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Viscous Flow 
 
 
Up to this point in your fluid dynamics education, from Basic Fluid 
Mechanics, to Fundamental Aerodynamics, to Gas Dynamics to 
this class, you have studied inviscid flows (with the exception of 
the first days of BFM). Unfortunately, there are no inviscid flows, 
all flows are viscous and most practical flows are turbulent 
(unsteady). In this section we turn our attention to viscous flows 
and begin the study of boundary layer theory. 
 
We’ll begin by reviewing what you learned at the beginning of 
Basic Fluid Mechanics, move quickly through the basic definitions 
and variables associated with viscous flows and boundary layers, 
and then discuss an airfoil analysis tool that incorporates viscous 
effects. The goals of this effort is to complete the drag picture via 
computation of the skin friction. To do this let us return to the first 
few days of Basic Fluid Mechanics. 
 
Consider the flow between two infinite parallel plates; the bottom 
is stationary while the top moves to the right with speed U. 
 
 U 

y 
 
           x

u(y) 

 
 
 
 
 
 
 
 
 
We were told that viscosity causes the fluid to stick to the plate, 
hence its velocity is equal to that of the plate. If the flow has zero 
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pressure gradient, i.e., 0=
dx
dp

, then a linear velocity profile 

emerges. This is called Couette flow. One is usually asked to 
calculate the viscous resistance of the fluid on the walls or vice 
versa given the knowledge that 

dy
duµτ =      (15.1) 

where τ  is the shear stress, which has units of pressure, force/area, 
and µ  is the molecular viscosity, a function of the working fluid 
and temperature. The velocity gradient is the inverse of the slope 
of the line drawn in the figure. 
 
 
 
 
 
    High Shear Profile 
 

 
 
 

     Low Shear Profile 
 
 
 

       Zero Shear Profile 
 
 
 
 
       Reverse Flow Profile 
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Facts about Couette flow: 
1. The shear stress always acts in the direction opposite to the 

flow. 
2. The bottom wall sees fluid moving in the positive x-

direction. 
3. The top wall sees fluid moving in the negative x-direction. 

This is at first confusing, but some order is brought about by the 
right hand rule. 

 
If you use your right hand and allow the thumb to point in the 
direction of the surface normal, the index finger will point in the 
direction of positive shear stress. 
 

Consider the plates 
 U  

n̂  
 
         τ +ve   

 τ +ve  
  
         n̂

 
 
 
 
 
 
 
 

Is this consistent with 
dy
du

’s sign? 

 Yes, all along the profile u grows as y increases, so 0>
dy
du

. 

 
Is this consistent with the effect of the fluid on the walls? 
 
 Yes, the fluid tends to pull the bottom wall to the right but 
slows down or retards the motion of the top wall. 
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What about from the perspective of the fluid, does the convention 
still make sense? 
 
 
 
 
 
 
 
 

Is this consistent with 
dy
du

’s sign and the direction of the forces on 

the fluid? 

n̂  
 
         τ +ve   

τ

ˆ

fluid control volume

 +ve   
  
  n        

 
 Yes, the top wall imparts onto the fluid a force in the +x 
direction while it imparts a force in the –x direction on the bottom 
wall. 
 
Common Error: 
 

We are used to thinking of slope in terms of 
dx
dy

, but we have 
dy
du

 

and tend to illustrate it physically, that is with u in the +x-direction 
and y in its natural direction. Hence, 
 
 

A 

u(y) 
 u(y) 
 
 y y 
 B 
 
 

BA ττ <  at the wall 
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To keep it straight just remember the discrete approximation 

y
u

dy
du

∆
∆

≈ and ask yourself the question, “how much does u change 

as y increases?” 
 
 
The Couette flow discussed during the first classes of Basic Fluid 
Mechanics provides some good insight into the effects of viscosity, 
however, it is way over simplified in its presentation. 

1. τ  is not just a property that exists at the walls, it exists 
everywhere in the fluid. )( yττ = for this problem. 

2. τ  is not a scalar or a vector, it is actually a tensor, that is, it 
has 9 components and is defined only once a plane surface is 
provided in the flow. 

 

 
 
In its tensor form τ  is associated with 2 direction and given 2 
subscripts. The first subscript refers to the normal direction of the 
plane defining it and the second refers to the direction in which the 
force/area acts. In the Couette flow example, yxττ = , a force 
defines by a plane whose normal is in the y-direction and which 
acts in the x-direction. 
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Note that 
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we had 0=v  in the Couette flow so τ  simplified considerably. In 
the general case 
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 Normal stresses are different from but in the same direction as the 
pressure. 
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λ  is the bulk viscosity which by assumption is 
 

µλ
3
2

−=       (15.7) 

via Stokes hypothesis. 
 
Newton’s second law can now be applied to a viscous fluid 
element by considering the shear stresses in addition to pressure to 
derive the governing, Navier-Stokes equation. 



 80

Skin Friction Coefficient 
 
As with lift and drag, it is useful to nondimensionalize the shear 
stress. We recall that τ  has units of pressure, i.e., force/area. 
However, unlike the pressure coefficients, which is 
nondimensionalized by the dynamic pressure of the freestream, 

, the edge properties are the more important parameters. 
Therefore, the skin friction coefficient is the shear stress 
normalized by the boundary layer edge dynamic pressure: 

∞q

 

2

2
1

ee

w
f

u
C

ρ

τ
=      (16.1) 

 
Clearly C  is a function of the location along the surface.  f

 
Reynolds Number 
 
Using the idea of edge properties it is possible to define a Reynolds 
number: 
 

e

ee
Le

LuR
µ

ρ
=     (16.2) 

where L is the length along the surface. This idea can be extended 
and used as a way of nondimensionalizing the axial coordinate: 
 

    
e

ee
xe

xuR
µ

ρ
=     (16.3) 
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For a linear velocity profile like that in Couette flow with plates 
separated by a distance D, we see that 
 

D
ue

ew µτ =     (16.4) 

The  and definitions are useless in this case, since the 
plates are of infinite extent. Instead we introduce 

xeR LeR

 

    
e

ee
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µ

ρ
=     (16.5) 

Combining Eqs. (16.4) and (16.5) for Couette flow, we see 
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   (16.6) 

Which is, of course, true only for Couette flow, but demonstrates a 
basic idea that 
 

e
f R

C 1
∝      (16.7) 

showing that as Reynolds number goes up, the skin friction goes 
down. 
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Boundary Layer Concept 
 
The Couette flow example is one of a fully viscous flow. In that 
case, the shear stress is constant throughout the region. This is not 
true in the general case of viscous flows, particularly external 
flows, and leads to the viscous flow concept: the boundary layer. 
 
 Boundary Layer – The region of the flow close to a wall in 
which viscous effects are dominant. 
 

 
 
The boundary layer essentially divides regions of the flow 
dominated by viscous effects from those dominated by inviscid 
effects. Unfortunately, the definition of a boundary layer is a little 
fuzzy, in that its extent depends upon the effects one is pursuing, 
i.e., velocity, mass flow, momentum or temperature. To that end, 
several boundary layer thickness definitions exist: 
 
 Boundary layer thickness - 99δ . The normal direction 
distance from the surface at which the local velocity achieves 99% 
of the edge value. 
 
This definition is clearly arbitrary, there exists a 90δ , a 95δ , etc., 
but is useful in defining the extent of the so-called velocity 
boundary layer. 
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 Thermal boundary layer thickness - Tδ . The distance from 
the surface at which the local temperature achieves 99% of the 
edge temperature. 
 
This definition is even harder to quantify because the wall 
boundary condition is more flexible. That is the temperature can be 
higher or lower than the edge conditions, or the wall can be 
insulated, i.e., adiabatic. In general, the temperature increases in 
the velocity boundary layer because viscous effects convert the 
energy in the flow to heat. However, wall heat transfer can still 
suck that energy out, allowing for a wide variety of possible 
profiles. 
 

 
 
The arbitrary nature of the velocity and thermal boundary layer 
definitions left researchers searching for more quantitative 
measures. A general observation of viscous flows based on 
conservation of mass ideas is that the velocity “deficit” caused by 
the viscous walls forces incoming mass to exit above the plate, i.e., 
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inducing a v-velocity component. This, in effect, creates a 
streamline displacement effect that moves the external flow 
streamlines a finite distance. This distance is not the same as 99δ . 
 
 Displacement thickness - *δ - The normal direction distance 
from the surface that an otherwise undisturbed streamline would be 
displaced because of the effect of viscous walls. 
 
The basic idea comes from control volume theory and utilizes 
velocity deficit ideas. 
 
If 
 

  - mass flow between 0 and ∫=
1

0

y

udyA ρ 1y . 

 

∫=
1

0

y

ee dyuB ρ  - mass flow between 0 and 1y  if no viscous 

effects are present 

(∫ −=−
1

0

y

ee dyuuAB ρρ )  - mass flow deficit 

 (17.1) 
 
This mass flow deficit is equated to an inviscid mass flow across a 
new distance from the wall called the displacement thickness. 
 

*δρ eeuAB =−      (17.2) 
 
Equating Eqs. (17.1) and (17.2) gives 
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It’s physical interpretation is given in the figures below 
 

 
 
Unfortunately, the story does not end here, since the deficit 
associated with mass flow is not the same as the deficit associated 
with momentum flow. A similar thickness is defined for 
momentum by using the idea of the difference in momentum 
carried by the edge velocity. 
 
 

  - momentum flow between 0 and ∫=
1

0

2
y

dyuA ρ 1y  carried 

by the actual velocity.. 
 

∫=
1

0

y

edyuuB ρ  - momentum flow between 0 and 1y  carried 

by a fictitious edge velocity. 



 86

 

( )∫ −=−
1

0

y

e dyuuuAB ρ  - momentum flow deficit 

 
 

θρ 2
eeuAB =−  - inviscid momentum flow 

 
 

∫ 







−≡

1

0

1
y

eee

dy
u
u

u
u

ρ
ρθ   (17.4) 

    Momentum Thickness 
 
The momentum thickness, θ , is an important parameter for drag 
prediction and skin friction because it represents a momentum 
deficit, i.e., drag. It is proportional to the skin friction. 
 
Reynolds Numbers 
 
The three new distances lead to three new Reynolds numbers 
 

e

ee
e

uR
µ
δρ

δ ≡  Boundary layer thickness Reynolds number 

 

e

ee
e

uR
µ
δρ

δ

*

* ≡  Displacement thickness Reynolds number 

 

e

ee
e

uR
µ
θρ

θ ≡  Momentum thickness Reynolds number 

 
These numbers are particularly useful for correlating boundary 
layer parameters and the transition to turbulence. 
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Shape Factor 
 
Another important parameter is the shape factor. 

θ
δ *

≡H  

 
It is generally true that θδδ >> * . 
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Derivation of the Boundary Layer Equations 
 
The governing equations of viscous fluid mechanics are the 
Navier-Stokes equations. A greatly simplified set of governing 
equations can be derived in the boundary layer region of a viscous 
flow. This descends from knowledge of the flow field variables in 
this region. Start with the Navier-Stokes equations, written in 
nondimensional form for the x-momentum equation: 
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This form of the governing equations comes about by utilizing 
nondimensionalized variables 
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Start with the dimensional form 
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Substitution of the nondimensional variables gives 
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where 
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The idea of using nondimensional variables is to compare the size 
of specific terms in the equations. In this way, one can determine 
which terms to eliminate. 
 
Fundamental assumption: The Boundary Layer is very thin 
compared to the body. 
 

 
 
If c is the chord length then c<<δ . 
 
 
 Variable   Variation in BL 
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The continuity equation then says 

0=
′∂
′′∂

+
′∂
′′∂

y
v

x
u ρρ      (17.8) 

0
)(

)1(
)1(

)1()1(
=
′

+
δO

vO
O

OO  

 
       A             B 

 
Therefore for term A to be about the same size as term B, we must 
have 
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Hence terms in Equation (17.5) become 
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There is then one term in the equation that is much smaller than the 
others and can be eliminated, thereby simplifying the equations 
greatly. 
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Upon simplification the equations become 
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A similar analysis can be performed for the y-momentum equation. 
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Taken together we get 
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Where there is only one dominant term. Which implies to first 
approximation that that term is the only one that remains. 
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Which is the y-momentum equation for a boundary layer. 
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A similar analysis can be done for the energy equation resulting in 
the complete set of boundary layer equations: 
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with boundary conditions 
 
wall:  y=0  u=0  v=0  T=Tw 
edge:  y→∞  u→ue T→Te 
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Similarity Solutions 
 
The development of the boundary layer equations simplifies 
considerably the governing equations and in some cases makes 
them tractable to analytical solution. One such approach to 
defining solutions is to employ a transformation of variables so 
that in some sense every profile is similar to another. This type of 
solution is called a similarity solution. One place where this leads 
to useful solutions is the laminar flat plate boundary layer. 
 
Blasius Laminar Flat Plate Solution 
 
The governing equations are transformed by the introduction of the 
similarity parameters η and ξ, where 
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Under this transformation the boundary layer equations reduce to: 
 

  (18.1) 
 

02 =′′+′′′ fff

 
A much simpler ODE. 
 With BCs   η=0:  f=0   f’=0 
   η→∞: f’=1 
 
The Blasius boundary layer profile for a laminar flat plate in these 
coordinates is then 

 
 
The solution to Equation (18.1) is done in a numerical fashion and 
values of f, f’ and f” are provided in tabulated form (next page). 
The text demonstrates how the profiles of f and its derivatives can 
be used to determine properties of the boundary layer such as the 
skin friction coefficient and the boundary layer thickness. It is 
suggested that you review that material so that you will be able to 
calculate these parameters.  
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From this tabulated data the following can be determined: 
 

x

x

x

c
f

x
f

x

x

x

C

C

Re
664.0
Re
72.1

Re
0.5
Re
328.1
Re
664.0

*

=

=

=

=

=

θ

δ

δ  

Local Skin Friction Coefficient 
 
 
 
Total Skin Friction Coefficient for a flat plate of length C 
 
 
 
Boundary Layer Thickness 
 
 
Displacement Thickness 
 
 
Momentum Thickness 

 
 
Note that the total skin friction for the flat plate is related to the 
momentum thickness via 

c
C cx

f
==

θ2  

Indicating that the skin friction drag coefficient is directly 
proportional to the value of the momentum thickness at the trailing 
edge. 
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The Blasius solution and its derivatives are shown below. 
 
 

 
 
Experimental laminar flat plate boundary layer data are plotted 
below: 
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Turbulent Flat Plate Solution 
 

 
 

Laminar flow is characterized by a smooth, layered appearance 
(laminate). Flows generally behave this way when the Reynolds 
number is low. As the Reynolds number increases the flow 
transitions from a smooth state to one with random perturbations 
about some mean. The figure above depicts experiments in which a 
flat plate boundary layer transitions from laminar to turbulent flow. 
 
Characteristics of turbulent flow include fluctuations in pressure, 
temperature and velocity superimposed about a mean value. Note 
the thickening of the boundary layer in this case. These behaviors 
manifest themselves as a significant increase in skin friction as the 
flow transitions from laminar to turbulent and a reduced slope in 
skin friction decay with x, as illustrated in the figures shown next. 
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Some simple formulae for turbulent flat plate flows are 
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The first feature of Eq. (19.1) is the fact that turbulent boundary 
layers grow more quickly than laminar: 

 
54x∝δ   turbulent flows 

 
21x∝δ   laminar flows 

 
Entire careers have been and are now devoted to the study of 
turbulent flows, as such, we can only touch briefly on some 
important first topics. 
 
Turbulent Velocity Profiles 
 
Dimensionless turbulent velocity profiles often correlate with the 
introduction of several new scaling parameters: 
 

ρ
τWv =*  wall friction velocity     (19.5) 

*v
uu =+   turbulent inner-law velocity     (19.6) 

υ

*yvy =+   turbulent inner-law wall distance  (19.7) 

 
These variables are considered important because they scale the 
experimental data nicely. 
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Linear Sublayer 
 
The linear or laminar sublayer is defined as 10<+y  we find 

 
++ = yu      (19.8) 

 



 102

Law of the Wall/Logorithmic Region 
 

  Byu += ++ ln1
κ

    (19.9) 

 
where 41.0≈κ  and 0.5≈B  are the generally accepted values of 
the constants. 
 
Wake Region 
 
The wake region becomes a much more difficult region to 
characterize as it is strongly dependent on external flow conditions 
like the pressure gradient. One modification of Eq. (19.9) that can 
be used in this region is 
 







Π

++= ++

δκκ
yfByu 2ln1

  (19.10) 

where  is called the Coles Wake Parameter. Π
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Transition to Turbulence 
 
The transition from laminar to turbulent flow is often studied 
through the use of stability theory, i.e., the tendency of the flow to 
cause a disturbance to grow or decay. However, transition is much 
more involved as many events occur in the course of the transition 
process. 
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The stability of boundary layers is often tied to the velocity 
profiles. Inflection points in these profiles are often an indication 
of instability. 
 

 
 
 
The critN  variable used in XFOIL is a method in the class of 

methods for predicting instability and the transition to 
turbulence. They are notoriously inaccurate and must be used with 
caution and more than a little physical insight. The XFOIL manual 
describes some potential choices for 

Ne

critN  and a suggestion given 
for typical airfoil problems. However, be careful to check the 
definitions for everything used in XFOIL as they may be 
nonstandard!!!! 
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Momentum Integral Relation 
 
A compelling set of methods for computing both laminar and 
turbulent boundary layers is found from the Momentum Integral 
Relation. This relation is found by starting with the boundary layer 
equations, multiplying continuity by ( )eUu −  and then subtracting 
the result from the momentum equation, this leaves: 
 

( ) ( )

( ) ( )vuvu
ydx

duuu

uuu
x

uu
ty

e
e

e

ee

−
∂
∂

+−+

−
∂
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+−
∂
∂
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∂
∂

− 21 τ
ρ

      (19.11) 

 
 
Eq. (19.11) is then integrated from the wall to infinity. 
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                  (19.12) 

 
 
This is called the Karman Integral Relation, which can be 
rewritten: 
 

( ) ( )
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we

e
e

e
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e

w

u
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dx
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udx
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                (19.13) 
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for steady flow with an impermeable wall  
 

( )
dx
du

u
H

dx
dC e

e

f θθ
++= 2

2
        (19.14) 

 
which states that given a *δ and θ  distribution, fC  can be 
determined. It is made particularly useful by finding a suitable 
velocity profile and/or correlation with experimental data. 
 
 
Thwaites Method 
 
Thwaites rewrote the momentum integral relation using a new 
parameter 

Λ





=

′
=

22

δ
θ

υ
θλ eu            (19.15) 

The momentum integral relation when multiplied by υ
θeu  

becomes: 
 

( )
υ

θθ
υ
θ

µ
θτ ee

e

w uH
dx
du

u
′

++=
2

2          (19.16) 

 
Thwaites idea was to group these terms and seek appropriate 
correlations with experimental data. 
 

  )(λ
µ
θτ S
ue
w ≈   shear correlation 

 

  )(
*

λ
θ
δ HH ≈=  shape-factor correlation 
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Equation (19.16) then becomes 
 

[ ] )()2()(2 λλλλ FHS
udx

du
e

e =+−≈







′

       (19.17) 

 
The data all fall along a single line which is astounding  
 

 
 
Thwaites proposed  
 

λλ 0.645.0)( −≈F     (19.18) 
 
Given this form the momentum integral relation has a closed form 
solution: 
 

∫≈
x

e
e

dxu
u 0

5
6

2 45.0 υθ      (19.19) 
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)(

)(

* λθδ

λ
θ
µτ

H

Suew

=

=
     (19.20) 

 
Thwaites further suggests 
 

( 62.009.0)( +≈ λλS )      (19.21) 
 
and 
 

5432 457633378545.8314.40.2)( zzzzzH +−+−+≈λ  

         (19.22) 
 
where  )25.0( λ−=z . 
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)(xue

θ
λ

)(λ
wτ

)(λ
*δ

 
Thwaites is applied once  is known. The solution process is: 
 

1. Compute  from Eq. (19.19) 
2. Compute  from Eq. (19.15) 
3. Compute S  from Eq. (19.21) 
4. Compute  from Eq. (19.20a) 
5. Compute H  from Eq. (19.22) 
6. Compute  from Eq. (19.20b) 

 
Separation can be predicted by using 0=wτ  which implies 
 

09.00)( −=⇒= λλS  
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