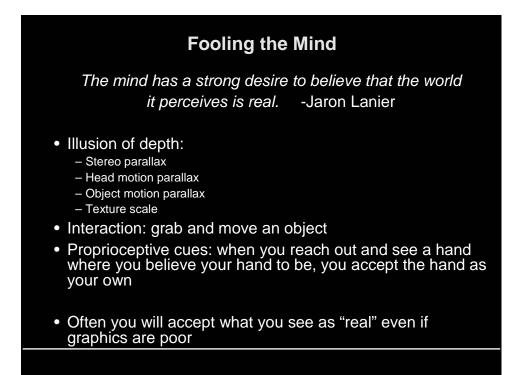
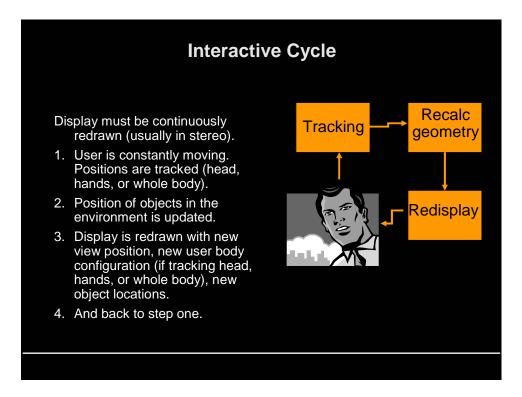
Virtual Reality & Interaction

Virtual Reality Input Devices Output Devices Augmented Reality Applications

What is Virtual Reality?

narrow:


immersive environment with head tracking, headmounted display, glove or wand


broad:

interactive computer graphics

our definition:

an immersive interactive system

Low Latency is Key

- latency: time lag between sensing a change and updating the picture
- 1 msec latency leads to 1 mm error – at common head/hand speeds
- 50 msec (1/20 sec.) is common and generally seen as acceptable
- Otherwise user feels nausea
 - if inner ear says you've moved but your eyes say otherwise
 - effect is strongest for peripheral vision
 - nausea is a serious problem for motion platforms (simulator sickness)
 - filmmakers know to pan slowly
- Our system for full body tracking has 100ms latency—not so good.
 - Measured with a record player...
 - Blame assignment is hard and the path from user action -> display is complicated.

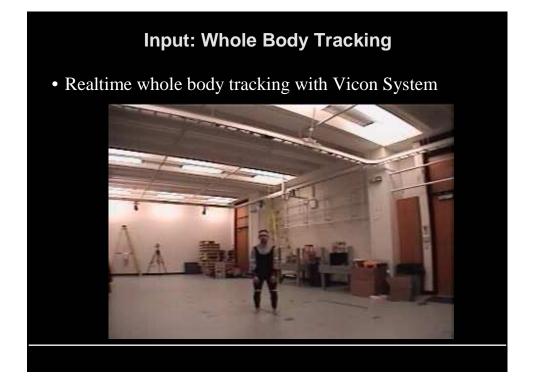
Input: Tracking Head/Hand

- Magnetic
 - Transmitters stationary, receiver in hand / on hat
 - Oldest, most common
 - Fast (4 ms latency, 120Hz for Polhemus Fasttrak)
 - Metal objects, magnetic fields cause interference (e.g. CRT's)
- Acoustic
 - Works well over small areas
 - Background noise interferes
- Optical (1): Camera on head looks at LEDs on ceiling (UNC HiBall)
 - Very accurate (.2 mm position), fast (1 ms latency, 1500 Hz)
 - Recently currently available, and not terribly expensive
- Optical (2): Camera on head looks at markers in environment
 - Vision system calculates camera position
 - Very simple, quite inexpensive
 - Slow (may fall a whole frame behind 30 ms)

Input: Tracking Head/Hand 2 • Optical (3): Cameras in world look at markers on user – Expensive – 120Hz – Can do whole body with some IK, disambiguation problems

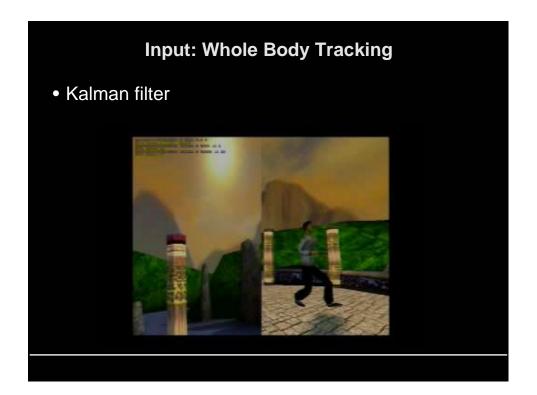
Inertial

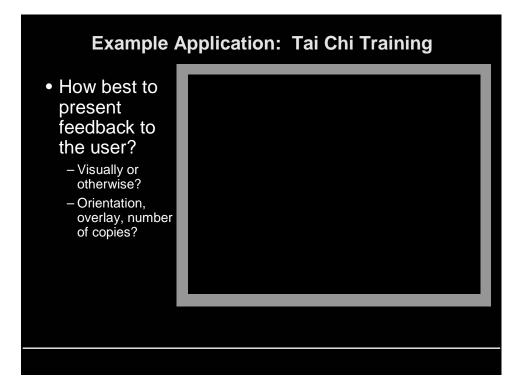
- Tiny accelerometers
- Subject to drift (add gyros)
- Hybrids
 - Intersense combines inertial for speed, ultrasound to prevent drift
 - 150 Hz updates, extremely low latency
 - http://www.isense.com



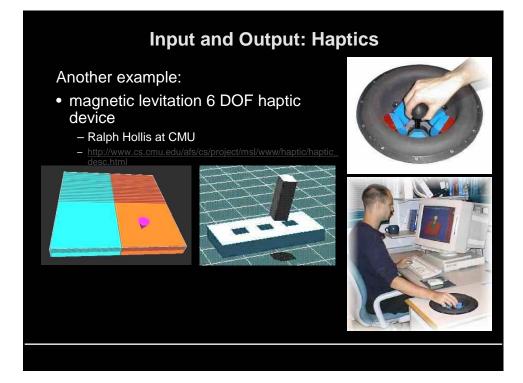
Input: Sensing the Hand

• Primitive technologies:

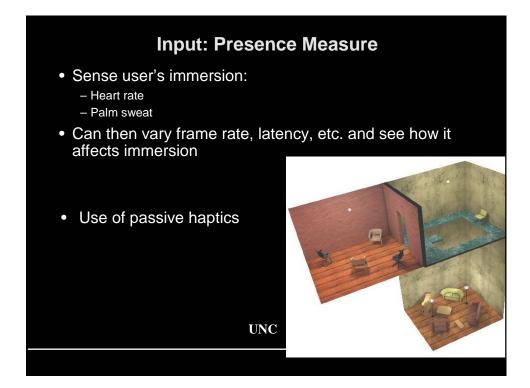

- mouse


- » ok for 2-D positioning, poor for drawing/orienting
- joystick, trackball
 - » good for small/slow movement
- pressure-sensitive stylus
 - » good for drawing
- Wand
 - tracker with buttons attached
 - may also include a joystick/joybutton or trackball
 - a simple way of grasping virtual objects
 - rotating object in your "hand" provides some sense of reality but no force feedback
- Data glove
 - measures joint angles of each knuckle in each finger
 - more degrees of freedom than needed
 - low accuracy

Input and Output: Haptics


- *Haptic* means relating to the sense of touch
- input: sense hand/finger position/orientation
- output: force-feedback

examples:


- mechanical force-feedback joystick: 2 or 3 degree of freedom (DOF): x,y,(twist)
- robot arm, e.g. Phantom

Phantom

Input: Affective Computing

- Sense user's attention and emotions:
 - gesture
 - posture
 - voice
 - eye gaze
 - breathing
 - pulse & blood pressure
 - electrical activity of muscles
 - skin conductance

http://www.media.mit.edu/affect/

• Alter system behavior accordingly (how exactly?)

Output: Rendering Pictures

- Historically, big SGIs
- Now PCs are in the range, except:
 - Some issues with stereo
 - Internal bandwidth

• System Demands

- At least 30 frames/sec; 60 is better
- times 2 for stereo
- at as much resolution as you can get
- 1 K to 40K displayed polygons per frame (more would be nice)

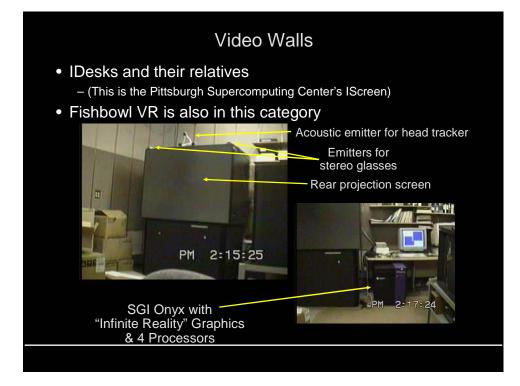

Output: Display Technologies

- Projection displays
 - CAVE-type
 - IDesk/IScreen
 - Fishbowl VR
- Head mounts
 - Immersive
 - Non-immersive (augmented reality)
- To do stereo, you must get a different image to each eye
 - trivial for head mounts
 - shutter glasses

» left & right images temporally interleaved

- polarized glasses or red/blue glasses » left & right images optically superimposed

CAVE Details


- Typical size: 10' x 10' x 10' room
- 2 or 3 walls are rear projection screens
- Floor is projected from above
- One user is tracked (usually magnetically)
- He/she also wears stereo shutter goggles...
- And carries a wand to manipulate or move through the scene
- Computer projects 3D scenes for that viewer's point of view on walls
- Presto! Walls vanish, user perceives a full 3D scene
 Turning head doesn't necessitate redraw, so latency problems are reduced
- But, view is only correct for that viewer!
- cost is fairly high

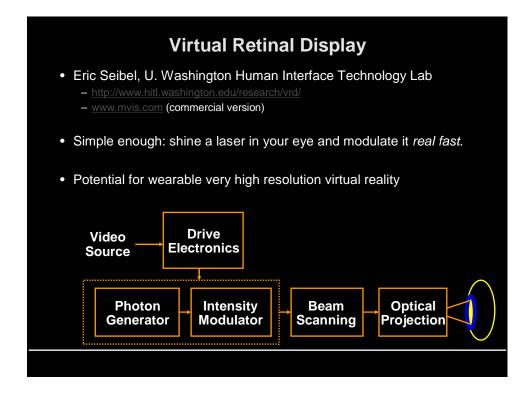
CAVE Painting

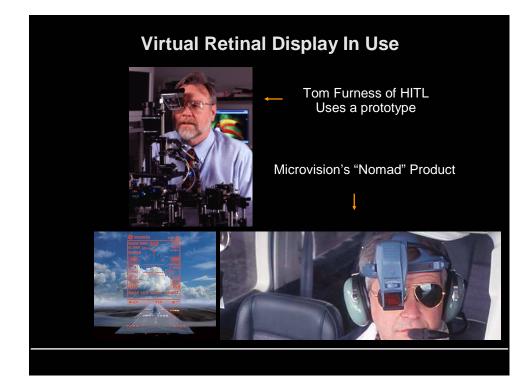
http://www.cs.brown.edu/~dfk/cavepainting/index.html

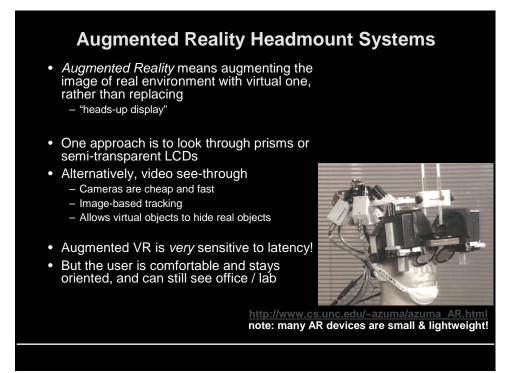
Video Walls

- Princeton video wall
- Behind the curtain are n PC's and n projectors
- Calibration is a (nearly solved) research issue

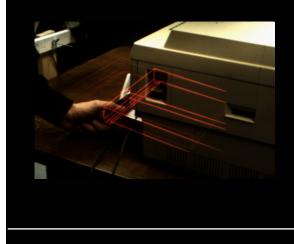
Classic Immersive Headmounts

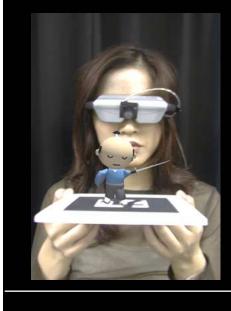

- Typical: small LCDs, one per eye
- Higher resolution: tiny little CRTs
- Flat panel displays are pushing this technology
- Can get 1Kx1K or more, but heavy and expensive (>\$10K)
 - Good for the military
- Serious problems with latency and tracking errors
 - Leads to nausea
- Field of view is pretty limited, maybe 35°
 - Serious problem for some applications
 - Prevents seeing your body in a natural way even with full body tracking
- Can now be wireless




Bell Helicopter, 1967

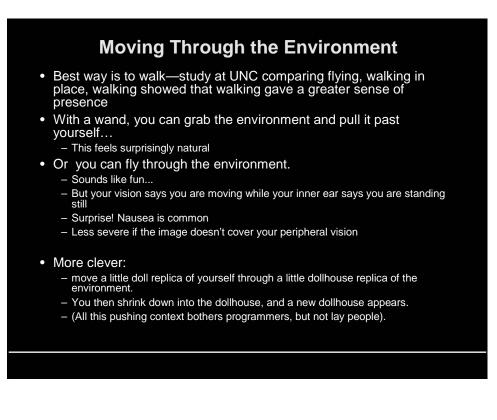
IO Systems I-glasses 640x480 resolution stereo ~\$4K, 1999

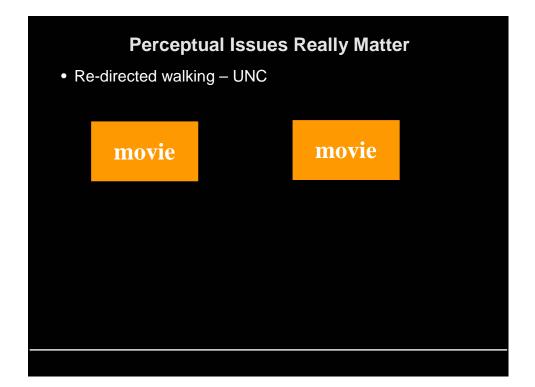


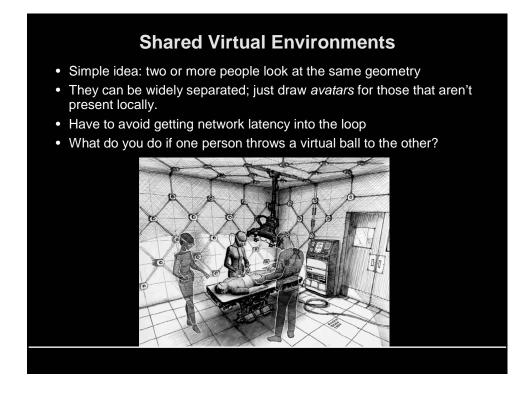

Augmented Reality Headmount Systems

- <u>http://www.cs.columbia.edu/graphics/</u>
- Applications in assembly and maintenance
- Also in navigation

A Nice Little Augmented Reality System




- This project is from HITL
- Video see-through – Inexpensive but low-res
- Video-based tracking


 Tracker recognizes the glyph on the card
 - Inexpensive but high latency
- Multiple cards with different characters
- Characters interact when you get them close to each other

Output: Audio

- Audio is important!
- Synthesis techniques
 - library of canned samples
 - » one at a time
 - » mixed (compositing)
 - » MP3 digital audio compression format
 - parametric model
 - » engine sound as a function of speed, incline, gear, throttle
 - www.staccatosys.com
 - » human voice driven by phonemes, inflection, emphasis, etc.
- Spatialized sound
 - make sound seem to come from any point in space (not the loudspeaker)
 - need several loudspeakers, carefully phased
 - might need model of listener's head shape

Applications

- Flight simulators
- Architectural walk-throughs
- Design interference testing (e.g. engine assembly)
- Teleoperation of robots in dangerous (Chernobyl) or distant (Mars) locations
- Medical X-ray vision (e.g. ultrasound)
- Remote surgery
- Psychotherapy (e.g. fear of heights)
- Interactive microscopy

More Applications

- Video Games
- Location-Based Entertainment
 - DisneyQuest
 - Sony Metreon
 - <u>www.xulu.com</u>
- Entertainment Technology (CMU)
 - <u>http://www.etc.cmu.edu/</u>
- Virtualized Reality (CMU)
 - http://www.ri.cmu.edu/projects/project_144.html
- Office of the Future (UNC)
 - use walls / desktops as displays
 - http://www.cs.unc.edu/Research/stc/office
- Ubiquitous computing and wearable computers – information superimposed on the environment

Other Graphics Courses

• Fall 2004

- 15-463 Advanced Rendering and Image Processing (Efros)
- 15-869 Physically Based Character Animation (Pollard)

• Spring 2005

- 15-493 Computer Game Programming (Kuffner)
- 15-505 / 60-414 Animation Art and Technology (Hodgins / Duesing)
- 15-864 Advanced Computer Graphics (James)
- Grad seminar (James)
- Grad seminar (Efros, tentative)

Announcements

- Grades for prog. project #3 and HW #3 out tonight
- Office hour 2-3 Friday to pick up homeworks, other questions

 NSH 4207
- No class Tuesday, April 27
- Thursday, April 29 (last class) course review
- Course surveys