4-th Grade Math

Virginia SOL Review: 24 work pages
 plus 24 answer key pages!

Name: \qquad Math Review - SOL $4.1^{\text {柬 }}$
A. Identify the place and value for each digit in the number 9,347,065

Digit Place		Value
0		
3		
4		
5		
6		
7		
9		

Now write 9,347,065 in expanded form: \qquad
B. Compare the following numbers:

1.	$9,347,065 \square 9,347,650$
2.	$9,347,065 \square 9,347,065$
3.	$9,347,065 \square 9,347,056$

C. Round the number $9,347,065$ to the following places:

1.	$9,347,065$	Rounded to the enearest thousand is:	
2.	$9,347,065$	Rounded to the nearest ten thousand is:	
3.	$9,347,065$	Rounded to the enearest hundred thousand is:	

Name: \qquad
A. Compare or order:

1. Compare: $\quad \frac{2}{3} \square \frac{5}{12}$
2. Compare: $1 \frac{1}{2} \square 1 \frac{4}{8}$
3. Order from least to greatest: $\frac{2}{3}, \frac{5}{12}, \frac{1}{3}, \frac{4}{8}$
4. Order from greatest to least: $2 \frac{1}{6}, 2 \frac{3}{4}, 1 \frac{3}{6}, 2 \frac{1}{8}$
B. Represent an equivalent fraction to $\frac{3}{4}$ as 1) a fraction and 2) a picture.
C. Circle all of the equivalent expressions: (add division box at home)
5. 7 divided by 8 :

$\frac{7}{8}$	8 divided by 7	7 times 8	$\frac{8}{7}$	8 times 7

2. $\frac{3}{10}$

3 times 10
10 divided by 3
3 divided by 10
10 times 3
$\frac{10}{3}$

Name: \qquad Math Review - SOL 4.3a
A. Decimals

1. How is the decimal 6.725 written in words? \qquad
2. Write the decimal "thirty-two and five hundredths" in standard form: \qquad
3. This is one whole:

Shade the model below to represent the decimal number 2.41

4. This is one whole:

Write the number modeled below, in standard form:
\square

Name: \qquad Math Review - SOL 4.3b-d
B. Round the number 8.471 to the following places:

1.	8.471	Rounded to the nearest hundredth is:	
2.	8.471	Rounded to the nearest tenth is:	
3.	8.471	Rounded to the nearest whole number is:	

C. Compare or order:

1. Compare: $0.789 \square$	2. Compare: $10.36 \square 1.800$	3. compare:

D. Write the fraction and decimal for each model below:

Fraction: \qquad

Decimal: \qquad Decimal: \qquad Decimal: \qquad Decimal: \qquad
\qquad Math Review - SOL 4.4a-c
A. Estimate:

1. $333,812+728,914$
2. $46,009-22,187$
3. 413×85
4. $392 \div 8$
B. Find the exact answer.
5. $333,812+728,914$
6. $46,009-22,187$
7. 413×85
8. 62×8
9. 384×7
6.25×91
C. Divide:
10. $392 \div 8$
11. $612 \div 5$
$3.56 \div 7$
\qquad
D. Solve the word problems.
12. There were 60 people at a picnic. 23 went home. Then, 12 more people came to the picnic. How many people are at the picnic now?
13. There are 16 students in class. Each student eats 2 pieces of pizza, except for 3 students who only eat 1 piece of pizza each. How many pieces of pizza did the students eat in all?
14. There are 92 pumpkins on a truck. They each weigh 5 pounds. 18 pumpkins fall off of the truck. How much do the pumpkins left on the truck weigh?
\qquad
D. Solve the word problems.
15. Maria and her 3 best friends go to the adventure park. If each ticket costs $\$ 20$, how much do their tickets cost in all?
16. Hannah's class is collecting cans. They collected 527 cans between Monday and Friday. On Monday, they collected 92 cans. On Tuesday, they collected 84 cans. On Wednesday, they collected 49 cans. On Thursday, they collected 104 cans. How many cans did they collect on Friday?
17. Jake has $\$ 792$ to spend on gifts for his family. He spends \$294 on a gift for his parents and \$139 on a gift for his grandparents. How much does he have left to spend?

Name: \qquad Math Review - SOL 4.5a

A. Factors and Multiples

1. Find the greatest common factor (GCF) of 18 and 33 :
2. Find all of the common factors of 12 and 36 : \qquad
3. Circle all of the common factors of 72 and 54:

$$
\begin{array}{lllllllllllllll}
1 & 2 & 3 & 4 & 6 & 8 & 9 & 12 & 16 & 18 & 24 & 27 & 48 & 54 & 72
\end{array}
$$

4. Find the greatest common factor (GCF) of 24,36 , and 18 : \qquad
5. Find the least common multiple (LCM) of 8 and 12 : \qquad
6. Find three common multiples of 5 and 10 : \qquad , \qquad , \qquad
7. Circle all of the common multiples of 4,5 , and 10 :

$$
\begin{array}{lllllllllll}
1 & 4 & 5 & 10 & 20 & 30 & 40 & 45 & 50 & 60 & 100
\end{array}
$$

8. Find the least common multiple (LCM) of 3, 7, and 10: \qquad
B. Add or subtract the fractions:
9. $\frac{3}{5}+\frac{1}{5}=$
10. $\frac{2}{3}+\frac{3}{10}=$
11. $\frac{5}{8}+\frac{1}{2}=$
12. $\frac{5}{12}+\frac{1}{3}=$
13. $\frac{7}{12}+\frac{2}{3}=$
14. $\frac{3}{5}-\frac{2}{5}=$
15. $\frac{7}{10}-\frac{1}{5}=$
16. $\frac{1}{5}-\frac{1}{6}=$
17. $\frac{5}{6}-\frac{3}{8}=$
C. Add or subtract the decimals:
18. $1.73+3.12$
19. $4.561+0.991$
$3.8 .7+4.04$
20. $0.6+0.91$
21. $1.737-0.522$
6.9.43-6.72
22. $0.6-0.03$
23. $1.7-0.524$
9.7.0-6.72
D. Solve the word problems:
24. If a shirt costs $\$ 12.37$, a pair of shorts costs $\$ 8.99$, and a pair of sunglasses costs $\$ 4.50$, then how much do they cost in all?
25. Hilary paid $\$ 13.59$ for a pizza and a drink, including tax. If the tax was $\$ 1.38$ and the drink cost $\$ 2.99$, how much did the pizza cost?
\qquad
D. Solve the word problems:
26. Katie went trick or treating. $\frac{1}{6}$ of her candy is M\&M's. $\frac{1}{8}$ of her candy is Skittles. How much more (as a fraction) of her candy is M\&M's than Skittles?
27. Maria, Kara, and Tommy order 1 pizza to share. Maria eats $\frac{1}{4}$ of the pizza, Kara eats $\frac{1}{8}$ of the pizza, and Tommy eats $\frac{3}{8}$ of the pizza. How much of the pizza is left?
28. Nate is running from school to home. He runs $\frac{1}{2}$ of the total distance to his house. He stops for a water break and then runs $\frac{1}{3}$ more of the total distance from his school to his house. How far has he run (as a fraction)?
29. Avery, Chad, and Dexter are sharing a chocolate bar. Avery eats $\frac{1}{5}$ of the chocolate bar, and Chad eats $\frac{5}{12}$ of the chocolate bar. How much is left for Dexter to eat?

Name: \qquad Math Review - SOL 4.6 眯
A. Choose the best unit for each measurement below, using the units in the word box:
Ounces kilograms tons pounds grams

1. The weight of a dog: \qquad
2. The mass of a computer: \qquad
3. The mass of a flower: \qquad
4. The weight of a car: \qquad
5. The weight of a pencil: \qquad
B. Fill in the missing numbers below:
6. What is an equivalency with pounds and ounces? \qquad $=$ \qquad
7. What is an equivalency with pounds and tons? \qquad $=$ \qquad
8. What is an equivalency with kilograms and grams? \qquad $=$ \qquad
9. 3 pounds $=$ \qquad ounces
10. 3 kilograms = \qquad grams
11. 2 tons $=$ \qquad pounds
12. 32 ounces $=$ \qquad pounds
13. 6,000 pounds $=$ \qquad tons
14. 10,000 grams $=$ \qquad kilograms

Name: \qquad Math Review - SOL 4.7 凅
A. Choose the best unit for each measurement below, using the units in the word box:

meters inches millimeters	centimeters feet yards	miles
Customary	Metric	
1. The length of a crayon: \qquad 2. The distance to Richmond: \qquad 3. The height of a building: \qquad 4. The length of a poster: \qquad	5. The height of a door: \qquad 6. The length of a stapler: \qquad 7. The width of a drop of water: \qquad	

B. Fill in the missing numbers below:

1. What is an equivalency with inches and feet? \qquad $=$ \qquad
2. What is an equivalency with yards and miles? \qquad $=$ \qquad
3. What is an equivalency with yards and feet? \qquad $=$ \qquad
4. What is an equivalency with yards and inches? \qquad $=$ \qquad
5. What is an equivalency with centimeters and millimeters? \qquad $=$ \qquad
6. What is an equivalency with meters and millimeters? \qquad $=$ \qquad
7. What is an equivalency with centimeters and meters? \qquad $=$ \qquad
8. 36 inches $=$ \qquad feet
9. 4 feet $=$ \qquad inches
10. 3 miles $=$ \qquad yards
11. 3,520 yards $=$ \qquad miles
12. 6 feet $=$ \qquad yards
13. 72 inches $=$ \qquad yards
14. 6 yards $=$ \qquad feet
15. 30 centimeters $=$ \qquad millimeters
16. 200 centimeters $=$ \qquad meters
17. 5 meters $=$ \qquad centimeters
18. 4,000 millimeters $=$ \qquad meters
19. 40 millimeters $=$ \qquad centimeters
20. 5 meters $=$ \qquad millimeters

Name: \qquad
A. Circle the measurement closest to the liquid volume of this container:

a. 10 cups
b. 13 cups
c. 15 cups
d. 21 cups
B. Fill in the missing numbers below:

1. What is an equivalency with cups and pints? \qquad $=$ \qquad
2. What is an equivalency with pints and quarts? \qquad $=$ \qquad
3. What is an equivalency with gallons and quarts? \qquad $=$ \qquad
4. 1 gallon $=$ \qquad cups
5. 14 cups $=$ \qquad pints
6. 1 gallon $=$ \qquad pints
7. 9 pints $=$ \qquad cups
8. 32 cups $=$ \qquad gallons
9. 8 quarts $=$ \qquad pints
10. 32 pints $=$ \qquad gallons
11. 8 pints $=$ \qquad quarts
12. 1 quart $=$ \qquad cups
13. 12 quarts $=$ \qquad gallons
14. 8 cups $=$ \qquad quarts
15. 5 gallons $=$ \qquad quarts

Name: __ Math Review - SOL 4.9 凅
A. Determine the elapsed time:

1. 6:00 p.m. to 9:00 p.m. \qquad hours \qquad minutes
2. 10:53 a.m. to 11:59 a.m. \qquad hours \qquad minutes
3. 7:42 a.m. to 9:18 a.m. \qquad hours \qquad minutes
4. 10:15 a.m. to 1:25 p.m. \qquad hours \qquad minutes
5. 4:50 p.m. to 1:27 a.m. \qquad hours \qquad minutes

Name: \qquad Math Review - SOL 4.10 㽧
A. Match the picture representation with the correct geometry term. One term is used more than once.

angle	endpoint	line	line segment	point	ray

$\xrightarrow{\sim}$
B. Identify each picture representation as: perpendicular, intersecting (but not perpendicular), or parallel:
(2)

Name: \qquad Math Review - SOL 4.11a 圌
A. Write yes or no.

1. Will translated a triangle like this:

Triangle	Translation

Are the two triangles congruent? \qquad
2. Evan rotated a trapezoid like this:

Trapezoid	Rotation

Are the two trapezoids congruent?
3. Kara reflected a parallelogram like this:

Parallelogram	Reflection	
		\square

Are the two parallelograms congruent? \qquad
4. Are translations, reflections, and rotations always congruent? \qquad

Name: \qquad Math Review - SOL 4.11b 䁪
B. Circle whether each set shows a translation, reflection, or rotation. There may be more than one correct answer.

\qquad Math Review - SOL 4.12 㽧
A. Put a check next to each statement that is true for polygons:
\square Has at least three sides
\square Can have curved sides
\square Must have straight sides
\square Sides are made of line segments
\square Sides may cross
\square Open figure
\square Closed figure
\square Sides may not cross
\square Geometric solid (3D)
\square Plane figure (2D)

B1. Write the name of each polygon:

B2. Write the name of each quadrilateral. Or, if it doesn't have a special name, just write quadrilateral:

A. Match the likelihood with each outcome using the word bank below. Then, write the fraction that represents the probability. One term will be used more than once.

| certain | unlikely | equally likely | likely |
| :---: | :---: | :---: | :---: | impossible

1. Picking a spotted marble: \qquad Fraction: \qquad
2. Picking a cube out of the bag: \qquad Fraction: \qquad
3. Picking a white marble: \qquad Fraction: \qquad
4. Picking a marble out of the bag: \qquad Fraction: \qquad
5. Picking a black marble versus picking a star marble: \qquad
Both have a fraction of: \qquad
6. If one spotted marble is taken out of the bag, the probability of picking a spotted marble:

Fraction: \qquad
7. What marble kind is least likely to be picked? \qquad
8. What marble kind is most likely to be picked? \qquad
9. What are the possible outcomes of this event (picking a marble from the bag)?
B. Write each of the outcomes from part (A) \#3, \#4, \#5, and \#6 in the correct place on the number line below. \#1 and \#2 have been done for you.

Name: \qquad
A. Five students sold lemonade, and the customers voted on whose lemonade tasted the best. Construct a bar graph showing how many votes each student got, counting by 100's.

Alex: 157	Jane: 280	Sally: 316	Mike: 234	Tom: 109

1. Whose lemonade got the most votes? \qquad
2. About how many more people voted for the most popular lemonade than the least popular lemonade? \qquad
3. About how many people voted for Jane and Sally? \qquad
4. Which two people received the closest number of votes? \qquad and \qquad

Name: \qquad
B. Layla put some snow in a cup and measured how much was still frozen every hour. Construct a line graph showing her data. (Remember that time always goes on the bottom axis!)

Time	Snow still frozen
1 hour	32 grams
2 hours	16 grams
3 hours	8 grams
4 hours	4 grams
5 hours	2 grams
6 hours	1 gram

1. Between which two hours did the snow melt the most quickly? \qquad and \qquad
2. How many grams of snow melted between hour 3 and hour 4? \qquad
3. Between which two hours did 8 grams of snow melt? \qquad and \qquad
\qquad
A. What is the rule and the next/missing number in each pattern?
4. $50,100,150,200 \ldots$

Rule: \qquad Next number: \qquad
2. $37,49,61, \ldots, 85$

Rule: \qquad Missing number: \qquad
3. $19,16,13,10, \ldots$

Rule: \qquad Next number: \qquad
B. Follow the rule for each pattern to find the next 3 numbers:

1. Rule: Add 75.

20, \qquad , ,
2. Rule: Subtract 15

90, \qquad , \qquad ,
3. Rule: Subtract 9

100, \qquad
\qquad ,
4. Rule: Add 8.

13, \qquad , \qquad ,
5. Rule: Multiply by 3

1, \qquad , \qquad ,
C. Show the pattern "Add 3" on the number line. Start at 1.

D. Fill in the missing numbers in the table:

$\underline{\text { In }}$	Out
3	9
4	10
7	
	18

Name: \qquad
A. Continue the patterns.

B. Fill in the missing number: Math Review - SOL 4.16 畞

1. $4+5=10-\ldots$	3.	$4+9=\ldots+6$
2.	$3+8=30-\ldots$	4.
	$3+4+7=2+\ldots$	

C. Use the associative property to finish the number sentences:

1. $(4 \times 2) \times 3=$ \qquad
2. $(6+5)+7=$ \qquad
D. Circle all of the examples below that demonstrate the associate property of addition. Underline all of the examples that show the associative property of multiplication.
$(8 \times 0) \times 9=8 \times(0 \times 9)$
$(7 \times 1) \times 2=7 \times(1 \times 2)$
$(15+3)+8=15+(3+8)$
$(5+3)+1=18-9$
$(0+0)+0=0+(0+0)$
$(9 \times 0) \times 9=0 \times(0 \times 0)$
$(3+0)+7=3+(0+7)$
$(4 \times 5) \times 1=4 \times(5 \times 1)$
$(18+2)+6=18+(2+6)$
$(3 \times 6) \times 2=3 \times(6 \times 2)$
$7+2=2+7$
$(4+2)+6=6 \times(2 \times 1)$

Name: \qquad Math Review - SOL 4.1䀔
A. Identify the place and value for each digit in the number 9,347,065

Digit	Place	Value
0	Hundreds	0
3	Hundred thousands	300,000
4	Ten thousands	40,000
5	Ones	5
6	Tens	60
7	Thousands	7,000
9	Millions	$9,000,000$

Now write 9,347,065 in expanded form: \qquad $9,000,000+300,000+40,000+7,000+60+5$
B. Compare the following numbers:

1.	$9,347,065<9,347,650$
2.	$9,347,065=9,347,065$
3.	$9,347,065>9,347,056$

C. Round the number $9,347,065$ to the following places:

1.	$9,347,065$	Rounded to the nearest thousand is:	$9,347,000$
2.	$9,347,065$	Rounded to the nearest ten thousand is:	$9,350,000$
3.	$9,347,065$	Rounded to the nearest hundred thousand is:	$9,300,000$

Name: \qquad
A. Compare or order:

1. Compare: $\quad \frac{2}{3}>\frac{5}{12}$
2. compare: $1 \frac{1}{2}=1 \frac{4}{8}$
3. Order from least to greatest: $\frac{2}{3}, \frac{5}{12}, \frac{1}{3}, \frac{4}{8}$

$$
: \frac{1}{3}, \frac{5}{12}, \frac{4}{8}, \frac{2}{3}
$$

4. Order from greatest to least: $2 \frac{1}{6}, 2 \frac{3}{4}, 1 \frac{3}{6}, 2 \frac{1}{8}$

$$
2 \frac{3}{4}, \quad 2 \frac{1}{6}, \quad 2 \frac{1}{8}, \quad 1 \frac{3}{6}
$$

B. Represent an equivalent fraction to $\frac{3}{4}$ as 1) a fraction and 2) a picture.

$$
\frac{6}{8}
$$

C. Circle all of the equivalent expressions: (add division box at home)

1. 7 divided by 8 :

$$
\begin{array}{|lllll}
\hline \frac{7}{8} & 8 \text { divided by } 7 & 7 \text { times } 8 & \frac{8}{7} & 8 \text { times } 7
\end{array}
$$

2. $\frac{3}{10}$

3 times 10
10 divided by 3
3 divided by 10
10 times 3

Name: \qquad Math Review - SOL 4.3a 凅
A. Decimals

1. How is the decimal 6.725 written in words? \qquad Six and seven hundred twenty-five thousandths
2. Write the decimal "thirty-two and five hundredths" in standard form: \qquad 32.05 \qquad
3. This is one whole:

Shade the model below to represent the decimal number 2.41

4. This is one whole:

Write the number modeled below, in standard form:
\qquad
0.9
$\square \square \square \square$

Name: \qquad Math Review - SOL 4.3b-d
B. Round the number 8.471 to the following places:

1.	8.471	Rounded to the nearest hundredth is:	8.47
2.	8.471	Rounded to the nearest tenth is:	8.5
3.	8.471	Rounded to the nearest whole number is:	8

C. Compare or order:

1. Compare: $0.789<0.8$	2. Compare: $10.36>1.800$	3. Compare: $10.520=10.52$
4. order least to greatest:	$0.13,0.1,1.32,0.01$	
	$0.01,0.1,0.13,1.32$	
5. Order least to greatest:	$12.97,12.907,10.1,10.01$	
	$10.01,10.1,12.907,12.97$	

D. Write the fraction and decimal for each model below:

Fraction: $\quad \frac{3}{10}$
Decimal: \qquad

Fraction: $\frac{3}{5}$
Decimal: \qquad 0.6 Decimal: \qquad 0.75

Decimal: \qquad

Name: \qquad Math Review - SOL 4.4a-c
A. Estimate:

1. $333,812+728,914$
2. $46,009-22,187$
$50,000-20,000=30,000$
```
300,000 + 700,000 = 1,000,000
```

3. 413×85
$400 \times 90=36,000$
4. $392 \div 8$
$400 \div 8=50$
B. Find the exact answer.
5. $333,812+728,914$
6. $46,009-22,187$
7. 413×85
23,822
35,105
8. 62×8
496
9. 384×7
6.25×91
2,688
2,275
C. Divide:
10. $392 \div 8$

49
2. $612 \div 5$
$3.56 \div 7$

122 R2
8
\qquad
D. Solve the word problems.

1. There were 60 people at a picnic. 23 went home. Then, 12 more people came to the picnic. How many people are at the picnic now?

49 people are at the picnic now.
2. There are 16 students in class. Each student eats 2 pieces of pizza, except for 3 students who only eat 1 piece of pizza each. How many pieces of pizza did the students eat in all?

They ate 29 pieces of pizza.

3. There are 92 pumpkins on a truck. They each weigh 5 pounds. 18 pumpkins fall off of the truck. How much do the pumpkins left on the truck weigh?

They weigh 370 lbs .
\qquad
D. Solve the word problems.
4. Maria and her 3 best friends go to the adventure park. If each ticket costs $\$ 20$, how much do their tickets cost in all?

The tickets cost $\$ 80$.

5. Hannah's class is collecting cans. They collected 527 cans between Monday and Friday. On Monday, they collected 92 cans. On Tuesday, they collected 84 cans. On Wednesday, they collected 49 cans. On Thursday, they collected 104 cans. How many cans did they collect on Friday?

They collected 198 cans on Friday.

6. Jake has $\$ 792$ to spend on gifts for his family. He spends $\$ 294$ on a gift for his parents and \$139 on a gift for his grandparents. How much does he have left to spend?

He has $\$ 359$ left.

Name: \qquad Math Review - SOL 4.5a

A. Factors and Multiples

1. Find the greatest common factor (GCF) of 18 and 33 : \qquad 3
2. Find all of the common factors of 12 and 36 : \qquad
3. Circle all of the common factors of 72 and 54:

$$
\begin{array}{lllllllllllllll}
1 & 2 & 3 & 4 & 6 & 8 & 9 & 12 & 16 & 18 & 24 & 27 & 48 & 54 & 72
\end{array}
$$

4. Find the greatest common factor (GCF) of 24,36 , and 18 : \qquad
5. Find the least common multiple (LCM) of 8 and 12 : \qquad
6. Find three common multiples of 5 and 10 : \qquad 10 , \qquad , 30
7. Circle all of the common multiples of 4,5 , and 10 :

$$
\begin{array}{llllllllllll}
1 & 4 & 5 & 10 & 20 & 30 & 40 & 45 & 50 & 60 & 100
\end{array}
$$

8. Find the least common multiple (LCM) of 3,7 , and 10 : \qquad

Name: \qquad
B. Add or subtract the fractions:

1. $\frac{3}{5}+\frac{1}{5}=$
2. $\frac{2}{3}+\frac{3}{10}=$
3. $\frac{5}{8}+\frac{1}{2}=$
$\frac{4}{5}$
$\frac{29}{30}$
$\frac{9}{8}=1 \frac{1}{8}$
4. $\frac{5}{12}+\frac{1}{3}=$
5. $\frac{7}{12}+\frac{2}{3}=$
6. $\frac{3}{5}-\frac{2}{5}=$

$$
\frac{9}{12}=\frac{3}{4}
$$

$$
\frac{15}{12}=1 \frac{3}{12}=1 \frac{1}{4}
$$

$$
\text { 7. } \frac{7}{10}-\frac{1}{5}=
$$

8. $\frac{1}{5}-\frac{1}{6}=$
9. $\frac{5}{6}-\frac{3}{8}=$

$$
\frac{5}{10}=\frac{1}{2}
$$

$$
\frac{1}{30}
$$

$$
\frac{11}{24}
$$

\qquad
C. Add or subtract the decimals:

1. $1.73+3.12$
2. $4.561+0.991$
3. $8.7+4.04$
4.85
5.552
12.74
4. $0.6+0.91$
5. $1.737-0.522$
6. 9.43-6.72
1.51
1.215
2.71
7. $0.6-0.03$
8. $1.7-0.524$
9. $7-6.72$
0.57
1.176
0.28
D. Solve the word problems:
10. If a shirt costs $\$ 12.37$, a pair of shorts costs $\$ 8.99$, and a pair of sunglasses costs $\$ 4.50$, then how much do they cost in all?

They cost $\$ 25.86$.
2. Hilary paid $\$ 13.59$ for a pizza and a drink, including tax. If the tax was $\$ 1.38$ and the drink cost $\$ 2.99$, how much did the pizza cost?

The pizza cost \$9.22.
\qquad
D. Solve the word problems:

1. Katie went trick or treating. $\frac{1}{6}$ of her candy is M\&M's. $\frac{1}{8}$ of her candy is Skittles. How much more (as a fraction) of her candy is M\&M's than Skittles?

One twenty-fourth more is M\&Ms.

2. Maria, Kara, and Tommy order 1 pizza to share. Maria eats $\frac{1}{4}$ of the pizza, Kara eats $\frac{1}{8}$ of the pizza, and Tommy eats $\frac{3}{8}$ of the pizza. How much of the pizza is left? One fourth is left.
3. Nate is running from school to home. He runs $\frac{1}{2}$ of the total distance to his house. He stops for a water break and then runs $\frac{1}{3}$ more of the total distance from his school to his house. How far has he run (as a fraction)?

He has run five sixths of the way.

4. Avery, Chad, and Dexter are sharing a chocolate bar. Avery eats $\frac{1}{5}$ of the chocolate bar, and Chad eats $\frac{5}{12}$ of the chocolate bar. How much is left for Dexter to eat?

Twenty three sixtieths is left.
A. Choose the best unit for each measurement below, using the units in the word box:

| Ounces | kilograms | tons | pounds |
| :---: | :---: | :---: | :---: | grams

1. The weight of a dog: \qquad pounds \qquad 4. The mass of a flower: \qquad grams
2. The mass of a computer: \qquad 5. The weight of a car: \qquad
3. The weight of a pencil: \qquad
B. Fill in the missing numbers below:
4. What is an equivalency with pounds and ounces? \qquad $=$ \qquad
5. What is an equivalency with pounds and tons? \qquad = \qquad
6. What is an equivalency with kilograms and grams? \qquad $=$ \qquad
7. 3 pounds $=$ _ $48 \ldots$ ounces
8. 3 kilograms $=\ldots 3,000 _$grams
9. 2 tons $=$ \qquad pounds
10. 32 ounces $=\ldots \quad$ pounds
11. 6,000 pounds $=$ \qquad tons
12. 10,000 grams = \qquad kilograms
A. Choose the best unit for each measurement below, using the units in the word box:

meters inches millimeters	centimeters	feet	yards	miles
Customary	Metric			
1. The length of a crayon: ___ inches	5. The height of a door: \qquad meters 6. The length of a stapler: \qquad centimeters 7. The width of a drop of water: \qquad millimeters			
2. The distance to Richmond: ___ miles				
3. The height of a building: ___yards				
4. The length of a poster: ____feet				

B. Fill in the missing numbers below:

1. What is an equivalency with inches and feet? \qquad $=$ \qquad 12 inches
2. What is an equivalency with yards and miles? \qquad $=$ \qquad 1,760 yards
3. What is an equivalency with yards and feet? \qquad $=$ \qquad
4. What is an equivalency with yards and inches? \qquad 1 yard $=$ \qquad 36 inches
5. What is an equivalency with centimeters and millimeters? \qquad $=$ \qquad
6. What is an equivalency with meters and millimeters? \qquad $=$ \qquad
7. What is an equivalency with centimeters and meters? \qquad 1 meter \qquad $=$ \qquad 100 centimeters

8. 36 inches $=$
 \qquad feet

9. 3 miles $=$ \qquad yards
10. 6 feet $=$ \qquad yards
11. 3 yards $=$ \qquad inches
12. 200 centimeters $=$ \qquad meters
13. 4,000 millimeters $=$ \qquad meters
14. 40 millimeters $=$ \qquad 4 centimeters
15. 4 feet $=$ \qquad inches
16. 3,520 yards $=\ldots 2 \ldots$ miles
\qquad
\qquad
17. 3,520 yards $=\ldots 2 \ldots$ miles
18. 72 inches $=$ \qquad yards
19. 6 yards $=$ \qquad feet
20. 4 feet $=48$ inches
21. 30 centimeters $=\ldots 300$ millimeters
22. 5 meters $=\ldots 500 _$centimeters
23. 5 meters $=\ldots 5,000$ millimeters
A. Circle the measurement closest to the liquid volume of this container:

e. 10 cups
f. 13 cups
g. 15 cups
h. 21 cups
B. Fill in the missing numbers below:
24. What is an equivalency with cups and pints? \qquad 1 pint \qquad $=$ \qquad 2 cups
25. What is an equivalency with pints and quarts? \qquad 1 quart $=$ \qquad
26. What is an equivalency with gallons and quarts? \qquad 1 gallon \qquad $=$ \qquad 4 quarts
27. 1 gallon $=$ \qquad 16 cups
28. 14 cups $=$ \qquad pints
29. 1 gallon $=$ \qquad pints
30. 9 pints $=$ \qquad cups
31. 32 cups $=$ \qquad gallons
32. 8 quarts $=$ \qquad pints
33. 32 pints $=$ \qquad gallons
34. 8 pints $=$ \qquad quarts
35. $\quad 1$ quart $=$ \qquad cups
36. 8 cups $=$ \qquad quarts
37. 12 quarts $=$ \qquad gallons
38. 5 gallons $=$ \qquad quarts
A. Determine the elapsed time:
39. 6:00 p.m. to 9:00 p.m. __ 3 ___ hours __O__ minutes
40. 10:53 a.m. to 11:59 a.m. _ 1 __ hours _ 6__ minutes
41. 7:42 a.m. to 9:18 a.m. ___ hours __36__ minutes
42. 10:15 a.m. to 1:25 p.m. _3__ hours _10__ minutes
43. 4:50 p.m. to 1:27 a.m. _8_hours 37 minutes
A. Match the picture representation with the correct geometry term. One term is used more than once.

angle	endpoint	line	line segment	point	ray

B. Identify each picture representation as: perpendicular, intersecting (but not perpendicular), or parallel:

1. \qquad parallel	2. \qquad intersecting	 3. \qquad perpendicular
 4. \qquad perpendicular	5. \qquad parallel	6. \qquad intersecting

A. Write yes or no.

1. Will translated a triangle like this:

Triangle	Translation

Are the two triangles congruent? \qquad
2. Evan rotated a trapezoid like this:

Trapezoid	Rotation

Are the two trapezoids congruent? \qquad yes
3. Kara reflected a parallelogram like this:

Parallelogram	Reflection
Are the two parallelograms congruent?	

4. Are translations, reflections, and rotations always congruent? \qquad yes
B. Circle whether each set shows a translation, reflection, or rotation. There may be more than one correct answer.

I'm not including rotations of 360 degrees

1. Translation Reflection Rotation	
2. \square Reflection Rotation	
3. Translation Reflection Rotation	
4. Translation Reflection Rotation	\square
5. Translation Reflection Rotation	
6. Translation \square Reflection Rotation	\qquad γ

A. Put a check next to each statement that is true for polygons:

Has at least three sides
Can have curved sides
Sides are made of line segments
Sides may cross

B1. Write the name of each polygon:

Triangle
hexagon
pentagon
decagon

Octagon
nonagon
heptagon
B2. Write the name of each quadrilateral. Or, if it doesn't have a special name, just write quadrilateral:

A. Match the likelihood with each outcome using the word bank below. Then, write the fraction that represents the probability. One term will be used more than once.

| certain | unlikely | equally likely | likely |
| :---: | :---: | :---: | :---: | impossible

1. Picking a spotted marble: \qquad Fraction: __ five ninths
2. Picking a cube out of the bag: \qquad impossible \qquad Fraction: \qquad
3. Picking a white marble: \qquad unlikely \qquad Fraction: \qquad
4. Picking a marble out of the bag: \qquad Fraction: \qquad
5. Picking a black marble versus picking a star marble: \qquad equally likely

Both have a fraction of: \qquad one ninth
6. If one spotted marble is taken out of the bag, the probability of picking a spotted marble:
likely (VDOE also calls it equally likely) Fraction: ___one half
7. What marble kind is least likely to be picked? \qquad black, star
8. What marble kind is most likely to be picked? \qquad spotted
9. What are the possible outcomes of this event (picking a marble from the bag)?
___ pick a spotted marble, pick a star marble, pick a black marble, pick a white marble
B. Write each of the outcomes from part (A) \#3, \#4, \#5, and \#6 in the correct place on the number line below. \#1 and \#2 have been done for you.

A. Five students sold lemonade, and the customers voted on whose lemonade tasted the best. Construct a bar graph showing how many votes each student got, counting by 100's.

Alex: 157	Jane: 280	Sally: 316	Mike: 234	Tom: 109

1. Whose lemonade got the most votes? \qquad Sally \qquad
2. About how many more people voted for the most popular lemonade than the least popular lemonade? \qquad 200
3. About how many people voted for Jane and Sally? \qquad 600 \qquad
4. Which two people received the closest number of votes? \qquad and \qquad
B. Layla put some snow in a cup and measured how much was still frozen every hour. Construct a line graph showing her data. (Remember that time always goes on the bottom axis!)

Time	Snow still frozen
1 hour	32 grams
2 hours	16 grams
3 hours	8 grams
4 hours	4 grams
5 hours	2 grams
6 hours	1 gram

1. Between which two hours did the snow melt the most quickly? \qquad 1 and \qquad
2. How many grams of snow melted between hour 3 and hour 4? \qquad 4
3. Between which two hours did 8 grams of snow melt? \qquad 2 \qquad and \qquad
\qquad
A. What is the rule and the next/missing number in each pattern?
4. $50,100,150,200 \ldots$

Rule: \qquad Next number: __250
2. $37,49,61, \ldots, 85$

Rule: \qquad Missing number: __73
3. $19,16,13,10, \ldots$

Rule: \qquad Next number: _7
B. Follow the rule for each pattern to find the next 3 numbers:

1. Rule: Add 75.

20, _95 , , __170 \qquad , 245
2. Rule: Subtract 15

90, _75 _ , \qquad , 45 \qquad
3. Rule: Subtract 9

100, \qquad , \qquad , 73
4. Rule: Add 8.

13, \qquad , \qquad , 37
5. Rule: Multiply by 3

1, \qquad , \qquad 9 , _ 27
C. Show the pattern "Add 3" on the number line. Start at 1.

D. Fill in the missing numbers in the table:

$\underline{\text { In }}$	$\underline{\text { Out }}$
3	9
4	10
7	13
12	18

A. Continue the patterns.

3. Draw the first 12 shapes of a pattern that follows the rules: two circles come before a square, and every fourth shape is a star:
B. Fill in the missing number: Math Review - SOL 4.16 凅

1. $4+5=10-\ldots$	3. $4+9=\ldots 7 \ldots+6$
2. $3+8=30-\ldots 19$	4. $3+4+7=2+\ldots 12$

C. Use the associative property to finish the number sentences:

1. $(4 \times 2) \times 3=$ \qquad
2. $(6+5)+7=$ \qquad $6+(5+7)$
D. Circle all of the examples below that demonstrate the associate property of addition. Underline all of the examples that show the associative property of multiplication.
$(8 \times 0) \times 9=8 \times(0 \times 9)$
$(7 \times 1) \times 2=7 \times(1 \times 2)$
$(15+3)+8=15+(3+8)$
$(5+3)+1=18-9$
$(0+0)+0=0+(0+0)$
$(9 \times 0) \times 9=0 \times(0 \times 0)$
$(3+0)+7=3+(0+7)$
$(4 \times 5) \times 1=4 \times(5 \times 1)$
$(18+2)+6=18+(2+6)$
$(3 \times 6) \times 2=3 \times(6 \times 2)$

$$
7+2=2+7
$$

$$
(4+2)+6=6 \times(2 \times 1)
$$

