
VINYL CHLORIDE POLYMERIZATION

By

TUYU XIE, M. ENG.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree

Doctor of Philosophy

McMaster University

Hamilton, Ontario, Canada

C Copyright by Tuyu Xie, September 1990



VINYL CHLORIDE POLYMERIZATION



DocrOR OF PHILOSOPHY (1990)

(Chemical Engineering)

TITLE Vinyl Chloride Polymerization

McMASTER UNIVERSITY

Hamilton. Ontario

....

AUTHOR Tuyu Xie, B. Eng. (Zhejiang University, China)

M. Eng. (Zhejiang University, China)

SUPERVISORS: Professor Archie E. Hamielec

Professor Philip E. Wood

Professor Donald R. Woods

NUAmER OF PAGES xxxviii, 355

ii



ABSTRACT

Relevant mechanisms involved in the heterogeneous free radical

polymerization of vinyl chloride have been identified including elemen

tary chemical reactions. physical phenomena of polyvinylchloride parti

cle formation and reactant species distributions in phas~s during poly

merization. A comprehensive reactor model for batch and semi-batch proc

esses has been developed on the basis of these mechanisms. The present

model accounts for comprehensive elementary chemical reactions. for the

effect of diffusion-controlled reactions. for the monomer and initiator

distributions among phases and for radical migration between monomer and

polymer phases during polymerization. Wide ranging kinetic data covering

commercially significant conversion and reaction temperature ranges were

measured in the present investigation to better understand the mech

anisms involved and to estimate model parameters. The present model pre

dictions are in excellent agreement with experimental data obtained in

the present work and independently in other laboratories. The model

allows one to predict reactor pressure development; monomer conversion

histories; polymerization rates; the critical conversion at the end of

two phase polymerization; the limiting conversion for polymerization at

temperatures below the polyvinylchloride glassy-state transition tem

perature; instantaneous and accumulated molecular weight averages and

distributions. and other kinetic features of vinyl chloride polymeriza

tion over temperature and conversion ranges of commercial interest.
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The effect of polymerization conditions on polymer properties,

especially the thermal stability of polyvinylchloride, has been eluci

dated. Deterioration of the thermal stability of polymer at high conver

sions is attributed to a decrease in monomer concentration. The second

ary reactions which form the defect structures in polyvinylchloride are

favoured at high conversions because of the increq,se in radical and

polymer concentrations and the decrease in monomer concentration. The

defect structures which are responsible for the low thermal stability of

polyvinylchloride can be minimized significantly by using a semi-batch

process at high conversions. Significant improvement in thermal sta

bility of polyvinylchloride at high productivity by semi-batch proc

essing at the monomer vapour pressure was demonstrated in the present

investigation.

A novel method for monitori: ..{. monomer conversion online during

the suspension polymerization of vin;rl chloride was developed in the

present study. This method provides an effective tool not only for vinyl

chloride polymerization kinetic studies but also can be adapted for use

with other monomer and comonomer systems.
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