end

nm=num2str(ModoVirt);

fn=num2str(abs(wn/2/pi));

dfi=num2str(Omegarpm);

title([’Angular Velocity: ’,dfi,’ rpm Mode: ’,nm,’ Nat. Freq.: ’,fn,’ Hz’],’FontSize’,14)

view(-25,20);

grid on;

ModoVirt=input([’ Enter the number of the mode shape to be plotted, ...

zero to esc, highest mode ’,maximo,’: ’]);

ModoReal=2*ModoVirt;

figure(ModoVirt)

end
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1.6.2 Natural Frequencies and Mode Shapes - MatLab Program Results
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Figure 14: First mode shape and first natural frequency calculated with the MatLab program, at
zero and 1200 rpm (20Hz).
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Figure 15: Second mode shape and second natural frequency calculated with the MatLab program,
at zero and 1200 rpm (20Hz).
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Figure 16: Third mode shape and third natural frequency calculated with the MatLab program,
at zero and 1200 rpm (20Hz).
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Figure 17: Fourth mode shape and fourth natural frequency calculated with the MatLab program,
at zero and 1200 rpm (20Hz).
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Figure 18: Fifth mode shape and fifth natural frequency calculated with the MatLab program, at
zero and 1200 rpm (20Hz).
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Figure 19: Sixth mode shape and sixth natural frequency calculated with the MatLab program, at
zero and 1200 rpm (20Hz).
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Figure 20: Seventh mode shape and sixth natural frequency calculated with the MatLab program,
at zero and 1200 rpm (20Hz).
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1.6.3 Validation of Rotor-Bearing System Modelling using Theoretical and Exper-
imental Natural Frequencies

MODE SHAPE PLANE Nat. Frequency Nat. Frequency Error
(theoretical) (experimental)

[Hz] [Hz] %

1 horizontal 13.8 13.0 6.1
2 vertical 14.7 14.9 1.3
3 horizontal 33.4 33.6 0.6
4 horizontal 42.3 42.3 0.0
5 vertical 47.1 46.0 2.1
6 horizontal 56.7 55.4 2.1
7 vertical 131. (out of range) –

Table 1: Validation of Rotor-Bearing System Modelling using information about the theoretical
and experimental natural frequencies in the range of frequencies between 0 and 60 Hz, when the
rotor angular velocity is zero.

Figure 21: Acceleration sensors 9 and 10 mounted on the bearing housing, with the goal of
measuring the movements of rotor-bearing system in the horizontal and vertical directions re-
spectively.
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1.6.4 Validation of Rotor-Bearing System Modelling – Experimental Transient
Analysis

Figure 22: Mechanical System and Mechanical Model with 5 nodes – Flexible Rotor with 2 Discs
and 2 Bearings.
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Figure 23: Experimental Analysis – Transient lateral vibration of the rotor-bearing system, when
the rotor has no angular velocity, and it is excited by a horizontal perturbation (shock) on the
disc 2 (node 4) and the horizontal acceleration of the bearing 2 (node 5) is measured.
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Figure 24: Experimental Analysis – Transient lateral vibration of the rotor-bearing system, when
the rotor has no angular velocity, and it is excited by a vertical perturbation (shock) on the disc
2 (node 4) and the horizontal acceleration of the disc 2 (node 4) is measured.
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1.6.5 Validation of Rotor-Bearing System Modelling – Theoretical Transient Anal-
ysis and MatLab Program

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% MACHINERY DYNAMICS LECTURES (41614) %

% MEK - DEPARTMENT OF MECHANICAL ENGINEERING %

% DTU - TECHNICAL UNIVERSITY OF DENMARK %

% %

% Copenhagen, February 10th, 2001 %

% %

% Ilmar Ferreira Santos %

% %

% ROTATING MACHINES -- TRANSIENT TIME DOMAIN ANALYSIS %

% %

% EXPERIMENTAL RESULTS %

% 13.0 (horizontal) %

% 14.9 (vertical) %

% 33.6 (horizontal) %

% 43.0 (horizontal) %

% 46.0 (vertical) %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;

close all;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% DEFINITION OF THE MODEL STRUCTURE %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

NE=4; % number of shaft elements

GL = (NE+1)*4; % number of degree of freedom

ND=2; % number of discs

NM=2; % number of bearings

CD1=2; % node - disc 1

CD2=4; % node - disc 2

CMM1=1; % node - bearing 1

CMM2=5; % node - bearing 2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% CONSTANTS %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

E = 2.0E11; % elasticity modulus [N/m^2

RAco = 7800; % steel density [kg/m^3]

RAl = 2770; % aluminum density [kg/m^3]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% OPERATIONAL CONDITIONS %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Omega= 20*2*pi; % angular velocity [rad/s]

Omega= 0*2*pi; % angular velocity [rad/s]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% GEOMETRY OF THE ROTATING MACHINE %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%(A) DISCS

Rd = 6/100; % disc radius [m]

espD = 1.1/100 ; % disc thickness [m]

MasD = pi*Rd^2*espD*RAl; % disc mass [kg]

Id = 1/4*MasD*Rd^2+1/12*MasD*espD^2; % transversal mass moment of inertia of the disc [Kgm^2]

Ip = 1/2*MasD*Rd*Rd; % polar mass moment of inertia of the disc [Kgm^2]
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%(B) BEARINGS

MasM = 0.40698; % bearing mass [kg](housing + ball bearings)

h=1/1000; % beam thickness [m]

b=28.5/1000; % beam width [m]

Area=b*h; % beam cross section area [m^2]

I=b*h^3/12; % beam moment of inertia of area [m^4]

lr=7.5/100; % beam length [m]

Kty0=2*12*E*I/(lr^3); % equivalent beam flexural stiffness [N/m]

Ktz0=2*E*Area/lr; % equivalent bar stiffness [N/m]

% Bearing 1 - Damping

Dty1 = 0.0 ;

Dtz1 = 0.0 ;

Dry1 = 0.0 ;

Drz1 = 0.0 ;

% Bearing 2 - Damping

Dty2 = 0.0 ;

Dtz2 = 0.0 ;

Dry2 = 0.0 ;

Drz2 = 0.0 ; %

% Bearing 1 - Stiffness

Kty1 = Kty0 ;

Ktz1 = Ktz0 ;

Kry1 = 0.0 ;

Krz1 = 0.0 ;

% Bearing 2 - Stiffness

Kty2 = Kty0 ;

Ktz2 = Ktz0 ;

Kry2 = 0.0 ;

Krz2 = 0.0 ;

%(C) SHAFT

ll = 435/1000; % length of shaft elements [m]

Rext = (6/2)/1000; % shaft external radius [m]

Rint = (0/2)/1000; % shaft internal radius [m]

% length of the shaft elements [m]

l(1) = 0.140;

l(2) = 0.205/2;

l(3) = 0.205/2;

l(4) = 0.090;

% external radius of shaft elements [m]

for i=1:NE,

rx(i)=Rext;

end

% internal radius of shaft elements [m]

for i=1:NE,

ri(i)=Rint;

end

% density of shaft elements [kg/m]

for i=1:NE,

ro(i) = RAco;

end

% transversal areal of the shaft elements [m^2]}

for i=1:NE,

St(i) = pi*(rx(i)^2-ri(i)^2);

end

% area moment of inertia of the shaft elements [m^4]}
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for i=1:NE,

II(i)=pi*((rx(i)+ri(i))/2)^3*(rx(i)-ri(i));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% MOUNTING THE GLOBAL MATRICES %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

disp(’MOUNTING THE GLOBAL MATRICES - WAIT!’)

disp(’ ’)

%{Defining the global matrices with zero elements}

M=zeros(GL);

G=zeros(GL);

K=zeros(GL);

%__________________

%GLOBAL MASS MATRIX

%__________________

disp(’MOUNTING THE GLOBAL MASS MATRIX - WAIT!’)

disp(’ ’)

%Mass matrix of shaft elements

a=1; b=8;

for n=1:NE,

MteAux= [156 0 0 22*l(n) 54 0 0 -13*l(n)

0 156 -22*l(n) 0 0 54 13*l(n) 0

0 -22*l(n) 4*l(n)^2 0 0 -13*l(n) -3*l(n)^2 0

22*l(n) 0 0 4*l(n)^2 13*l(n) 0 0 -3*l(n)^2

54 0 0 13*l(n) 156 0 0 -22*l(n)

0 54 -13*l(n) 0 0 156 22*l(n) 0

0 13*l(n) -3*l(n)^2 0 0 22*l(n) 4*l(n)^2 0

-13*l(n) 0 0 -3*l(n)^2 -22*l(n) 0 0 4*l(n)^2];

Mte = ((ro(n)*St(n)*l(n))/420)*MteAux;

MreAux= [36 0 0 3*l(n) -36 0 0 3*l(n)

0 36 -3*l(n) 0 0 -36 -3*l(n) 0

0 -3*l(n) 4*l(n)^2 0 0 3*l(n) -l(n)^2 0

3*l(n) 0 0 4*l(n)^2 -3*l(n) 0 0 -l(n)^2

-36 0 0 -3*l(n) 36 0 0 -3*l(n)

0 -36 3*l(n) 0 0 36 3*l(n) 0

0 -3*l(n) -l(n)^2 0 0 3*l(n) 4*l(n)^2 0

3*l(n) 0 0 -l(n)^2 -3*l(n) 0 0 4*l(n)^2];

Mre = ((ro(n)*II(n))/(30*l(n)))*MreAux;

MauxT=Mte+Mre;

for f=a:b,

for g=a:b,

M(f,g)=M(f,g)+MauxT(f-(n-1)*4,g-(n-1)*4);

end

end

a=a+4; b=b+4;
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end

% Adding the mass matrices of the disc elements

M((CD1-1)*4+1,(CD1-1)*4+1)=M((CD1-1)*4+1,(CD1-1)*4+1)+MasD;

M((CD1-1)*4+2,(CD1-1)*4+2)=M((CD1-1)*4+2,(CD1-1)*4+2)+MasD;

M((CD1-1)*4+3,(CD1-1)*4+3)=M((CD1-1)*4+3,(CD1-1)*4+3)+Id;

M((CD1-1)*4+4,(CD1-1)*4+4)=M((CD1-1)*4+4,(CD1-1)*4+4)+Id;

M((CD2-1)*4+1,(CD2-1)*4+1)=M((CD2-1)*4+1,(CD2-1)*4+1)+MasD;

M((CD2-1)*4+2,(CD2-1)*4+2)=M((CD2-1)*4+2,(CD2-1)*4+2)+MasD;

M((CD2-1)*4+3,(CD2-1)*4+3)=M((CD2-1)*4+3,(CD2-1)*4+3)+Id;

M((CD2-1)*4+4,(CD2-1)*4+4)=M((CD2-1)*4+4,(CD2-1)*4+4)+Id;

% Adding the mass matrices of the bearing elements

M((CMM1-1)*4+1,(CMM1-1)*4+1)=M((CMM1-1)*4+1,(CMM1-1)*4+1)+MasM;

M((CMM1-1)*4+2,(CMM1-1)*4+2)=M((CMM1-1)*4+2,(CMM1-1)*4+2)+MasM;

M((CMM2-1)*4+1,(CMM2-1)*4+1)=M((CMM2-1)*4+1,(CMM2-1)*4+1)+MasM;

M((CMM2-1)*4+2,(CMM2-1)*4+2)=M((CMM2-1)*4+2,(CMM2-1)*4+2)+MasM;

%________________________

%GLOBAL GYROSCOPIC MATRIX

%________________________

disp(’MOUNTING THE GLOBAL GYROSCOPIC MATRIX - WAIT!’)

disp(’ ’)

%Gyroscopic matrix of shaft elements

a=1; b=8;

for n=1:NE,

GeAux=[0 -36 3*l(n) 0 0 36 3*l(n) 0

36 0 0 3*l(n) -36 0 0 3*l(n)

-3*l(n) 0 0 -4*l(n)^2 3*l(n) 0 0 l(n)^2

0 -3*l(n) 4*l(n)^2 0 0 3*l(n) -l(n)^2 0

0 36 -3*l(n) 0 0 -36 -3*l(n) 0

-36 0 0 -3*l(n) 36 0 0 -3*l(n)

-3*l(n) 0 0 l(n)^2 3*l(n) 0 0 -4*l(n)^2

0 -3*l(n) -l(n)^2 0 0 3*l(n) 4*l(n)^2 0 ];

Ge=Omega*(ro(n)*II(n))/(15*l(n))*GeAux;

for f=a:b,

for g=a:b,

G(f,g)=G(f,g)+Ge(f-(n-1)*4,g-(n-1)*4);

end

end

a=a+4; b=b+4;

end

% Adding the gyroscopic matrices of the disc elements

G((CD1-1)*4+3,(CD1-1)*4+4)=G((CD1-1)*4+3,(CD1-1)*4+4)-Omega*Ip;

G((CD1-1)*4+4,(CD1-1)*4+3)=G((CD1-1)*4+4,(CD1-1)*4+3)+Omega*Ip;

G((CD2-1)*4+3,(CD2-1)*4+4)=G((CD2-1)*4+3,(CD2-1)*4+4)-Omega*Ip;

G((CD2-1)*4+4,(CD2-1)*4+3)=G((CD2-1)*4+4,(CD2-1)*4+3)+Omega*Ip;

%________________________
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%GLOBAL STIFFNESS MATRIX

%________________________

disp(’MOUNTING THE GLOBAL STIFFNESS MATRIX - WAIT!’)

disp(’ ’)

% Stiffness matrix of shaft elements

a=1; b=8;

for n=1:NE,

KbeAux= [12 0 0 6*l(n) -12 0 0 6*l(n)

0 12 -6*l(n) 0 0 -12 -6*l(n) 0

0 -6*l(n) 4*l(n)^2 0 0 6*l(n) 2*l(n)^2 0

6*l(n) 0 0 4*l(n)^2 -6*l(n) 0 0 2*l(n)^2

-12 0 0 -6*l(n) 12 0 0 -6*l(n)

0 -12 6*l(n) 0 0 12 6*l(n) 0

0 -6*l(n) 2*l(n)^2 0 0 6*l(n) 4*l(n)^2 0

6*l(n) 0 0 2*l(n)^2 -6*l(n) 0 0 4*l(n)^2];

Kbe = ((E*II(n))/(l(n)^3))*KbeAux;

for f=a:b,

for g=a:b,

K(f,g)=K(f,g)+Kbe(f-(n-1)*4,g-(n-1)*4);

end

end

a=a+4; b=b+4;

end

% Adding the stiffness matrices of the bearing elements

K((CMM1-1)*4+1,(CMM1-1)*4+1)=K((CMM1-1)*4+1,(CMM1-1)*4+1)+Kty1;

K((CMM1-1)*4+2,(CMM1-1)*4+2)=K((CMM1-1)*4+2,(CMM1-1)*4+2)+Ktz1;

K((CMM2-1)*4+1,(CMM2-1)*4+1)=K((CMM2-1)*4+1,(CMM2-1)*4+1)+Kty2;

K((CMM2-1)*4+2,(CMM2-1)*4+2)=K((CMM2-1)*4+2,(CMM2-1)*4+2)+Ktz2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% GLOBAL MATHEMATICAL MODEL %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A=[ G M

M zeros(size(M,1))];

B=[ K zeros(size(M,1))

zeros(size(M,1)) -M ];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ANALYSIS IN TIME DOMAIN %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Dynamical Properties of the Rotor-Bearing System

[u,w]=eig(-B,A); %natural frequency [rad/s]

%_____________________________________________________

%Inicial Condition
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y_ini(1:GL)=0; % setting initial deflections zero [m]

v_ini(1:GL)=0; % setting initial velocities zero [m/s]

gl_of_exc=5; % degree of freedom where the initial

% conditions is applied

y_ini(gl_of_exc)=0.00; % initial deflection [m]

y_ini(gl_of_exc+1)=0.00; % initial deflection [m]

v_ini(gl_of_exc)=0.01; % initial velocities [m/s]

v_ini(gl_of_exc+1)=0.01; % initial velocities [m/s]

freq_exc = 0.00; % excitation frequency [Hz]

force(1:GL)=0; % setting excitation forces zero [N]

force(gl_of_exc)=0.00; % excitation force is applied [N]

force(gl_of_exc+1)=0.00; % excitation force is applied [N]

time_max = 5.0; % integration time [s]

%_____________________________________________________

%_____________________________________________________

%EXACT SOLUTION

n=1200; % number of points for plotting

j=sqrt(-1); % complex number

w_exc=2*pi*freq_exc; % excitation frequency [rad/s]

z_ini = [y_ini v_ini]’;

force_exc = [force force*0]’;

INVA = inv((j*w_exc*A + B));

vec_aux = z_ini - INVA*force_exc;

C=inv(u)*(vec_aux);

for i=1:n,

t(i)=(i-1)/n*time_max;

freq(i)=(i-1)/time_max;

y_exact(1:2*GL,1) = 0;

for ii=1:2*GL,

y_exact = y_exact + C(ii)*u(1:2*GL,ii)*exp(w(ii,ii)*t(i));

end

y_exact = y_exact + INVA*force_exc*exp(j*w_exc*t(i));

v1_exact(i) = y_exact(1); % bearing 1 - horizontal direction

w1_exact(i) = y_exact(2); % bearing 1 - vertical direction

v2_exact(i) = y_exact(5); % disc 1 - horizontal direction

w2_exact(i) = y_exact(6); % disc 1 - vertical direction

end

FFTv1 = abs(fft(real(v1_exact))) ; % bearing 1 - horizontal direction

FFTw1 = abs(fft(real(w1_exact))) ; % bearing 1 - vertical direction

FFTv2 = abs(fft(real(v2_exact))) ; % disc 1 - horizontal direction

FFTw2 = abs(fft(real(w2_exact))) ; % disc 1 - vertical direction

figure(1)

subplot(2,2,1), plot(t,real(v1_exact),’b’)

title(’Horizontal Response of Bearing 1’,’FontSize’,14)

xlabel(’time [s]’,’FontSize’,14)

ylabel(’v_{1}(t) [m]’,’FontSize’,14)

grid

subplot(2,2,2), plot(freq(1:n/4),FFTv1(1:n/4),’b’,’LineWidth’,1.5)

title(’Horizontal Response of Bearing 1’,’FontSize’,14)

xlabel(’freq [Hz]’,’FontSize’,14)

ylabel(’FFT(v_{1}(t)) [m]’,’FontSize’,14)

grid

subplot(2,2,3), plot(t,real(w1_exact),’b’)
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title(’Vertical Response of Bearing 1’,’FontSize’,14)

xlabel(’time [s]’,’FontSize’,14)

ylabel(’w_{1}(t) [m]’,’FontSize’,14)

grid

subplot(2,2,4), plot(freq(1:n/4),FFTw1(1:n/4),’b’,’LineWidth’,1.5)

title(’Vertical Response of Bearing 1’,’FontSize’,14)

xlabel(’freq [Hz]’,’FontSize’,14)

ylabel(’FFT(w_{1}(t)) [m]’,’FontSize’,14)

grid

figure(2)

subplot(2,2,1), plot(t,real(v2_exact),’b’)

title(’Horizontal Response of Disc 1’,’FontSize’,14)

xlabel(’time [s]’,’FontSize’,14)

ylabel(’v_{2}(t) [m]’,’FontSize’,14)

grid

subplot(2,2,2), plot(freq(1:n/4),FFTv2(1:n/4),’b’,’LineWidth’,1.5)

title(’Horizontal Response of Disc 1’,’FontSize’,14)

xlabel(’freq [Hz]’,’FontSize’,14)

ylabel(’FFT(v_{2}(t)) [m]’,’FontSize’,14)

grid

subplot(2,2,3), plot(t,real(w2_exact),’b’)

title(’Vertical Response of Disc 1’,’FontSize’,14)

xlabel(’time [s]’,’FontSize’,14)

ylabel(’w_{2}(t) [m]’,’FontSize’,14)

grid

subplot(2,2,4), plot(freq(1:n/4),FFTw2(1:n/4),’b’,’LineWidth’,1.5)

title(’Vertical Response of Disc 1’,’FontSize’,14)

xlabel(’freq [Hz]’,’FontSize’,14)

ylabel(’FFT(w_{2}(t)) [m]’,’FontSize’,14)

grid

figure(3)

subplot(2,2,1), plot(t,real(v1_exact),’b’)

title(’Hor. Resp. - Bearing 1’,’FontSize’,12)

xlabel(’time [s]’,’FontSize’,14)

ylabel(’v_{1}(t) [m]’,’FontSize’,14)

grid

subplot(2,2,2), plot(freq(1:n/4),FFTv1(1:n/4),’b’,’LineWidth’,1.5)

title(’Hor. Resp. - Bearing 1’,’FontSize’,12)

xlabel(’freq [Hz]’,’FontSize’,12)

ylabel(’FFT(v_{1}(t)) [m]’,’FontSize’,14)

grid

subplot(2,2,3), plot(t,real(w2_exact),’b’)

title(’Vert. Resp. - Disc 1’,’FontSize’,12)

xlabel(’time [s]’,’FontSize’,14)

ylabel(’w_{2}(t) [m]’,’FontSize’,14)

grid

subplot(2,2,4), plot(freq(1:n/4),FFTw2(1:n/4),’b’,’LineWidth’,1.5)

title(’Vert. Resp. - Disc 1’,’FontSize’,12)

xlabel(’freq [Hz]’,’FontSize’,14)

ylabel(’FFT(w_{2}(t)) [m]’,’FontSize’,14)

grid
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1.6.6 Validation of Rotor-Bearing System Modelling – Theoretical Transient Anal-
ysis and MatLab Program Results in Time and Frequency Domains
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Figure 26: Theoretical Transient Analysis - (a) Time response of the bearing 1 and disc 1
when the disc 1 is excited in the horizontal and in the vertical directions by means of a velocity
perturbation; (b) FFT of the bearing 1 and disc 1 responses when the disc 1 is excited in the
horizontal and in the vertical direction by means of a velocity perturbation. Theoretical natural
frequencies of the rotor-bearing system: 13.8 Hz, 14.7 Hz, 33.4 Hz, 42.3 Hz, 47.1 Hz and 56.7
Hz.
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1.6.7 Campbell Diagram – MatLab Program and Theoretical Results

The natural frequencies of a rotor-bearing-system changes with respect to the angular velocity.
With help of the Campbell’s diagram one can determine the critical speeds, as can be seen in
figure 27.
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Figure 27: Campbell’s Diagram – Behavior of the six first natural frequencies of the rotor-bearing
system as a function of the angular velocity.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% MACHINERY DYNAMICS LECTURES (41614) %

% MEK - DEPARTMENT OF MECHANICAL ENGINEERING %

% DTU - TECHNICAL UNIVERSITY OF DENMARK %

% %

% Copenhagen, February 10th, 2001 %

% %

% Ilmar Ferreira Santos %

% %

% ROTATING MACHINES -- CAMPBELL’S DIAGRAM %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;

close all;

N_campbell = 160;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% DEFINITION OF THE MODEL STRUCTURE %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

NE=4; % number of shaft elements

GL = (NE+1)*4; % number of degree of freedom

ND=2; % number of discs

NM=2; % number of bearings

CD1=2; % node - disc 1

CD2=4; % node - disc 2

CMM1=1; % node - bearing 1

CMM2=5; % node - bearing 2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% CONSTANTS %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

E = 2.0E11; % elasticity modulus [N/m^2

RAco = 7800; % steel density [kg/m^3]

RAl = 2770; % aluminum density [kg/m^3]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% GEOMETRY OF THE ROTATING MACHINE %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%(A) DISCS

Rd = 6/100; % disc radius [m]

espD = 1.1/100 ; % disc thickness [m]

MasD = pi*Rd^2*espD*RAl; % disc mass [kg]

Id = 1/4*MasD*Rd^2+1/12*MasD*espD^2; % transversal mass moment of inertia of the disc [Kgm^2]

Ip = 1/2*MasD*Rd*Rd; % polar mass moment of inertia of the disc [Kgm^2]

%(B) BEARINGS

MasM = 0.40698; % bearing mass [kg](housing + ball bearings)

h=1/1000; % beam thickness [m]

b=28.5/1000; % beam width [m]

Area=b*h; % beam cross section area [m^2]

I=b*h^3/12; % beam moment of inertia of area [m^4]

lr=7.5/100; % beam length [m]

Kty0=2*12*E*I/(lr^3); % equivalent beam flexural stiffness [N/m]

Ktz0=2*E*Area/lr; % equivalent bar stiffness [N/m]

% Bearing 1 - Damping

Dty1 = 0.0 ;

Dtz1 = 0.0 ;

Dry1 = 0.0 ;

Drz1 = 0.0 ;
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% Bearing 2 - Damping

Dty2 = 0.0 ;

Dtz2 = 0.0 ;

Dry2 = 0.0 ;

Drz2 = 0.0 ; %

% Bearing 1 - Stiffness

Kty1 = Kty0 ;

Ktz1 = Ktz0 ;

Kry1 = 0.0 ;

Krz1 = 0.0 ;

% Bearing 2 - Stiffness

Kty2 = Kty0 ;

Ktz2 = Ktz0 ;

Kry2 = 0.0 ;

Krz2 = 0.0 ;

%(C) SHAFT

ll = 435/1000; % length of shaft elements [m]

Rext = (6/2)/1000; % shaft external radius [m]

Rint = (0/2)/1000; % shaft internal radius [m]

% length of the shaft elements [m]

l(1) = 0.140;

l(2) = 0.205/2;

l(3) = 0.205/2;

l(4) = 0.090;

% external radius of shaft elements [m]

for i=1:NE,

rx(i)=Rext;

end

% internal radius of shaft elements [m]

for i=1:NE,

ri(i)=Rint;

end

% density of shaft elements [kg/m]

for i=1:NE,

ro(i) = RAco;

end

% transversal areal of the shaft elements [m^2]}

for i=1:NE,

St(i) = pi*(rx(i)^2-ri(i)^2);

end

% area moment of inertia of the shaft elements [m^4]}

for i=1:NE,

II(i)=pi*((rx(i)+ri(i))/2)^3*(rx(i)-ri(i));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% OPERATIONAL CONDITIONS %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for iii=1:N_campbell,

Omega= (iii-1)*2*pi/2; % angular velocity [rad/s]

Omegarpm(iii) = Omega*60/2/pi; % angular velocity [rpm]
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% MOUNTING THE GLOBAL MATRICES %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

disp(’MOUNTING THE GLOBAL MATRICES - WAIT!’)

disp(’ ’)

% Defining the global matrices with zero elements

M=zeros(GL);

G=zeros(GL);

K=zeros(GL);

%%%%%%%%%%%%%%%%%%%%%%

% GLOBAL MASS MATRIX %

%%%%%%%%%%%%%%%%%%%%%%

disp(’MOUNTING THE GLOBAL MASS MATRIX - WAIT!’) disp(’ ’)

% Mass matrices of shaft elements due to linear and angular movements

a=1; b=8;

for n=1:NE,

MteAux= [156 0 0 22*l(n) 54 0 0 -13*l(n)

0 156 -22*l(n) 0 0 54 13*l(n) 0

0 -22*l(n) 4*l(n)^2 0 0 -13*l(n) -3*l(n)^2 0

22*l(n) 0 0 4*l(n)^2 13*l(n) 0 0 -3*l(n)^2

54 0 0 13*l(n) 156 0 0 -22*l(n)

0 54 -13*l(n) 0 0 156 22*l(n) 0

0 13*l(n) -3*l(n)^2 0 0 22*l(n) 4*l(n)^2 0

-13*l(n) 0 0 -3*l(n)^2 -22*l(n) 0 0 4*l(n)^2];

Mte = ((ro(n)*St(n)*l(n))/420)*MteAux;

MreAux= [36 0 0 3*l(n) -36 0 0 3*l(n)

0 36 -3*l(n) 0 0 -36 -3*l(n) 0

0 -3*l(n) 4*l(n)^2 0 0 3*l(n) -l(n)^2 0

3*l(n) 0 0 4*l(n)^2 -3*l(n) 0 0 -l(n)^2

-36 0 0 -3*l(n) 36 0 0 -3*l(n)

0 -36 3*l(n) 0 0 36 3*l(n) 0

0 -3*l(n) -l(n)^2 0 0 3*l(n) 4*l(n)^2 0

3*l(n) 0 0 -l(n)^2 -3*l(n) 0 0 4*l(n)^2];

Mre = ((ro(n)*II(n))/(30*l(n)))*MreAux;

MauxT=Mte+Mre;

for f=a:b,

for g=a:b,

M(f,g)=M(f,g)+MauxT(f-(n-1)*4,g-(n-1)*4);

end

end

a=a+4; b=b+4;

end

% Adding the mass matrices of the disc elements
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M((CD1-1)*4+1,(CD1-1)*4+1)=M((CD1-1)*4+1,(CD1-1)*4+1)+MasD;

M((CD1-1)*4+2,(CD1-1)*4+2)=M((CD1-1)*4+2,(CD1-1)*4+2)+MasD;

M((CD1-1)*4+3,(CD1-1)*4+3)=M((CD1-1)*4+3,(CD1-1)*4+3)+Id;

M((CD1-1)*4+4,(CD1-1)*4+4)=M((CD1-1)*4+4,(CD1-1)*4+4)+Id;

M((CD2-1)*4+1,(CD2-1)*4+1)=M((CD2-1)*4+1,(CD2-1)*4+1)+MasD;

M((CD2-1)*4+2,(CD2-1)*4+2)=M((CD2-1)*4+2,(CD2-1)*4+2)+MasD;

M((CD2-1)*4+3,(CD2-1)*4+3)=M((CD2-1)*4+3,(CD2-1)*4+3)+Id;

M((CD2-1)*4+4,(CD2-1)*4+4)=M((CD2-1)*4+4,(CD2-1)*4+4)+Id;

% Adding the mass matrices of the bearing elements

M((CMM1-1)*4+1,(CMM1-1)*4+1)=M((CMM1-1)*4+1,(CMM1-1)*4+1)+MasM;

M((CMM1-1)*4+2,(CMM1-1)*4+2)=M((CMM1-1)*4+2,(CMM1-1)*4+2)+MasM;

M((CMM2-1)*4+1,(CMM2-1)*4+1)=M((CMM2-1)*4+1,(CMM2-1)*4+1)+MasM;

M((CMM2-1)*4+2,(CMM2-1)*4+2)=M((CMM2-1)*4+2,(CMM2-1)*4+2)+MasM;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% GLOBAL GYROSCOPIC MATRIX %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

disp(’MOUNTING THE GLOBAL GYROSCOPIC MATRIX - WAIT!’) disp(’ ’)

% Gyroscopic matrix of shaft elements

a=1; b=8;

for n=1:NE,

GeAux=[0 -36 3*l(n) 0 0 36 3*l(n) 0

36 0 0 3*l(n) -36 0 0 3*l(n)

-3*l(n) 0 0 -4*l(n)^2 3*l(n) 0 0 l(n)^2

0 -3*l(n) 4*l(n)^2 0 0 3*l(n) -l(n)^2 0

0 36 -3*l(n) 0 0 -36 -3*l(n) 0

-36 0 0 -3*l(n) 36 0 0 -3*l(n)

-3*l(n) 0 0 l(n)^2 3*l(n) 0 0 -4*l(n)^2

0 -3*l(n) -l(n)^2 0 0 3*l(n) 4*l(n)^2 0 ];

Ge=Omega*(ro(n)*II(n))/(15*l(n))*GeAux;

for f=a:b,

for g=a:b,

G(f,g)=G(f,g)+Ge(f-(n-1)*4,g-(n-1)*4);

end

end

a=a+4; b=b+4;

end

% Adding the gyroscopic matrices of the disc elements

G((CD1-1)*4+3,(CD1-1)*4+4)=G((CD1-1)*4+3,(CD1-1)*4+4)-Omega*Ip;

G((CD1-1)*4+4,(CD1-1)*4+3)=G((CD1-1)*4+4,(CD1-1)*4+3)+Omega*Ip;

G((CD2-1)*4+3,(CD2-1)*4+4)=G((CD2-1)*4+3,(CD2-1)*4+4)-Omega*Ip;

G((CD2-1)*4+4,(CD2-1)*4+3)=G((CD2-1)*4+4,(CD2-1)*4+3)+Omega*Ip;

%%%%%%%%%%%%%%%%%%%%%%%%%%%

% GLOBAL STIFFNESS MATRIX %
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%%%%%%%%%%%%%%%%%%%%%%%%%%%

disp(’MOUNTING THE GLOBAL STIFFNESS MATRIX - WAIT!’) disp(’ ’)

% Stiffness matrix of shaft elements due to bending

a=1; b=8;

for n=1:NE,

KbeAux= [12 0 0 6*l(n) -12 0 0 6*l(n)

0 12 -6*l(n) 0 0 -12 -6*l(n) 0

0 -6*l(n) 4*l(n)^2 0 0 6*l(n) 2*l(n)^2 0

6*l(n) 0 0 4*l(n)^2 -6*l(n) 0 0 2*l(n)^2

-12 0 0 -6*l(n) 12 0 0 -6*l(n)

0 -12 6*l(n) 0 0 12 6*l(n) 0

0 -6*l(n) 2*l(n)^2 0 0 6*l(n) 4*l(n)^2 0

6*l(n) 0 0 2*l(n)^2 -6*l(n) 0 0 4*l(n)^2];

Kbe = ((E*II(n))/(l(n)^3))*KbeAux;

for f=a:b,

for g=a:b,

K(f,g)=K(f,g)+Kbe(f-(n-1)*4,g-(n-1)*4);

end

end

a=a+4; b=b+4;

end

% Adding the stiffness matrices of the bearing elements

K((CMM1-1)*4+1,(CMM1-1)*4+1)=K((CMM1-1)*4+1,(CMM1-1)*4+1)+Ktz1;

K((CMM1-1)*4+2,(CMM1-1)*4+2)=K((CMM1-1)*4+2,(CMM1-1)*4+2)+Kty1;

K((CMM2-1)*4+1,(CMM2-1)*4+1)=K((CMM2-1)*4+1,(CMM2-1)*4+1)+Ktz2;

K((CMM2-1)*4+2,(CMM2-1)*4+2)=K((CMM2-1)*4+2,(CMM2-1)*4+2)+Kty2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% GLOBAL MATHEMATICAL MODEL %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Mglob=[ G M

M zeros(size(M,1))];

Kglob=[ K zeros(size(M,1))

zeros(size(M,1)) -M ];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% MODAL ANALYSIS %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

disp(’CALCULATING NATURAL FREQUENCIES AND MODE SHAPES - WAIT!’)

disp(’ ’)

% Calculating Eigenvectors and Eigenvalues

[U,lambda]=eig(-Kglob,Mglob);

[lam,p]=sort(abs(diag(lambda)));

U=U(:,p);
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lambda_campbell(iii,:)=lam’/2/pi;

end

figure(1) plot(Omegarpm,Omegarpm/60,’r’,’LineWidth’,1.5) grid hold

on

plot(Omegarpm,lambda_campbell(1:N_campbell,1),’b’,’LineWidth’,1.5)

hold on

plot(Omegarpm,lambda_campbell(1:N_campbell,3),’b’,’LineWidth’,1.5)

hold on

plot(Omegarpm,lambda_campbell(1:N_campbell,5),’b’,’LineWidth’,1.5)

hold on

plot(Omegarpm,lambda_campbell(1:N_campbell,7),’b’,’LineWidth’,1.5)

hold on

plot(Omegarpm,lambda_campbell(1:N_campbell,9),’b’,’LineWidth’,1.5)

hold on

plot(Omegarpm,lambda_campbell(1:N_campbell,11),’b’,’LineWidth’,1.5)

hold on title(’Campbell´s Diagram - Critical

Speeds.’,’FontSize’,14)

xlabel(’Angular Velocity [rpm]’,’FontSize’,14)

ylabel(’NaturalFrequency [Hz]’,’FontSize’,14)
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1.7 Basic Phenomenology of Rotor-Bearing Systems

1.7.1 Steady-State Response due to Unbalance Excitation - Forward and Backward
Orbits

(a) passive magnetic bearing (b) mechanical model

(c) rotor supported by magnetic forces (d) rotor-bearing system

Figure 28: (a) Passive magnetic bearing – resultant magnetic forces in the horizontal and vertical
direction are depending on the distribution of magnets around the bearing housing; (b) Magnetic
forces represented as springs and dampers (idealization); (c) and (d) Mechanical model of the
passive magnetic bearing – Rotor as a rigid body supported by springs and dampers.

Forward and Backward Orbits

For being completed with the notes in the classes!
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1.7.2 Cross-Coupling Stiffness and Rotor-Bearing Stability Analysis

Based on the mechanical model presented in figure 28, one mathematical model of 2 degrees of
freedom is created and implement using MatLab. In the program the real and imaginary parts
of the system eigenvalues is plotted as a function of the cross-coupling stiffness.
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Figure 29: Stability analysis for the rotor-bearing system as a function of the cross-coupling
stiffness coefficients and direct damping coefficients.
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Figure 30: Stability analysis for the rotor-bearing system as a function of the cross-coupling
stiffness coefficients and difference between the direct stiffness coefficients.

• MatLab program for analyzing rotor-bearing stability.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% MACHINERY DYNAMICS LECTURES (72213) %

% MEK - DEPARTMENT OF MECHANICAL ENGINEERING %

% DTU - TECHNICAL UNIVERSITY OF DENMARK %

% %
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% Copenhagen, March 3th, 2002 %

% IFS %

% %

% 2 D.O.F. SYSTEMS - ROOTS OF ROTOR-BEARING SYSTEM %

% AND STABILITY ANALYSIS %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;

close all;

N=40;

%Concentred Masses

m1= 0.191; %[Kg]

m2= 0.191; %[Kg]

%Elastic Properties of the Beam of 600 mm

E= 2e11; %elasticity modulus [N/m^2]

b= 0.030 ; %width [m]

h= 0.0012 ; %thickness [m]

I= (b*h^3)/12; %area moment of inertia [m^4]

for i=1:N;

% Coefficients of the Stiffness Matrix

LL = 0.310; %beam length [m]

KK = 3*E*I/LL^3; %equivalent stiffness [N/m]

K11 = 1.0*KK; %equivalent stiffness [N/m]

K12 = ((i-1)*0.05)*KK; %equivalent stiffness [N/m]

Kxy(i) = K12/K11;

K22 = 2.0*KK; %quivalent stiffness [N/m]

%Mass Matrix

M= [m1 0;

0 m2];

%Stiffness Matrix

K= [ K11 K12;

K12 K22];

%Damping Matrix 0.0, 1.0, 2.0, 3.0, 5.0

D= [ 0.0 0.0 ;

0.0 0.0 ];

%State Matrices

A= [ M D ;

zeros(size(M)) M ] ;

B= [ zeros(size(M)) K ;

-M zeros(size(M))];

%Dynamical Properties of the Mass-Spring System

[u,w]=eig(-B,A); %natural frequency [rad/s]

%Dynamical Properties of the Mass-Spring System

w=diag(w); w_imag=imag(w);

[ws,pos]=sort(w_imag); %natural frequency [rad/s]

ww(i,1)=w(pos(1))/2/pi;

ww(i,2)=w(pos(2))/2/pi;

ww(i,3)=w(pos(3))/2/pi;

ww(i,4)=w(pos(4))/2/pi;

60



%ww(i,:)

end; subplot(2,1,1);

plot(Kxy,real(ww(:,1)),’r*’,Kxy,real(ww(:,2)),’r*’,Kxy,real(ww(:,3)),’r*’,Kxy,real(ww(:,4)),’r*’)

grid

title(’Real and Imaginary Parts of the Eigenvalues vs. Cross

Coupling Stiffness’)

ylabel(’Real Part [rad/s]’)

subplot(2,1,2);

plot(Kxy,imag(ww(:,1)),’r*’,Kxy,imag(ww(:,2)),’r*’,Kxy,imag(ww(:,3)),’r*’,Kxy,imag(ww(:,4)),’r*’)

grid

xlabel(’Dimensionless Cross Stiffness’)

ylabel(’Imaginary

Part [rad/s]’)

1.8 Stability Analysis of Rotor-Journal Bearing Systems

• The static equilibrium position of a rotor supported by a two-axial-groove journal bearing
(figure 31) is illustrated in table 2 and figure 32, as a function of Sommerfeld number S.

Figure 31: Two-axial groove journal bearing, L/D=0.5.
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Figure 32: Static properties of a two-axial groove journal bearing, L/D=0.5.
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S ǫ Φ Kvv Kvw Kwv Kww Cvv Cvw Cwv Cww
6.430 0.071 81.89 1.55 14.41 -6.60 1.88 28.75 1.89 1.89 13.31
3.937 0.114 77.32 1.57 9.27 -4.20 1.89 18.44 1.93 1.93 8.58
2.634 0.165 72.36 1.61 6.74 -3.01 1.91 13.36 2.00 2.00 6.28
2.030 0.207 68.75 1.65 5.67 -2.50 1.93 11.18 2.07 2.07 5.33
1.656 0.244 65.85 1.69 5.06 -2.20 1.95 9.93 2.15 2.15 4.80
0.917 0.372 57.45 2.12 4.01 -1.30 1.85 7.70 2.06 2.06 3.23
0.580 0.477 51.01 2.67 3.70 -0.78 1.75 6.96 1.94 1.94 2.40
0.378 0.570 45.43 3.33 3.64 -0.43 1.68 6.76 1.87 1.87 1.89
0.244 0.655 40.25 4.21 3.74 -0.13 1.64 6.87 1.82 1.82 1.54
0.194 0.695 37.72 4.78 3.84 0.01 1.62 7.03 1.80 1.80 1.40
0.151 0.734 35.20 5.48 3.98 0.15 1.61 7.26 1.79 1.79 1.27
0.133 0.753 33.93 5.89 4.07 0.22 1.60 7.41 1.79 1.79 1.20
0.126 0.761 33.42 6.07 4.11 0.25 1.60 7.48 1.79 1.79 1.18
0.116 0.772 32.65 6.36 4.17 0.30 1.60 7.59 1.79 1.79 1.15
0.086 0.809 30.04 7.51 4.42 0.47 1.59 8.03 1.79 1.79 1.03
0.042 0.879 24.41 11.45 5.23 0.92 1.60 9.48 1.80 1.80 0.82

Table 2: Example of a table with the dynamic properties of a two-axial-groove journal bearing as
a function of the bearing parameters: D - rotor diameter [m]; L - bearing width [m]; R = D/2
- rotor radius [m]; C - bearing clearance [m]; W - external load [N ]; η - oil viscosity [N.s/m2];
N - rotor angular velocity [1/s]; ω = 2 ∗ π ∗ N - rotor angular velocity [rad/s]; S = η ∗ N ∗
L ∗ D/W ∗ (R/C)2 - Sommerfeld number; ǫ = e/C - eccentricity; Φ - attitude angle; Kij =
(C/W )∗kij (i, j = x, y) - dimensionless stiffness coefficients; Bij = (C∗w/W )∗kij (i, j = x, y)

– dimensionless damping coefficients. OBS: This values can only be used when L/D = 0.5 .

• Stiffness and damping coefficients of a two-axial-groove journal bearing presented in figure
31 are shown in table 2 and figure 33 as a function of Sommerfeld number S.
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Figure 33: Dimensionless oil film stiffness and damping of a two-axial groove journal bearing,
L/D=0.5.
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• Rotor-journal bearing stability as a function of the rotational speed. Example based on the
two-axial-groove journal bearing, presented in figure 31, and on the data shown in table 2.
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Figure 34: Stability Analysis of a two-axial groove journal bearing, L/D=0.5 with two different
angular velocities (a) N = 66.3218 (STABLE) and (b) N = 119.7697 (UNSTABLE)
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• Example of MatLab program for analyzing rotor-journal bearing stability as a function
of stiffness and damping coefficients. Example based on the two-axial-groove journal bearing,
presented in figure 31, and on the data shown in table 2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% MACHINERY DYNAMICS LECTURES (41614) %

% MEK - DEPARTMENT MECHANICAL ENGINEERING %

% DTU - TECHNICAL UNIVERSITY OF DENMARK %

% %

% Copenhagen, October 22, 2000 %

% %

% Ilmar F. Santos %

% %

% JOURNAL BEARING DYNAMICS & STABILITY ANALYSIS %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Definition of Non-dimensional Bearing Parameters

% S = eta*N*L*D/W*(R/C)^2; Sommerfeld Number

% E = e/C; Eccentricity

% Phi Attitude Angle

% Kij = (C/W)*kij (i,j=x,y) dimensionless stiffness coefficients

% Bij = (C*w/W)*kij (i,j=x,y) dimensionless damping coefficients

%

% Definition of Journal Bearing Parameters

% D rotor diameter

% L bearing width

% R = D/2; rotor radius

% C bearing clearance

% W external load [N]

% eta oil viscosity [N.s/m2]

% N rotor angular velocity [1/s]

% w = 2*pi*N rotor angular velocity [rad/s]

clear all;

close all;

% Bearing Properties

% Table 1a : Two-axial-groove bearing, L/D = 0.5

%

% S E Phi Q P T Kxx Kxy Kyx Kyy Bxx Bxy Byx Byy

%

Table=[6.430 0.071 81.89 0.121 0.860 5.7 1.55 14.41 -6.60 1.88 28.75 1.89 1.89 13.31

3.937 0.114 77.32 0.192 0.846 5.9 1.57 9.27 -4.20 1.89 18.44 1.93 1.93 8.58

2.634 0.165 72.36 0.271 0.833 6.2 1.61 6.74 -3.01 1.91 13.36 2.00 2.00 6.28

2.030 0.207 68.75 0.332 0.835 6.6 1.65 5.67 -2.50 1.93 11.18 2.07 2.07 5.33

1.656 0.244 65.85 0.383 0.835 7.0 1.69 5.06 -2.20 1.95 9.93 2.15 2.15 4.80

0.917 0.372 57.45 0.540 0.850 8.5 2.12 4.01 -1.30 1.85 7.70 2.06 2.06 3.23

0.580 0.477 51.01 0.651 0.900 10.5 2.67 3.70 -0.78 1.75 6.96 1.94 1.94 2.40

0.378 0.570 45.43 0.737 0.977 13.4 3.33 3.64 -0.43 1.68 6.76 1.87 1.87 1.89

0.244 0.655 40.25 0.804 1.096 17.9 4.21 3.74 -0.13 1.64 6.87 1.82 1.82 1.54

0.194 0.695 37.72 0.833 1.156 21.3 4.78 3.84 0.01 1.62 7.03 1.80 1.80 1.40

0.151 0.734 35.20 0.858 1.240 25.8 5.48 3.98 0.15 1.61 7.26 1.79 1.79 1.27

0.133 0.753 33.93 0.870 1.289 28.7 5.89 4.07 0.22 1.60 7.41 1.79 1.79 1.20

0.126 0.761 33.42 0.875 1.310 30.0 6.07 4.11 0.25 1.60 7.48 1.79 1.79 1.18

0.116 0.772 32.65 0.881 1.343 32.2 6.36 4.17 0.30 1.60 7.59 1.79 1.79 1.15

0.086 0.809 30.04 0.902 1.473 41.4 7.51 4.42 0.47 1.59 8.03 1.79 1.79 1.03

0.042 0.879 24.41 0.936 1.881 80.9 11.45 5.23 0.92 1.60 9.48 1.80 1.80 0.82 ];

figure(1)

title(’Journal Bearing -- Static Properties’)
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subplot(2,2,1), plot(Table(:,1),Table(:,2),’b’)

title(’Eccentricity’)

xlabel(’S=eta*N*L*D/W*(R/C)^2’)

ylabel(’E=e/C’)

grid

subplot(2,2,2), plot(Table(:,1),Table(:,3),’b’)

title(’Attitude Angle’)

xlabel(’S=eta*N*L*D/W*(R/C)^2’)

ylabel(’Phi [Degree]’)

grid

subplot(2,2,3.5),

polar(3*pi/2+Table(:,3)*pi/180,Table(:,2))

title(’Eccentricity E=e/C & Attitude Angle Phi’)

grid

figure(2)

title(’Journal Bearing -- Dynamic Properties’)

subplot(2,2,1), plot(Table(:,1),Table(:,7),’b’)

title(’Dimensionless Stiffness Kxx’)

xlabel(’S=eta*N*L*D/W*(R/C)^2’)

ylabel(’Kxx’)

grid

subplot(2,2,2), plot(Table(:,1),Table(:,8),’b’)

title(’Dimensionless Stiffness Kxy’)

xlabel(’S=eta*N*L*D/W*(R/C)^2’)

ylabel(’Kxy’)

grid

subplot(2,2,3), plot(Table(:,1),Table(:,9),’b’)

title(’Dimensionless Stiffness Kyx’)

xlabel(’S=eta*N*L*D/W*(R/C)^2’)

ylabel(’Kyx’)

grid

subplot(2,2,4), plot(Table(:,1),Table(:,10),’b’)

title(’Dimensionless Stiffness Kyy’)

xlabel(’S=eta*N*L*D/W*(R/C)^2’)

ylabel(’Kyy’)

grid

figure(3)

title(’Journal Bearing -- Dynamic Properties’)

subplot(2,2,1), plot(Table(:,1),Table(:,11),’b’)

title(’Dimensionless Damping Bxx’)

xlabel(’S=eta*N*L*D/W*(R/C)^2’)

ylabel(’Bxx’)

grid

subplot(2,2,2), plot(Table(:,1),Table(:,12),’b’)

title(’Dimensionless Damping Bxy’)

xlabel(’S=eta*N*L*D/W*(R/C)^2’)

ylabel(’Bxy’)

grid

subplot(2,2,3), plot(Table(:,1),Table(:,13),’b’)

title(’Dimensionless Damping Byx’)

xlabel(’S=eta*N*L*D/W*(R/C)^2’)

ylabel(’Byx’)

grid

subplot(2,2,4), plot(Table(:,1),Table(:,14),’b’)

title(’Dimensionless Damping Byy’)

xlabel(’S=eta*N*L*D/W*(R/C)^2’)

ylabel(’Byy’)

grid

% bearing geometry
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D = 0.100 ; % [m]

L = 0.050 ; % [m]

R = D/2; % [m]

r = 0.0499 ; % [m]

C = 100e-6 ; % [m]

C = R-r; % [m]

% oil properties

eta = 0.0271; % [N.s/m2]

% acceleration of gravity

g = 9.8; % [m/s^2]

% rotor mass and weight

mass = 500; % [kg]

W = mass*g/2; % [N]

% N = rotational velocity [1/s]

% N = Table(1,1)*(W)/(eta*L*D)/(R/C)^2

N = 3.0376; line = 16;

N = 6.2199; line = 15;

N = 8.3897; line = 14;

N = 9.1129; line = 13;

N = 9.6192; line = 12;

N = 10.9210; line = 11;

N = 14.0310; line = 10;

N = 17.6472; line = 9;

N = 27.3387; line = 8 ;

N = 41.9483; line = 7;

N = 66.3218; line = 6; % STABLE !!!

% N = 119.7697; line = 5; % UNSTABLE !!!

% N = 146.8192; line = 4;

% N = 190.5033; line = 3;

% N = 284.7424; line = 2;

% N = 465.0480; line = 1;

w = 2*pi*N; % [rad/s]

S = eta*N*L*D/W*(R/C)^2 % Sommerfeld Number

% Coefficients of the Stiffness Matrix

kxx = Table(line,7)*W/C ; % [N/m]

kxy = Table(line,8)*W/C ; % [N/m]

kyx = Table(line,9)*W/C ; % [N/m]

kyy = Table(line,10)*W/C ; % [N/m]

% Coefficients of the Damping Matrix

bxx= Table(line,11)*W/(w*C) ; % [N/(m/s)]

bxy= Table(line,12)*W/(w*C) ; % [N/(m/s)]

byx= Table(line,13)*W/(w*C) ; % [N/(m/s)]

byy= Table(line,14)*W/(w*C) ; % [N/(m/s)]

x_st = Table(line,2)*cos(Table(line,3)*pi/180)*C; % equilibrium position [m]

y_st = Table(line,2)*sin(Table(line,3)*pi/180)*C; % equilibrium position [m]

%Mass Matrix

M= [mass 0; 0 mass];

%Damping Matrix

B=[bxx bxy; byx byy];

%Stiffness Matrix

K= [kxx kxy; kyx kyy];

%State Matrix

A1= [ M B ;

zeros(size(M)) M ] ;
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A2= [ zeros(size(M)) K ;

-M zeros(size(M))];

%Dynamical Properties of the Mass-Spring System

[u,s]=eig(-A2,A1); % eigenvectors [ ] & eigenvalues [rad/s]

s % eigenvalues [rad/s]

pause;

%_____________________________________________________

%Inicial Condition

x_ini = 0.000; % initial displacement [m]

y_ini = 0.000; % initial displacement [m]

vx_ini = 0.01; % initial perturbation velocity [m/s]

vy_ini = 0.000; % initial perturbation velocity [m/s]

time_max = 0.5; % integration time [s]

%_____________________________________________________

%_____________________________________________________

%EXACT SOLUTION

n=2000; % number of points for plotting

j=sqrt(-1); % complex number

z_ini = [vx_ini vy_ini x_ini y_ini]’;

s1=s(1,1);

s2=s(2,2);

s3=s(3,3);

s4=s(4,4);

u1=u(1:4,1);

u2=u(1:4,2);

u3=u(1:4,3);

u4=u(1:4,4);

C_ini=inv(u)*(z_ini);

c1=C_ini(1);

c2=C_ini(2);

c3=C_ini(3);

c4=C_ini(4);

for i=1:n,

t(i)=(i-1)/n*time_max;

z_exact = c1*u1*exp(s1*t(i)) + ...

c2*u2*exp(s2*t(i)) + ...

c3*u3*exp(s3*t(i)) + ...

c4*u4*exp(s4*t(i));

% cartesian coordinates

x_exact(i) = x_st + real(z_exact(3));

y_exact(i) = y_st + real(z_exact(4));

% polar coordinates

polar_rho(i) = sqrt(x_exact(i)*x_exact(i)+y_exact(i)*y_exact(i));

polar_angle(i) = acos(x_exact(i)/polar_rho(i));

end

figure(4)
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title(’Journal Bearing Stability - Time Domain Analysis’)

subplot(2,2,1), plot(t,x_exact,’b’)

title(’Vertical Direction ’)

xlabel(’time [s]’)

ylabel(’x(t) [m]’)

grid

subplot(2,2,2), plot(t,y_exact,’b’)

title(’Horizontal Direction ’)

xlabel(’time [s]’)

ylabel(’y(t) [m]’)

grid

subplot(2,2,3), plot(y_exact,x_exact,’b’)

title(’Rotor Orbits - Journal Bearing 1’)

xlabel(’y(t) [m]’)

ylabel(’x(t) [m]’)

grid

subplot(2,2,4),

polar(3*pi/2+polar_angle,polar_rho/C)

title(’Rotor Orbits - Dimensionless’)

grid
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1.9 Further Bibliography related to Journal Bearing Properties – Research

and Development

1.9.1 On the Adjusting of the Dynamic Coefficients of Tilting-Pad Journal Bear-
ings

Figure 35: Adjust of the Dynamic Coefficients of Tilting-Pad Journal Bearings by means of
Hydraulic Chamber Systems.
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1.9.2 Tilting-Pad Journal Bearings with Electronic Radial Oil Injection

Figure 36: New Test Rig built at MEK-DTU with financial support of Myhrwolds Foundation
– Interior of the active lubricated tilting-pad bearing illustrating the orifice machined on the
pad surface (active lubrication) and the conventional lubrication between pads (hydrodynamic
lubrication).
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Figure 37: New Test Rig built at MEK-DTU with financial support of Myhrwolds Foundation
– Electromagnetic shaker attached to the shaft extremity, active lubricated bearing with servo
valves mounted on the bearing housing, motor connected to the shaft by belt.

1.10 Exercises using MatLab Program

For the overhang rotor illustrated in figure 38:

• (1) Elaborate a simple mechanical model.

• (2) Create a simple mathematical model using only one shaft and one disc finite elements.

• (3) Set some values for the overhang rotor:

• DISC

Rd = 0.100 – disc radius [m]

espD = 0.010 – disc thickness [m]

Ral = 7800 – steel density [kg/m2]

MasD = pi ∗Rd2 ∗ espD ∗Ral – disc mass [kg]

Id = 1/4∗MasD∗Rd2+1/12∗MasD∗espD2 – transversal mass moment of inertia [Kgm2]

Ip = 1/2 ∗MasD ∗Rd ∗Rd – polar mass moment of inertia [Kgm2]

• SHAFT

L = 0.500 – length of shaft elements [m]

rx = 0.003 – shaft external radius [m]
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Figure 38: Overhang Rotor with Unbalance Mass.

• (4) Find the natural frequencies of the overhang rotor.

• (5) Plot the forward component {xfor} of the displacement coordinates V and W as func-
tion of rotational speed Ω. Choose a range a rotational speed, which covers the natural
frequencies of the overhang rotor.

• (6) Plot the backward component {xback} of the displacement coordinates V and W as
function of rotational speed Ω. Choose a range a rotational speed, which covers the natural
frequencies of the overhang rotor.

• (7) What can you conclude about the orbits which will be described by the rotor in the
difference range of rotational speed?

• (8) Change the stiffness matrix of the overhung rotor, adding two different stiffness in the
diagonal of the stiffness matrix, in V and W coordinates, kvv = 0.0 [N/m] and kww =
105 [N/m].

• (9) Find the natural frequencies of the overhang rotor for the case (4).

• (10) Plot the forward component {xfor} of the displacement coordinates V and W as
function of rotational speed Ω. Choose a range a rotational speed, which covers the natural
frequencies of the overhang rotor.

• (11) Plot the backward component {xback} of the displacement coordinates V and W as
function of rotational speed Ω. Choose a range a rotational speed, which covers the natural
frequencies of the overhang rotor.

• (12) What can you conclude about the orbits which will be described by the rotor in the
difference range of rotational speed, when you have different stiffness in the horizontal and
vertical planes?

close all clear all

%Physical Dimensions

Rd=0.100; %Disc radius [m]

espD=0.010; %Disc thickness [m]

Ral=7800; %Steel density [kg/m^3]

l=0.0600; %Length of shaft

%elements [m]

rx=0.003; %Shaft external

%radius [m]
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frqmax=60*2*pi; %Maximum

%angular velocity [rad/s]

E=2e11; %Elasticity modulus [N/m^2]

m=0.005; %Unbalance mass [kg]

epsilon=0.001; %Radial placement of

%unbalance mass [m]

%Constants

MasD=pi*Rd^2*espD*Ral; %Disc mass [kg]

Id=1/4*MasD*Rd^2+1/2*MasD*espD^2;%Transversal mass

%moment of inertia [Kgm^2]

Ip=1/2*MasD*Rd^2; %Polar mass moment

%of inertia [kgm^2]

I=pi/4*rx^4; %Area moment of

%inertia [m^4]

timemax=10; %Maximum time [s]

n=1000; %Number of points [1]

fi=0; %Phasedelay [radians]

%Matrices for the mathematical model

%Mass matrix

M=[MasD 0 0 0;

0 MasD 0 0;

0 0 Id 0;

0 0 0 Id];

%Gyroscopic matrix

G= [ 0 0 0 0;

0 0 0 0;

0 0 0 Ip;

0 0 -Ip 0 ];

%Stiffness matrix

K_shaft=E*I/l^3* [ 12 0 0 6*l;

0 12 -6*l 0;

0 -6*l 4*l^2 0;

6*l 0 0 4*l^2];

K_fluid = E*I/l^3* [ 0 0 0 0;

0 10 0 0;

0 0 0 0;

0 0 0 0];

K = K_shaft + K_fluid;

% Damping matrix

% Proportional Damping D=alpha*M + beta*K;

alpha=0.221*0.03;

beta =0.00182*0.03;
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D_damping=alpha*M + beta*K;

N_campbell = 50;

for iii=1:N_campbell,

Omega= 10*(iii-1)*2*pi/2; % angular velocity [rad/s]

Omegarpm(iii) = Omega*60/2/pi; % angular velocity [rpm]

%Mathematical model

A=[ M Omega*G + D_damping ;

zeros(size(M)) M ];

B=[ zeros(size(M)) K ;

-M zeros(size(M))];

[U,lambda]=eig(-B,A);

[lam,p]=sort(abs(diag(lambda)));

lambda_campbell(iii,:)=lam’/2/pi;

end

figure(1) plot(Omegarpm,Omegarpm/60,’r’,’LineWidth’,1.5) grid hold

on

plot(Omegarpm,lambda_campbell(1:N_campbell,1),’b’,’LineWidth’,1.5)

hold on

plot(Omegarpm,lambda_campbell(1:N_campbell,3),’b’,’LineWidth’,1.5)

hold on

plot(Omegarpm,lambda_campbell(1:N_campbell,5),’b’,’LineWidth’,1.5)

hold on

plot(Omegarpm,lambda_campbell(1:N_campbell,7),’b’,’LineWidth’,1.5)

hold on

title(’Campbell´s Diagram - 4 First Natural

Frequencies.’,’FontSize’,14)

xlabel(’Angular Velocity [rpm]’,’FontSize’,14)

ylabel(’Natural Frequency [Hz]’,’FontSize’,14)

figure(9) subplot(1,3,1),

plot(Omegarpm,Omegarpm/60,’r’,’LineWidth’,1.5)

grid

hold on

plot(Omegarpm,lambda_campbell(1:N_campbell,1),’b’,’LineWidth’,1.5)

hold on

plot(Omegarpm,lambda_campbell(1:N_campbell,3),’b’,’LineWidth’,1.5)

hold on

plot(Omegarpm,lambda_campbell(1:N_campbell,5),’b’,’LineWidth’,1.5)

hold on
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plot(Omegarpm,lambda_campbell(1:N_campbell,7),’b’,’LineWidth’,1.5)

hold on

title(’Campbell´s Diagram’,’FontSize’,10)

xlabel(’Angular Velocity [rpm]’,’FontSize’,10)

ylabel(’Natural Frequency [Hz]’,’FontSize’,10)

axis([0,15000,0,300])

subplot(1,3,2), plot(X(1,1:i),omega/2/pi,’b’,’LineWidth’,1.5)

ylabel(’Angular Velocity [Hz]’,’FontSize’,10)

xlabel(’Displ. V [m]’,’FontSize’,10)

title(’Unbalance Reponse - V’,’FontSize’,10)

axis([0,1e-4,0,300])

grid

subplot(1,3,3), plot(X(2,1:i),omega/2/pi,’b’,’LineWidth’,1.5)

ylabel(’Angular Velocity [Hz]’,’FontSize’,10)

xlabel(’Displ. W [m]’,’FontSize’,10)

title(’Unbalance Reponse - W’,’FontSize’,10)

axis([0,1e-4,0,300])

grid
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Figure 39: Overhang Rotor – Campbell Diagram and Frequency Response Function.
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1.11 Project 3 – Rotor-Journal Bearing Stability - Lateral Dynamics

The aim of the third project is to become familiar with the prediction of critical speeds in
rotating machines. Using the drawings of the shaft of the rotating machine, as in the real
life in the design phase, elaborate a mechanical and a mathematical models to analyze lateral
vibrations. The mathematical model will be based on Finite Element Method. After simulating
the dynamic behavior of the shaft in a free-free condition, you have the possibility of checking
the model accuracy by means of comparison with experimental natural frequencies of the shaft
in the free-free condition attached here. Mounting the shaft in a journal bearing new natural
frequencies and modes shapes will be calculated. This will allow a prediction of critical speeds,
reserve of damping and stability range.

(Technical report until 14/05/2004)

1. MODELLING – Create a mechanical model for the rotor-bearing system illustrated in the
technical drawings and discuss your assumptions (see attached pages).

2. MODELLING – Create a mathematical model (set of differential equations) for representing
the dynamical behavior of the rotor-bearing system using Finite Element Methods. Use the
information delivered in the technical drawings (attached pages).

3. MODELLING – Choose the model parameters (mass, stiffness, etc.) with help of theoretical
or experimental procedures, and define the coefficients of your set of differential equations.
Use the information delivered in the technical drawings (attached pages).

4. SIMULATION – Implement your mathematical model using the MatLab program presented
in section 1.6.1.

5. ANALYSIS – With help of your mathematical model and your MatLab code calculate the
natural frequencies of the flexible shaft (without discs) in the range of frequencies from 0
until 2000 Hz considering a free-free condition. In figure 40(a) one can see the flexible shaft
without discs prepared for the experimental tests.

6. ANALYSIS – With help of your mathematical model and your MatLab code calculate the
natural frequencies of the flexible shaft (with 1 disc) in the range of frequencies from 0 until
2000 Hz considering a free-free condition. In figure 40(b) one can see the flexible shaft with
one disc prepared for the experimental tests.

7. ANALYSIS – With help of your mathematical model and your MatLab code calculate the
natural frequencies of the flexible shaft (with 2 disc) in the range of frequencies from 0 until
2000 Hz considering a free-free condition. In figure 40(c) one can see the flexible shaft with
one disc prepared for the experimental tests.

8. VERIFICATION & EXPERIMENTAL VALIDATION – With the natural frequencies of
the flexible shaft (without discs) in a free-free condition presented in figure 41(a), try to
validate your mathematical model.

9. VERIFICATION & EXPERIMENTAL VALIDATION – With the natural frequencies of
the flexible shaft with 1 disc in a free-free condition presented in figure 41(b), try to validate
your mathematical model.

10. VERIFICATION & EXPERIMENTAL VALIDATION – With the natural frequencies of
the flexible shaft with 1 disc in a free-free condition presented in figure 41(c), try to validate
your mathematical model.
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Figure 40: (a) Flexible shaft in a free-free condition – (b) Flexible shaft and one disc in a free-free
condition – (c) Flexible shaft and two discs in a free-free condition.

11. VERIFICATION & EXPERIMENTAL VALIDATION – Compare theoretical and experi-
mental results and discuss possible causes of discrepancies between theoretical and experi-
mental results.

12. APPLICATION – PREDICTION OF ROTOR-BEARING STABILITY – The flexible shaft
with 2 discs will be mounted on two different bearings. At one extremity a ball bearing
will be used. Its stiffness, for the proposes of this analysis, can be considered infinite. At
a given distance L from the extremity, a two-axial-groove journal bearing (figure 42) is
mounted. The static equilibrium position, stiffness and damping coefficients of the rotor-
bearing system can be obtained with help of the Sommerfeld number S = η ∗N ∗L∗D/W ∗
(R/C)2 and the table 3, if all parameters η, N L D W R and C are known.

The bearings will be lubricated using the ISO VG 32 oil. Its viscosity can be described by
the expression η = 0.0277∗e[0.034∗(40−T )], η in [N.s/m2] and T in [C]. In this initial analysis
the dependency of the oil temperature on the rotor angular velocity will be neglected.
Based on experience with other machines with the same size one can assume that the mean
temperature T will be 67 [C]. In other words the stability analysis have to be led assuming
an isothermal lubrication. The maximum angular velocity N has to be defined, and this
is the most important part of the model application. The rotor diameter D [m] can be
obtained from the technical drawings. The relationship L/D = 0.5, R = D/2 and the
bearing clearance C = 120 [µm] are pre-defined parameters. Calculate the external load
due to the weight acting on the bearing W [N ]. The Sommerfeld number will be a function
of the angular speed of the machine N .

13. APPLICATION – Plot the Campbell’s diagram for the rotor-bearing system and define
the 4 first critical speeds of the rotating machine. Use the MatLab program presented in
section 1.6.7.

14. APPLICATION – Choose an angular velocity and plot the first 4 undamped natural modes
shapes of the rotor-bearing system. OBS: Neglect the damping coefficients in this case and
use the MatLab program presented in section 1.6.1.

15. APPLICATION – What is the maximum angular speed N that the rotating machine can
operate without instability problem?
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Figure 41: (a) Natural frequencies of the flexible shaft in a free-free condition – (b) Natural
frequencies of the flexible shaft with one disc in a free-free condition – (c) Natural frequencies
of the flexible shaft with two discs in a free-free condition.
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Figure 42: Two-axial groove journal bearing, L/D=0.5.

S ǫ Φ Kvv Kvw Kwv Kww Cvv Cvw Cwv Cww
6.430 0.071 81.89 1.55 14.41 -6.60 1.88 28.75 1.89 1.89 13.31
3.937 0.114 77.32 1.57 9.27 -4.20 1.89 18.44 1.93 1.93 8.58
2.634 0.165 72.36 1.61 6.74 -3.01 1.91 13.36 2.00 2.00 6.28
2.030 0.207 68.75 1.65 5.67 -2.50 1.93 11.18 2.07 2.07 5.33
1.656 0.244 65.85 1.69 5.06 -2.20 1.95 9.93 2.15 2.15 4.80
0.917 0.372 57.45 2.12 4.01 -1.30 1.85 7.70 2.06 2.06 3.23
0.580 0.477 51.01 2.67 3.70 -0.78 1.75 6.96 1.94 1.94 2.40
0.378 0.570 45.43 3.33 3.64 -0.43 1.68 6.76 1.87 1.87 1.89
0.244 0.655 40.25 4.21 3.74 -0.13 1.64 6.87 1.82 1.82 1.54
0.194 0.695 37.72 4.78 3.84 0.01 1.62 7.03 1.80 1.80 1.40
0.151 0.734 35.20 5.48 3.98 0.15 1.61 7.26 1.79 1.79 1.27
0.133 0.753 33.93 5.89 4.07 0.22 1.60 7.41 1.79 1.79 1.20
0.126 0.761 33.42 6.07 4.11 0.25 1.60 7.48 1.79 1.79 1.18
0.116 0.772 32.65 6.36 4.17 0.30 1.60 7.59 1.79 1.79 1.15
0.086 0.809 30.04 7.51 4.42 0.47 1.59 8.03 1.79 1.79 1.03
0.042 0.879 24.41 11.45 5.23 0.92 1.60 9.48 1.80 1.80 0.82

Table 3: Static and dynamic properties of a two-axial-groove journal bearing as a function of the
bearing parameters: D - rotor diameter [m]; L - bearing width [m]; R = D/2 - rotor radius [m];
C - bearing clearance [m]; W - external load [N ]; η - oil viscosity [N.s/m2]; N - rotor angular
velocity [1/s]; ω = 2 ∗ π ∗N - rotor angular velocity [rad/s]; S = η ∗N ∗ L ∗D/W ∗ (R/C)2 -
Sommerfeld number; ǫ = e/C - eccentricity; Φ - attitude angle; Kij = (C/W )∗kij (i, j = x, y) -
dimensionless stiffness coefficients; Bij = (C ∗w/W )∗kij (i, j = x, y) – dimensionless damping

coefficients. OBS: This values can only be used when L/D = 0.5 .
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2 Diagnosis of Rotating Machinery Malfunctions & Condition

Monitoring

2.1 Introduction

Since the late 1960s have experimental and analytical techniques for assessing vibration levels
been used routinely for diagnosis faults in operational rotating machinery. Until that time these
techniques were used almost exclusively in the course of development by designers and developers
to detect and correct design features causing excessive vibration. The diagnosis of vibration
problems in machines depends on good measurements to obtain data from transducers during
machine operation as well as diagnostic tests, parameter identification tests, and knowledge of the
machine itself. Because the foundation of diagnostics is frequency information, analyzers used
to process data must have adequate resolution. Successful implementation of most diagnostic
techniques requires familiarity with the frequencies of the components of the machine as well
as its dynamic properties. Parameter identification techniques are used to quantify natural
frequencies, mode shapes, damping, stability and frequency-response characteristics. Time-
domain analysis – the study of signatures directly from a transducer – and orbital analysis are
used to diagnose faults when motions of a machine or a rotor provide direct information about
dynamic behavior. Modern diagnostic techniques and the identification of specific malfunctions
of rotating machines and their components are described in this section. (Eshleman, R. and
Jackson, C. P. E., 1992)

2.2 Measurement Procedures and Locations

The procedure used to achieve data for fault diagnosis depends on the equipment type and, to
some extent, the nature of the problem. Data from the machine during operation are essential.
The distance travelled by a vibration signal from its source to a transducer should be as short
as possible to avoid signal amplification or attenuation, introduction of excessive noise, and
waveform distortion. Diagnosis of vibration in a structure requires information about panels,
structural supports, pedestals, and foundations during operation. Identification of faults that
require phase data, e.g. misalignment, is dependent on the simultaneous recording or analysis
of data from two sensors.

2.3 Diagnostic Techniques

The techniques used to diagnose machinery listed in table 4 depend on processed and unprocessed
vibration signals. These signals are examined principally for frequency information that can be
related to a machine fault.

2.3.1 Time-Domain or Waveform Analysis

The time domain contains information about the physical behavior of a machine but is limited
to viewing a single plane of motion and by the fact that it can be too complex for analysis if
excessive noise, signal modification, or several frequencies are present; in such cases processing
is necessary.
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Technique Use Description Instrument type

Time-domain analysis modulation, amplitude × time analog oscilloscope
pulses, digital oscilloscope
phase, FFT spectrum analyzer

truncation,
glitch

Orbital Analysis shaft motion, relative displacement digital vector filter,
sub-synchronous, of rotor bearing in oscilloscope

whirl XY direction

Spectrum analysis direct frequencies, amplitude × frequency FFT spectrum analyzer
natural frequencies,

sidebands,
beats,

sub-harmonics,
sum and difference freq.

Cepstrum analysis Sideband and harmonic inverse Fourier transform FFT spectrum analyzer
frequency measurement; of the logarithmic power
accurate quantification spectrum

of sideband and
harmonic severity

Table 4: Diagnostic Techniques for Rotating Machinery (Eshleman, R. and Jackson, C. P. E.,
1992)

2.3.2 Orbital Analysis

The x and y motions of the rotor with respect to a sensor mounted in the journal bearing are
simultaneously displayed on the horizontal and vertical axes of an oscilloscope. The information
about rotor motion provided by an orbit is similar to that obtained from a time domain. Both
indicate rotor performance directly. The orbit can be used to assess oil whirl and other asyn-
chronous motion as well as synchronous phenomena such as mass unbalance and misalignment.
Orbital misalignment, both of which cause once-per-revolution forces. Note the elliptical shape
of the orbit from mass unbalance as opposed to the flat and double-looped shape of the orbit
from misalignment.

For synchronous rotor whirling in a symmetric bearing or casing or foundation machine that
is generated by unbalance or misalignment, the orbit will be a circle with a single once-per-
revolution time marker. The radius of the circle increases with speed to a maximum value at
the first critical speed and then declines and increases again as successive critical speeds are
passed. For an asymmetric machine (i.e., in which the natural frequency of the system on one
principal axis is dissimilar to the natural frequency of the system on the orthogonal principal
axis) the orbit will be an elongated ellipse as it passes through each natural frequency. The
major axis of the ellipse will be along the principal axis associated with the critical natural
frequency being encountered. It is possible to encounter backward synchronous whirl in the
speed region between the pair of critical speeds.

Most asynchronous phenomena occur at a speed above the critical speed and result in whirling
at the critical frequency. The whirl speed is then a fraction (less than 1) of the rotor speed. The
whirling motion may be in the same direction as rotation, i.e., forward whirl, as is encountered
in oil whip, hysteretic whirl, and whirl caused by fluid trapped in the rotor. Backward whirl
caused by a dry friction rub between rotating and static parts occurs less frequently. In most real
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situations the asynchronous whirling motion is accompanied by synchronous whirling associated
with residual unbalance or misalignment. The orbit of such motion is a more complex pattern.

Some instances of asynchronous whirl occur at a nonrational fraction of rotation speed, so that
the orbit is not a simple closed regular pattern, as for example a typical orbit for oil whip, in
which the whirl direction is forward and whirl speed is less that one-half the speed (0.47 for
example).

Orbital analysis in combination with dc gap measurement is perhaps the best way to distinguish
between mass unbalance and misalignment. Note the elliptical shape for mass unbalance and
misalignment in its early stages. After more severe misalignment occurs, the bearing restrains
the rotor so that it cannot make a complete elliptical orbit. The generated orbit can have a
bean form or a 8-form, providing a 2X vibration component in the spectrum.

2.3.3 Spectrum Analysis

A spectrum analysis is conducted with an FFT algorithm or filters; the processed signal is an
amplitude-versus-frequency display. Frequencies of vibration response can be related to direct
excitation frequencies or their orders, natural frequencies, sidebands, sub-harmonics, and sum
and difference frequencies. Frequencies can be identified directly in a linear system because
the frequencies of the measured vibration response are equal to those of the forces causing the
vibration.

Vibration at frequencies that are orders of the operating speed is an example typically resulting
from truncation of the signal. Truncation can be attributed either to nonlinear behavior of
the machine or to modification of the signal at interfaces (bolted joints) within the machine
during transmission from the source to the measurement point. Amplification can occur if a
natural frequency happens to be located at an order frequency. Orders can also result from
shaft asymmetry and at universal joints and couplings when forces are generated that are exact
multiples of the shaft speed.

Relative amplitudes of orders are important in the diagnostic process. The shape of the spectrum
is different from displacement, velocity and acceleration. Low frequencies are emphasized when
displacement is measured. High frequencies are emphasized in an acceleration spectrum.

Sub-harmonic excitations are vibration components that occur at exactly one-fourth, one-third,
and one-half the operating speed. They result from forced vibration of a nonlinear system,
e.g., fans mounted on nonlinear springs, rotors on nonlinear pedestals, rolling-element bearings,
loose supports, or base-plates, If the natural frequency of a system coincides with a subharmonic
excitation, subharmonic resonance occurs.

Beats are caused by a period pulsation of vibration amplitude resulting from the addition and
subtraction of two signal with excitation frequencies close to each other. If the amplitudes of
the two signals are equal, pure amplitude modulation occurs. If the components of vibration
are not equal, both frequency and amplitude modulation occur simultaneously. Beat problems
can be identified in either the time domain or the frequency domain. The length of the period
of the beat is inversely related to the closeness of the frequencies of the components; i.e., the
closer the frequencies, the longer the period.
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2.3.4 Cepstrum Analysis

The cepstrum is defined as the inverse Fourier transform of the logarithmic power spectrum
commonly used in vibration analysis. The complex cepstrum is reversible to a time signal.
A cepstrum domain consists of data processed one step further than the frequency domain.
A cepstrum is effective for accurately measuring frequency spacing – harmonic and sideband
patterns – in the power spectrum. One component of a cepstrum represents the global power
content of an entire family of harmonics or sidebands. The severity of a defect such as that in
a rolling-element bearing is provided by one compnent of the cepstrum display. In the power
spectrum, the severity is represented by a number of harmonics or sidebands for which the total
power is not easily obtained.

2.4 Theoretical and Experimental Example

The goal of this study is to show some experimental examples to facilitate the understanding of
the physical meaning of the main topics and definitions used when one speaks about diagnosis
of rotating machinery malfunctions. Experimental studies are led step-by-step, clarifying the
definitions of natural frequency, damping factor, logarithmic decrement, resonance, unbalance
response, critical speeds, forwards and backward orbits, super-harmonic components etc.

2.4.1 Description of the Test Facilities

Figures 43 and 44 show the simple elements used during the experimental investigations: a
flexible rotor with concentrated masses and inertias (discs) attached to a foundation and driven
by a electric motor. Displacement sensors, signal amplifiers and a signal analyzer with 4 channels
are used to demonstrate the different phenomena mentioned above.

Figure 43: Signal analyzer and rotor kit (flexible shaft, two rigid discs, two ball bearings, electrical
motor and displacement probes).
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2.4.2 Mechanical Model of the Rotor Test Rig
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Figure 44: (a) Rotor Kit ((flexible shaft, two rigid discs, two ball bearings, electrical motor and
displacement probes)used for visualization of natural frequencies in orthogonal directions, damp-
ing factor and logarithmic decrement (log dec), resonances, phase, beating, unbalance, critical
speeds, forwards and backward motions; (b) Discrete Mechanical Model of the Rotor Test Rig,
built by flexible shaft elements, rigid disks and flexible bearings.
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2.4.3 Theoretical Natural Frequencies and Mode Shapes
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Figure 45: First and Second Mode Shapes of the Rotor Rig – Vertical Direction (theoretical
natural frequencies: 104 Hz and 113 Hz.)
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Figure 46: Third and Fourth Mode Shapes of the Rotor Rig – Vertical Direction (theoretical
natural frequencies: 150 Hz and 163 Hz.)
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2.4.4 Experimental Natural Frequencies of the Rotating Components
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Figure 47: Natural frequencies of the flexible rotor in orthogonal directions eliminating the dy-
namical behavior of the foundation.

2.4.5 Measuring the Damping Factor (ξ) and the Log Dec (β) of the Rotor Kit.

0 0.5 1 1.5 2 2.5 3 3.5 4
−3

−2

−1

0

1

2

3

4
x 10

−4 Signal (a) in Time Domain − (b) in Frequency Domain

time [s]

(a
) 

A
m

pl
itu

de
 [m

/s
2 ]

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3
x 10

−5

frequency [Hz]

(b
) 

A
m

pl
itu

de
 [m

/s
2 ]

0.4 0.5 0.6 0.7 0.8 0.9 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x 10
−4 Signal in Time Domain

time [s]

(a
) 

A
m

pl
itu

de
 [m

/s
2 ]

Figure 48: (I) Rotor displacement signal in vertical direction in (a) time and (b) frequency
domains, while excited by a sequence of impulses; (II) Rotor displacement signal in vertical
direction, plotted in a range of time of 0.4 to 1 second, while the rotor is excited by an impulse.
Signal used for calculating the damping factor of the rotor kit.

• Damping Factor (ξ)
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= 0.013
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2.4.6 Experimental Natural Frequencies taking into account the Foundation
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Figure 49: Natural frequencies of the flexible rotor in orthogonal directions taking into account
the dynamical behavior of the foundation.
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2.4.7 Experimental Forward and
Backward Orbits
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Figure 50: (a) FFT of the displacement sig-
nal mounted in the horizontal direction and
(b) Orbits described by the rotor at the speed
of 20 Hz.
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Figure 51: (a) FFT of the displacement sig-
nal mounted in the horizontal direction and
(b) Orbits described by the rotor at the speed
of 80 Hz.
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Figure 52: (a) FFT of the displacement sig-
nal mounted in the horizontal direction and
(b) Orbits described by the rotor at the speed
of 90 Hz.
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Figure 53: (a) FFT of the displacement sig-
nal mounted in the horizontal direction and
(b) Orbits described by the rotor at the speed
of 95 Hz.
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Figure 54: (a) FFT of the displacement sig-
nal mounted in the horizontal direction and
(b) Orbits described by the rotor at the speed
of 100 Hz.
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Figure 55: (a) FFT of the displacement sig-
nal mounted in the horizontal direction and
(b) Orbits described by the rotor at the speed
of 105 Hz.
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Figure 56: (a) FFT of the displacement sig-
nal mounted in the horizontal direction and
(b) Orbits described by the rotor at the speed
of 110 Hz.
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Figure 57: (a) FFT of the displacement sig-
nal mounted in the horizontal direction and
(b) Orbits described by the rotor at the speed
of 115 Hz.
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Figure 58: (a) FFT of the displacement sig-
nal mounted in the horizontal direction and
(b) Orbits described by the rotor at the speed
of 120 Hz.
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Figure 59: (a) FFT of the displacement sig-
nal mounted in the horizontal direction and
(b) Orbits described by the rotor at the speed
of 125 Hz.
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Figure 60: (a) FFT of the displacement sig-
nal mounted in the horizontal direction and
(b) Orbits described by the rotor at the speed
of 140 Hz.
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2.4.8 Detecting Experimentally Super-Harmonic Vibrations
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Figure 61: (a) FFT of the displacement signal mounted in the horizontal direction and (b) Orbits
described by the rotor at the speed of 60 Hz, exciting the super harmonic of 120 Hz (close to the
shaft natural frequency).

2.5 Identification of Malfunctions

The ease with which a fault can be identified from good test data is directly proportional
to the information available on the design of a machine and its working mechanisms. This is
especially true when similar frequencies are obtained for different faults, e.g., mass unbalance and
misalignment. The operating speed is usually the reference frequency for diagnostic techniques.
Other frequencies are either related to the operating speed or shown to be unrelated.
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Fault Frequency Spectrum, time Correction
domain, orbit shape

Mass unbalance 1X distinct 1X with field or shop
much lower values of balancing
2X, 3X etc., ellip-

tical and circular orbits

Misalignment 1X, 2X, etc. distinct 1x with perform hot and/or
equal or higher cold alignment

values of 2X, 3X, etc.,
figure 8-orbit

Shaft bow 1X dropout of vibration Heating or peening
around critical speed to straighten rotor

in Bode plot

Steam loading 1X load-sensitivity modify admission sequence;
repair diaphragms; install

nozzle blocks properly

Bearing wear 1X, high 1X and 0.5X, replace bearing
sub-harmonics, sometimes 1.5X or orders;

orders can not be balanced

Gravity excitation 2X 0.5 critical speed reduce eccentricity
appears on Bode plot by balancing

(unfiltered)

Asymmetric rotor 2X 0.5 critical speed eliminate
appears on Bode plot asymmetry

(unfiltered)

Cracked rotor 1X, 2X high 1X, 0.5 critical remove rotor
speed may show up on

coast-down

Looseness 1X plus large high 1X with lower- shim and tighten bolts
number of orders, level orders, large to obtain rigidity
0.5X may show up 0.5 order

Coupling lockup 1X, 2X, 3X, etc. 1X with high 2X replace coupling or
similar to misalignment; remove sludge

start and stops
may yield different
vibration patterns

Thermal instability 1X 1X has varying phase compromise balance
angle and amplitude or remove problem

Oil whirl 0.35X to 0.47X sub-synchronous temporary: load
component less than 0.5 bearing heavier, correct

order informal loop misalignment;
in orbit long term: change

bearing type

Sub-harmonic 1/2X, 1/3X, 1/4X, sub-synchronous remove looseness,
resonance and higher vibration depending on excessive flexibility;

natural frequency change natural frequency
so it does not match
fractional frequencies

Rubs 1/4X, 1/3X, 1/2X external loops in eliminate condition
or orders orbits such as thermal bow and

mass unbalance that
causes rub

Table 5: Identification and Correction of Malfunctions of Rotating Machinery – Operating Speed
Effects and Fractional Frequency Effects (Eshleman, R. and Jackson, C. P. E., 1992)
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2.6 Condition Monitoring – Steam Turbines1

Condition monitoring for machine protection and condition analysis has been available for more
than 30 years. With the increasing use of digital electronic data collectors and processors,
predictive maintenance programs based on periodic monitoring of machine vibrations become
cost-effective and practical in most operational installations. Condition monitoring of critical
equipment requires hard-wired permanently mounted sensors. They protect the equipment from
unexpected sudden failure and provide the capability for condition analysis and diagnosis. The
expense of continuous monitors is often more than justified by avoidance of repair costs and
loss of production after failures. It is a fact that unexpected failures are much more serious and
costly than parts replacement on a scheduled basis as a result of condition monitoring.

The primary goal of a good predictive maintenance program is efficient establishment of the
mechanical condition of a machine so that decisions about repairs can be made. The electronic
data collector has become the cornerstone of efficient data acquisition.

The objective of any condition monitoring program is to maintain or increase the availability
of production equipment and avoid costs of failures. The cost of instrumentation and personnel
involved in such a program must be justified by savings in machinery repair costs and decreases
in lost production time. Savings must be documented so that management is aware that the in-
vestment has been worthwhile. The return on investment in protective monitoring is significant.

Management must establish an operational philosophy and be willing to make a commitment in
test equipment and personnel that allows for development and operation of a program. Moreover,
after a program has proved successful, commitment to it must continue or the program will falter.
Those responsible for condition monitoring programs must thus continuously document savings
and returns on money invested.

The development of a condition monitoring program requires careful planning. Criteria and
goals must be established for the program. Criticality of equipment must be established, and
equipment ranked accordingly. The ranking will determine the resources, e.g., work force and
instrumentation, that can be devoted to any one machine. Critical equipment for which no
backup exists, such as large turbines, should be monitored continuously; two levels of alarms –
alert and shutdown – should be used.

Critical equipment and those items for which no spares are available such as turbine generators,
turbine compressors, and mechanical drive turbines and motors must be permanently monitored.
Good monitoring design involves good sensor locations and access for predictive monitoring or
troubleshooting.

Steam turbines should have dual thrust probes at the axial position of the rotor mounted close
to the thrust bearing. The probe should monitor an integral part of the rotor – usually the
shaft end or a fixed collar close to the shaft end. The probes should be in a dual voting
logic; 15-mil movement in either the active thrust direction (toward the exhaust) or the inactive
direction (toward nozzles) should activate the warning alarm. An increase in movement to 25
mils should activate the shutdown alarm. The limits should be recorded on a data-managing
system. Movement is measured from a reference such as the rotor reference mark, active-to-
inactive thrust float at the bearings – usually 12 to 14 mils – or the setup positions or the first
commissioning load position.

A position reference is necessary for the steam inlet and exhaust valves. It can be the cam lift,
bar lift, or a controlled stroke. A local indicator can be used, or the position can be transmitted
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to the control room or be part of the electro-hydraulic feedback signal in the speed-control
scheme.

Dual-tip RTD or thermocouple sensors should be placed in the backing metal of the bearings
but no in contact with the babbitt, in accordance with the API 670. Fifty percent of the active
self-leveling articulating thrust pads should be monitored. A minimum of two probes (top and
bottom) should be used; three probes 120

o

apart are preferred. The maximum number is four
probes 90

o

apart.

Two proximity probes should be placed in each bearing region to sense shaft-related vibration.
The probes should be 90

o

apart, straddle the vertical centerline of the rotor or bearing, and be
held in retractable non-resonant probe holders.

Many utilities used the dual-probe assembly for large steam turbine-generator trains and gas
turbine-generation drives. Two probes are involved, and three measurements are taken. The
assembly is usually mounted to the structure – typically the bearing housing. One probe senses
shaft motion relative to the bearing. The second probe is seismically mounted to detect the
absolute bearing vibration relative to space. The absolute vibration can be determined by
vector addition of the measurements.

A probe can be installed in the axial position at the exhaust end of a rotor to measure growth
with temperature. The transient increase in heat in the rotor or casing can thus be monitored.
Two additional sensors can be installed to measure bearing pedestal. The movement can exceed
0.5 in and requires a long-range sensor, vernier scales, or a linear variable differential transformer
(LVDT) or its equivalent mounted on each side of the high-pressure pedestal.

It is also wise to record the first-stage pressure of the steam turbine relative to total steam flow
or load on a condensing turbine. The pressure is a good indicator of blade fouling due to deposits
of salt or silica. These data in combination with the positions of the steam inlet valves, thrust
movement of the rotor, and temperatures of the thrust bearings in the active thrust bearing
pads can be used to confirm that a turbine is dirty and that thrust overload exists.

1. Ehrich, F. F. (1992) ”Handbook of Rotordynamics”, Chapter 4, McGraw-Hill, Inc., New
York. (in English)
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2.7 Research & Development – Bearings with Electronic Oil Injection

Figure 62: New Test Rig built at MEK-DTU with financial support of Myhrwolds Foundation
– Interior of the active lubricated tilting-pad bearing illustrating the orifice machined on the
pad surface (active lubrication) and the conventional lubrication between pads (hydrodynamic
lubrication).

Figure 63: Lateral dynamics and tests of a rotor-journal bearing – Electromagnetic shaker at-
tached to the shaft extremity, journal bearing, displacement sensors mounted in orthogonal di-
rections (horizontal and vertical) and motor connected to the shaft by belt.
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