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Abstract 

This report describes the development of an application which allows a user to program a robot in a 

virtual environment by the use of hand motions and gestures. The application is inspired by the use 

of robot lead-through programming which is an easy and hands-on approach for programming 

robots, but instead of performing it online which creates loss in productivity the strength from offline 

programming where the user operates in a virtual environment is used as well. Thus, this is a method 

which saves on the economy and prevents contamination of the environment. To convey hand 

gesture information into the application which will be implemented for RobotStudio, a Kinect sensor 

is used for entering the data into the virtual environment. Similar work has been performed before 

where, by using hand movements, a physical robot’s movement can be manipulated, but for virtual 

robots not so much. The results could simplify the process of programming robots and supports the 

work towards Human-Robot Collaboration as it allows people to interact and communicate with 

robots, a major focus of this work. The application was developed in the programming language C# 

and has two different functions that interact with each other, one for the Kinect and its tracking and 

the other for installing the application in RobotStudio and implementing the calculated data into the 

robot. The Kinect’s functionality is utilized through three simple hand gestures to jog and create 

targets for the robot: open, closed and “lasso”. A prototype of this application was completed which 

through motions allowed the user to teach a virtual robot desired tasks by moving it to different 

positions and saving them by doing hand gestures. The prototype could be applied to both one-

armed robots as well as to a two-armed robot such as ABB’s YuMi. The robot's orientation while 

running was too complicated to be developed and implemented in time and became the 

application's main bottleneck, but remained as one of several other suggestions for further work in 

this project. 

Keywords 

Lead-through, programming by demonstration, dual arm robot, motion sensor, virtual environment, 

human-robot collaboration. 
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Abbreviations 

The following is a description of abbreviations that are commonly used in the report. Abbreviations 

that are considered as common knowledge in the Swedish language are not described in the list.  

CAD: Computer-aided Design: The use of computer systems to assist in the creation, 

modification, analysis, or optimization of a design. 

HRC: Human-Robot Collaboration: Allowing a robot and human to safely perform 

simultaneous manipulation motions in close proximity to one another. 

IR: Infrared: A type of electromagnetic radiation, useful in applications for sensing and 

detecting. 

LOC: Lines of Code: Referring to lines of written code in programming languages. 

PbD: Programming by Demonstration: Imitation learning, allowing an operator to program 

a robot by performing simple demonstrations. 

RGB: Red, Green and Blue: An additive colour model in which red, green, and blue light are 

added together in various ways to reproduce a broad array of colours. 

VR: Virtual Reality: An environment that simulates physical presence in places in the real 

world or imagined worlds. 
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1 Introduction 

This chapter presents a description of the purpose of the project, together with the goals and which 

method that is used to proceed with the work. Finally the structure of the report will be presented. 

1.1 Background 

Programming of industrial robots is of importance to many manufacturing industries. This is an 

increasingly reoccurring task, as new products and/or variations of products more frequently appear 

within the manufacturing environment.  

For the development of correct robot programs, skilled and experienced programmers are required. 

However, such programmers are often a scarce resource. The use of textual programming makes 

robot programming a demanding task to learn and use, and also caters for long developing times. 

The use of online robot programming also ties up robots and associated equipment, making them 

unavailable for production. The use of robot lead-through programming is a much easier and hands-

on approach to programming robots, but as it is also performed online, it too inflicts a loss in 

production capacity. We are in a new era where effective programming methods (easier and faster 

but still advanced and economical) are constantly sought. By developing a method that adds the 

benefits of previous methods and removes the drawbacks, there will appear more efficient 

programming methods in the future for robots. 

1.2 Goal 

The scope of this bachelor level project is to develop an approach for robot lead-through 

programming in a virtual environment. The robot programmer should through motions, 

demonstration and/or grasping the virtual robot, be able to teach it the desired task, by moving it 

into positions in order to create the desired path or sequence. A vision sensor should be used and 

ABB’s robot offline programming and simulation software RobotStudio to create the virtual 

development environment. 

This project will lead to a new robot programming concept, performed exclusively by means of hand-

gestures. Since the work is performed in RobotStudio with a virtual robot that works exactly like a 

real one, it will be easy to deploy the created robot program to a real robot. As a new generation of 

collaborative robots is emerging, aimed at challenging tasks such as joint human-robot assembly 

operations, the new ABB YuMi two-armed robot will be used.  

The anticipated outcome of this project is a prototype hand-gesture robot programming system for 

virtual lead-through programming. The system should be capable to generate robot programs with 

robot movements following the instantiated movements of the programmer’s hands. 

1.3 Promoting sustainable development 

Programming virtual robot by demonstration is the process that uses the advantages of two worlds. 

Through simple demonstration of the task you get the benefit from online programming where the 

operator leads the robot through the desired process and therefore doesn’t need major knowledge 

in computer programming. By programming a robot in a virtual environment instead, you use the 
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strength from offline programming where the operator doesn’t need to work with the physical robot, 

which creates security and saves production time. 

Because of its advantages, programming virtual robots by demonstration promotes the sustainability 

considering as a lot of production and operator utilization is preserved. By using this method the 

industry saves time through faster programming and doesn’t need the help of experienced 

programmers. Hence there'll be less consumption of electricity when physical robots, which consume 

large amounts of electricity, don't need to be used for the teaching phase (which is also not 

profitable time). Thus, this method saves on the economy and prevents contamination of the 

environment when less electricity is consumed and when transports don't need to transport the 

robot to the subcontractor who prepares the robot but instead can transport the robot directly to 

the customer while the subcontractor prepares it through this virtual method. 

1.4 Method on approach 

The project consists of structuring, planning and developing a system for virtual lead-through 

programming of industrial robots. This work includes designing, programming and implementing the 

system and its constituting parts. As a guide, the V-model of software design is used for the project 

and can be found in Figure 1. This method is seen as an evolved version of the Waterfall model and 

includes several different areas, including the identification of concepts and requirements, the 

creation of the architecture, implementation, and finally verifying that it works.  

First a practical work plan will be developed, and with it the acquisition of required software’s such 

as RobotStudio and Visual Studio. For better understanding of the topic, studies in the subject frame 

will be performed. This approach is an example of the first part of the method model, "Concept of 

Operations". The work process and results, as well as inputs and contribution to the project will be 

continuously documented. 

The software performing the desired task will be built from a combination of a sensor and the 

software RobotStudio. The sensor should detect the user’s positioning of its hand. Through this the 

sensor will convey information into RobotStudio, and thereafter the necessary programming and 

setup in RobotStudio’s virtual environment will be configured. To enter the information of the user’s 

position and orientation of arms and hands into the virtual environment, a Kinect sensor will be used. 

 

Figure 1 V model illustration. (Federal Highway Administration (FHWA), 2005) 
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1.5 Report Structure 

For better understanding in the structure of the report there’s a brief chapter description below with a 

recommendation for the report's readers. 

Chapter Description Recommended type of readers 

1 Introduction All readers. 

2 Theoretical framework:  

Presentation of relevant theory around the 

project. 

Readers who are not familiar with the subjects: 

robotics, programming, sensors and/or 

sustainable development. 

3 Frame of reference:  

Oversees previous studies related to the project. 

Readers who are interested in similar studies 

previously done, and knowing the motive for this 

work. 

4 Data acquisition and analysis of data:  

Details of how different types of input data for 

the communication software were collected. 

Readers interested in the process of data 

collection for the software development. 

5 Programming of communication software:  

Containing relevant information regarding the 

making of the communication software. 

Readers interested in the construction of the 

communication software. 

6 Testing and optimization:  

Contains testing of the program, optimization 

and acquired results. 

All readers. 

7 and 8 Discussion and Conclusion:  

Discussion, conclusion and future research 

suggestions. 

All readers. 
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2 Theoretical framework 

In this chapter, topics which are playing a key role around the project are briefly introduced. Those 

included are robotics and programming, sensors and sustainable development. 

2.1 Robotics and programming 

In 1956, a company called Unimation (Universal Animation) was founded by George Devol and 

Joseph Engelberger. Together they developed the first industrial robot arm in 1959 called Unimate, it 

weighed two tons and was programmed by storing joint coordinates during demonstration and 

replayed the process, and the accuracy could come within 1/10000 of an inch. Moreover, it used 

hydraulic actuators and was controlled by a program on a magnetic drum. In 1961 the first industrial 

robot was installed at GM (General Motors) by Unimation which made components for automobiles 

such as door and window handles, gearshift knobs and light fixtures. (IFR, 2012) 

During the years from 1962 to 1969 new robot solutions were developed and installed in factories, 

such as the first cylindrical robot Versatran, the first spot-welding robots and the first commercial 

painting robot. A big event occurred in 1969 as well, where Unimation established a licensing 

agreement with Kawasaki Heavy Industries in Japan and the first industrial robot ever produced in 

the country was developed, the Kawasaki-Unimate 2000. By the time of 1970, the first National 

Symposium on Industrial Robots was held in Chicago, USA.  (IFR, 2012) 

“In Sweden the first robots were installed in 1967 at Svenska Metallverken in 

Upplands Väsby, and they were actually also the first ones in Europe. The robots 

did monotonous jobs like picking in and out.” (Wallén, 2008: 10) 

In the 1970s, several other companies entered the robot market and contributed with new robot 

solutions, such as Famulus from KUKA which was the first robot to have six electromechanically 

driven axes. By the time of 1973, there were around 3,000 industrials robots in operation around the 

world. Moreover, it was during the 1970s that the first national robot association was established, 

the world’s first full-scale humanoid robot was developed (Wabot-1) and when the first Engelberger 

Award was presented. The Engelberger Award is given to individuals who have assisted with 

prominent development of robotic industry and is the most honourable award in robotics. Other 

robot solutions developed in the 1970s worth mentioning was the first dynamic vision sensors for 

moving objects, the first minicomputer-controlled industrial control, the first arc welding robot, the 

first fully electric robot and last but not least the first six-axis robot with own control system. (IFR, 

2012) 

2.1.1 Online programming 

A direct interaction between robot and human, online programming is an approach where the 

worker use the robot controller as its tool. To be able to observe the robot visually while teaching the 

robot its task gives the operator perfect overview of its actions. With visual overview and the less 

need for programming knowledge, it makes online programming a widely used method. Downsides 

of this approach however are that it creates waste regarding production time, because the robot 

must be programmed directly and is therefore not available. In addition, precautions must be made 

to avoid the risk of injury for both robot and human or other equipment. (Rahimi & Karwowski, 1992) 
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2.1.1.1 Lead-through programming 

Lead-through is a method of online programming and the simplest of all robot teachings (Rahimi & 

Karwowski, 1992). With the robot’s servo controls turned off, the operator can simply move the 

robot arm manually to its desired path. Along this path, significant points can be saved for later use 

when the robot will travel through the path it has been taught. Another type of lead-through 

programming is the use of a smaller model of the robot communicating with the real one and its 

robot controller. This approach is used if the robot does not have a free movement mode by its own, 

that the servo controls can be turned off. The robot model is identical to the real robot except that it 

doesn’t have any drives or transmission elements (Rahimi & Karwowski, 1992). Lead-through is a 

method with low precision but after the robot has been taught its desired path the operator may 

have editing options to reach higher precision. Rather than having technical skills, lead-through 

programming promotes skilful workers who have the knowledge to do the job manually with high 

precision instead, thus does not require workers to have any knowledge in computer programming. 

2.1.1.2 Teach pendant programming 

Another method for online programming is pendant teaching which involve the use of a hand-held 

control device that controls the robot's positioning and program it. By guiding the robot step by step 

through each process in the operation, the operator can record each motion through the pendant 

controller. Today in modern teach pendants there’s generally a joystick, keypads and a display. The 

joystick is used to control the robot positioning or its work piece orientation. The keypad can be used 

to predefine functions and enter data. On the display screen shows control soft keys and operator 

messages (Nof, 1999). Pendant teaching is just like lead-through programming a simple programming 

method which is appropriate for small and simple tasks. On the other hand, the teach pendant is 

capable of performing tasks that is more complicated such as pick-and-place, machine 

loading/unloading and spot welding, at the cost of requiring basic understanding of computer 

programming and devices (Rahimi & Karwowski, 1992).  

2.1.2 Offline programming 

Offline programming is a method where the robot's operations do not need to be developed from 

the robot system but can be instead developed on a computer. Offline programming became 

promising when computer graphics could be integrated with simulation packages such as CAD in a 

programming environment. There are many advantages to use offline programming but according to 

Rahimi and Karwowski (1992), the foremost advantages are the reduction in robot downtime, using 

commonly available computer systems, easier programming and the use of CAD systems. 

For an industry, production time is important and if the robot can’t be used efficiently, they loose 

production. With offline programming all of the robot’s programming can be done even before it has 

been installed or making changes in the code without having to stop its current production, therefore 

reducing the robot downtime. By using commonly available computer systems, specialized 

programmers for robotics environments doesn’t need to be trained which together with common 

computer systems gives an economic advantage. With easier programming, it doesn’t necesseraly 

mean that there’s no need for programming knowledge. With offline programming the time required 

for creating a program or making changes in an existing code can be greatly reduced. Furthermore 

the programmed operation can be visualized on a screen with offline programming and possible 

distractions while programming in the plant environment doesn’t apply. Lastly, the use of CAD 



~ 6 ~ 
 

systems becomes an advantage for offline programming because of its use to visualize the robot’s 

operation through animated simulation. It supports more accurate robot tasks and the possibility to 

optimize the positioning of all equipment in the workspace. (Rahimi & Karwowski, 1992) 

Even though offline programming has huge advantages when it comes to save production time, there 

are also disadvantages that will be a problem for many industries using this method. First off is the 

knowledge needed for offline programming. While online programming is an easy method to use for 

almost everyone, offline programming requires a certain level of skill in programming which needs to 

be trained among the workers. This means that there is a scarcely amount of labor in comparison 

and will cost if the industry wants to teach more programmers. Another disadvantage is the use of 

simulated tasks. While stored data is used from a data base to be able to simulate the desired robot, 

there’s always a difference between the data and the actual components off the robot’s cell. It can 

be caused by many reasons, but probably most of all because of the quality on the actual robot. If it 

has been in production for a while the robot's flexibility could’ve become poorer but this doesn’t 

apply to the stored data, making the coding which is accurate for the stored data not as much 

accurate for the actual robot. More disadvantages which Rahimi & Karwowski (1992) mentions is the 

possible problem with communication when transfering offline applications to a robot’s controller 

memory, especially in the case of multiple robot systems, and a problem with every robot 

manufacturer having its own programming language, making it a burden for programmers to learn 

several robot languages. 

2.1.3 Choosing between methods 

When developing a task for a robot, one must consider which options there are. There are several 

methods of approach, from online programming to offline programming, and one should choose the 

most suitable method which is appropriate for the task and for the developers level of skill. Examples 

of appropiate methods depending on skill is illustrated in Figure 2. The most simple method is the 

lead-through teaching because it doesn’t require any major understanding in computer programming 

(Rahimi & Karwowski, 1992). However, while it is simple to use, it’s only efficient when it comes to 

simple tasks such as spray painting. The more complex the task gets, the more skill in computer 

programming is required by the developer. Pendant teaching is a more accurate point-to-point 

method than the lead-through but in comparison requires some understanding in the basics of 

computer programming. The complexity of the tasks goes on and other methods can be used to face 

these new challenges, such as using a high-level language to develope branches and subroutines in 

applications.  

When using the offline programming, a different approach is made for programming robots. With 

this method, the use of the robot controller isn’t needed as for those previously mentioned and 

several tools can be accessed to assist the work process, such as simulating the robot movement. 

With this method more advanced tasks can be developed, the operation can be observed and 

calibrated through a computer screen and therefore eliminating potential risks and frees the robot 

programmer from all the distractions that may otherwise occur in the workplace. 

When it comes to choosing an appropriate method it’s also important to consider, in addition to the 

requested skills, safety and productivity. These are human factors and the required programming 

skills increases the more advanced programming becomes, from lead-through teaching to offline 

programming. For safety, however, it will be safer the more sophisticated programming it gets, 
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where even offline programming has no interaction at all with the robot during the development. 

What productivity means is the ratio of output units and input units. The input is the product of skill 

and time (skill * time) of programming, while the output is the finished program or the number of 

lines of code (LOC). There are more factors influencing but those mentioned above, (skills * time) and 

LOC, are measurable units. (Rahimi & Karwowski, 1992) 

 

Figure 2 Programming skill requirements. (Rahimi & Karwowski, 1992) 

2.1.4 Human-Robot Collaboration 

Both humans and robots capabilities and limitations differ from each other and to be aware of this 

and study this more deeply can assist the work for more efficient production. It’s a field of study 

which grows and deals with the possibility to interact human behaviour with the characteristics of 

robotics and design more efficient robots and interactive human-robot workspaces (Rahimi & 

Karwowski, 1992). Human-Robot Collaboration (HRC), also referred as Human-Robot interaction 

(HRI), is about the way people can interact and communicate with robots and how robots can work 

with people in the best way. It is believed by Dautenhahn and Saunders (2011) that HRI has an 

economically impact as well as an impact in the daily life and the developing relationships with 

machines. As HRI combines both human and robot factors in its research field, a wide knowledge is 

required including psychology, cognitive science, social sciences, artificial intelligence, computer 

science, robotics, engineering and human–computer interaction (Dautenhahn, et al., 2011). 

2.1.4.1 Programming by Demonstration 

A method that recur currently in human-robot interaction is PbD (Programming by Demonstration), 

also known as imitation learning. The purpose of PbD is to allow an operator to program a robot by 

simply performing a demonstration using their own movements to a sensor which then saves the 

operator's actions to later implement them to the robot. Robot PbD has grown since early 1980s 

(Billard & Calinon, 2008) as it turns out to potentially become an attractive method for simplifying 

the programming of robots and reduce the time, and therefore the cost, of developing the robot 

teaching and not to have it during production.  

2.1.5 ABB robotics 

ABB is a global leader in power and automation technologies. Based in Zurich, Switzerland, the 

company employs 145,000 people and operates in around 100 countries. ABB consists of five 

divisions, where each division are organized in relation to the customers and the business areas they 

serve. They also invests in continued research and development and has seven research centers 

around the world. It has resulted in many innovations and today, ABB is one of the largest suppliers 
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of engines and propulsion systems for industry, generators for wind power industry as well as power 

grids worldwide. 

In Sweden, ABB has approximately 9200 employees in 30 locations. Swedish ABB is a leading supplier 

of products and systems for power transmission as well as process and industrial automation. Large 

operating locations are in Västerås with about 4300 employees, Ludvika with around 2800 

employees and Karlskrona with about 800 employees. With ABB Business Centers at ten locations in 

Sweden, they offer better customer value by being locally present. 

2.1.6 YuMi 

Unveiled in September 9th, 2014, YuMi is a collaborative, dual arm, small parts assembly robot 

solution developed by ABB, shown in Figure 3. With flexible hands, parts feeding systems, camera-

based part location and state-of-the-art robot control, it’s designed to reflect the meaning of human-

robot collaboration (Schmidt & Ligi, 2014). It can work cage-free and hand-in-hand with human co-

worker performing the same tasks, such as small parts assembly, thanks to its safety function which 

it has built-in. (ABB Robotics, 2014) 

“YuMi is short for ‘you and me,’ working together.” (Schmidt & Ligi, 2014) 

Through its accuracy, Schmidt and Ligi (2014) tells that it can operate everything from the fragile and 

precise parts of a mechanical wristwatch to the parts used in mobile phones, tablets and desktop 

PCs. It has been developed to meet the needs of the electronics industry, where high flexibility is 

required. But over time it will meet other market sectors mentions Schmidt and Ligi (2014). 

 

 

Figure 3 YuMi, ABB Robot. (ABB Robotics, 2014) 
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2.1.7 Virtual reality 

Virtual reality (VR), also referred as virtual presence, virtual environment or artificial reality 

(Sheridan, 1992), is a computer-simulated environment which can be interacted by users in real time. 

A user can communicate with the envrionment through sensory experiences including vision, sound, 

touch, and even smell and taste (Nof, 1999). Many people today can recognize themselves in virtual 

realities from computer and console games which are a good example of a virtual environment 

where the user feels involved in the simulated world and can do things that otherwise would not 

have been possible in the real world. In addition to games, VR is used for training simulations, 

manufacturing, design tools and much more. In robotics VR can be used for designing robots, 

programming complicated tasks and operate robots at far distance (also called teleoperation). An 

example of a virtual reality used in robotics is RobotStudio, ABB's own software which is used to 

program their own robots. 

2.1.7.1 RobotStudio 

RobotStudio is a VR software for the user to perform offline programming and simulation in their 

own PC. It allows the user to develop their skills, programming and optimization without disturbing 

production, which has several advantages that are mentioned in 2.1.2, Offline programming. 

RobotStudio is additionally built on the ABB Virtual Controller, which allows the software to 

implement realistic simulations using real robot programs and configuration files used in the work 

place. (ABB Robotics) 

2.2 Sensors 

Jazar (2010) define sensors as components which detect and collect information about internal and 

environmental states. Sensors are a dominant tool and today also important for modern industry. It 

is used continuously in highly developed industrial processes and even for simple consumer 

products. In production, for example, advanced sensors can be used to monitor and control the 

manufacturing process (CNST, et al., 1995). 

Sensor technology is a technology with great potential in many technical systems, where it can 

improve its processes and create better reliability as well as serviceability. In 1860, Wilhelm von 

Siemens developed a temperature sensor based on a copper resistor after a variety of materials were 

examined in the early 1800s on how sensitive materials electrical resistance was against temperature 

changes. This shows that the sensor technology requires itself materials science and engineering to 

be developed. (CNST, et al., 1995). 

If you look deeper into the anatomy of sensors, they consist generally of three basic components: a 

sensor element, sensor packaging and connections, the is also a sensor signal processing hardware 

(for some sensors there are additional components). An overview of a sensor system can be seen in 

Figure 4. 
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Figure 4 Anatomy of a sensor system. (CNST, et al., 1995: 15) 

2.2.1 Sensors in robotics 

“Without sensors, a robot is just a machine, capable only of moving through a 

predetermined sequence of action. With sensors, robots can react and respond to 

changes in their environment in ways that can appear intelligent or life-like.” 

(Martin, 2001) 

To utilize the properties of sensors in industrial robotics was not recognized until the 1990s. 

Previously, only taught joint positions combined with interlocks and time signals was used as 

feedback for the robot (Nof, 1999). This was due to the idea of strictly controlled robots with known 

positions of all objects in its workspace. It was later that sensors played a larger role in industrial 

robotics, when safety and new practical solutions became recognized. There were two aims with the 

sensors in the beginning, namely to create security and to increase the robot's capabilities by 

allowing it to "see" the orientation of an object. Accidents caused by robots are rare but do yet 

happen and the results have led to either property damage, worker injury or both. With no control 

and prevention systems, accidents could easily occur if people were to intrude the robot’s workplace 

unprepared. With the second aim of “seeing” the orientation, robots could be utilized even further 

through and let the robot be able to detect defects on the material being handled and even detect 

intruding workers and stop its activities (Nof 1999). Sensors play a large role when in control and 

with the use of control units, a built-in sensor can send information about each link and joint of its 

robot to the control unit which in return decides the robot configuration (Jazar, 2010). 

In modern robotics, there are 7 types of sensors that is normally used for industrial robots: 2D vision, 

3D vision, Force torque sensor, Collision detection sensor, Safety sensors, Part detection sensors and 

other (such as tactile sensors). 2D vision sensors have long existed in the market and has several 

functions, from motion detection to localization of parts on a pallet. 3D Vision is also widely used in 

various functions and marks the objects in 3D using either two cameras at different angles or by a 

laser scanner. 3D Vision is used in bin picking where it detects the object, recreates it in 3D, analyzes 

it, and calls for the robot how to pick it up. Force torque sensors (FT sensor) monitors the forces 

applied on the robot and can usually be found between the robot and its mounted tools. Applications 
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that use this type of sensor can be from assembly to lead-through programming where the FT sensor 

monitors the movements that the operator teaches it. Collision detection sensors can be in different 

shapes and may often be embedded in robots. These sensors can for example detect if pressure 

occurs on a soft surface and and be able to signal the robot to limit or stop its movement, therefore, 

being an fitting application for safe working environment and for collaborative robots. Safety sensors 

can either be from cameras to lasers and is designed to notify the robot if there’s a presence within 

its working space and then be able to act according to the situation, slowing down the pace as long 

as the hindrance is within its working range or stop when the distance becomes too close. Part 

detection sensors works in the same purpose as vision systems, detecting parts which should be 

picked up, but rather gives feedback on the gripper position. This system can for example detect if 

there was an error when picking up a part in its grasping task and repeats the task until the part is 

well grasped. Other sensor systems can be used in robotics, such as tactile sensors which detect and 

feel what’s in it, and thanks to the variation there’s usually a sensor for each specific task. (Bouchard, 

2014) 

2.2.2 Project sensor, Kinect 

The Microsoft Kinect is a low-cost, RGB-D sensor with several useful features, such as high-resolution 

depth and visual (RGB) sensing. Because of the broad information the sensor can provide in both 

depth and visual, it opens new ways to solve the fundamental problems in computer vision and is 

therefore widely used. 

Kinect was originally an accessory for the Xbox console, created by Microsoft (Han, Shao, Xu, & 

Shotton, 2013). It allowed players to interact with games without having to use a controller, this was 

made possible with the sensor's 3-D motion capture algorithm of the human body. However, its 

potential wasn’t only settled for games as the Kinect's depth sensing technology, along with its low 

cost compared to other 3-D cameras, can provide solutions to many other computer vision problems. 

The Kinect sensor with its depth sensing technology has a built-in color camera, infrared (IR) 

transmitter and a microphone array. The depth sensor is obtained by a combination of the infrared 

camera and projector, where the IR projector throws out a dot pattern on the environment which is 

then captured by the infrared camera. 

2.2.2.1 Body Tracking 

A certain function the Kinect has is the Body Tracking. It is the process of positioning the skeleton 

joints on a human body which allows the Kinect to recognize people, and be able to follow their 

actions. It is established with depth image data and can track as many as six people and 25 skeletal 

joints from each individual, this includes the user’s head, hands, centre of mass and more. Each 

skeleton point is also provided with an X, Y and Z values, these helps to set the orientation of the 

joints. The orientations of the bones are brought in two forms:  

 A hierarchical rotation based on a bone relationship defined on the skeleton joint structure 

 An absolute orientation in Kinect camera coordinates 

The data from the orientation is given out in form of quaternions and rotation matrices so it can be 

used in different animation scenarios. 
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Using the skeletal tracking system to obtain the joints, a hierarchy of bones are defined and specified 

as parent and child. With the Hip Centre as the root and parent, the hierarchy reaches to all 

endpoints on the body: feet, head and hand tips. In a child joint, the bone rotation is also stored and 

it’s relative to its parent. This is called hierarchical rotation and tells much rotation in 3D space is 

needed to obtain the direction of the child bone from the parent. 

2.3 Sustainable development 

The concept of sustainable development is described as the "development that meets today's needs 

without compromising the ability of future generations to meet their own needs" from the report 

Our Common Future, also known as the Brundtland Report, written by the Brundtland Commission in 

1987. The definition is a generally acceptable goal for the development worldwide and can be 

identified in four ethical principles:  

1. The importance of the human and ecosystem coexistence, something that the population 

underestimates today how important it is that the ecosystem performs its production and 

other services. 

2. Solidarity among people, the right to a high quality of life for all inhabitants of the earth. 

3. Future generations shall have a fair and equal life as the present. 

4. All people should be be involved in decisions and to make a difference, democracy and 

participation. 

While these ethical principles would be supported by most, many disagree when milestones and 

priorities will be set and how the work should be done. 

 

 

Figure 5 An example of sustainable 

development. The area where the three 

circles overlap represents a sustainable 

development whereat goals in all three areas 

are met. (Gröndahl & Svanström, 2011) 
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3 Frame of reference 

This chapter presents a comprehensive literature review of existing human-robot collaboration 

applications in publications. Later, the chapter justifies the usefulness of integrating online 

programming methods with virtual environments. 

3.1 Programming virtual robot by demonstration 

Here, the focus lies on studies in which different authors have used different methods to control a 

robot's path and configuration. This includes Ge’s (2013) study whose main focus was to control the 

robot's movement through a PbD (Programming by Demonstration) method based on an optical 

tracking system. He investigated the possibility to reduce both the learning difficulty of robot 

programming and the time it takes to program for upcoming challenges in 3C industries. With the 

PbD method and optical tracking system, the robot could imitate operator arm and hand motions in 

6D (translation and rotation). The result of this study showed that the robot could follow a human’s 

arm and hand motions accurately with a small but acceptable time delay for some applications. Ge’s 

experiment may be the nearest similar work to our project focus, however, his focus lies in 

programming the physical robot, not a virtual one, and uses a different vision system than what will 

be used in this project. With this in mind, a search for additional papers from conferences and 

articles focusing on PbD, Optical Tracking System, Kinect or VR (Virtual Reality) was made. From 

these focus areas, publications were selected from the 2000s which could assist with the theory of 

applying PbD for virtual robots. After the papers were reviewed, they were sorted into three sub-

headings: PbD applications, Sensors applied in HRC and Other application toward HRC. PbD 

applications include Online Programming (OLP), Offline Programming (OFP), Programming by 

Demonstration (PbD), Virtual Reality (VR), etc. Sensors applied in HRC include Human-Robot 

Collaboration (HRC), Augmented Reality (AR), Sensor systems, etc. Other application toward HRC 

presents an article which doesn’t focus on programming a robot nor PbD but does include VR, HRC 

and the use of a Kinect device. 

3.1.1 PbD applications 

Recent progress of programming methods has mostly been to simplify the programming process, 

making the process take less time, have less need for experienced robot programmers and safer. 

Except of traditional ways such as lead-through, pendant teaching and OFP, other methods are now 

making progress towards HRC, such as Programming by Demonstration. This section presents a 

number of papers that use a PbD method for programming robots, both physical and virtual. The 

author Makris et al. (2014) presents a PbD method for dual arm robot programming where the 

proposed robotic library aimed for humanlike capabilities, and implemented bi-manual procedures. 

Dual arm robots has been an interesting topic for industries for decades because of their developing 

capabilities in dexterity, flexibility and more, but the programming is complex and therefore there’s a 

need for a software which simplifies the robot programming procedure. Their method was 

implemented in an assembly and the result showed that the user could easily interact with a dual 

arm robot by the use of depth sensors, microphones and GUIs (Graphical user interface). They 

identified that the complexity in the programming could be reduced, non-experienced users can use 

it and the information from the robot could easily be managed into the database system. In (Aleotti 

et al., 2003), the authors present a PbD system which is able to operate assemblies in a 3D block 

environment. The problem they faced was about the need for a simpler programming technique that 



~ 14 ~ 
 

allows operators with little or no robot programming experience to implement new tasks to a robot. 

The system was based on a virtual reality teaching interface, using a data glove with a 3D tracker 

which an operator wearing it uses it to demonstrate the intended tasks. When performing a 

sequence of actions, the system recognize, translates, performs the task in a simulated environment 

and finally gets validated. It resulted in a prototype of a PbD system that uses a data glove as an 

input device, giving the human-robot interaction a natural feeling. 

3.1.2 Sensors applied in HRC 

This section presents publications in which authors have used sensor technology to create a better 

human-robot collaboration environment. For instance, Wang et al. (2013) present a real-time active 

collision avoidance method in an augmented environment, where humans and robots work together 

in a collaborative environment. A challenge is to avoid possible collisions for the safety of the human 

operator. The authors deal with this challenge by using virtual 3D models of robots and real camera 

images of operators to monitor and detect possible collisions. The 3D models represented a 

structured shop-floor environment and by linking two Kinect sensors, they could mimic the 

behaviour of the real environment. By connecting virtual robots and human operators to a set of 

motion and vision sensors, they could link the robot control with collision detection in real-time and 

thus came with a solution which enabled different strategies of collision-avoidance. Another way to 

use sensors for collaboration between man and robot is presented in C. L. Ng’s (2010) work where he 

fused information from a camera and a laser range finder to teach a robot in an AR (Augmented 

Reality) environment, and then tested the method in a robot welding application. The problem posed 

is about the SME (small and medium enterprise) manufacturing where a large variety of work pieces 

requires experienced robot programmers to often have to reprogram an automated robotic system, 

which is both uneconomical and inefficient in the long term. The author is therefore looking for a 

quick and easy method to program robots. An HRI system was developed whose function was to 

provide visual information from video images to the operator to use the system and capture the 

Cartesian information on the operator's intended robot working paths through a laser rangefinder. 

The study achieved a system which teaches the robot path through a simple point-and-click 

algorithm and the tool settings can be modified through interaction with a virtual tool in an AR 

environment. 

3.1.3 Other application towards HRC 

Matsas and Vosniakos (2015) present a Virtual Reality Training System (VRTS) which creates an 

interactive and immersive simulation for the operator to work in a Human-Robot Collaboration (HRC) 

environment where simple production tasks are carried out. Due to the pursuit of better quality and 

productivity of manufacturers, the requirement for a human-robot collaboration environment has 

arisen and the authors carry out a study in which this system shall be designed and tested so that in 

the long term could become a platform for programming HRC manufacturing cells. A virtual world 

including a shop floor environment with equipment was designed together with a training scenario 

which was a simple tape-laying for composite parts case performed in a HRC environment. To allow 

the user to feel enveloped by the virtual workplace and be able to interact in it, the authors use a 

Kinect sensor and HMD (Virtual Research Head Mounted Display), where the HMD is used both to 

envelop the user to the environment and as an input device for the Kinect sensor head tracking. The 

study showed positive results and the authors suggested that such an application can come to good 

use for training and testing in a HRC environment. 
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3.1.4 Review summary 

The literature review shows that many of the recent researches towards simple robot programming 

is heading for a PbD method and is even using sensors to involve humans and create human-robot 

interactive environments. In comparison with the mentioned publications about applying PbD 

methods for simpler robot programming, it seems that the research does not cover virtual robots but 

only the physical and the virtual studies only involves the use of data gloves or sensors which by itself 

affects the robot. Table 1 illustrates what each publication contains which can help with the work on 

programming virtual robot by demonstration. The table is divided as follows: PbD as method, use of 

vision sensor, Online Programming, Offline Programming, Virtual environment and HRC environment. 

Altogether there were six paper reviewed from conferences and articles involved in the work 

towards easier robot programming in a human-robot collaboration environment. 

ARTICLE PBD AS 

METHOD 

USE OF 

VISION 

SENSOR 

ONLINE 

PROGRAMMING 

OFFLINE 

PROGRAMMING 

VIRTUAL 

ENVIRONMENT 

HRC 

ENVIRONMENT 

GE (2013) X X X   X 

MAKRIS ET 

AL. (2014) 

X X X   X 

ALEOTTI ET 

AL. (2003) 

X  X  X  

WANG ET 

AL. (2013) 

 X  X X X 

NG (2010) X X X  X X 

MATSAS 

AND 

VOSNIAKOS 

(2015) 

 X   X X 

Table 1 List of papers and their contents 

3.2 Conclusion on robot programming methods 

In this chapter a literature review of programming virtual robot by demonstration is performed. Up 

to 6 various conference papers and articles with a focus on robot control methods, PbD, Optical 

Tracking System, etc. were reviewed. The focus of this literature lay in what work has been done with 

a PbD method recently, how sensors have been used to create a human-robot collaboration 

environment and what other studies have been done that could provide useful information. The 

investigation revealed that PbD as a method has returned to the spotlight and already successful 

results has been developed where the robot has done what the operator has demonstrated with 

high accuracy by the help of a camera. There has also been a lot of work to create safer working 

environment and better integration between human and robots using cameras and virtual 

environments. However, the most comparable studies towards this project has been carried out on 



~ 16 ~ 
 

physical robots and not on virtual ones. Therefore, a further study in PbD on virtual robots is needed. 

The technology exists and if successful, it could simplify the work to program robots and fine-tune 

the program in a virtual software. For the project, major focus will lie in making the integration 

between the vision system and virtual program work and that the accuracy of the robot is as high as 

possible. 

4 Data acquisition and analysis of data 

In this chapter the work process of acquiring the necessary data is described and how the data 

obtained is interpreted. 

4.1 Obtaining necessary material 

At the beginning of the project all necessary software and hardware was first obtained and installed. 

For the project a vision sensor was necessary as well as the chosen sensor’s software, software for 

the virtual robot and an IDE (Integrated Development Environment). These were necessary for 

making the code and the following hardware and software was chosen for this work: 

Hardware: Kinect for Xbox One sensor and Kinect Adapter for Windows 

Software: Visual Studio Professional 2013 with Update 4, RobotStudio 6.00 and Kinect for Windows 

SDK 2.0 

With the Kinect SDK, complete code samples could be downloaded and used to get a head start in 

the programming and avoid making code that has already been done, like reinventing the wheel. A 

fitting code sample for the project was picked and is described in chapter 4.2. 

4.2 Acquisition of data 

 

Figure 6 A ”lasso” hand gesture 

What was of interest in the Kinect for the project was how the sensor presented the data for the 

positioning of the body and its skeletal joints. That specific data would become necessary for the 

project later on because it could be used to create gesture commands which would allow us to 

control the virtual robot’s movement. To get the data, a base to work with had to be acquired. The 

Kinect supports users who wants to create new software’s using the sensor and thus has finished 

samples of code that can be worked on. In this case, the Body Basics-WPF that demonstrates how to 

obtain and visualize body frames from the sensor was retrieved. Running the code while having the 

sensor connected visualized what can be seen in Figure 7. It shows something like a stick figure which 

represents your body and extends from your heads centre to your feet. Each hand has four joints 

which are tracked and represents the wrist, hand centre, hand tip and thumb. Around each hand 
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there’s also a circle which change in colour, these represent the user’s hand gesture and change 

colour if the user’s hand is either open, closed or in a “lasso” state (when the user has the forefinger 

and middle finger open and the rest closed). A lasso state is visualized in Figure 6. 

 

 

Figure 7 Kinect visualizing the body frame and its skeletal joints. 

 

The finished sample just shows the body frame though and doesn’t print out any data. This was just a 

sample and additional code had to be added in order to get the desired position data. An easy way to 

receive position data from the sensor is by letting the sensor calculate the distance between the 

user’s hands. This can be achieved by adding the following code in the Body Basics-WPF (C#): 

Add the joints: 

Joint pRH; 
Joint pLH; 

Declare them as right and left hand inside “if (body.IsTracked)“: 

pRH = body.Joints[JointType.HandRight]; 
pLH = body.Joints[JointType.HandLeft]; 

Make the calculation with absolute value: 

double absDistanceX = Math.Abs(pRH.Position.X - pLH.Position.X); 
double absDistanceY = Math.Abs(pRH.Position.Y - pLH.Position.Y); 
double absDistanceZ = Math.Abs(pRH.Position.Z - pLH.Position.Z); 

 

In this way, the distance may be used to instruct the robot where it should move to, with maybe the 

left hand as a reference point for the robot's current position. However, when the project targets to 

later be implemented for the two-armed ABB robot YuMi, both hands is going to be needed to 

instruct the direction and distance to create a smooth application. Therefore, the code needs to be 
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linked in a different way. We want to instead create a command that puts out a home position that 

can later be used to reference the robot's current position. When the user hand moves away from 

the home position in the Kinect, that same data can be used to move the robot to the same direction 

and distance. The result can be found in Figure 8, with a start position printed on the display as a pink 

dot and distance between hand and dot written out in each axis. As soon as the user closes his/her 

right hand, that right hand position is saved in the user’s workspace by the Kinect and prints it out in 

the display. As long as the user has the hand closed, its position relative to the starting position can 

be calculated. 

 

 

Figure 8 Kinect prints the distance between the hand’s centre and the dot. 

 

4.3 Interpreting data 

Thanks to the Kinect’s built-in function to be able to distinguish different hand gestures, these can 

conceivably be utilized for the robot application. They can be used as for the user to call different 

functions on the Kinect and robot when the hand for example is closed. For the application to know 

which function it should perform when the user uses a hand gesture, true and false bools (Boolean, 

declares variables to store the Boolean values, true and false) are implemented which switches to 

either two depending on the hand gesture. The distance data calculation in the application runs 

when the user does the closed hand gesture and once calculated, it is saved in a Vector3 structure. 

The structure is then sent to the next function that performs the jogging of the virtual robot. With 

the help of distance data, the robot can be instructed as to which direction of the x-, y-, z-axes the 

robot should go. 

 

// Saves the x-, y-, z- values to 'trans', used for jogging the robot. For the Kinect 
// and the robot should be able to work within the same coordinate system, the x-, y-, 
// z-translation is sent in a different order. 
ABB.Robotics.Math.Vector3 trans = new ABB.Robotics.Math.Vector3(distanceZ, distanceX, 
distanceY);  
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// Initiates the jogging procedure in Class1 and sends with it calculated data 
MyKinectData.JogRobot(trans); 
 

 

5 Development of communication software 

In this chapter the creation of the communication software is described, how the procedure went, 

what methods were used and how the final product or prototype became. 

5.1 Method on approach 

A desired sample code has been taken from the finished library, been modified and now saves the 

data as distance data in the x-, y- and z-axis, described in Chapter 4. With the help of this data should 

now an add-in for ABB's software RobotStudio be created that allows users control the robot through 

their hand movements and gestures and create paths. Before the two-armed robot YuMi can be 

taken care of, it’s a good idea to get the basis for the program to work first, in which a one-armed 

robot is more suited to start with. Thus the objectives became more clear for which functions must 

be implemented first instead of directly working on the whole of the project from day one. A detailed 

design of the application was first done in order to understand how it should process. Should the 

virtual replicate the user’s arm movement, in several joints? Or should the user be able to “grab” the 

robot through virtual hands created in the virtual environment in RobotStudio and guide its path? All 

suggestions were considered possible but one approach for the project was chosen eventually that 

involved the manipulation of the robot's TCP. By a hand gesture the robot can be jogged in the 

direction desired by the user, a method easily understandable. This coexists well with the method for 

getting the Kinect data as well where the distance is compared to a fixed point and the user's hand, 

which in the robot world can be a comparison between the distance of the robot's current TCP and a 

new designated TCP. A flowchart has been created to illustrate the structure of the program and is 

shown in Figure 9. To start the add-in for RobotStudio, two buttons is going to be created in a new 

tab in the software. One button shall activate the Kinect for further instructions to the robot, the 

other button shall create a path of the existing targets which will be created with the help of the 

sensor. Once the Kinect activates, it will display a new window which will show the body frame of the 

user (described in Chapter 4.2). It will keep track of if the user decides to close the window, and if so 

the sensor will stop. While active, the sensor will track its user and check if the user makes any hand 

gestures. If the user closes his/her hand, the current position of the hand as well as the robot TCP will 

be saved. Once saved the user will grab control of the robot and it will jog in the same direction as 

the user’s hand moves. If instead the user uses the lasso gesture, the application will save the current 

position of the robot’s TCP with orientation as a target. 
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Figure 9 Flowchart 

5.2 Challenges 

As sensory technology as well as PC SDK for RobotStudio were two new areas that hasn’t been 

studied before the bachelor programme, several challenges were faced to complete this task. The 

first and foremost was to get a wider understanding of how the programming goes to the Kinect 

sensor and PC SDK in C#. As they have their own API’s (application programming interface), which 

provide with complete specifications that allow the user to more easily use and communicate with 

specific software, they needed to be checked through and studied to be sure what API's need to be 

used for this project. To get started, help and inspiration was received from teachers, tutors, other 

individuals, forums, guides with examples and previous works aimed towards something that my 

project contains (e.g. other Kinect applications). Examples would be the MSDN forums and ABB’s 

Robotics Developer Center which provided with answers for questions and walkthroughs of how to 

implement a specific function in applications. As attempts were made, some functions had to be 

remade or the class itself scraped and start over. One of those attempts were a sample that was 

further worked on which when activated created a new window in RobotStudio and showed an 

online monitor of a virtual robot. The problem with this application though was that it caused more 

work than needed and complications to achieve the desired application and was therefore scraped 

and a new class had to be created and start over. This was due to lack of understanding the new 

API’s and no clear view on how the addition would be developed, a vision existed but the method to 

get there did not. But as function or even classes were scraped, lessons were learned and several 

lines of code could still become useful and reused in a new class. 
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5.3 Development 

The application that is created should through the sensor allow the user to jog the robot as well as 

create targets and paths, without having to make use of the RAPID program. Once a path is created, 

the user can sync it to RAPID and the robot control. An overview of the structure is illustrated in 

Figure 10. The class that will arrange the communication between Kinect and RobotStudio is going to 

have the following functions: 

 Creation of two buttons in RobotStudio where one should start the application and the other 

create a path of existing targets. 

 One that allows the jogging of the robot depending on the data sent by the sensor. 

 One that when instructed, creates a target corresponding to the robot's current TCP. 

 One that takes care of the path creation. 

Figure 10 Overview of application structure 

 

As the buttons generated by our application was made via ABB's Developer Center and does not 

have a greater purpose in our project, its code won’t be described (only important to mention is that 

button "Start" initiates and creates a window for the Kinect, in which the sensor sends data and 

instructions from there). The application will recognize three different modes which are based on the 

user’s hand gestures. When the user’s hand is open, it will be a neutral state and the application 

won’t react as the user can move freely. When the user’s hand is closed, it’s when the sensor will 
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initiate the jogging of the robot and with it sending the calculated data mentioned in chapter 4. And 

lastly when the user does the lasso gesture, the application will save the current TCP as a new target.  

5.3.1 Jogging robot 

As earlier shown, the following line of code was written in the Kinect class and is active while the 

user’s hand is closed: 

MyKinectData.JogRobot(trans); 

 
 

This initiates the jogging function for the virtual robot in the new class named Class1. With its 

initiation the distance data from the sensor is implemented. To see that the communication works 

and can initiate some kind of movement of the robot before further work on the manipulation, a 

while loop was written that instructs the robot to go to a predefined position when the user closes 

his/her hand. To make this work the active station and its mechanism had to be defined first. Then 

the current TCP of the robot will be defined by giving the Matrix4 structures named currentTCP and 

newTCP a joint orientation and translation value taken from the active station’s tool frame, namely 

global matrix.  

Matrix4 newTCP = stn.ActiveTask.ActiveTool.Frame.GlobalMatrix; 

         
 

With those stated, the “while” function may be declared and the translation of the position of the 

robot is carried out. The following code performs the mentioned function: 

public void JogRobot(ABB.Robotics.Math.Vector3 trans) 
{ 
    Station stn = Station.ActiveStation; 
 
    Mechanism mech = stn.FindGraphicComponentsByType(typeof(Mechanism))[0] as 
Mechanism; 
    Matrix4 currentTCP = stn.ActiveTask.ActiveTool.Frame.GlobalMatrix; 
 
    int i = 0; 
    while (i++ < 1000) 
    { 
        Matrix4 newTCP = stn.ActiveTask.ActiveTool.Frame.GlobalMatrix; 
        newTCP.Translate(0.001, 0, 0); 
        double[] jv; 
        if (mech.CalculateInverseKinematics(newTCP, Matrix4.Identity, false, out jv)) 
        { 
            mech.SetJointValuesAsync(jv, false).PumpingWait(); 
            Station.UpdateGraphics(true); 
        } 
    } 
} 
 

As can be seen in the code the Vector3 trans is now not used when only predefined numbers are 

running. The next step is to implement the data from trans and manipulate the virtual robot’s 

movement through it. The while was removed but its content kept and instead of having the 

translation of newTCP to go with specific numbers, the following code was used: 
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newTCP.Translate(trans.x / 50, trans.y / 50, trans.z / 50); 

 
 

This transfers the values sent by the sensor instead and uses it as the translation of the robot’s 

movement. The translation receives each axis value earlier given to trans. To ensure that the robot 

won’t be too sensitive towards the sensor’s sent signals and cause loss of control to the robot, the 

trans value is divided before it’s implemented with a value depending on how the user wants the 

sensitivity. As the input of translation values has changed, the mech.SetJointValues inside the if 

function could be changed to the following way: 

mech.SetJointValues(jv, false); 
 
 

The following lines of code became the result:  

public void JogRightRobot(ABB.Robotics.Math.Vector3 transR) 
{ 
    Station stn = Station.ActiveStation; 
 
    Mechanism mech = stn.FindGraphicComponentsByType(typeof(Mechanism))[0] as 
Mechanism; 
 
    Matrix4 newTCP = stn.ActiveTask.ActiveTool.Frame.GlobalMatrix; 
    newTCP.Translate(transR.x / 50, transR.y / 50, transR.z / 50); 
 
    double[] jv; 
    if (mech.CalculateInverseKinematics(newTCP, Matrix4.Identity, false, out jv)) 
    { 
        mech.SetJointValues(jv, false); 
        Station.UpdateGraphics(true); 
    } 
} 
 
 

The resulting code is only compatible to one-armed robots. For the two-armed YuMi robot to be able 

to use the application the lines of code had to be changed and is described later in chapter 6.2. 

5.3.2 Creating Targets 

For the creation of the target, it’s initiated when the user does the lasso gesture. As guidance, a 

sample was followed from RobotStudio Development named Creating Target. A big difference, 

however, was that the function that defines the positions of the targets need to retrieve the position 

of the robot's current TCP, instead of sending predetermined positions in x-, y-, z-axis. To achieve this 

the robot can retrieve data in the same way as the code for jogging, getting the robot’s current TCP 

and instead of sending a Vector3 value to ShowTarget the following could be used:  

ShowTarget(new Matrix4(currentTCP.Translation, currentTCP.EulerZYX)); 
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This sends instead a Matrix with both translation and orientation of the target. The changed lines of 

code are shown below for Create Targets:  

try 
{ 
    Station station = Station.ActiveStation; 
 
    // Get the coordinate position and orientation of the tool. 
    Matrix4 currentTCP = station.ActiveTask.ActiveTool.Frame.GlobalMatrix; 
 
    // Create robotstudio target. 
    ShowTarget(new Matrix4(currentTCP.Translation, currentTCP.EulerZYX)); 
} 
 

As the function now sends a different form of data, ShowTarget has to retrieve it in a different way. 

Inside its function, instead of giving position a Translation value from robTarget.Frame, it was 

changed to GlobalMatrix. 

With the mentioned modifications and addition of code, the user could now manipulate the robot’s 

movement as well as creating a target by giving hand gestures with the help of the Kinect. The next 

step was to create an easy way to create a path when the user has designated their desired targets. 

Through the Developer Center, lines of code was added which gathered all targets when initiated 

through second button Create Path and creates a path between them. To be certain that the path 

would be able to run, the paths are created with a move linear setting. 

6 Testing and optimization 

In this chapter the resulting application is shown and described. Here the optimization of the 

application is also described and what changes that had to be implemented to work for a two-armed 

robot. 

6.1 Result 

The application is uploaded to RobotStudio as an add-in. When opening RobotStudio it can be found 

in a new tab where two buttons are, namely Start and Create path. The application goes smooth 

when initiated without any disturbances on either the software or the computer. It’s giving quick 

response when the user goes from one hand gesture to another. The jogging sensitivity mentioned in 

chapter 5.3 was high at first but with the simple division of the delivered value, the speed of the 

robot could easily be adapted to any desired sensitivity. A downside though while testing the 

application was the interference between the left and right hand tracked gestures. As the bools with 

true and false kept the track on what the application should perform, the bools were added in an 

overall function that kept track of both hands gestures, and not individually. This led to a disturbance 

occurred if, for example, the right hand is closed while the left is open. To prevent this, the user 

needed to lay the left hand on the body to the side so that it could not be tracked by the sensor. To 

not be able to track and react individually for each of the hand’s hand gestures, this were something 

that had to be optimized if the work for this project would be able to support a two-armed robot 

such as the YuMi. 
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6.2 From one- to two-armed robot 

First and foremost, the code had to be optimized to let the application act separately for each hand’s 

hand gestures when running the Kinect. This could be achieved with the following:  

switch (body.HandRightState) 
{ 
    case HandState.Open: 

 
 

Instead of:  

switch (handState) 
{ 
    case HandState.Open: 

 
 

With the hands individually tracked, they can handle true and false values separately, and act 

according to instructions. But as they are separated, all the functions needed to be implemented for 

both left and right hand function. This leads to that the coding gets double rows of the same code 

with only the names different from each other, this may not be optimal, but was a simple solution 

that is easy to understand and follow. Examples is shown below with two functions that are the same 

but with different names, result of working with right and left hand individually:  

Example 1: 
// Switch for controlling robot with right hand 
public bool moveSwitchR { get; set; } 
 
// Switch for controlling robot with left hand 
public bool moveSwitchL { get; set; } 
 
Example 2: 
// Calculating distance between first home position and right hand position in x-axis 
(right hand) 
double calcDistanceXR = homeR.Position.X - pRH.Position.X; 
 
// Calculating distance between second home position and left hand position in x-axis 
(left hand) 
double calcDistanceXL = (homeL.Position.X - pLH.Position.X); 
 

As when both translation data from right and left arm is calculated, the data is sent just as before to 

the jogging function in Class1. But just as with the code lines for the Kinect, the jogging needs two 

separate initiations for each hand. This is necessary for the application to act independently for each 

hand. 

Right hand: 
// translation data of the right hand, calculated by the Kinect 
ABB.Robotics.Math.Vector3 transR = new ABB.Robotics.Math.Vector3(distanceZR, 
distanceXR, distanceYR); 
 
// Initiates the jogging procedure for the right arm in Class1 
MyKinectData.JogRightRobot(transR); 
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Left hand: 
// translation data of the left hand, calculated by the Kinect 
ABB.Robotics.Math.Vector3 transL = new ABB.Robotics.Math.Vector3(distanceZL, 
distanceXL, distanceYL); 
 
// Initiates the jogging procedure for the left arm in Class1 
MyKinectData.JogLeftRobot(transL); 

 
 

As for the lines of code in the jogging function, most of the changes were made there for the 

adaptation of the YuMi. First, each robot had to be identified by name and retrieved. Because it’s no 

longer a single robot, a search for the mechanism of the active station would not work. Then, as 

before, the current TCP will be defined, but just the right arm’s TCP in the jogging function for the 

right arm and the left arm’s TCP in left arm function.  

Right hand: 
Matrix4 rightYuMiCurrentTCP = rightYuMi.Task.ActiveTool.Frame.GlobalMatrix; 
rightYuMiCurrentTCP.Translate(transR.x / 50, transR.y / 50, transR.z / 50); 
 
Left hand: 
Matrix4 leftYuMiCurrentTCP = leftYuMi.Task.ActiveTool.Frame.GlobalMatrix; 
leftYuMiCurrentTCP.Translate(transL.x / 50, transL.y / 50, transL.z / 50); 

 
 

To enable a multi-axis robot such as YuMi to perform the function, lines of code needed to be added 

to retrieve arm plane information, including arm angle and arm length. These will all in the end of the 

function be used when the joint values are set. The finished adjusted code for the YuMi robot, one-

armed robots and an illustration showing how the application works can be found in the following 

appendices: Appendix A - Illustration of how the add-in works, Appendix B - Complete code applied 

for one-armed robot and Appendix C - Complete code applied for dual armed YuMi robot. 

7 Discussion and other improvement measures 

In this chapter an assembled discussion of the work is presented, as well as suggestions for further 

research and improvements. 

7.1 Discussion 

The resulting application shows a new method for simple programming in a virtual environment that 

combines the best of two worlds; the simplicity of online programming together with the flexibility of 

offline programming. The project's goal was to develop an approach for lead-through programming 

in a virtual environment, through the use of a user's hands. The expected result would be a 

prototype of a hand gesture programming application for virtual environments that generates 

instructions for a robot, which should also be able to be implemented with ABB's new collaborative 

robot: YuMi. With the chosen method which was carried out during development, an application was 

successfully developed that could live up to those expectations. With a Kinect sensor the application 

allows a user to use their hands to demonstrate and manipulate the robot’s motions in RobotStudio's 

virtual environment. Through hand gestures, users can decide when they wish to jog the robot and 
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when targets for the robot’s path should be generated. It works for one-armed industrial robots as 

well as two-armed such as ABB's YuMi. 

During the development several occasions arose which caused obstacles to the flow of the work 

process. As a newcomer to the project’s many topics as sensors and PC SDK, there were several 

misunderstandings and better understanding was necessary before you could get started, this did so 

the work flow slowed often down. This was difficult as well as what is also difficult for many other 

programmers; to create a functional code which when it happens, must find and fix certain lines of 

code which seems correct but isn’t. Something that was too complicated to get developed and 

implemented in the final prototype was the robot's orientation during the jogging phase, which is the 

application's main bottleneck. This causes the program to have less flexibility for the user to program 

a robot when the prototype can currently only jog the robot in the TCP axis without being able to 

rotate any of them towards a new direction. The reason for this is that no practical method could be 

developed in time, but only attempts that didn’t work well enough to be implemented. For example, 

the orientation could be too sensitive and the robot TCP could end up in unwanted directions when 

the user only rotates a little with the using hand. 

In the following subchapters, possible improvement is presented that were identified during the 

work which are not included in this project: 

7.1.1 Implement orientation 

As mentioned, a well-balanced orientation methodology is needed for the application to become 

more flexible for the user in order to jog the virtual robot. Different methods can be looked into to 

see if there’s any useful ways that can be implemented. Is there one? This brings up the question of 

how useful a vision sensor can become in the work towards finding new methods for more efficient 

programming of robots. 

7.1.2 Absolute control 

As the application currently operates the user is technically only instructing in which direction the x-, 

y- and z-axis the robot should jog towards, without stopping in the same distance as the user is 

currently holding their hand. This can be compared with a teach pendant in which the hand is the 

lever that controls the jogging of the robot. To be able to have absolute control where the robot 

replicates the user's exact movements, the lines of code for jogging needs to be overlooked, see 

what needs to be added, modified and/or deleted in that section. If successful, the next step would 

be to achieve control of each joint of robot by linking each joint of the human arm. 

7.1.3 Immersive environment 

For the goal to program the robot by demonstration and achieve absolute control, a possible 

continued work in this project is to immerse the user in the virtual world. Through immersive devices 

such as Oculus Rift, the user could see into the robot's virtual environment and through the robot’s 

"eyes". In this way the user could perform the desired path and teach the robot in a more 

collaborative approach. 
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7.1.4 Sensor optimization 

One Kinect sensor was far enough to develop a functional application for RobotStudio, but not 

optimal. Further work could be done where additional sensors were added to observe the user from 

different angles and achieve more precise manipulation of the robot movement through the users 

own movement. Not just vision sensors, other types of sensors could also be added to optimize the 

application’s performance, such as force sensors and sound sensors. With force sensors the user 

could possibly be able to manipulate a robot’s gripper and with how much force it should open and 

close. By using a sound sensor, which the Kinect v2 in fact has, further work could be done where the 

user doesn’t only send instructions to RobotStudio and the virtual robot through hand gestures but 

also with voice commands. 

7.1.5 Programming by Observation 

All projects have their goals and further work, but there’s usually also a final destination where a first 

prototype is the first step towards it. Programming by Observation, or PbO, is a supposed method in 

which by observing their human user, the machine can create a complete program that is a 

replication of the same performed task that the user recently did. It’s a different approach in 

comparison with the first prototype in which PbO is intended to make more of a recording that 

creates a program after the user has performed their task, while the prototype generates a path 

while the user controls it. But the first prototype still supports the work towards a possible PbO 

application later on and further studies can be carried out in an attempt to create such a program. 

8 Conclusions 

The conclusions from this project objectives are presented in this final chapter along with the 

author's private words. 

8.1 Conclusions on completion of goals 

A new approach towards lead-through programming was going to be developed and a prototype of 

such application presented in the end of the project. First, necessary material was acquired and 

literature about topics related to the project were sought together with earlier related work. Then 

the practical work began where the application for the project was created. First the Kinect sensor 

was organized with extra code to visualize and calculate distance data which is later sent for 

translation and become instructions for the virtual robot. For the robot part a new section in Robot 

Studio was first developed with buttons for the user to be able to initiate the application. After a new 

section was created the jogging function were coded which would jog the robot depending on the 

received data. Lastly a function was made which generates the targets in the robot's current tool 

position and a complete feature that allows the user to create a path between all targets through a 

simple push of a button. The result became an add-in that when initiated, opens a new way of easy 

lead-through programming on a virtual robot. It’s easy to learn as no previous computer knowledge 

is required in order to quickly learn how this application works. It utilizes the functionality of the 

Kinect through three simple hand gestures to jog and create targets to the robot. Goals which 

complies with the milestones which University of Skövde and ABB have set were reached and are 

clarified in the specified list below: 
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 Develop a prototype application using a robot lead-through programming method for virtual 

environments. 

 Through either motions, demonstration and/or grasping allow the user to teach the virtual 

robot desired tasks by moving it to different positions. 

 Should be capable of generating robot tasks which followed the movement of the user’s 

hands. 

 A suitable vision sensor and RobotStudio should be used. 

 To support further development of human-robot collaboration, the user should be able to 

use the developed prototype for the new two-armed ABB robot called YuMi.  

8.2 The author's final words 

It has been a bumpy road with many obstacles but as a whole, work has gone well. Much time has 

been spent in this project, but I’m still feeling that more could have been added if I had been more 

assertive with time to spend as it often became stressful. Regardless the workflow has been in a 

good pace where everything was in accordance with both the university and the company's views. 

The priorities were very specific from week to week, where one thing at a time was taken care of, 

personally an appropriate method. When the report was in focus there were initially a slow start but 

when relevant literature was found, the work pace could quickly catch up. The project fulfilled many 

of my expectations and I was able to work wholeheartedly with the things that interest me the most 

for a company that I have great respect for. Moreover, thanks to the school and the company, I was 

aided by tutors, teachers and other who gave their fullest support when any obstacles appeared. This 

allowed me to develop a qualitative result. With their support, it was like I never worked alone but 

rather in a collaborative group of dedicated people. The project has shown me how one's dedication 

can and will create a collaborative community between people and robots in the future. 
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Appendix A - Illustration of how the add-in works 

The following sections bring forth material selected to be excluded from the previous chapters to 

avoid overwhelming the report and disrupt its structure. 

The following figures illustrates how the application works when the user opens RobotStudio, from 

how to start the add-in to how a path is easily created between targets created by the user. For this 

illustration the YuMi robot is used. 

 

Figure 11 When RobotStudio starts and the application as well as the Kinect sensor is installed, the 

user finds the start button to begin in either tab YuMi Project or Project depending if it’s a YuMi 

robot or an another, one-armed robot. 
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Figure 12 When it’s initiated a new window opens, namely, the Kinect sensor's body tracking. The 

user puts himself in a good position that allows the sensor to track him/her and then awaits for 

further orders (while hands are open nothing will happen, green on screen). 

 

Figure 13 If the user closes either of his/her hands (red on screen) while being observed by the 

sensor, the user takes control of the robot and can jog its arm to desired positions. For a dual arm 

robot like YuMi, the user controls its arms with the user’s corresponding hands (right hand controls 

the robot's right arm and the left hand controls the left arm). For a one-armed robot, the user can 

control it with either hand. 
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Figure 14 When the robot arm is at a desired position, the user can save its position as a target. The 

user performs this when the "lasso" hand gesture is used (blue on screen). For the YuMi robot the 

targets are saved in the arms individual folders. 

 

Figure 15 When the user feels satisfied with the deployed targets the user can close the Kinect 

window to turn it off. Next to the start button there’s a path button, and when pushed a path will be 

created between the targets the user has previously put out for the desired arm. 
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Appendix B - Complete code applied for one-armed robot 

Since much of the lines of code for the Kinect sensor is from a finished library provided Microsoft to 

show the body frame on screen, will only the application's own unique code be shown. For the 

remaining lines of code please refer to Kinect for Windows SDK browser, search for Body Basics-WPF 

in C# samples. 

The following shows the additional code implemented in the Kinect MainWindow class. Lines of code 

from the finished library will also be shown in purpose of guiding interested where inside the sample 

the new code is implemented. 

Workplace 1: 
 
    using System; 
    using System.Collections.Generic; 
    using System.ComponentModel; 
    using System.Diagnostics; 
    using System.Globalization; 
    using System.IO; 
    using System.Windows; 
    using System.Windows.Media; 
    using System.Windows.Media.Imaging; 
    using Microsoft.Kinect; 
    using System.Windows.Media.Media3D; 
 
    /// <summary> 
    /// This class handles the Kinect v2 for the add-in. It uses the  
    /// sample of Body Basics-WPF from the SDK browser, but with  
    /// additional code added in order to be utilized for our  
    /// application. To distinguish the new code from the finished  
    /// library, refer to the WORKPLACE 1, 2 and 3 which have been  
    /// marked out, each with a summary. 
    /// </summary> 
 
    /// <summary> 
    /// Interaction logic for MainWindow 
    /// </summary> 
    public partial class MainWindow : Window, INotifyPropertyChanged 
    { 
        /// <summary> 
// 1    /// WORKPLACE 1: Here, structures are declared and some given values to be                                                      
// 1 
        /// used later in the other workplaces. Here is also switches created that  
        /// shifts between true and false, in order to handle the work rotation of 
        /// the code. 
        /// </summary> 
        #region WORKPLACE 1 
        private kinectControlProject.Class1 myKinectData = new 
kinectControlProject.Class1(); 
 
        internal kinectControlProject.Class1 MyKinectData 
        { 
            get { return myKinectData; } 
        } 
 
        // Set joints that will be used in WORKPLACE 2 
        Joint pRH; // pRH = position Right Hand 
        Joint homeR; 
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        Joint pLH; // pLH = position Left Hand 
        Joint homeL; 
 
        // Here is homePosition declared as a new Point as well as the settings set  
        // for the color on the home-marker and its size. Used in WORKPLACE 3 
        private Point homePositionR = new Point(); 
        private readonly Brush homeBrushR = new SolidColorBrush(Color.FromArgb(128, 
255, 0, 255)); // Color pink 
        private const double HomeSize = 5; 
 
        private Point homePositionL = new Point(); 
        private readonly Brush homeBrushL = new SolidColorBrush(Color.FromArgb(128, 
255, 102, 0)); // Color orange 
 
        // Below you can find all of the switches that are used. 
        #region Switches 
        #region Right 
        public bool moveSwitchR { get; set; } 
 
        public bool createSwitchR { get; set; } 
 
        public bool createOnceR { get; set; } 
 
        public bool firstTimeR { get; set; } 
 
        public bool dotCreateR { get; set; } 
        #endregion Right 
        #region Left 
        public bool moveSwitchL { get; set; } 
 
        public bool createSwitchL { get; set; } 
 
        public bool createOnceL { get; set; } 
 
        public bool firstTimeL { get; set; } 
 
        public bool dotCreateL { get; set; } 
        #endregion Left 
        #endregion Switches 
        #endregion WORKPLACE 1 
 

Workplace 2: 
 
                        if (body.IsTracked) 
                        { 
                            this.DrawClippedEdges(body, dc); 
 
                            IReadOnlyDictionary<JointType, Joint> joints = 
body.Joints; 
 
                            // convert the joint points to depth (display) space 
                            Dictionary<JointType, Point> jointPoints = new 
Dictionary<JointType, Point>(); 
 
                            foreach (JointType jointType in joints.Keys) 
                            { 
                                // sometimes the depth(Z) of an inferred joint may 
show as negative 
                                // clamp down to 0.1f to prevent coordinatemapper from 
returning (-Infinity, -Infinity) 
                                CameraSpacePoint position = 
joints[jointType].Position; 
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                                if (position.Z < 0) 
                                { 
                                    position.Z = InferredZPositionClamp; 
                                } 
 
                                DepthSpacePoint depthSpacePoint = 
this.coordinateMapper.MapCameraPointToDepthSpace(position); 
                                jointPoints[jointType] = new Point(depthSpacePoint.X, 
depthSpacePoint.Y); 
                            } 
 
                            this.DrawBody(joints, jointPoints, dc, drawPen); 
 
                            this.DrawHand(body.HandLeftState, 
jointPoints[JointType.HandLeft], dc); 
                            this.DrawHand(body.HandRightState, 
jointPoints[JointType.HandRight], dc); 
 
                            /// <summary> 
// 2                        /// WORKPLACE 2: This section declares hand gesture 
instructions and what                                   // 2 
                            /// happens when the user does the closed or "lasso" hand 
gesture. All  
                            /// math calculated to be later used is done here and what 
the x-, y-, z- 
                            /// values should display on screen. 
                            /// </summary> 
                            #region WORKPLACE 2 
                            // Switches from WORKPLACE 1 is switched on and off from 
here depending 
                            // on the user's hand gesture. 
                            #region Hand switches 
                            #region Right hand 
                            switch (body.HandRightState) 
                            { 
                                case HandState.Open: 
                                    moveSwitchR = false; 
                                    createSwitchR = false; 
                                    createOnceR = true; 
                                    firstTimeR = true; 
                                    // Won't display values of x, y, z while in open 
handstate 
                                    tblDistanceX.Text = "X: -"; 
                                    tblDistanceY.Text = "Y: -"; 
                                    tblDistanceZ.Text = "Z: -"; 
                                    break; 
                                case HandState.Closed: 
                                    moveSwitchR = true; 
                                    createSwitchR = false; 
                                    createOnceR = true; 
                                    if (firstTimeR) 
                                    { 
                                        homePositionR = 
jointPoints[JointType.HandRight]; // Saves the latest position of hand that was in 
lasso handstate 
                                    } 
                                    dotCreateR = true; 
                                    break; 
                                case HandState.Lasso: 
                                    moveSwitchR = false; 
                                    createSwitchR = true; 
                                    firstTimeR = true; 



~ 38 ~ 
 

                                    // Won't display values of x, y, z while in lasso 
handstate 
                                    tblDistanceX.Text = "X: -"; 
                                    tblDistanceY.Text = "Y: -"; 
                                    tblDistanceZ.Text = "Z: -"; 
                                    break; 
                            } 
                            #endregion Right hand 
                            #region Left hand 
                            switch (body.HandLeftState) 
                            { 
                                case HandState.Open: 
                                    moveSwitchL = false; 
                                    createSwitchL = false; 
                                    createOnceL = true; 
                                    firstTimeL = true; 
                                    break; 
                                case HandState.Closed: 
                                    moveSwitchL = true; 
                                    createSwitchL = false; 
                                    createOnceL = true; 
                                    if (firstTimeL) 
                                    { 
                                        homePositionL = 
jointPoints[JointType.HandLeft]; // Saves the latest position of hand that was in 
lasso handstate 
                                    } 
                                    dotCreateL = true; 
                                    break; 
                                case HandState.Lasso: 
                                    moveSwitchL = false; 
                                    createSwitchL = true; 
                                    firstTimeL = true; 
                                    break; 
                            } 
                            #endregion Left hand 
                            #endregion Hand switches 
                            // While in "Closed" handstate, the user's current hand 
position will be  
                            // saved and any difference to its position and the user's 
closed hand 
                            // will be calculated and sent to Class1. 
                            #region Jog data 
                            #region Jog right arm 
                            if (moveSwitchR) 
                            { 
                                if (firstTimeR) 
                                { 
                                    // Sets a home position at the current position of 
the user's right hand 
                                    homeR = body.Joints[JointType.HandRight]; 
                                    firstTimeR = false; 
                                } 
 
                                // Track current position of right hand 
                                pRH = body.Joints[JointType.HandRight]; 
 
                                // Some maths 
                                #region Maths 
                                // Calculating distance between home and right hand 
position in x-, y-, z-axis 
                                double calcDistanceXR = homeR.Position.X - 
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pRH.Position.X; 
                                double calcDistanceYR = (homeR.Position.Y - 
pRH.Position.Y) * (-1); 
                                double calcDistanceZR = homeR.Position.Z - 
pRH.Position.Z; 
 
                                // Rounding down decimal values and display x-, y-, z-
values on screen, according to the robot coordinate system 
                                double distanceXR = Math.Round(calcDistanceXR, 2); 
                                double distanceYR = Math.Round(calcDistanceYR, 2); 
                                double distanceZR = Math.Round(calcDistanceZR, 2); 
                                tblDistanceX.Text = "X: " + distanceZR.ToString() + 
"m"; 
                                tblDistanceY.Text = "Y: " + distanceXR.ToString() + 
"m"; 
                                tblDistanceZ.Text = "Z: " + distanceYR.ToString() + 
"m"; 
 
                                // Saves the x-, y-, z- values to 'transR', used for 
jogging the robot. For the Kinect and the robot to be able  
                                // to work within the same coordinate system, the x-, 
y-, z-translation is sent in a different order. 
                                ABB.Robotics.Math.Vector3 transR = new 
ABB.Robotics.Math.Vector3(distanceZR, distanceXR, distanceYR); 
 
                                // An attempt of implementing orientation control to 
the robot through the Kinect, but too sensitive. Isn't used  
                                // in this final prototype but kept here for possible 
further work on this project. 
                                #region Orientation 
                                Vector4 orientation = 
body.JointOrientations[JointType.HandRight].Orientation; 
                                Vector4 parentOrientation = 
body.JointOrientations[JointType.WristRight].Orientation; 
 
                                ABB.Robotics.Math.Quaternion quat = new 
ABB.Robotics.Math.Quaternion(orientation.X, orientation.Y, orientation.Z, 
orientation.W); 
                                ABB.Robotics.Math.Quaternion parentQuat = new 
ABB.Robotics.Math.Quaternion(parentOrientation.X, parentOrientation.Y, 
parentOrientation.Z, parentOrientation.W); 
                                #endregion Orientation 
                                #endregion Maths 
 
                                // Initiates the jogging procedure in Class1 and sends 
with it the calculated distance data (quat and parentQuat 
                                // isn't being used). 
                                MyKinectData.JogRobot(transR, quat, parentQuat); 
                            } 
                            #endregion Jog right arm 
                            #region Jog left arm 
                            if (moveSwitchL) 
                            { 
                                if (firstTimeL) 
                                { 
                                    // Sets a home position at the current position of 
the user's left hand 
                                    homeL = body.Joints[JointType.HandLeft]; 
                                    firstTimeL = false; 
                                } 
 
                                // Track current position of left hand 
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                                pLH = body.Joints[JointType.HandLeft]; 
 
                                // Some maths 
                                #region Maths 
                                // Calculating distance between home and left hand 
position in x-, y-, z-axis 
                                double calcDistanceXL = (homeL.Position.X - 
pLH.Position.X); 
                                double calcDistanceYL = (homeL.Position.Y - 
pLH.Position.Y) * (-1); 
                                double calcDistanceZL = homeL.Position.Z - 
pLH.Position.Z; 
 
                                // Rounding down decimal values and display x-, y-, z-
values on screen, according to the robot coordinate system 
                                double distanceXL = Math.Round(calcDistanceXL, 2); 
                                double distanceYL = Math.Round(calcDistanceYL, 2); 
                                double distanceZL = Math.Round(calcDistanceZL, 2); 
 
                                // Saves the x-, y-, z- values to 'transL', used for 
jogging the robot. For the Kinect and the robot to be able  
                                // to work within the same coordinate system, the x-, 
y-, z-translation is sent in a different order. 
                                ABB.Robotics.Math.Vector3 transL = new 
ABB.Robotics.Math.Vector3(distanceZL, distanceXL, distanceYL); 
 
                                // An attempt of implementing orientation control to 
the robot through the Kinect, but too sensitive. Isn't used  
                                // in this final prototype but kept here for possible 
further work on this project. 
                                #region Orientation 
                                Vector4 orientation = 
body.JointOrientations[JointType.HandRight].Orientation; 
                                Vector4 parentOrientation = 
body.JointOrientations[JointType.WristRight].Orientation; 
 
                                ABB.Robotics.Math.Quaternion quat = new 
ABB.Robotics.Math.Quaternion(orientation.X, orientation.Y, orientation.Z, 
orientation.W); 
                                ABB.Robotics.Math.Quaternion parentQuat = new 
ABB.Robotics.Math.Quaternion(parentOrientation.X, parentOrientation.Y, 
parentOrientation.Z, parentOrientation.W); 
                                #endregion Orientation 
                                #endregion Maths 
 
                                // Initiates the jogging procedure in Class1 and sends 
with it the calculated distance data (quat and parentQuat 
                                // isn't being used). 
                                MyKinectData.JogRobot(transL, quat, parentQuat); 
                            } 
                            #endregion Jog left arm 
                            #endregion Jog data 
                            // When the user does a "Lasso" handstate, a new target 
will be created,  
                            // described in CreateTargets in Class1. 
                            #region Create target 
                            #region right 
                            if (createSwitchR) 
                            { 
                                if (createOnceR) 
                                { 
                                    MyKinectData.CreateTargets(); 
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                                    createOnceR = false; 
                                } 
                            } 
                            #endregion right 
                            #region left 
                            if (createSwitchL) 
                            { 
                                if (createOnceL) 
                                { 
                                    MyKinectData.CreateTargets(); 
                                    createOnceL = false; 
                                } 
                            } 
                            #endregion left 
                            #endregion Create target 
                            #endregion WORKPLACE 2 
                        } 
 

Workplace 3: 
 
        private void DrawHand(HandState handState, Point handPosition, DrawingContext 
drawingContext) 
        { 
            if (myKinectData == null) return; 
 
            switch (handState) 
            { 
                case HandState.Closed: 
                    drawingContext.DrawEllipse(this.handClosedBrush, null, 
handPosition, HandSize, HandSize); 
                    break; 
 
                case HandState.Open: 
                    drawingContext.DrawEllipse(this.handOpenBrush, null, handPosition, 
HandSize, HandSize); 
                    break; 
 
                case HandState.Lasso: 
                    drawingContext.DrawEllipse(this.handLassoBrush, null, 
handPosition, HandSize, HandSize); 
                    break; 
            } 
 
            /// <summary> 
// 3        /// WORKPLACE 3: Here the marker for home position is created when the 
user does                                            // 3  
            /// the "closed" handstate. 
            /// </summary> 
            #region WORKPLACE 3 
            if (dotCreateR) 
            { 
                // Draws a marker for right hand home position 
                drawingContext.DrawEllipse(this.homeBrushR, null, homePositionR, 
HomeSize, HomeSize); 
            } 
            if (dotCreateL) 
            { 
                // Draws a marker for left hand home position 
                drawingContext.DrawEllipse(this.homeBrushL, null, homePositionL, 
HomeSize, HomeSize); 
            } 
            #endregion WORKPLACE 3 
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        } 

 
 

Following code is Class1 which handles the implementation of the application to RobotStudio and the 

manipulation of the robot. 

using ABB.Robotics; 
using ABB.Robotics.Math; 
using ABB.Robotics.RobotStudio; 
using ABB.Robotics.RobotStudio.Controllers; 
using ABB.Robotics.RobotStudio.Environment; 
using ABB.Robotics.RobotStudio.Stations; 
using ABB.Robotics.RobotStudio.Stations.Forms; 
using Microsoft.Kinect; 
using System; 
using System.Collections.Generic; 
using System.ComponentModel; 
using System.Diagnostics; 
using System.Globalization; 
using System.IO; 
using System.Linq; 
using System.Text; 
using System.Threading.Tasks; 
using System.Windows; 
using System.Windows.Media; 
using System.Windows.Media.Imaging; 
 
namespace kinectControlProject 
{ 
    public class Class1 
    { 
        public Microsoft.Samples.Kinect.BodyBasics.MainWindow myKinectWindow; 
         
        // This is the entry point for the Add-In 
        public static void AddinMain() 
        { 
            Class1 addin = new Class1(); 
            addin.CreateButton(); 
        } 
 
        // Creating the button for the project 
        #region CreateButton 
        private void CreateButton() 
        { 
            //Begin UndoStep 
            Project.UndoContext.BeginUndoStep("Add Buttons"); 
 
            try 
            { 
                // Create a new tab. 
                RibbonTab ribbonTab = new RibbonTab("Project", "Kinect"); 
                UIEnvironment.RibbonTabs.Add(ribbonTab); 
                // Make tab as active tab 
                UIEnvironment.ActiveRibbonTab = ribbonTab; 
 
                // Create a group for Kinect 
                RibbonGroup ribbonGroup = new RibbonGroup("KinectDemo", "Robot 
programming"); 
 
                // Create Kinect button 
                CommandBarButton button = new CommandBarButton("KinectTrack", "Start 
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Kinect"); 
                button.HelpText = "Teach instructions with the help of a Kinect. Close 
either right or left hand to move the robot, use lasso handstate to save current TCP 
as a target"; 
                button.DefaultEnabled = true; 
                ribbonGroup.Controls.Add(button); 
 
                // Include Seperator between buttons 
                CommandBarSeparator seperator = new CommandBarSeparator(); 
                ribbonGroup.Controls.Add(seperator); 
 
                // Create second Kinect button 
                CommandBarButton buttonSecond = new CommandBarButton("KinectCreate", 
"Create Path"); 
                buttonSecond.HelpText = "Create a path between existing targets"; 
                buttonSecond.DefaultEnabled = true; 
                ribbonGroup.Controls.Add(buttonSecond); 
 
                // Set the size of the buttons 
                RibbonControlLayout[] ribbonControlLayout = { 
RibbonControlLayout.Small, RibbonControlLayout.Large }; 
                ribbonGroup.SetControlLayout(button, ribbonControlLayout[1]); 
                ribbonGroup.SetControlLayout(buttonSecond, ribbonControlLayout[1]); 
 
                // Add ribbon group to ribbon tab 
                ribbonTab.Groups.Add(ribbonGroup); 
 
                // Add an event handler 
                button.UpdateCommandUI += new 
UpdateCommandUIEventHandler(button_UpdateCommandUI); 
                buttonSecond.UpdateCommandUI += new 
UpdateCommandUIEventHandler(buttonSecond_UpdateCommandUI); 
                // Add an event handler for pressing the buttons 
                button.ExecuteCommand += new 
ExecuteCommandEventHandler(button_ExecuteCommand); 
                buttonSecond.ExecuteCommand += new 
ExecuteCommandEventHandler(buttonSecond_ExecuteCommand); 
            } 
            catch (Exception ex) 
            { 
                Project.UndoContext.CancelUndoStep(CancelUndoStepType.Rollback); 
                Logger.AddMessage(new LogMessage(ex.Message.ToString())); 
            } 
            finally 
            { 
                Project.UndoContext.EndUndoStep(); 
            } 
        } 
        #endregion CreateButton 
 
        // First button which starts the kinect 
        #region First button 
        private void button_ExecuteCommand(object sender, ExecuteCommandEventArgs e) 
        { 
            // RobotStudio sends a signal to activate the Kinect v2. It opens a window 
and shows the body tracking 
            myKinectWindow = new Microsoft.Samples.Kinect.BodyBasics.MainWindow(); 
            myKinectWindow.Show(); 
        } 
 
        private void button_UpdateCommandUI(object sender, UpdateCommandUIEventArgs e) 
        { 
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            // This enables the button, instead of "button1.Enabled = true". 
            e.Enabled = true; 
        } 
        #endregion First button 
 
        // Second button which creates the path 
        #region Second button 
        private void buttonSecond_ExecuteCommand(object sender, 
ExecuteCommandEventArgs e) 
        { 
            // When the second button is pushed, CreatePath will be initiated which 
creates a  
            // path between targets that has been created 
            CreatePath(); 
        } 
 
        private void buttonSecond_UpdateCommandUI(object sender, 
UpdateCommandUIEventArgs e) 
        { 
            // This enables the button, instead of "button1.Enabled = true". 
            e.Enabled = true; 
        } 
        #endregion Second button 
 
        // While the user's hand is closed, the robot will replicate the user's hand 
movement 
        #region JogRobot 
        public void JogRobot(ABB.Robotics.Math.Vector3 trans, 
ABB.Robotics.Math.Quaternion rot, ABB.Robotics.Math.Quaternion parentRot) 
        { 
            Station stn = Station.ActiveStation; 
 
            // Identify the mechanism of the robot 
            Mechanism mech = stn.FindGraphicComponentsByType(typeof(Mechanism))[0] as 
Mechanism; 
 
            Matrix4 newTCP = stn.ActiveTask.ActiveTool.Frame.GlobalMatrix; 
            newTCP.Translate(trans.x / 50, trans.y / 50, trans.z / 50); // New TCP 
values are set here based on the calculated data from Kinect 
            #region Rotation (WIP) 
            // Take the relative rotation between the two quaternions (WIP) 
            /* 
            parentRot.Inverse(); 
            Quaternion relRot = parentRot * rot; 
            Vector3 euler = relRot.EulerZYX; 
            euler.x /= 100; 
            euler.y /= 100; 
            euler.z /= 100; 
            Matrix4 newModifiedRot = Matrix4.Identity; 
            newModifiedRot.EulerZYX = euler; 
            newTCP = newTCP * newModifiedRot; 
            */ 
            // End rotation 
            #endregion Rotation (WIP) 
 
            double[] jv; 
            if (mech.CalculateInverseKinematics(newTCP, Matrix4.Identity, false, out 
jv)) 
            { 
                // Here the robot arm moves to its new position 
                mech.SetJointValues(jv, false); 
                Station.UpdateGraphics(true); 



~ 45 ~ 
 

            } 
 
        } 
        #endregion JogRobot 
 
        // Create Target 
        #region CreateTargets 
        public void CreateTargets() 
        { 
            //Begin UndoStep 
            Project.UndoContext.BeginUndoStep("CreateTarget"); 
 
            try 
            { 
                Station station = Station.ActiveStation; 
 
                // Get the coordinate position and orientation of the tool. 
                Matrix4 currentTCP = station.ActiveTask.ActiveTool.Frame.GlobalMatrix; 
 
                // Create robotstudio target. 
                ShowTarget(new Matrix4(currentTCP.Translation, currentTCP.EulerZYX)); 
            } 
            catch (Exception exception) 
            { 
                Project.UndoContext.CancelUndoStep(CancelUndoStepType.Rollback); 
                Logger.AddMessage(new LogMessage(exception.Message.ToString())); 
            } 
            finally 
            { 
                //End UndoStep 
                Project.UndoContext.EndUndoStep(); 
            } 
        } 
        #endregion CreateRightTargets 
 
        // Show Target 
        #region ShowTarget 
        private static void ShowTarget(Matrix4 position) 
        { 
            try 
            { 
                //get the active station 
                Station station = Project.ActiveProject as Station; 
 
                //create robtarget 
                RsRobTarget robTarget = new RsRobTarget(); 
                robTarget.Name = station.ActiveTask.GetValidRapidName("Target", "_", 
10); 
 
                //translation 
                robTarget.Frame.GlobalMatrix = position; 
 
                //add robtargets to datadeclaration 
                station.ActiveTask.DataDeclarations.Add(robTarget); 
 
                //create target 
                RsTarget target = new RsTarget(station.ActiveTask.ActiveWorkObject, 
robTarget); 
                target.Name = robTarget.Name; 
                target.Attributes.Add(target.Name, true); 
 
                //add targets to active task 
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                station.ActiveTask.Targets.Add(target); 
            } 
            catch (Exception exception) 
            { 
                Logger.AddMessage(new LogMessage(exception.Message.ToString())); 
            } 
        } 
        #endregion ShowTarget 
 
        // Create Path 
        #region CreatePath 
        private static void CreatePath() 
        { 
            Project.UndoContext.BeginUndoStep("RsPathProcedure Create"); 
 
            try 
            { 
                // Get the active Station 
                Station station = Project.ActiveProject as Station; 
                // Create a PathProcedure. 
                RsPathProcedure myPath = new RsPathProcedure("myPath"); 
 
                // Add the path to the ActiveTask. 
                station.ActiveTask.PathProcedures.Add(myPath); 
                myPath.ModuleName = "module1"; 
                myPath.ShowName = true; 
                myPath.Synchronize = true; 
                myPath.Visible = true; 
 
                //Make the path procedure as active path procedure 
                station.ActiveTask.ActivePathProcedure = myPath; 
 
                //Create Path  
                foreach (RsTarget target in station.ActiveTask.Targets) 
                { 
                    RsMoveInstruction moveInstruction = 
                        new RsMoveInstruction(station.ActiveTask, "Move", "Default", 
                        MotionType.Joint, station.ActiveTask.ActiveWorkObject.Name, 
                        target.Name, station.ActiveTask.ActiveTool.Name); 
 
                    myPath.Instructions.Add(moveInstruction); 
 
                } 
            } 
            catch (Exception ex) 
            { 
                Project.UndoContext.CancelUndoStep(CancelUndoStepType.Rollback); 
                Logger.AddMessage(new LogMessage(ex.Message.ToString())); 
            } 
            finally 
            { 
                Project.UndoContext.EndUndoStep(); 
            } 
        } 
        #endregion CreatePath 
    } 
} 
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Appendix C - Complete code applied for dual armed YuMi robot 

Since the additional code implemented in the Kinect MainWindow class (shown in Appendix B - 

Complete code applied for one-armed robot) is the same for the YuMi application with just small 

adjustment, only the lines of code for Class1 will be shown here which had the greatest change. 

using ABB.Robotics; 
using ABB.Robotics.Math; 
using ABB.Robotics.RobotStudio; 
using ABB.Robotics.RobotStudio.Controllers; 
using ABB.Robotics.RobotStudio.Environment; 
using ABB.Robotics.RobotStudio.Stations; 
using ABB.Robotics.RobotStudio.Stations.Forms; 
using Microsoft.Kinect; 
using RobotStudio.API.Internal; 
using System; 
using System.Collections.Generic; 
using System.ComponentModel; 
using System.Diagnostics; 
using System.Globalization; 
using System.IO; 
using System.Linq; 
using System.Text; 
using System.Threading.Tasks; 
using System.Windows; 
using System.Windows.Media; 
using System.Windows.Media.Imaging; 
 
namespace kinectControlProject 
{ 
    public class Class1 
    { 
        public Microsoft.Samples.Kinect.BodyBasics.MainWindow myKinectWindow; 
         
        // This is the entry point for the Add-In 
        public static void AddinMain() 
        { 
            Class1 addin = new Class1(); 
            addin.CreateButton(); 
        } 
 
        // Creating the buttons for the add-in 
        #region CreateButton 
        private void CreateButton() 
        { 
            //Begin UndoStep 
            Project.UndoContext.BeginUndoStep("Add Buttons"); 
 
            try 
            { 
                // Create a new tab. 
                RibbonTab ribbonTab = new RibbonTab("Project", "Kinect (YuMi)"); 
                UIEnvironment.RibbonTabs.Add(ribbonTab); 
                // Make tab as active tab 
                UIEnvironment.ActiveRibbonTab = ribbonTab; 
 
                // Create a group for Kinect 
                RibbonGroup ribbonGroup1 = new RibbonGroup("KinectDemo", "Robot 
programming"); 
 
                // Create Kinect button 
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                CommandBarButton button = new CommandBarButton("KinectTrack", "Start 
Kinect"); 
                button.HelpText = "Teach instructions with the help of a Kinect. Close 
either right or left hand to move the corresponding arm of the robot, use lasso 
handstate to save current TCP as a target"; 
                button.DefaultEnabled = true; 
                ribbonGroup1.Controls.Add(button); 
 
                // Create a group for YuMi Path 
                RibbonGroup ribbonGroup2 = new RibbonGroup("YuMiPath", "Create Path"); 
 
                // Create YuMi right arm button 
                CommandBarButton buttonSecond = new CommandBarButton("PathRight", 
"Right arm path"); 
                buttonSecond.HelpText = "Create a path between the right arm's 
existing targets"; 
                buttonSecond.DefaultEnabled = true; 
                ribbonGroup2.Controls.Add(buttonSecond); 
 
                // Include Seperator between buttons 
                CommandBarSeparator seperator = new CommandBarSeparator(); 
                ribbonGroup2.Controls.Add(seperator); 
 
                // Create YuMi left arm button 
                CommandBarButton buttonThird = new CommandBarButton("PathLeft", "Left 
arm path"); 
                buttonThird.HelpText = "Create a path between the left arm's existing 
targets"; 
                buttonThird.DefaultEnabled = true; 
                ribbonGroup2.Controls.Add(buttonThird); 
 
                // Set the size of the buttons 
                RibbonControlLayout[] ribbonControlLayout = { 
RibbonControlLayout.Small, RibbonControlLayout.Large }; 
                ribbonGroup1.SetControlLayout(button, ribbonControlLayout[1]); 
                ribbonGroup2.SetControlLayout(buttonSecond, ribbonControlLayout[1]); 
                ribbonGroup2.SetControlLayout(buttonThird, ribbonControlLayout[1]); 
 
                // Add ribbon groups to ribbon tab 
                ribbonTab.Groups.Add(ribbonGroup1); 
                ribbonTab.Groups.Add(ribbonGroup2); 
 
                // Add an event handler 
                button.UpdateCommandUI += new 
UpdateCommandUIEventHandler(button_UpdateCommandUI); 
                buttonSecond.UpdateCommandUI += new 
UpdateCommandUIEventHandler(buttonSecond_UpdateCommandUI); 
                buttonThird.UpdateCommandUI += new 
UpdateCommandUIEventHandler(buttonThird_UpdateCommandUI); 
                // Add an event handler for pressing the buttons 
                button.ExecuteCommand += new 
ExecuteCommandEventHandler(button_ExecuteCommand); 
                buttonSecond.ExecuteCommand += new 
ExecuteCommandEventHandler(buttonSecond_ExecuteCommand); 
                buttonThird.ExecuteCommand += new 
ExecuteCommandEventHandler(buttonThird_ExecuteCommand); 
            } 
            catch (Exception ex) 
            { 
                Project.UndoContext.CancelUndoStep(CancelUndoStepType.Rollback); 
                Logger.AddMessage(new LogMessage(ex.Message.ToString())); 
            } 
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            finally 
            { 
                Project.UndoContext.EndUndoStep(); 
            } 
        } 
        #endregion CreateButton 
 
        // First button which starts the kinect 
        #region First button 
        private void button_ExecuteCommand(object sender, ExecuteCommandEventArgs e) 
        { 
            // RobotStudio sends a signal to activate the Kinect v2. It opens a window 
and shows the body tracking 
            myKinectWindow = new Microsoft.Samples.Kinect.BodyBasics.MainWindow(); 
            myKinectWindow.Show(); 
        } 
 
        private void button_UpdateCommandUI(object sender, UpdateCommandUIEventArgs e) 
        { 
            // This enables the button, instead of "button1.Enabled = true". 
            e.Enabled = true; 
        } 
        #endregion First button 
 
        // Second button which creates the right arm path 
        #region Second button 
        private void buttonSecond_ExecuteCommand(object sender, 
ExecuteCommandEventArgs e) 
        { 
            // When the second button is pushed, CreatePath will be initiated which 
creates a  
            // path between targets that has been created for the right arm 
            CreatePathRight(); 
        } 
 
        private void buttonSecond_UpdateCommandUI(object sender, 
UpdateCommandUIEventArgs e) 
        { 
            // This enables the button, instead of "button1.Enabled = true". 
            e.Enabled = true; 
        } 
        #endregion Second button 
 
        // Third button which creates the left arm path 
        #region Third button 
        private void buttonThird_ExecuteCommand(object sender, ExecuteCommandEventArgs 
e) 
        { 
            // When the second button is pushed, CreatePath will be initiated which 
creates a  
            // path between targets that has been created for the left arm 
            CreatePathLeft(); 
        } 
 
        private void buttonThird_UpdateCommandUI(object sender, 
UpdateCommandUIEventArgs e) 
        { 
            // This enables the button, instead of "button1.Enabled = true". 
            e.Enabled = true; 
        } 
        #endregion Third button 
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        // While the user's hand is closed, the robot will replicate the user's hand 
movement 
        #region JogRobot Right 
        public void JogRightRobot(ABB.Robotics.Math.Vector3 transR, 
ABB.Robotics.Math.Quaternion rot, ABB.Robotics.Math.Quaternion parentRot) 
        { 
            Station stn = Station.ActiveStation; 
 
            // Get the two robots, identify the left and right robot by name 
            Mechanism leftYuMi = null; 
            Mechanism rightYuMi = null; 
            foreach (Mechanism mech in 
stn.FindGraphicComponentsByType(typeof(Mechanism))) 
            { 
                if (mech.MechanismType == MechanismType.Robot && 
mech.ModelName.ToUpper().Contains("IRB14000")) 
                { 
                    // This is a YuMi Robot 
                    if (mech.ModelName.ToUpper().Contains("_L")) 
                    { 
                        leftYuMi = mech; 
                    } 
                    else if (mech.ModelName.ToUpper().Contains("_R")) 
                    { 
                        rightYuMi = mech; 
                    } 
                } 
            } 
 
            Matrix4 rightYuMiCurrentTCP = 
rightYuMi.Task.ActiveTool.Frame.GlobalMatrix; 
            rightYuMiCurrentTCP.Translate(transR.x / 50, transR.y / 50, transR.z / 
50); // New TCP values are set here based on the calculated data from Kinect 
            double[] jv; 
 
            double[] integratedjv = null; 
            int nNoOfIntegratedUnits = 0; 
            Matrix4 refplane = new Matrix4(); 
            Matrix4 armplane = new Matrix4(); 
            double armangle = 0, length = 0; 
            int status = 0; 
            if (ControllerHelper.GetArmPlaneInfo(rightYuMi, out refplane, out 
armplane, out armangle, out length, out status)) 
            { 
                // This is how it works for multiaxis robots, the armangle is in thea 
eax_a position in the robtarget 
                nNoOfIntegratedUnits = 1; 
                integratedjv = new double[nNoOfIntegratedUnits]; 
                integratedjv[0] = armangle; 
            } 
            if (rightYuMi.CalculateInverseKinematics(rightYuMiCurrentTCP, 
rightYuMi.GetJointValues(), integratedjv, Matrix4.Identity, false, out jv)) 
            { 
                // Here the robot arm moves to its new position 
                rightYuMi.SetJointValues(jv, false); 
                Station.UpdateGraphics(true); 
            } 
        } 
        #endregion JogRobot Right 
        #region JogRobot Left 
        public void JogLeftRobot(ABB.Robotics.Math.Vector3 transL, 
ABB.Robotics.Math.Quaternion rot, ABB.Robotics.Math.Quaternion parentRot) 
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        { 
            Station stn = Station.ActiveStation; 
 
            // Get the two robots, identify the left and right robot by name 
            Mechanism leftYuMi = null; 
            Mechanism rightYuMi = null; 
            foreach (Mechanism mech in 
stn.FindGraphicComponentsByType(typeof(Mechanism))) 
            { 
                if (mech.MechanismType == MechanismType.Robot && 
mech.ModelName.ToUpper().Contains("IRB14000")) 
                { 
                    // This is a YuMi Robot 
                    if (mech.ModelName.ToUpper().Contains("_L")) 
                    { 
                        leftYuMi = mech; 
                    } 
                    else if (mech.ModelName.ToUpper().Contains("_R")) 
                    { 
                        rightYuMi = mech; 
                    } 
                } 
            } 
 
            Matrix4 leftYuMiCurrentTCP = leftYuMi.Task.ActiveTool.Frame.GlobalMatrix; 
            leftYuMiCurrentTCP.Translate(transL.x / 50, transL.y / 50, transL.z / 50); 
// New TCP values are set here based on the calculated data from Kinect 
            double[] jv; 
 
            double[] integratedjv = null; 
            int nNoOfIntegratedUnits = 0; 
            Matrix4 refplane = new Matrix4(); 
            Matrix4 armplane = new Matrix4(); 
            double armangle = 0, length = 0; 
            int status = 0; 
            if (ControllerHelper.GetArmPlaneInfo(leftYuMi, out refplane, out armplane, 
out armangle, out length, out status)) 
            { 
                // This is how it works for multiaxis robots, the armangle is in thea 
eax_a position in the robtarget 
                nNoOfIntegratedUnits = 1; 
                integratedjv = new double[nNoOfIntegratedUnits]; 
                integratedjv[0] = armangle; 
            } 
            if (leftYuMi.CalculateInverseKinematics(leftYuMiCurrentTCP, 
leftYuMi.GetJointValues(), integratedjv, Matrix4.Identity, false, out jv)) 
            { 
                // Here the robot arm moves to its new position 
                leftYuMi.SetJointValues(jv, false); 
                Station.UpdateGraphics(true); 
            } 
        } 
        #endregion JogRobot Left 
 
        // Create Target 
        #region CreateTargets Right 
        public void CreateTargetsR() 
        { 
            //Begin UndoStep 
            Project.UndoContext.BeginUndoStep("CreateTarget"); 
 
            try 
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            { 
                Station station = Station.ActiveStation; 
 
                //get the two robots, identify the left and right robot by name 
                Mechanism leftYuMi = null; 
                Mechanism rightYuMi = null; 
                foreach (Mechanism mech in 
station.FindGraphicComponentsByType(typeof(Mechanism))) 
                { 
                    if (mech.MechanismType == MechanismType.Robot && 
mech.ModelName.ToUpper().Contains("IRB14000")) 
                    { 
                        //this is a YuMi Robot 
                        if (mech.ModelName.ToUpper().Contains("_L")) 
                        { 
                            leftYuMi = mech; 
                        } 
                        else if (mech.ModelName.ToUpper().Contains("_R")) 
                        { 
                            rightYuMi = mech; 
                        } 
                    } 
                } 
 
                // Get the coordinate position and orientation of the right tool. 
                Matrix4 rightYuMiCurrentTCP = 
rightYuMi.Task.ActiveTool.Frame.GlobalMatrix; 
 
                // Create robotstudio target. 
                ShowTargetRight(new Matrix4(rightYuMiCurrentTCP.Translation, 
rightYuMiCurrentTCP.EulerZYX)); 
            } 
            catch (Exception exception) 
            { 
                Project.UndoContext.CancelUndoStep(CancelUndoStepType.Rollback); 
                Logger.AddMessage(new LogMessage(exception.Message.ToString())); 
            } 
            finally 
            { 
                //End UndoStep 
                Project.UndoContext.EndUndoStep(); 
            } 
        } 
        #endregion CreateTargets Right 
        #region CreateTargets Left 
        public void CreateTargetsL() 
        { 
            //Begin UndoStep 
            Project.UndoContext.BeginUndoStep("CreateTarget"); 
 
            try 
            { 
                Station station = Station.ActiveStation; 
 
                //get the two robots, identify the left and right robot by name 
                Mechanism leftYuMi = null; 
                Mechanism rightYuMi = null; 
                foreach (Mechanism mech in 
station.FindGraphicComponentsByType(typeof(Mechanism))) 
                { 
                    if (mech.MechanismType == MechanismType.Robot && 
mech.ModelName.ToUpper().Contains("IRB14000")) 
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                    { 
                        //this is a YuMi Robot 
                        if (mech.ModelName.ToUpper().Contains("_L")) 
                        { 
                            leftYuMi = mech; 
                        } 
                        else if (mech.ModelName.ToUpper().Contains("_R")) 
                        { 
                            rightYuMi = mech; 
                        } 
                    } 
                } 
 
                // Get the coordinate position and orientation of the left tool. 
                Matrix4 leftYuMiCurrentTCP = 
leftYuMi.Task.ActiveTool.Frame.GlobalMatrix; 
 
                // Create robotstudio target. 
                ShowTargetLeft(new Matrix4(leftYuMiCurrentTCP.Translation, 
leftYuMiCurrentTCP.EulerZYX)); 
            } 
            catch (Exception exception) 
            { 
                Project.UndoContext.CancelUndoStep(CancelUndoStepType.Rollback); 
                Logger.AddMessage(new LogMessage(exception.Message.ToString())); 
            } 
            finally 
            { 
                //End UndoStep 
                Project.UndoContext.EndUndoStep(); 
            } 
        } 
        #endregion CreateTargets Left 
 
        // Show Target 
        #region ShowTargetRight 
        private static void ShowTargetRight(Matrix4 position) 
        { 
            try 
            { 
                //get the active station 
                Station station = Project.ActiveProject as Station; 
 
                //get the two robots, identify the left and right robot by name 
                Mechanism leftYuMi = null; 
                Mechanism rightYuMi = null; 
                foreach (Mechanism mech in 
station.FindGraphicComponentsByType(typeof(Mechanism))) 
                { 
                    if (mech.MechanismType == MechanismType.Robot && 
mech.ModelName.ToUpper().Contains("IRB14000")) 
                    { 
                        //this is a YuMi Robot 
                        if (mech.ModelName.ToUpper().Contains("_L")) 
                        { 
                            leftYuMi = mech; 
                        } 
                        else if (mech.ModelName.ToUpper().Contains("_R")) 
                        { 
                            rightYuMi = mech; 
                        } 
                    } 
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                } 
 
                //create robtarget 
                RsRobTarget robTargetRight = new RsRobTarget(); 
                robTargetRight.Name = rightYuMi.Task.GetValidRapidName("Target", "_", 
10); 
 
                //translation 
                robTargetRight.Frame.GlobalMatrix = position; 
 
                //add robtargets to datadeclaration 
                rightYuMi.Task.DataDeclarations.Add(robTargetRight); 
 
                //create target 
                RsTarget targetRight = new RsTarget(rightYuMi.Task.ActiveWorkObject, 
robTargetRight); 
                targetRight.Name = robTargetRight.Name; 
                targetRight.Attributes.Add(targetRight.Name, true); 
 
                //add targets to active task 
                rightYuMi.Task.Targets.Add(targetRight); 
            } 
            catch (Exception exception) 
            { 
                Logger.AddMessage(new LogMessage(exception.Message.ToString())); 
            } 
        } 
        #endregion ShowTargetRight 
        #region ShowTargetLeft 
        private static void ShowTargetLeft(Matrix4 position) 
        { 
            try 
            { 
                //get the active station 
                Station station = Project.ActiveProject as Station; 
 
                //get the two robots, identify the left and right robot by name 
                Mechanism leftYuMi = null; 
                Mechanism rightYuMi = null; 
                foreach (Mechanism mech in 
station.FindGraphicComponentsByType(typeof(Mechanism))) 
                { 
                    if (mech.MechanismType == MechanismType.Robot && 
mech.ModelName.ToUpper().Contains("IRB14000")) 
                    { 
                        //this is a YuMi Robot 
                        if (mech.ModelName.ToUpper().Contains("_L")) 
                        { 
                            leftYuMi = mech; 
                        } 
                        else if (mech.ModelName.ToUpper().Contains("_R")) 
                        { 
                            rightYuMi = mech; 
                        } 
                    } 
                } 
 
                //create robtarget 
                RsRobTarget robTargetLeft = new RsRobTarget(); 
                robTargetLeft.Name = leftYuMi.Task.GetValidRapidName("Target", "_", 
10); 
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                //translation 
                robTargetLeft.Frame.GlobalMatrix = position; 
 
                //add robtargets to datadeclaration 
                leftYuMi.Task.DataDeclarations.Add(robTargetLeft); 
 
                //create target 
                RsTarget targetLeft = new RsTarget(leftYuMi.Task.ActiveWorkObject, 
robTargetLeft); 
                targetLeft.Name = robTargetLeft.Name; 
                targetLeft.Attributes.Add(targetLeft.Name, true); 
 
                //add targets to active task 
                leftYuMi.Task.Targets.Add(targetLeft); 
            } 
            catch (Exception exception) 
            { 
                Logger.AddMessage(new LogMessage(exception.Message.ToString())); 
            } 
        } 
        #endregion ShowTargetLeft 
 
        // Create Path 
        #region CreatePathRight 
        private static void CreatePathRight() 
        { 
            Project.UndoContext.BeginUndoStep("RsPathProcedure Create"); 
 
            try 
            { 
                // Get the active Station 
                Station station = Project.ActiveProject as Station; 
 
                //get the two robots, identify the left and right robot by name 
                Mechanism leftYuMi = null; 
                Mechanism rightYuMi = null; 
                foreach (Mechanism mech in 
station.FindGraphicComponentsByType(typeof(Mechanism))) 
                { 
                    if (mech.MechanismType == MechanismType.Robot && 
mech.ModelName.ToUpper().Contains("IRB14000")) 
                    { 
                        //this is a YuMi Robot 
                        if (mech.ModelName.ToUpper().Contains("_L")) 
                        { 
                            leftYuMi = mech; 
                        } 
                        else if (mech.ModelName.ToUpper().Contains("_R")) 
                        { 
                            rightYuMi = mech; 
                        } 
                    } 
                } 
 
                // Create a PathProcedure. 
                RsPathProcedure YuMiPathRight = new RsPathProcedure("myYuMiRight"); 
 
                // Add the path to the ActiveTask. 
                rightYuMi.Task.PathProcedures.Add(YuMiPathRight); 
                YuMiPathRight.ModuleName = "module1"; 
                YuMiPathRight.ShowName = true; 
                YuMiPathRight.Synchronize = true; 
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                YuMiPathRight.Visible = true; 
 
                //Make the path procedure as active path procedure 
                rightYuMi.Task.ActivePathProcedure = YuMiPathRight; 
 
                //Create Path  
                foreach (RsTarget target in rightYuMi.Task.Targets) 
                { 
                    RsMoveInstruction moveInstruction = 
                        new RsMoveInstruction(rightYuMi.Task, "Move", "Default", 
                        MotionType.Joint, rightYuMi.Task.ActiveWorkObject.Name, 
                        target.Name, rightYuMi.Task.ActiveTool.Name); 
 
                    YuMiPathRight.Instructions.Add(moveInstruction); 
 
                } 
            } 
            catch (Exception ex) 
            { 
                Project.UndoContext.CancelUndoStep(CancelUndoStepType.Rollback); 
                Logger.AddMessage(new LogMessage(ex.Message.ToString())); 
            } 
            finally 
            { 
                Project.UndoContext.EndUndoStep(); 
            } 
        } 
        #endregion CreatePathRight 
        #region CreatePathLeft 
        private static void CreatePathLeft() 
        { 
            Project.UndoContext.BeginUndoStep("RsPathProcedure Create"); 
 
            try 
            { 
                // Get the active Station 
                Station station = Project.ActiveProject as Station; 
 
                //get the two robots, identify the left and right robot by name 
                Mechanism leftYuMi = null; 
                Mechanism rightYuMi = null; 
                foreach (Mechanism mech in 
station.FindGraphicComponentsByType(typeof(Mechanism))) 
                { 
                    if (mech.MechanismType == MechanismType.Robot && 
mech.ModelName.ToUpper().Contains("IRB14000")) 
                    { 
                        //this is a YuMi Robot 
                        if (mech.ModelName.ToUpper().Contains("_L")) 
                        { 
                            leftYuMi = mech; 
                        } 
                        else if (mech.ModelName.ToUpper().Contains("_R")) 
                        { 
                            rightYuMi = mech; 
                        } 
                    } 
                } 
 
                // Create a PathProcedure. 
                RsPathProcedure YuMiPathLeft = new RsPathProcedure("myYuMiLeft"); 
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                // Add the path to the ActiveTask. 
                leftYuMi.Task.PathProcedures.Add(YuMiPathLeft); 
                YuMiPathLeft.ModuleName = "module1"; 
                YuMiPathLeft.ShowName = true; 
                YuMiPathLeft.Synchronize = true; 
                YuMiPathLeft.Visible = true; 
 
                //Make the path procedure as active path procedure 
                leftYuMi.Task.ActivePathProcedure = YuMiPathLeft; 
 
                //Create Path  
                foreach (RsTarget target in leftYuMi.Task.Targets) 
                { 
                    RsMoveInstruction moveInstruction = 
                        new RsMoveInstruction(leftYuMi.Task, "Move", "Default", 
                        MotionType.Joint, leftYuMi.Task.ActiveWorkObject.Name, 
                        target.Name, leftYuMi.Task.ActiveTool.Name); 
 
                    YuMiPathLeft.Instructions.Add(moveInstruction); 
 
                } 
            } 
            catch (Exception ex) 
            { 
                Project.UndoContext.CancelUndoStep(CancelUndoStepType.Rollback); 
                Logger.AddMessage(new LogMessage(ex.Message.ToString())); 
            } 
            finally 
            { 
                Project.UndoContext.EndUndoStep(); 
            } 
        } 
        #endregion CreatePathLeft 
    } 
} 

 
 

 


