

VISHAY CERA-MITE CAPACITORS & PTC THERMISTORS

PTC Thermistors

Ceramic Disc Capacitors

Special High Voltage Capacitors

_
工
\overline{C}
ш
\vdash

DISCRETE	RECTIFIERS	Schottky (single, dual)		
		Standard, Fast and Ultra-Fast Recovery (single, dua		
SEMICONDUCTORS		Clamper/Damper		
		Bridge		
		Superectifier®		
	SMALL-SIGNAL DIODES	Schottky and Switching (single, dual)		
		Tuner/Capacitance (single, dual)		
		Bandswitching PIN		
	ZENER & SUPPRESSOR DIODES	Zener Diodes (single, dual)		
	22.12.11 d 001 1 112.00011 21.02.20	TVS (TransZorb,® Automotive, Arrays)		
	MOSFETs	Power MOSFETs		
		JFETs		
	RF TRANSISTORS	Bipolar RF Transistors (AF and RF)		
		Dual Gate MOSFETs		
		MOSMICs [®]		
	OPTOELECTRONICS	IR Emitters, Detectors and IR Receiver Modules		
		Opto Couplers and Solid State Relays Optical Sensors		
		LEDs and 7 Segment Displays		
		Infrared Data Transceiver Modules		
		Custom products		
	ĪCs	Power ICs		
		Analog Switches		
Passive Components	CAPACITORS	Tantalum Capacitors		
ASSIVE COMI ONENTS		Solid Tantalum Capacitors		
		Wet Tantalum Capacitors		
		Ceramic Capacitors		
		Multilayer Chip Capacitors		
		Disc Capacitors Film Capacitors		
		Power Capacitors		
		Heavy Current Capacitors		
		Aluminum Capacitors		
	RESISTIVE PRODUCTS	Foil Resistors		
		Film Resistors		
		Thin Film Resistors		
		Thick Film Resistors		
		Metal Oxide Film Resistors		
		Carbon Film Resistors		
		Wirewound Resistors Variable Resistors		
		Cermet Variable Resistors		
		Wirewound Variable Resistors		
		Conductive Plastic Variable Resistors		
		Networks/Arrays		
		Non-Linear Resistors		
		NTC Thermistors		
		PTC Thermistors		
	MAGNETICS	Inductors		
	DC/DC CONVERTEDS	Transformers		
INTEGRATED MODULES	DC/DC CONVERTERS			
MEASUREMENT SENSORS	STRAIN GAGES	Stress Analysis		
		Transducer-Class [®]		
AND EQUIPMENT		Installation Accessories		
	INSTRUMENTATION	Strain Indicators		
		Amplifiers		
		Data Systems		
	PHOTOSTRESS® PRODUCTS	Polariscopes		
		Polariscopes Plastics		
	PHOTOSTRESS® PRODUCTS TRANSDUCERS	Polariscopes		

MANUFACTURER OF THE WORLD'S BROADEST LINE OF DISCRETE SEMICONDUCTORS AND PASSIVE COMPONENTS

Vishay Cera-Mite Capacitors and PTC Thermistors

Vishay Cera-Mite

1327 Sixth Avenue P.O. Box 166 Grafton, Wisconsin USA 53024-0166

Phone: +1 262 377 3500 Fax: +1 262 377 7309 www.vishay.com

The products listed in this catalog are not generally recommended for use in life support systems where a failure or malfunction of the component may directly threaten life or cause injury.

The user of products in such applications assumes all risks of such use and will agree to hold Vishay Intertechnology, Inc. and all the companies whose products are represented in this catalog, harmless against all damages.

All details in printed form are legally binding especially with respect to the provisions of §§463 and 480 II of the German Code of Civil Law after written confirmation only. The data indicated herein described the type of component and shall not be considered as assured characteristics.

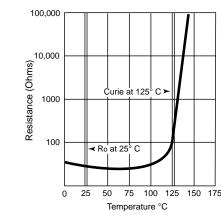
PTC THERMISTORS

Technology and Application Overview	2
PTCR Motor Start Packages for HVAC - Application Notes and Selection Criteria	3
Custom Motor Start Pellets (EXPANDED Selection)	9
Thermistors for Electronic Fluorescent Ballasts (NEW)	10
PTCR Over-Current Protection - Application Notes	11
Telecommunications Thermistors	13
General Purpose Current Limiters	15
CERAMIC DISC CAPACITORS	
Ceramic Capacitor Application Data	16
Lower Voltage Capacitors (12 to 1000 Volt)	18
AC Line Rated Capacitors (NEW Approvals) - X & Y: EMI/RFI Filter, UL, CSA, IEC, etc	20
Low Dissipation Factor Ceramic Discs (NEW)	23
High Voltage Ceramic Capacitors - 2kV to 15kV	25
High Voltage Axial Leaded Capacitors - 10kV to 30kV	26
Options for Radial Leaded Capacitors - Custom Disc Capability	27
Bulk Packaging & Wire Lead Options	28
Tape & Reel Packaging	29
SPECIAL HIGH VOLTAGE CAPACITORS	
Heavy Duty 10kV to 40kV Molded Epoxy Case	30
RF Duty Capacitors & Specialty OEM	31
Fahmika 1 5kV to 30kV - High Temp & Agrospace	32

VISHAY

PTCR Technology and Application

PTCR TECHNOLOGY

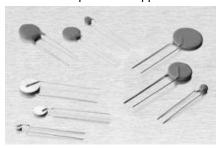

PTCRs (Positive Temperature Coefficient Resistors) are made from high purity semiconducting ceramics. Based on complex titanate chemical compositions (BaTiO₃, SrTiO₃, etc.), their specific performance is created by the addition of dopants and unique processing, including high force pressing into desired shapes and precision sintering. After the creation of the PTCR pellets, highly specialized metallurgical techniques are employed to create low ohmic contact systems. These electrodes are bonded to the ceramic with glass frit to provide great strength and high current carrying capacity.

What makes the PTCR such a useful device is its Resistance versus Temperature characteristic. It exhibits a low resistance over a wide temperature range, but upon reaching a certain temperature it undergoes a dramatic increase in resistance (several orders of magnitude). This temperature is called the "Curie Temperature" or "Switching Point".

The increase in temperature can be caused by internal heat (I²R loss) or from external ambient temperature increases. In applications, this rate of temperature change is often controlled to provide a time delay function. When the source of the heat is removed, the PTCR returns to its initial base resistance.

Fig T-1

TYPICAL PTCR RT CURVE


PTC THERMISTORS ARE AVAILABLE IN THREE CONFIGURATIONS

 As completely tested pellets for assembly into custom packages, utilizing high pressure mechanical contacts for refrigeration compressor motor starting and telecommunication overcurrent protection.

Unpackaged PTCR Pellets are supplied with silver electrodes suitable for custom mounting.

 As components with wire leads for fluorescent lighting and electronic overcurrent protection applications.

Resettable PTC Overcurrent Protectors and Fluorescent Lamp Starters.

 As part of rugged mechanical packages for PSC motor starting of HVAC compressors and other motorstart applications.

PTCRs used for PSC Motor Control in air conditioning applications.

PTCR APPLICATIONS

The unique properties of the PTCR have been optimized to provide reliable and economic products in several special areas.

PSC MOTOR START THERMISTORS

 PTCRs are applied with single phase compressor motors used in the HVAC and refrigeration industries. This severe duty cycle application requires the PTCR to repeatedly switch large currents at power line voltages.

Vishay Cera-Mite PTCR devices have been engineered and perfected over 20 years to withstand thermal cycling and deliver reliable performance throughout the life of the refrigeration system. Both individual pellets and packaged devices are available.

FLUORESCENT BALLAST STARTING

 PTC Thermistors are used in electronic ballast applications to extend the life of fluorescent lamps by controlling preheat current and lamp ignition timing.

A full range of standard devices are available and custom engineered samples can be rapidly created for special lamp designs.

Vishay Cera-Mite PTC Thermistors are specified by major ballast manufacturers throughout the world.

SELF-RESETTING OVER-CURRENT PROTECTORS

Vishay Cera-Mite PTC Thermistors have been developed to replace older overcurrent protection concepts in:

- Tip and Ring Protection Modules for telecommunication systems.
- Resettable Overcurrent Protectors for power supplies, data communication circuits, and automotive doorlocks. In overload situations, the ability of the ceramic PTCR to switch reliably, and later reset precisely to its initial resistance is considered paramount to safe application.

OTHER APPLICATIONS

• The relatively new PTCR technology is being specified by innovative engineers into a variety of application areas. Self-regulating heaters and time-delay current relays are several examples. Vishay Cera-Mite provides engineering assistance for custom applications.

PTCR Motor Start Packages PSC Single Phase Motor Start Assist

ECONOMICAL SOLID STATE TORQUE ASSIST FOR HEAT PUMPS, ROOM AIR, COMMERCIAL AND RESIDENTIAL AIR CONDITIONING AND REFRIGERATION SYSTEMS

Positive Temperature Coefficient Resistors have been used for many years in millions of HVAC applications to provide starting torque assistance to Permanent Split Capacitor (PSC) single phase compressor motors.

Sizes are available to cover the full range of 120/240 volt PSC compressor motors.

Safety Agency Recognition

Vishay Cera-Mite motor start PTCRs are recognized by Underwriter Laboratories file E97640 in accordance with Standard for Thermistor Type Devices UL 1434; and Canadian Standards C22.2 No. 0-1991.

RELATIVE COMPARISON OF VARIOUS MOTOR STARTING METHODS

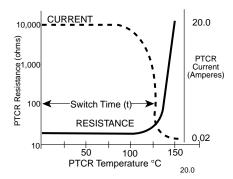
Three methods have historically been employed to generate starting torque for PSC motors. All are well-proven technologies and may be compared relative to one another based upon categories shown below.

The importance of each category is dependent upon the motor application and industry sector.

In general, if the PTCR starter produces sufficient starting torque, it is considered the simplest and most economical choice.

Table 1

	М	ECHANIC	AL		ELECTRICAL				FINANCIAL			
STARTING METHOD	EASE OF WIRING	PANEL SPACE REQUIRED	MOUNTING	ACCELERATION TORQUE PRODUCED	(SWITCH)	TIME	EMI/RFI GENERATED	TECHNOLOGY	INVENTORY MIX REQUIRED	RELIABILITY	PURCHASED COST	
PTCR Starter	Simple 2 Wire	Lowest	No	Lowest	Fixed	3 - 5 Minutes	No	Solid State	Lowest	Highest	Lowest	
Start Cap with PTCR Acting as A Current Relay	Moderate 2 or 3 Wire	Medium	Yes	Medium	Fixed	2 - 5 Minutes	No	Solid State	Medium	Medium	Medium	
Start Cap used With Potential or Current Relay		Highest	Yes	Highest	Variable Based on Motor Speed	None	Yes	Electro Mechanical	Highest	Lowest	Highest	


SIMPLIFIED PTCR STARTING DIAGRAM

Start Sequence. When starting the compressor, contactor (M) closes; the PTCR, which is at low resistance. provides starting current to the motor's auxiliary winding. After time delay (t), the current passing through the PTCR causes it to heat and "switch" to a very high resistance. At this point the motor is up to speed and the run capacitor (CR) determines the current in the auxiliary winding. The PTCR remains hot and at high resistance as long as voltage remains on the circuit. When contactor (M) opens, shutting voltage to the compressor, the PTCR cools to its initial low resistance and is again ready to provide torque assist on the next startup.

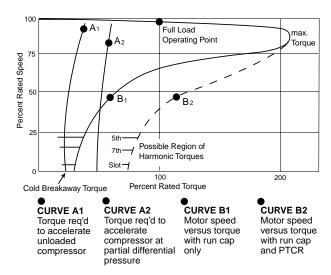
Restart. It is important to provide time between motor starts to allow the PTCR to cool to near its initial temperature. This time is usually 3 to 5 minutes and is determined by the thermostat (THERM) or separate time-delay relay (TR). Attempts to restart in less time may be successful depending on compressor equalization, line voltage, temperature, and other conditions. If the motor were to stall in a locked-rotor state, overload device (PD or TS) would open the line and a further time delay would occur until the motor overload is reset. Motor start PTCRs are applied to compressors having means to equalize pressure during shutdown.

TYPICAL PTCR CHARACTERISTICS AS A MOTOR START DEVICE

Fig T-3

START AND ACCELERATION TORQUES SINGLE PHASE PSC HIGH EFFICIENCY COMPRESSORS

The use of a PTCR start assist insures sufficient acceleration torque to overcome not only breakaway friction, but also parasitic asynchronous torques associated with the 5th and 7th motor harmonics or lamination slot harmonics.


ACCELERATION TIME CONSIDERATIONS

The time to accelerate a rotating machine is:

Accelerating Time (Seconds) =
$$\frac{\text{RPM x WK}^2 \text{ (lb ft}^2)}{\text{Avg. Torque (lb ft) x 308}}$$

(Avg. Torque = Curve B - Curve A)

- 1. If (Curve B Curve A) is zero or less, the motor may stall.
- 2. In calculating torque available from Curve B, allowance should be made for cusps in the torque curve due to harmonics. The time needed to accelerate from rest to 1/2 speed is critical, as the average torque available in this region is limited. Select a PTCR with sufficient switching time (t) to accelerate the compressor.
- Scroll and rotary compressors may have less breakaway torque than shown.
- A compressor with no equalization may require over 100% starting torqe and time as long as several seconds. PTCR starters not recommended.

Fig T-4

CONSIDERATIONS FOR CURRENT IN PTCR APPROXIMATE EQUIVALENT CIRCUIT PSC MOTOR AT ZERO SPEED

$$I_L$$
 (run) = $\frac{\text{HP x 746}}{V_M \text{x pf x eff}} I_L$ (start) $\approx 6 \text{ x } I_L \text{ run}$

For running conditions:

If
$$V_{aux} = V_{M}$$
, then I_{M} and $I_{aux} = \frac{I_{L}}{\sqrt{2}}$

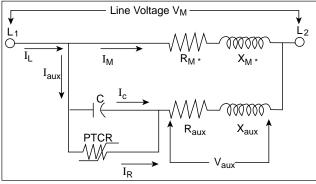
If $V_{aux} \neq V_{M}$, then $I_{aux} = \frac{I_{L}}{\sqrt{2}} \times \frac{V_{M}}{V_{aux}}$ and $Z_{aux} = \frac{V_{M}}{I_{aux}}$

For the greatest starting torque, PTCR should be chosen to make:

 $V_M \times I_M = V_{aux} \times I_{aux}$. In many cases the auxiliary Volt-Amperes are limited to about 50% of the main winding Volt-Amperes to get 50% - 70% rated torque.

Then at start, with PTCR in series:
$$Z'_{aux} = \overline{R}_{PTCR} + \overline{Z}_{aux}$$

$$I_{R \text{ start}} \text{ through PTCR} = \frac{V_{M}}{Z'_{aux}}$$


$$I_{C \text{ start}}$$
 through Run Cap = $\frac{V_M}{X_C}$; $X_C = \frac{1}{2\pi f C}$ ohms

$$I_{aux start} = I_{R start} + I_{C start}$$

If Z_{aux} is low impedance, less than 10% of R_{PTCR} then it can be ignored and I_{PTCR} at start = $\frac{V_{M}}{D}$

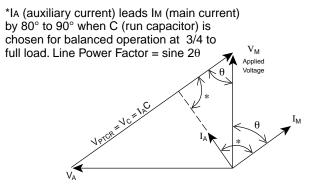

This closely approximates the condition for motors over 1/2 HP.

Fig T-5

*R and X are total of stator and rotor

Fig T-6Simplified Voltage Diagram of the PSC Motor at Operating Speed

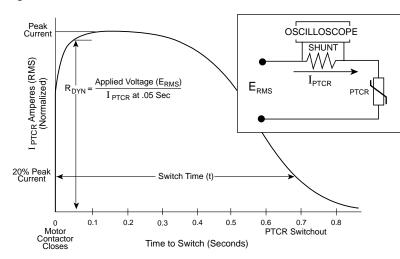
PTCR Motor Start Packages

EFFECT OF PTC RESISTANCE ON STARTING TORQUE OF PSC MOTORS

Table 2

MOTOR HP	LOCKED ROTOR TORQUE WITH RUN CAP ONLY % RATED TORQUE	AND PTCR (% RATED TORQUE) (SEE B) RESISTANCE (Rdyn)				
(NOTE 7)	(SEE A)	50 ohm	25 ohm	20 ohm	12.5 ohm	10 ohm
0.5	25% to 35%	70 - 100%	80 - 100%	NA	NA	NA
1	25% to 35%	50 - 70%	70 - 100%	NA	NA	NA
2	20% to 30%	40 - 60%	60 - 90%	70 - 100%	70 - 100%	80 - 100%
3.5	20% to 30%	NA	40 - 60%	50 - 85%	60 - 90%	70 - 100%
5	15% to 25%	NA	NA	40 - 60%	50 - 75%	60 - 90%
6.5	15% to 25%	NA	NA	NA	40 - 70%	50 - 80%

A. Rated torque is the torque at full speed rated load. It is calculated as:


Torque (lb - ft) =
$$\frac{HP \times 5250}{RPM}$$

The range shown includes both normal slip and high efficiency low slip motors. Starting torque varies as: (Line Voltage)².

B. Figure T-4 shows effect of using PTCR to increase starting torque. For reciprocating compressors, it is advised to choose a resistance value that gives at least 50% rated torque at locked rotor. Scroll and rotary compressors may require less torque.

TYPICAL PTCR CURRENT VS. TIME SHOWING DEFINITION OF RDYN AND SWITCH TIME (T)

Fig T-7

Time (t)
$$\approx$$
 KM (130°C - T₀) $\frac{V^2_{PTCF}}{V^2_{PTCF}}$
M = PTCR mass
T₀ = PTCR temp at time 0
K = 0.75 J/g/°C

START CAPACITOR REPLACEMENT

Capacitor Starting Comparison

Some PSC motors have historically been started with a capacitor and relay. To deliver the same starting current as a start capacitor, a PTCR resistance is available for approximately equal ohms. Table 3 can be used for conversion.

Even though the start current may be the same, the start torques may differ depending on the motor design. The PTCR has a fixed time built in. The start capacitor will stay in the circuit until a relay switches it out. The longer time provided by the capacitor and relay may be needed on applications where equalization is not present or adequate reset time is not available.

STARTING CURRENT APPROXIMATION BASED ON

$$X_c = \frac{1}{2\pi fC}$$

Table 3

START CAPACITOR	PTCR VALUE
50 microfarads	50 ohms
75 microfarads	37.5 ohms
100 microfarads	25 ohms
125 microfarads	20 ohms
200 microfarads	12.5 ohms
250 microfarads	10 ohms

PTCR Motor Start Packages

PTCR SELECTION

- Choosing the best PTCR for an application is a simple matter. See Table 4 and Table 2. Vishay Cera-Mite PTCRs are available in three case sizes (A, B, and C).
- Table 4 indicates the correct case size for the application.
 Table 2 shows how to choose the correct resistance value.
- Using a device too small or resistance too high will give inadequate starting performance. An oversize device will not harm the motor, but may not be optimum with regards to acceleration dynamics, or power dissipation.
- The PTCR is generally self protecting when applied within the voltage and current ratings.

Table 4

PTCR	PTCR MOTOR START SELECTION CHART								
VISHAY CERA-MITE PART NUMBER	CASE STYLE	RESISTA R _{DYN} ± 20%	ANCE (OHMS) R ₀ ± 30%	SWITCH TIME (T) SECONDS @ 230V	CURRENT RATING AMPERES	MAX. VOLTAGE RATING VOLTS, RMS	AVG. POWER DISSIPATION WATTS		RESSOR NGE HP
305C20*	С	25	35	0.25	10	410	3.5	10 - 28	0.75 - 2.0
305C21	С	35	50	0.35	8	410	3.5	8 - 18	0.5 - 1.5
305C22*	С	50	75	0.50	6	410	3.5	5 - 12	0.25 - 1.0
305C19*	В	20	30	0.50	18	500	7	20 - 50	1.5 - 4.0
305C12*	В	25	40	0.60	15	500	7	18 - 42	1.5 - 3.5
305C2	В	50	85	1.00	12	500	7	10 - 25	1.0 - 2.5
305C9*	Α	10	15	0.50	36	500	9	28 - 68	3.0 - 7.0
305C11	Α	12.5	20	0.60	30	500	9	28 - 62	3.0 - 6.0
305C1*	Α	25	42.5	1.00	24	500	9	14 - 36	1.5 - 3.5
Not	e 1	N	ote 2	Note 3	Note 4	Note 5	Note 6	N	ote 7

^{*} Preferred Values

Note 1

Part number is stamped on the device for UL recognition. The customer part number will also include 1 or 3 character alpha-numeric suffix to designate mounting bracket, customer marking, wire jumper, or other accessory furnished. The suffix is not marked on the part. Certified outline drawing and complete part number will be furnished on request for specific applications. (Example: 305C19K01.) Mounting brackets and other accessories are shipped in separate boxes to simplify installation in end use equipment.

Note 2

 $R_{ ext{DYN}}$ is nominal resistance equal to E/I when 230 volts, 60 Hz is applied (**See Fig T-7**). This resistance determines current and starting torque at the moment of application of voltage to the motor and can be measured with an oscilloscope.

For receiving inspection or routine trouble shooting, the D.C. resistance (Ro) as measured with an ohmmeter is approximately 50% greater. For example: 305C20 measured with an ohm meter would be 35 ohms \pm 30% tolerance.

Note 3

Resistance values are duplicated in several case sizes (ie: 305C20, C12, and C1) to provide longer switch time (t) and higher current ratings (See Fig T-7). Larger parts may be needed for more difficult starting conditions (voltage or temperature) or may be used for accelerating fans against back pressure.

Note 4

Maximum current in the PTCR is determined by

 $\frac{\text{Max Line Voltage}}{\text{Min R}_{\text{DYN}}}$

Motor auxiliary winding impedance is usually small compared to PTCR resistance, and does not materially affect PTCR current.

Current in PTCR is a percentage of the full motor inrush (locked rotor) current; usually 30% to 50% (See Fig T-5).

Note 5

In application, the maximum voltage is the voltage that appears across the run capacitor at rated speed, high line, light load. This is not the applied line voltage (See Fig T-6).

THESE DEVICES ARE INTENDED FOR APPLICATION ON 240 VOLT LINES OR SYSTEMS WITH MAXIMUM LINE VOLTAGE UP TO 264 VOLTS. The 305C20, 21 and 22 are also used on 120 volt systems where the motor is designed to use same run capacitor and PTCR as equivalent 230 volt compressor.

Note 6

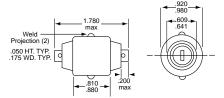
This is the power used to keep the PTCR switched off under full load running conditions at typical ambient temperature.

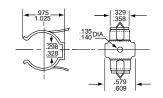
Note 7

BTU and horsepower ranges are for reference only. PTCR may be applied outside those ranges as long as maximum voltage and maximum current are not exceeded. Scroll and rotary compressors may require less starting assistance allowing use of smaller devices.

DIMENSIONS FOR PTCR MOTOR START DEVICES - IN INCHES

 PACKAGED MOTOR START PTCRs ARE OFFERED IN THREE DIFFERENT CASE SIZES TO ACCOMMODATE THE RANGE OF PSC COMPRESSOR MOTORS SERVED.

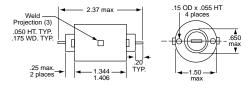

CASE STYLE C


Case Style C is a 2-terminal single pellet device with current carrying capacity up to 10 amperes. It is furnished with a round mounting bracket.

CASE C
305C20 — Black
305C21 — Black
305C22 — Black

MOUNTING BRACKET	
36-520M — Round	

Fig T-8



Round Bracket — Spring Steel Phosphate & Oil Finish. Accepts #6 Sheet Metal Screw

CASE STYLE B

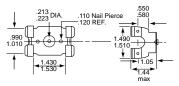
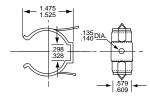

Case Style B is a 2-terminal single pellet unit with current carrying capacity up to 18 amperes. Depending upon the model, either a U-shaped or round bracket is furnished.

Fig T-9

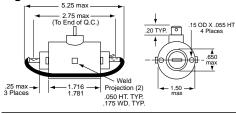
CASE B


305C2 — Black 305C12 — Black or Blue 305C19 — Blue

U-Bracket — Spring Steel Zinc Dichromate Finish. Accepts #8 Sheet Metal Screw

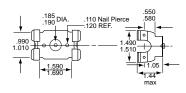
MOUNTING BRACKET

7-36-5C — U-Shaped 36-520H — Round

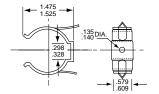


Round Bracket — Spring Steel Phosphate & Oil Finish. Accepts #6 Sheet Metal Screw

CASE STYLE A


Case Style A is a 3-terminal device that incorporates two pellets in parallel, resulting in lower resistance values and current carrying capacity up to 36 amperes. A jumper wire to complete the parallel connection with the two internal pellets is required.

CASE A 305C1 — Blue 305C9 — Tan 305C11 — Tan


7-36-4C — U-Shaped 36-520H — Round

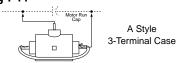
U-Bracket — Spring Steel Zinc Dichromate Finish.
Accepts #8 Sheet Metal Screw

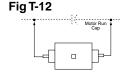
WIRE JUMPER

50-1278 — 9.75" Long 105°C Wire

Round Bracket

- Spring Steel Phosphate & Oil Finish.
Accepts #6 Sheet Metal Screw


OPERATING TEMPERATURE


Under normal operation, the ceramic pellet inside the case reaches a temperature of 150°C. The plastic case material has been recognized by UL for operation up to this temperature. The actual temperature on the outside of the case will be approximately 100°C while the motor is running. An appropriate mounting location and 105°C, 600 volt wiring are recommended.

CONNECTION DIAGRAMS

PTCR Motor Start units are connected directly across the PSC motor's "run" capacitor. Case style A is a 3-terminal device and uses an external jumper wire to connect the two internal pellets in parallel. A special "piggyback" terminal on the jumper wire provides for two connections on one side of the A-style case.

Fig T-11

B & C Style 2-Terminal Case

PTCR Motor Start Packages

VISHAY CERA-MITE MOTOR START FEATURES

ADVANCED CERAMIC ENGINEERING FOR HVAC

Vishay Cera-Mite's capability in large diameter ceramic pellets, unique formulations tailored to motor starting, and heavy duty electrode systems, have been developed and proven with the cooperation of HVAC industry experts over a period of 20 years.

INHERENT PERFORMANCE

Large diameter pellets make possible low resistance start devices needed to match torque requirements of high efficiency compressor motors.

Various package sizes offer selection of timing intervals, providing optimum switching time without dependence on sensing speed, counter EMF, or current.

RUGGED MECHANICAL CONSTRUCTION

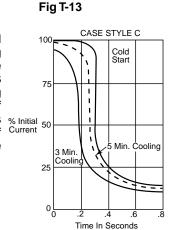
Vishay Cera-Mite PTCR cases are molded from a UL94V0 high temperature, engineered plastic/glass composite.

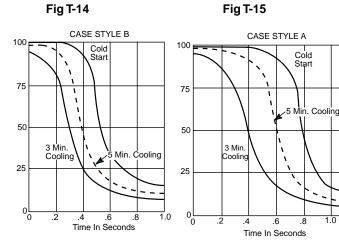
Heavy duty aluminum contact plates and stainless steel force springs are scaled to the pellet sizes and current ratings to insure no internal arcing and to enhance quick reset time.

Unbreakable metal mounting brackets attach securely with a single screw. The NEW "U" - brackets developed by Vishay Cera-Mite feature lower power consumption and greater reliability by maximizing case to ground thermal impedance.

SIMPLE AND ECONOMICAL

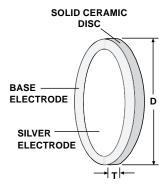
A solid state device requiring only 2 quick connect wires and one bracket screw to install. Compared to the alternative start capacitor and relay, PTCR start devices save several wires, occupy less panel space, mount more easily, and cost less.


OUTSTANDING RELIABILITY


Over a fifteen year period, with an installed base of millions of Vishay Cera-Mite PTCR start devices, experience has demonstrated reliability at 1.0 FITS or less. Users have benefited from very low warranty expense.

RESTART CONSIDERATIONS

A properly sized PTCR will provide adequate starting current and starting time with a cool down time of 3 to 5 minutes, coordinating perfectly with standard "off delay" equalization timers Restart characteristics of the three case sizes are shown.



PTCR Motor Start Pellets

Vishay Cera-Mite offers a complete line of PTCR motor start pellets designed for OEM pressure contact mounting. Compressor and refrigerator manufacturers, as well as selected HVAC aftermarket distributors have chosen to design and build their own proprietary motor start devices. Such cost effective units allow for unique mounting styles, special terminal arrangements, and combination devices including start capacitors or overload protectors.

FOR USE IN:

Motor Start Relays

Combination Assemblies

APPLICATION DATA

- Complete range of size/resistance combinations for 120 and 240 volt compressor motors.
- Rugged silver electrodes well suited for long life pressure contact mounting.
- · Withstand voltage is 2 times Voltage Max. rating.
- Application engineering assistance provided for custom pellet designs.

PTCR M	PTCR MOTOR START PELLETS					
RESIS	TANCE		CURRENT			
D (OHMS)	D (OHME)	MAX.	MAX.	THICKNESS (T)	PART	
R ₂₅ (OHMS)	R _{DYN} (OHMS)	(- KIVIS)	(A _{RMS})	(mm)	NUMBER	
5_	4	200	10	16 x 2.5	307C1674*	
5.5	4.2	180	12	16 x 2.5	307C1670	
6.8	5	200	10	16 x 2.5	307C1700*	
8	5.8	150	10	16 x 2.5	307C1280	
10	7.2	200	10	16 x 2.5	307C1711*	
10	7.2	200	10	16 x 2.5	307C1713	
20	13.5	250	7.5	16 x 2.5	307C1490	
47	30	300	6.5	16 x 2.5	307C1136	
68	42	300	5.5	16 x 2.5	307C1043	
4	3.2	180	15	17.5 x 2.5	307C1614	
5	4	180	12	17.5 x 2.5	307C1668	
6.8	5	200	10	17.5 x 2.5	307C1644	
10	7.2	200	10	17.5 x 2.5	307C1651	
15	10.5	265	6	17.5 x 2.5	307C1190	
20	13	320	8	17.5 x 2.5	307C1720	
25	17	300	7.5	17.5 x 2.5	307C1066	
33	22	300	6.5	17.5 x 2.5	307C1040	
47	30	350	4	17.5 x 2.5	307C1284	
68	42	400	4	17.5 x 2.5	307C1283	
3.3	2.6	160	12	20 x 2.5	307C1411	
4.7	3.5	180	12	20 x 2.5	307C1484	
5.6	4.1	180	12	20 x 2.5	307C1544	
6.8	5	200	10	20 x 2.5	307C1399	
10	7.2	230	9	20 x 2.5	307C1489	
12	8.5	250	8.5	20 x 2.5	307C1476	
15	10.5	300	8	20 x 2.5	307C1530	
22	15	400	8	20 x 2.5	307C1531	
33	22	355	6	20 x 2.5	307C1282	
47	30	400	5	20 x 2.5	307C1533	
68	42	430	4	20 x 2.5	307C1292	
3.9	3 (@ 50V)	175	16	20 x 3.2	307C1487	
12	10.3 (@ 100V)	350	8	20 x 3.2	307C1529	
14	12 (@ 100V)	350	8	20 x 3.2	307C1545	
30	15.9 (@ 240V)	380	12	20 x 3.2	307C1640	
25	18 (@ 240V)	400	9	20 x 5.0	307C1518	
38	25 (@ 240V)	400	9	20 x 5.0	307C1024	
50	35 (@ 240V)	400	7.5	20 x 5.0	307C1409	
75	50 (@ 240V)	400	5.5	20 x 5.0	307C1410	
		·	-			

 R_{25} = zero power resistance ± 30% at 25°C; other tolerances available.

R_{DYN} = nominal dynamic (effective) resistance, 120V applied unless otherwise noted. *High performance ceramic formulation, lower transition temperature provides reduced power consumption for energy concious applications.

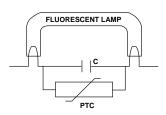
Note: All motor start pellets receive 100% resistance and 100% voltage pulse burn-in simulating actual motor start-up.

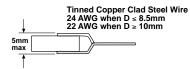
Note: Selected pellets carry UL recognition per File E107611.

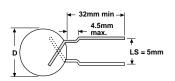
Note: Usage requires packaging materials appropriate for maximum pellet surface temperature of 180°C.

VISHAY

PTC Thermistors For Electronic Fluorescent Ballasts




FEATURES


- Electrode preheat thermistors for use in compact fluorescent lamps (CFL) and electronic ballasts.
- · Current limiting, time-delayed start-up extends lamp life.
- · Quiet, flicker-free operation.
- Developed in cooperation with leading ballast designers.
- Both standard and custom parts are available.
- Economical, reliable and proven in millions of lamps throughout the world.

APPLICATION CONSIDERATIONS

- · Ignition time can be optimized to increase life of lamp.
- PTC resistance (R₂₅) is chosen, along with filament resistance and application voltage, to control desired electrode preheat current.
- Lamp preheat time is determined by time required for thermistor to switch from low to high resistance state.
 Preheat currents shown result in switch times of approximately 1 second at 25°C. Lower currents result in longer switch times.

Options:

- High Temperature Coating
- Short Clipped Leads
- Other Wire Forms and Lead Spacings

PTC THERI	MISTORS FOR	ELECTRONI	C FLUORE	SCENT	BALLASTS
RESISTANCE	INSTANTANEOUS	CONTINUOUS	PREHEAT	D	
R ₂₅	VOLTAGE	VOLTAGE	CURRENT	MAX.	PART
(OHMS) 1	(V _{RMS}) 2	(V _{RMS}) 3	(mA) 4	(mm) 5	NUMBER 6
150	265	80	215	4.5	307C1407
150	280	200	200	4.5	307C1414
50	175	50	430	5.5	307C1230
70	265	150	350	5.5	307C1654
100	260	95	370	5.5	307C1364
125	230	80	280	5.5	307C1259
150	235	90	260	5.5	307C1253
200	320	145	300	5.5	307C1223
240	350	150	260	5.5	307C1171
300	400	165	225	5.5	307C1225
380	410	170	205	5.5	307C1390
600	420	120	185	5.5	307C1252
600	460	200	170	5.5	307C1224
850	450	340	140	5.5	307C1622
100	340	265	390	7	307C1403
150	340	150	400	7	307C1306
180	350	165	380	7	307C1569
200	355	265	300	7	307C1375
300	370	75	270	7	307C1242
300	420	320	230	7	307C1360
500	480	400	190	7	307C1361
800	530	450	155	7	307C1362
850	520	175	190	7	307C1260
70	210	50	750	8.5	307C1367
70	300	140	725	8.5	307C1366
85	210	50	670	8.5	307C1363
150	400	100	550	8.5	307C1287
85	280	60	820	10	307C1258
100	310	90	750	10	307C1365
400	430	120	420	10	307C1422

- Note 1: R₂₅ Nominal zero power resistance ± 25% at 25°C. For given diameter, higher resistance thermistors offer higher maximum voltages.
- Note 2: Instantaneous Voltage Maximum rms voltage permitted across thermistor during fluorescent lamp start-up cycle.
- Note 3: Continuous Voltage Maximum rms voltage continuously applied across thermistor during normal lamp operation.
- Note 4: Preheat Current rms current (60Hz) which switches thermistor to high resistance in approximately 1 second at 25°C ambient.
- **Note 5:** Size (mass) of PTC influences rate of I²R temperature increase. For given resistance, larger thermistors have longer switch times. Optional coating slightly increases switch time.
- Note 6: P/N suffix (not shown) describes wire lead forms and other options.

PTCR Overcurrent Protection

FEATURES:

Sizes For Your Application - Hold currents from 5 mA to 1.5 A are available in sizes from 4 to 22mm.

Better Protection, Maintenance Free - PTCRs reset after an overcurrent situation. Protection levels may be set lower than possible with fuses, without worrying about nuisance trips.

Resetting, Non Cycling - Functioning as a manual reset device, PTCR overcurrent protectors remain latched in the tripped state and automatically reset only after voltage has been removed. This prevents continuous cycling, and protects against reclosing into a fault condition.

Simplified Mounting - PTCRs may be mounted directly inside end use equipment. Unlike fuses, no bulky fuseholder or access for user replacement is required.

Ceramic Material Selection - Various curie materials are available to tailor hold and trip current operating points.

Repeatable, No Hysteresis - After resetting, ceramic PTCRs return to the initial resistance value, providing repeatable, consistent protection levels. Unlike polymer type PTCRs, Vishay Cera-Mite devices exhibit no resistance hysteresis application problems.

Telecom Line Balance - In telecom circuits matched pairs are used to maintain line balance. Unlike polymer PTCRs, ceramic devices maintain balance after resetting.

APPLICATION DATA

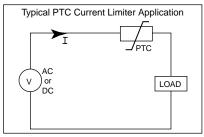
In a typical current limiter application, the PTC device is connected in series with a load impedance (Fig P-1). When current (I) flows, internal I^2R losses attempt to increase the PTCR's temperature. To maintain the low resistance "on" state, stabilization must occur below the switching temperature, where the heat generated (I^2R) is balanced by heat lost due to radiation and conduction.

Hold current (I_{H}) is the maximum continuous current at which a PTCR can be maintained in a low resistance "on" state while operating at rated ambient temperature (typ 25°C). To prevent nuisance tripping, choose the rated hold current to be greater than the normal current expected.

Since heat dissipated by the device is proportional to the ambient temperature, hold current must be derated for ambients higher than 25°C according to the following relationship:

Hold Current (I_H) =
$$\sqrt{\frac{D(T_{SW} - T_A)}{R_{PTC}}}$$

Where:


D = Dissipation Constant (varies based on disc size, wire type, & coating material)

T_{sw} = Switching (Curie) Temperature of PTCR Material

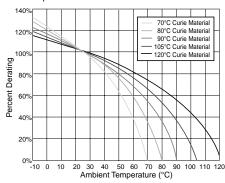
T_A = Ambient Temperature

R_{PTC}= Resistance of PTCR at 25°C

Fig P-1

A NEW DIMENSION

The Positive Temperature Coefficient Resistor's (PTC thermistor) unique property of dramatically increasing its resistance above the curie temperature makes it an excellent candidate for overcurrent protection applications. Overcurrent situations in electronic devices occur due to voltage fluctuations, changes in load impedance, or problems with system wiring. PTC thermistors monitor current in series connected loads, trip in the event of excess current, and reset after the overload situation is removed, creating a new dimension of flexibility for designers.


APPLICATIONS:

- Telecommunication Products
- · Electronic Power Supplies
- · Automotive Motor Protection
- · Industrial Control Systems

This relationship is shown in Fig P-2, which provides hold current (I_H) derating estimates for ambient temperatures in excess of 25°C. Five curie materials illustrate the design flexibility offered by ceramic PTCR's.

Fig P-2

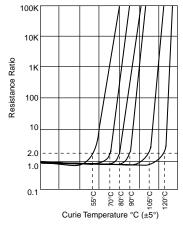
PTC Thermistor Overcurrent Protectors Ambient Temperature Derating of Hold and Trip Currents

PTCR Overcurrent Protection

APPLICATION DATA TRIPPING ACTION DUE TO OVERCURRENT

During normal operation, the PTCR remains in a low base resistance state (Fig P-3, Region 1). However, if current in excess of hold current (I_H) is conducted, I²R losses produce internal self heating. If the magnitude and time of the overcurrent event develops an energy input in excess of the device's ability to dissipate heat, the PTCR temperature will increase, thus reducing the current and protecting the circuit

PTC current limiters are intended for service on telecom systems, automobiles, or the secondary of control transformers or in similar applications where energy available is limited by source impedance. They are not intended for application on AC line voltages where source energy may be high and source impedance low.


The current required to trip (I_{τ}) is typically specified as two times the hold current $(2 \times I_{H})$. I_{τ} is defined as the minimum rms conduction current required to guarantee thermistor switching into a high resistance state (Fig P-3, Region 2) at a 25°C ambient temperature.

Ambient temperature influences the ability of the PTCR to transfer heat via surface radiation and thermal conduction at the wire leads. At high ambient temperatures, less energy input (via I²R) is required to reach the trip temperature. Low ambients require greater energy input. Approximate derating effects are shown in Fig P-2.

CERAMIC MATERIALS

The temperature at which the PTCR changes from the base resistance to high resistance region is determined by the PTCR ceramic material. Switching temperature (T_{sw}) described by the boundary between regions 1 & 2 (**Fig P-3**), is the temperature point at which the PTCR has increased to two times its base resistance at 25°C ambient ($R_{\text{sw}}=2$ x R_{25}). Design flexibility is enhanced by Cera-Mite's wide selection of ceramic PTCR materials with different switching temperatures (**Fig P-4**).

Fig P-4

Vishay Cera-Mite offers a wide selection of ceramic PTC materials providing flexibility for different ambient temperatures. Close protection levels are possible by designing resistance and physical size to meet specific hold current and trip current requirements.

SELF RESETTING - NON CYCLING - REPEATABLE

After tripping, the PTCR will remain latched in its high resistance state as long as voltage remains applied and sufficient trickle current is maintained to keep the device above the switching temperature. After voltage is removed, the PTCR resets (cools) back to its low resistance state and is again ready to provide protection.

Since the tripping operation is due to thermal change, there is a time-trip curve associated with each device. At relatively low magnitudes of overcurrent, it may take minutes for the device to trip. Higher current levels can result in millisecond response time. Trip time (t) can be calculated as follows

Trip Time (t) =
$$\frac{kM(T_{sw}-T_{A})}{I^{2}R - D(T_{sw}-T_{A})}$$

Where: k = coefficient of heat absorption = 0.603 J/g/°C $M = \text{mass of PTCR} = \text{volume x } 5.27\text{x}10^{-3} \text{ g/mm}^3$ $R = \text{zero power resistance of PTCR at } 25^{\circ}\text{C}$

Fig P-3
PTC
RESISTANCE
100000

10000

REGION 1
BASE
RESISTANCE

REGION 2
HIGH
RESISTANCE

RESISTANCE

RESISTANCE

REGION 2
HIGH
RESISTANCE

RESISTANCE

RESISTANCE

REGION 2
HIGH
RESISTANCE

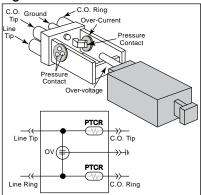
PHYSICAL DESIGN CONSIDERATIONS

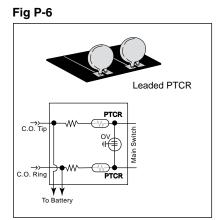
Diameter (D) - Common diameters range from 4 to 22mm. Thickness (T) - Typical thickness ranges from 1 to 5mm. Curie (Switching) Temperature (T_{sw}) - **See Fig P-4.** Resistivity (ρ) -

Determined during sintering process; combined with pellet geometry results in final resistance based on:

$$R_{25}$$
 = zero power resistance at 25°C = $\frac{\rho T}{\text{Area}}$

Table 2

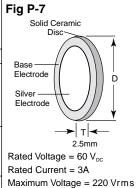

How Various P	How Various Physical Parameters Influence a PTCs:							
PARAMETER	VOLTAGE & CURRENT CAPABILITY	HOLD CURRENT & TRIP TIME						
Disc Diameter (D)	Increased diameter will increase voltage	Increased diameter will increase						
	and current ratings.	hold current and lengthen trip time.						
Disc Thickness (T)	Increased thickness will increase	Increased thickness will increase						
	voltage rating; may or may not	hold current and lengthen trip time.						
	increase current rating.							
Curie (Switch) (T _{sw})	Typically, lower switch temperature	Higher switch temperature						
Temperature	materials have higher voltage/	materials increase hold current						
	current capability.	and lengthen trip time.						
Resistance (R ₂₅)	Higher resistance will increase	Lower resistance will increase hold						
	voltage capability.	current and lengthen trip times.						
Thermal Loading	Increased thermal loading typically	Increased thermal loading increases						
(Heat Sink)	reduces the maximum interrupting current.	hold current and lengthens trip times.						
Wire Leads	Wire leads added to a PTCR pellet act as	Depends on thermal conductivity of						
	a thermal load resulting in reduced	wire used. Copper will increase						
	maximum interrupting current.	hold current and trip time.						
Coating Material	Applying coating to a leaded PTCR has	Applying coating to a leaded PTCR						
	minimal effect on voltage/current ratings.	increases hold current/trip time 10-20%.						



PTCR Overcurrent Protection

Vishay Cera-Mite

Fig P-5



PTC THERMISTOR PELLETS FOR TELECOMMUNICATIONS

Table 2

HOLD (I _H) CURRENT	TRIP (I _T) CURRENT	RESISTANCE R ₂₅	SWITCH TEMP.	SIZE (D) NOMINAL	VISHAY CERA-MITE PART	Fig P
mA	mA	Ohms	°C	mm	NUMBER	
110	220	30	105	6.5	307C1127	_
100	200	15	70	8	307C1128	Base -
100	200	20	80	8	307C1126	Licoti
110	220	18	80	8	307C1268	Silver
120	240	15	80	8	307C1129	Electr
140	280	15	105	8	307C1435	
110	220	15	70	9.5	307C1134	
130	260	15	80	9.5	307C1130	
140	280	9	70	9.5	307C1436	Rated '
150	300	10	80	9.5	307C1437	Rated
N	lote 1	Note 2			Note 3	Maxim

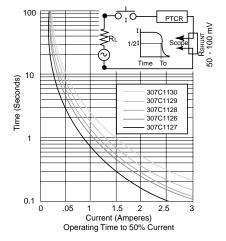
Note 1
Hold and trip cur

Hold and trip currents are specified at 25°C ambient.

Note 2

 R_{25} is nominal zero power resistance at 25°C with tolerance of \pm 20%.

Note 3

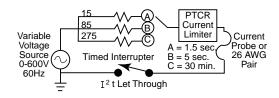

All pellets have silver electrodes suitable for pressure contact mounting.

PTC THERMISTORS FOR TELECOMMUNICATIONS

PTC Thermistors provide protection for large digital switches. Vishay Cera-Mite has pioneered this field with ceramic PTC thermistors working closely with major telephone equipment and telephone protection manufacturers. The requirements are dynamic, as switch makers continually strive to protect at lower levels. Vishay Cera-Mite participates with industry standard technical committees to establish common definitions and understanding of this new technology.

Fig P-8

Time-Trip Curves for Popular Telecom Pellets


INTERRUPTING CAPACITY ESTIMATES

Under unusual circumstances, telecommunication lines may be subjected to high surge currents as might occur from lightning effects or accidental crossing with power lines or transformer primaries.

Fig P-10 shows trip time curves for higher currents. Estimated interrupting capability data is also shown in Table 3 and is expressed as "I²t Let Through" based on test data conducted in accordance with UL 497A and CSA 22.2 No. 0.7-M1985.

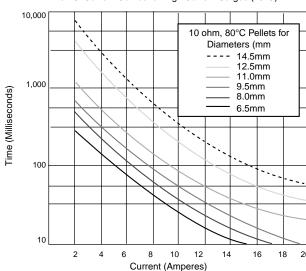
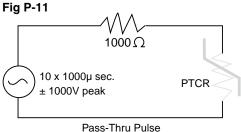

The data shown is for reference. Specific short circuit data or interrupting capability is partially determined by the mounting means and circuit application.

Fig P-9

Fig P-10

Time VS. Current Curves for High Current Surges (25°C)

PTCR Overcurrent Protection

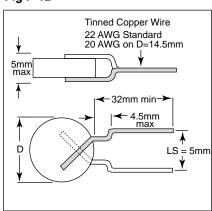

VISHAY

CUSTOM PTCR PELLET DESIGN CAPABILITY

- Vishay Cera-Mite will customize solid state overcurrent protector PTCRs to your exact requirements for telecommunication, power supply, or general electronic use. Providing great flexibility to establish specific voltage, hold current, time-trip characteristic, and ambient temperature values.
- Each device must be evaluated and ratings established per application. Mechanical packaging influences performance ratings.

Table 3

RATING CHART FOR CUSTOM PELLETS									
DISC DIAMETER (2.5mm THICK)	6.5mm	8mm	9.5mm	11mm	12.5mm	14.5mm			
Continuous Voltage Rating (rms) (proportional to resistance)	100 – 300	100 – 300	100 – 300	100 – 300	100 – 300	50 - 300			
Resistance Range @ 25°C (ohms)	10 to 35	7 to 25	5 to 20	4 to 17	2 to 15	1 to 10			
Continuous Carry Current (mA) Ambient 25° to 50°C (inversely proportional to resistance)	60 – 120	75 – 175	100 – 200	110 – 250	130 – 400	150 – 600			
Approximate Minimum Power to Trip or Reset (watts)	0.4	0.5	0.6	0.7	0.8	0.9			
Interrupting Capability									
A. Repetitive (25 to 300 V _{RMS}) Peak power in watts	600	700	800	900	1000	1100			
B. Non-repetitive (for 10 ohm pellet) I ² t Let Through	2.5	4.0	7.5	15	20	30			
Maximum Safe Interrupting Voltage (rms) (voltage rating is proportional to resistance)	300	350	400	450	500	600			
Rating applies to pellets with silver elec	trodes and	ressure co	nnections.	<u> </u>		<u> </u>			


TRANSIENT VOLTAGE & CURRENT

Because of the thermal storage capacity of the ceramic PTCR, transient surges do not cause tripping. The PTCR is considered to be transparent to these low energy transients. **Fig P-11** shows a typical test circuit for such transients.

WIRE LEADED PTC TELECOM THERMISTORS

Resettable current limiters featuring hold current and voltage ratings for telecommunication applications.

Fig P-12

Table 4

TELE	сом с	URR	ENT	LIMI	TERS			
HOLD (I _H) CURRENT mA	TRIP (I _T) CURRENT mA	RESIST R ₂₅ Ohms	TANCE TOL. %	SWITCH TEMP. °C		MAX. VOLTAGE V _{RMS}	VISHAY CERA-MITE PART NUMBER	
70	140	100	25	120	6.5	265	307C1418	ľ
100	200	20	20	80	8	220	307C1305	İ
100	200	30	20	105	8	220	307C1506	
110	220	18	20	80	8	220	307C1354	
110	220	25	20	105	8	220	307C1514	
120	240	15	20	80	8	220	307C1129	
120	240	20	20	105	8	220	307C1296	
120	240	25	20	120	8	220	307C1470	
130	260	13	20	80	8	120	307C1421	
120	240	39	30	120	8.7	250	307C1505	
120	240	25	25	105	8.7	250	307C1501	ľ
150	300	12	20	90	8.7	110	307C1439	
120	240	15	25	80	9.5	220	307C1465	
125	250	20	20	105	9.5	220	307C1507	
135	270	10	25	80	9.5	220	307C1469	
150	300	10	20	105	9.5	220	307C1233	
170	340	10	20	105	11.2	220	307C1234	
110	220	23	20	80	14.5	300	307C1262	
125	250	18	25	80	14.5	265	307C1254	
No	ote 1	Note	e 2		•		Note 3	1

Rated Voltage = 60Vdc; Rated Current = 3A at rated voltage.

Note 1 Hold and trip currents specified at 25°C ambient.

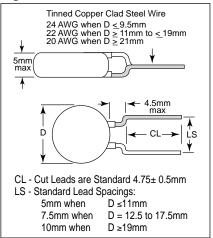
Note 2

R₂₅ is nominal zero power resistance (± 25%) at 25°C.

Note 3

P/N suffix describes options including: Tape & Reel Wire Size Wire Style & Length Lead Spacing Coating Material

PTCR Overcurrent Protection


Table 5

GENER	RAL PUR	POSE PTO	THERM	ISTORS	OVERC	URRENT	PROT	ECTORS
RATED VOLTAGE VRMS	MAX. VOLTAGE VRMS	HOLD (I _H) CURRENT mA	TRIP (I _T) CURRENT mA	MAX. CURRENT A	RES R ₂₅ Ohms	SWITCH TEMP °C	D MAX. mm	VISHAY CERA-MITE PART NUMBER
12	15	130	260	1.1	13	120	5.5	307C1455
12	15	170	340	2.4	6	105	8	307C1308
12	15	600	1200	10	1.2	105	16	307C1311
24	30	130	260	2.3	10	105	8	307C1315
24	30	175	350	3.4	6	105	9.5	307C1429
24	30	600	1200	11	1.3	105	17.5	307C1318
50	60	60	120	0.8	50	105	6.5	307C1321
50	60	120	240	2	12	105	8	307C1323
50	60	150	300	2.6	10	105	9.5	307C1548
50	60	325	650	10	3.5	105	14.5	307C1325
50	60	475	950	12	2	105	17.5	307C1326
120	140	60	120	0.6	50	105	6.5	307C1329
120	140	85	170	0.8	30	105	8	307C1330
120	140	95	190	1.5	39	105	11	307C1302
120	140	115	230	2	27	105	12.5	307C1303
120	140	105	210	1	20	105	9.5	307C1331
120	140	350	700	5	4.5	105	19	307C1333
240	375	20	40	0.2	600	105	6.5	307C1335
240	340	28	56	0.3	300	105	6.5	307C1336
240	310	31	62	0.33	240	105	6.5	307C1337
240	265	34	68	0.34	200	105	6.5	307C1338
240	265	40	80	0.45	125	105	6.5	307C1340
240	320	45	90	0.4	150	105	9.5	307C1339
240	320	55	110	0.5	100	105	11	307C1341
240	265	65	130	0.6	70	105	9.5	307C1342
240	265	90	180	1	45	105	11	307C1343
		Not	e 1		Note 2			Note 3

GENERAL PURPOSE PTC CURRENT LIMITERS

- Designed as resettable current limiters, PTC thermistors offer an alternative to conventional overcurrent protection devices such as fuses or circuit breakers.
- A wide variety of sizes and current ranges are available for many electronic, industrial and automotive applications. Both standard parts and custom designs are offered.

Fig P-13

CUSTOM CURRENT LIMITER GUIDELINES

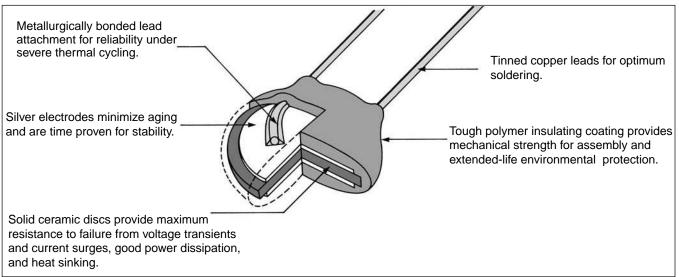
Table 6
RANGE CHART FOR CUSTOM WIRE LEADED DESIGN

MAX.	DESIGN LIMITS (APPROX.)						
D (mm) COATED	V _{RMS}	I _{HOLD}	OHMS				
5.5	600	5 mA	2000				
	15	150 mA	13				
6.5	600	7 mA	1200				
	15	200 mA	8				
8	600	10 mA	850				
	15	275 mA	6				
9.5	600	13 mA	500				
	15	350 mA	4				
11	600	20 mA	350				
	15	450 mA	2.5				
12.5	600	22 mA	250				
	15	500 mA	2.0				
14.5	600	30 mA	200				
	15	650 mA	1.5				
16	600	35 mA	150				
	15	800 mA	1.2				

MAX.	DESIGN I	LIMITS (AP	PROX.)
D (mm) COATED	V _{RMS}	I _{HOLD}	OHMS
17.5	600	40 mA	125
	15	950 mA	0.8
19	600	45 mA	100
	15	1.1 A	0.7
21	600	55 mA	80
	15	1.2 A	0.6
22.5	600	60 mA	70
	15	1.3 A	0.5
23.5	600	70 mA	60
	15	1.4 A	0.45
25	600	80 mA	50
	15	1.5 A	0.4

Resistance is proportional to voltage and inversely proportional to hold current (I_H)

Conformal coating adds 1.5mm


APPLICATION CONSIDERATIONS:

- PTC current limiters are intended for service on telecom systems, automobiles, or the secondary of control transformers or in similar applications where energy available is limited by source impedance. They are not intended for application on AC line voltages where source energy may be high and source impedance low.
- Fuses and circuit breakers result in total circuit isolation after tripping. PTC thermistors provide a current limiting function by switching to a high resistance mode. Safety consideration must be given to the potential shock hazard caused by the steady state leakage current and voltage potential remaining in the circuit.
- Wire leaded PTC current limiting thermistors are intended for applications which expect a limited number of tripping operations. Actual life is a function of operating parameters.
 For high duty cycle applications, ceramic PTC pellets mounted in spring contact mechanical housings are preferred.
- Wire size, wire type and coating material can be used to precisely tailor required operating characteristics.
- Options Include: Tape & Reel; Wire Forms; Lead Spacings.

Application Data, Ceramic Disc Capacitors 1.0 Picofarad to 0.1 Microfarad

RELIABLE SOLUTIONS IN EMI/RFI, DECOUPLING, DV/DT & DI/DT, SNUBBERS, BY-PASS, ESR & ESL. EXCELLENT FOR HIGH VOLTAGE & SWITCHING POWER SUPPLIES.

MARKING INFORMATION

Wire leaded DC rated, disc capacitors are marked with a code identifying the manufacturer, capacitance, tolerance, voltage, and type of ceramic.

Specialty types such as AC rated are marked as described in those sections.

MANUFACTURER IDENTIFICATION "Cera-Mite®" or the identification "CM." **TEMPERATURE** COEFFICIENT (See chart at right) **CAPACITANCE TOLERANCE** Y5R (or C) $C = \pm .25pF$ $M = \pm 20\%$ $D = \pm .5pF$ P = +100 - 0%.01 M Y = -20 + 50% $J = \pm 5\%$ KV⁻ $K = \pm 10\%$ Z = -20 + 80%**VOLTAGE** Rating normally DC volts. AC voltage rating marked AC or ~;. If no voltage is marked, part is 500VDC. **CAPACITANCE** Expressed in picofarads or

microfarads.

TIPE OF CENAMIC (Temperature Coemcient)							
CAPACITANCE CHANGE OVER TEMP. RANGE PPM PER DEGREE C	MARKING CODE FOR TEMP. RANGE -55° TO +125° C			ALTERNATE MARKING CODE	DIELECTRIC CLASS		
0 ± 30 (NPO)		C)G		Α	I	
-750 ± 120 (N750)		U	2J		U	I	
-1000 ± 250 (N1000)		M	3K		V	I	
-1500 ± 250 (N1500)		P	3K		W	I	
-2200 ± 500 (N2200)		R	3L		Х	I	
-3300 ± 500 (N3300)		S	3L		Υ	I	
-4700 ± 1000 (N4700)		T3	BM		Z	I & II*	
MAX. % CHANGE	+ 10° + 85°C	– 30° + 85°C	– 55° + 85°C	- 55° + 125°C	_	_	
± 4.7%	Z5E	Y5E	X5E	X7E	В	II	
± 7.5%	Z5F	Y5F	X5F	X7F	В	II	
± 10%	Z5P	Y5P	X5P	X7P	С	II	
± 15%	Z5R	Z5R Y5R X5R X7R			С	II or IV**	
± 22%	Z5S Y5S X5S X7S			С	II or IV		
+22 – 56%	Z5U	Z5U Y5U X5U X7U			Е	III	
+22 - 82%	Z5V	Y5V	X5V	X7V	F	III	

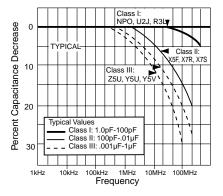
TYPE OF CERAMIC (Temperature Coefficient)

OPTIONAL MARKINGS

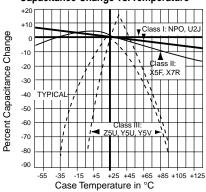
Examples: 680 = 680 picofarads.

Lot Date Code and/or Customer Part Number are available options which may also be imprinted on the capacitor

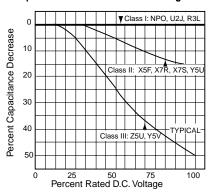
0047 = .0047 microfarads.

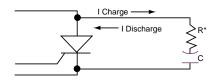

^{*} N4700 is a transition material between Class I and II, and has characteristics of both. It is used for larger cap values: capacitance and DF measured at 1 kHz.

^{**} Class IV uses same material as Class II, but is processed differently.


Application Data

Vishay Cera-Mite


Capacitance Change vs. Frequency


Capacitance Change vs. Temperature

Capacitance Decrease vs. D-C Voltage Bias

Ceramic Disc Capacitors as Snubbers

*Select R to limit dv/dt and di/dt to capacitor and semiconductor ratings. "Lossless" low dissipation factor discs are especially well suited for snubber service due to low self heating. See types 10TCU, 1DF0, 2DF0, and 3DF0.

CERAMIC DISC CAPACITOR APPLICATION NOTES

- HIGH K: For small size and higher values of capacitance, EIA 198D Class III, Z5U, Y5U, Y5V. This type is usually broad tolerance: $\pm 20\%$ or + 80 - 20%.
- MODERATELY HIGH K: Materials are formulated to provide better capacitance stability against change in temperature and voltage, but may be larger in size than the HIGH K types, especially in the higher capacitance values, EIA 198D Class II, X5F, X7R, X7S. Usually tighter tolerance. ±10%at 25°C. Higher dv/dt rating
- LOW K FORMULATIONS FOR PRECISION CAPACITORS: Ultra stable capacitance over broadest temperature, frequency and voltage variation, EIA Class I, NPO, U2J, R3L and S3L. Usually ±5% tolerance. Highest dv/dt rating.
- HYPERCON construction gives highest capacitance density. Made by forming a thin dielectric barrier layer at each electrode surface. They exhibit very high capacitance and good temperature stability. Improvements have extended range to 100 VDC. EIA 198D Class IV.
- CAPACITANCE MEASUREMENTS: Class IV dielectric are conducted at 50 to 100 millivolts, 1000Hz. All others are measured at 1.0 volts, Class II & III at 1 kHz. Class I at 1 MHz.

FREQUENCY:

- Operating frequency range is determined primarily by capacitor value and self resonance due to lead inductance. This typically occurs at 500 MHz for 100 pF, decreasing to 50 MHz at .01 μF and 10 MHz at 0.1 μF.
- Class III and IV, typical applications are power and logic bus coupling and decoupling, and broad-band bypass filtering. Class I and II are chosen for frequency discriminating filters, d-c blocking, reference circuits, and similar circuits requiring close tolerance and stability.

TEMPERATURE:

- Capacitors are designed for service temperatures of -55°C to +105°C or greater. The limiting factor is the life of the polymer coating. Ceramic discs are not injured by short time exposure up to 125°C.
- In applications where there is continuous heat dissipation in the capacitor, such as in snubber networks for power semiconductors, the case temperature rise should be limited to 30°C. Class I, II and III may be used for snubber service. Low Dissipation Factor capacitors are especially well suited.

VOLTAGE:

- The extensive range of d-c voltage ratings available allows selection of the appropriate device to minimize d-c voltage effects in the circuit.
- A-C voltage ratings for capacitors up to 1000 volts applies to applications where energy and current are limited by circuit impedance. 1000 ohms impedance at the maximum a-c voltage rating is adequate.
- Ratings apply to 50 kHz. Above 50 kHz derate a-c voltage by (freq./50kHz)².

CURRENT:

• For sinusoidal applied voltages: I_{RMS}= 7VfC where V = rms Voltage; f =frequency; C = farads. Power dissipation may be approximated by Watts = $(I_{RMS})^2$ x Effective Series Resistance (ESR).

Approximate ESR values: Class I, ESR = Ex.: 10pF ESR = 10 ohms at 1 MHz C(pF) f(MHz) Class II or III, ESR = Ex.: $.001 \mu F ESR = 100 \text{ ohms at } 10 \text{kHz}$ C(µF) f(kHz) 100V $I_{\text{BMS}} = 7 \times 100 \times (50 \times 10^3) \times (.001 \times 10^{-6}) = 35 \text{ mA}$ Ex.: .001μF

For nonsinusoidal applied voltage (repetitive transient pulses) limit on peak current is: Ip = $\frac{dV}{dt}$ x C where V = volts; T = seconds; C = farads; approximate $\frac{dV}{dt}$ limits:

Power Dissipation = $(35 \times 10^{-3})^2 \times 20 = .024$ watts

≤ 100pF = 10,000V/µs, Class I 100pF - 1,000pF =2,000V/µs, Class II & III >100pF = 5,000V/µs, Class I 1000pF - 10,000pF = 1,000V/µs, Class II & III <100pF = 5,000V/µs, Class II >10,000pF = 500V/µs, Class II & III >10,000pF = 100V/µs, Class IV Example: .001 μ F, Class II; Ip = $\frac{1000}{9}$ x (.001 x 10⁻⁶) = 1 ampere peak 10⁻

Note: Above calculations are typical. Actual circuit conditions may allow more or less current and voltage. Actual circuit test is recommended

50kHz

Lower Voltage Disc Capacitors

12V TO 1KV

Lower Voltage Capacitors are stocked in distribution. See "Packaging Options" section for other electrical and mechanical options, including Tape & Reel.

Fig 1

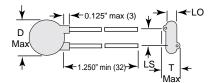


Fig 2

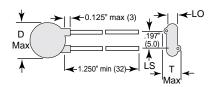
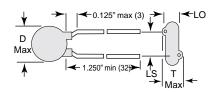



Fig 3

STANDARD WIRE SIZE:

- C and E Sizes 24 gauge (.020") Tinned Copper Clad Steel Wire.
- F through Q Sizes 22 gauge (.025") Tinned Copper Wire.

TAPE & REEL OPTIONS:

- Tape & Reel available on diameter sizes .250" to .680".
- To specify T & R, add two letter suffix to catalog number for example: TGS10 QA-suffix describes alternate wire lead forms & lead spacing options - see complete description in "Packaging Options" section.
- 10,000 piece minimum shipment for T & R.

SIZE		AMETER THICKNESS D" MAX "T" MAX		LEAD SPACING "LS" FIG 1 & 3		
CODE	in mm		in	mm	in	mm
С	.250	6.4	.156	4.0	.250	6.4
E	.290	7.4	.156	4.0	.250	6.4
E ₇	.330	8.4	.156	4.0	.250	6.4
F	.370	9.4	.156	4.0	.250	6.4
F ₇	.400	10.2	.156	4.0	.250	6.4
G	.440	11.2	.156	4.0	.250	6.4
G_7	.460	11.7	.156	4.0	.250	6.4
H	.490	12.4	.156	4.0	.250	6.4
H ₃	.490	12.4	.156	4.0	.375	9.5
H_7	.530	13.5	.156	4.0	.375	9.5
J	.560	14.2	.156	4.0	.375	9.5

SIZE	DIAMETER "D" MAX		"D" MAX "T" MAX				PACING IG 1 & 3
CODE	in	mm	in	mm	in	mm	
K	.630	16.0	.156	4.0	.375	9.5	
L	.680	17.3	.156	4.0	.375	9.5	
M	.760	19.3	.156	4.0	.375	9.5	
P	.890	22.6	.156	4.0	.375	9.5	
R	.510	13.0	.200	5.1	.375	9.5	
T	.580	14.7	.200	5.1	.375	9.5	
U	.640	16.3	.200	5.1	.375	9.5	
W	.700	17.8	.200	5.1	.375	9.5	
X	.770	19.6	.200	5.1	.375	9.5	
Y	.900	22.9	.200	5.1	.375	9.5	
Q	.950	24.1	.200	5.1	.375	9.5	

VOLTAGE	LEAD OFFSET "LO" (nom)					
CLASS	in	mm				
100	.040	1.0				
500	.040	1.0				
1000	.050	1.3				

12/25/50/100V HYPERCON CONSTRUCTION HIGH-CAPACITANCE DISCS

Application:

Low Voltage Bulk Filter

12 VDC, Y5R, 2.5ΩF, 5% DF								
VAI	LUE	CATALOG	SIZE					
μ F	TOL.	NUMBER	FIGURE	CODE				
.05	Υ	HY105	3	Е				
.10	М	HY110	1	G				
.22	М	HY122	1	J				
.47	М	HY147	1	Р				

25 VDC, Y5R, 5ΩF, 5% DF								
VAL	.UE	CATALOG	SIZE					
μ F T0L.		NUMBER	FIGURE	CODE				
.01	М	HY820	3	С				
.022	М	HY825	3	E				
.033	М	HY530	3	E				
.047	М	HY835	3	F				
.10	М	HY850	1	G				

50 VDC, Y5R, 25ΩF, 4% DF									
VAL	UE	CATALOG	SIZE						
μ F T0L.		NUMBER	FIGURE	CODE					
.01	М	HY920	3	С					
.022	М	HY925	3	Е					
.047	М	HY935	1	G					
.10	М	HY950	1	Н					

Insulation Resistance: 10.000 M Ω minimum, 500 Ω F

	56	3C	Seri	es
Class	I۷	Die	elect	irc

562C Series

• Dielectric Strength:

R

R

Z5U

Z5U

Z5U

750 VDC, 250 VAC RMS

100 VDC, Y5S, 100ΩF, 3% DF									
VAL	UE	CATALOG	SIZE						
μ F	TOL.	NUMBER	FIGURE	CODE					
.0022	М	HMMD22	2	С					
.0047	М	HMMD47	2	С					
.01	М	HMMS10	3	Е					
.10	М	HMMP10	1	L					

100 VOLT GENERAL PURPOSE

 Application Range: Up to 250 VDC, 75 VAC RMS**

VALUE		CATALOG	SI	TEMP.		
pF	TOL.	NUMBER	FIGURE	CODE	COEF.	ı
10	D	TSQ10	2	С	NP0	
22	J	TSQ22	2	С	NP0	
33	K	TSQ33	2	С	U2J	
47	K	TSQ47	2	С	U2J	
100	K	TST10	2	С	X7R	
220	K	TST22	2	С	X7R	
330	k	TCT33	2	C	Y7D	

VALUE		CATALOG	SI	ZE	TEMP.	
pF	TOL.	NUMBER	FIGURE	CODE	COEF.	
470	K	TST47	2	С	X7R	
1000	K	TSD10	2	С	X7R	
2200	K	TSD22	2	F	X7R	
3300	K	TSD33	2	F	X7R	
4700	K	TSD47	2	G	X7S	
6800	K	TSD68	2	Н	X7S	

Dissipation Factor: 3.0% maximum

VALUE		CATALOG	SI	ZE	TEMP.
pF	TOL.	NUMBER	FIGURE	CODE	COEF.
470	K	TST47	2	С	X7R
1000	K	TSD10	2	С	X7R
2200	K	TSD22	2	F	X7R
3300	K	TSD33	2	F	X7R
4700	K	TSD47	2	G	X7S
6800	K	TSD68	2	Н	X7S
0.01µF	K	TSS10	2	J	X7S

SIZE CATALOG TEMP. FIGURE COEF. TOL. NUMBER CODE TGD50 M 75U Ε Μ **TGS10** F Z5U 1 Μ TGS20 1 G Z5U Μ **TSS22** 1 Τ X7S

1

1

VALUE

μĒ

.005

.01

.02

.022

.047

.050

10

M

Μ

TGS47

TGS50

TGP10

^{**} See "Application Data" section for limits on AC voltage.

5GA, 5HK, 5TS, 10GA, 10HK, 10TC, 10TS Series

Lower Voltage Disc Capacitors

Vishay Cera-Mite

500 VOLT GENERAL PURPOSE

• Application Range: Up to 600 VDC, 100 VAC RMS**

 Insulation Resistance: 15,000 MΩ minimum, 750ΩF • Dissipation Factor: 3.0% maximum

562C Series Dielectric Strength: 1500 VDC, 300 VAC RMS

VAL	JE	CATALOG	SIZ	Œ.	TEMP.
pF	TOL.	NUMBER	FIG.	CODE	COEF.
1000	K	5TSD10	3	E	X7R
1000	М	5TSSD10	3	С	Y5U
1500	K	5TSD15	3	F	X7R
2200	K	5TSD22	3	F	X7R
3300	K	5TSD33	1	G	X7R
4700	K	5TSD47	1	Н	X7R
5000	7	5TSD50	1	F	Z5U

VALUE	VALUE		SIZ	E	TEMP.
μ F	TOL.	NUMBER	FIG.	CODE	COEF.
.0068	K	5TSD68	1	Н	X7S
.01	K	5TSS10	1	J	X7S
.01	М	5GASS10	1	G	Z5U
.01	Z	5HKSS10	1	G	Z5U
.02	М	5GASS20	1	J	Z5U
.022	М	5TSS22	1	L	X7S
.033	М	5TSS33	1	Χ	X7S

VALUE		CATALOG	SIZ	TEMP.	
μ F	TOL.	NUMBER	FIG.	CODE	COEF.
.05	М	5GAS50	1	Р	Z5U
.05	Z	5HKS50	1	T	Z5U
.10	М	5GAP10	1	Х	Z5U
.10	Υ	5HKSP10	1	Q	Y5V
.10	Z	5HKP10	1	Х	Z5U
.15	Υ	5GAP15	1	Υ	Z5U
.20	М	5GAP20	1	Q	Z5U

1000 VOLT GENERAL PURPOSE

Application Range:

Up to 1000 VDC, 150 VAC RMS**

• Insulation Resistance: 20,000 M Ω minimum, 1000 Ω F Dissipation Factor: 2.5% maximum

562C Series • Dielectric Strength: 2500 VDC, 500 VAC RMS

VALUE		CATALOG	SIZ	<u>'E</u>	TEMP.
pF	TOL.	NUMBER	FIG.	CODE	COEF.
10	М	5GAQ10	3	С	NP0
20	M	5GAQ20	3	С	NP0
33	M	5GAQ33	3	E	U2J
47	M	5GAQ47	3	E	U2J
100	M	5GAT10	3	С	X5F
150	M	5GAT15	3	С	X5F
200	M	5GAT20	3	С	X5F
220	M	5GAT22	3	С	X5F
330	M	5GAT33	3	С	X5F
470	М	5GAT47	3	С	X5F
500	M	5GAT50	3	С	X5F

VALUE		CATALOG	SIZE	:	TEMP.
pF	TOL.	NUMBER	FIG.	CODE	COEF.
1000	М	5GAD10	3	E	X7R
1000	Р	5HKD10	3	E	Y5U
1200	М	5GAD12	3	E	Z5U
1500	М	5GAD15	3	E	Z5U
2000	М	5GAD20	3	E	Z5U
2200	М	5GAD22	3	E	Z5U
2500	М	5GAD25	3	E	Z5U
2700	М	5GAD27	3	E	Z5U
3000	М	5GAD30	3	E	Z5U
3300	М	5GAD33	3	E	Z5U
4700	М	5GAD47	1	F	Z5U

VALU	VALUE		SIZ	ZE	TEMP.
pF	TOL.	NUMBER	FIGURE	CODE	COEF.
5000	М	5GAD50	1	F	Z5U
6800	М	5GAD68	1	G	Z5U
8200	М	5GAD82	1	G	Z5U
0.01μF	М	5GAS10	1	H_3	Z5U
.01	М	5HKMS10	1	Н	Z5U
.01	Р	5HKS10	1	H_3	Z5U
.015	М	5GAS15	1	J	Z5U
.020	М	5GAS20	1	L	Z5U
.050	М	10HKS50	1	Χ	Z5U
.10	М	10GAP10	1	Q	Z5U
.15	М	10GAP15	1	Q	Y5V

1KV TEMP. & VOLTAGE STABILIZED, 10% TOL.

Application Range:

Up to 1250 VDC, 200 VAC RMS**

- Insulation Resistance: 50,000 MΩminimum, 1000ΩF
- Dissipation Factor: 2.0% maximum

3020 361163	
 Dielectric Strength: 	
2500 VDC, 750 VAC RMS	

EGOC Sorios

VALUE	CATALOG	SIZE		TEMP.
рF	NUMBER	FIG.	CODE	COEF.
10	10TSQ10	3	С	NP0
25	10TSQ25	3	E	NP0
27	10TSQ27	3	С	U2J
30	10TSQ30	3	С	U2J
33	10TSQ33	3	E	U2J
39	10TSQ39	3	E	U2J
47	10TSQ47	3	E	U2J
50	10TSQ50	3	E	U2J
56	10TSQ56	3	С	X5F
68	10TSQ68	3	С	X5F

VALUE	CATALOG	SIZE		TEMP.
pF	NUMBER	FIG .	CODE	COEF.
75	10TSQ75	3	С	X5F
82	10TSQ82	3	С	X5F
100	10TST10	3	С	X5F
120	10TST12	3	С	X5F
150	10TST15	3	С	X5F
180	10TST18	3	С	X5F
200	10TST20	3	С	X5F
220	10TST22	3	С	X5F
250	10TST25	3	С	X5F

VALUE	CATALOG	SIZE		TEMP.
pF	NUMBER	FIG.	CODE	COEF.
270	10TST27	3	С	X5F
300	10TST30	3	С	X5F
330	10TST33	3	С	X5F
390	10TST39	3	С	X5F
470	10TST47	3	С	X5F
500	10TST50	3	С	X5F
560	10TST56	3	Е	X5F
680	10TST68	3	Е	X5F
750	10TST75	3	Е	X5F

VALUE	CATALOG	SIZ		TEMP.
pF	NUMBER	FIG.	CODE	COEF.
820	10TST82	3	Е	X5F
1000	10TSD10	3	E	X5F
1500	10TSD15	1	G	X5F
2000	10TSD20	1	H ₃	X5F
2200	10TSD22	1	H ₃	X5F
2700	10TSD27	1	J	X5F
3300	10TSD33	1	J	X5F
4700	10TSD47	1	L	X5F
.01µF	10TSS10	1	L	X5S

1KV NPO/N750 PRECISION DISC CAPACITORS, 5% TOL

• Application Range:

Up to 1500 VDC, 300 VAC RMS**

dv/dt up to 10,000 V/usec

- Insulation Resistance: 100,000 M Ω minimum, 1000 Ω F
- Dielectric Strength: 2500 VDC, 750 VAC RMS
- High Q: 1000, Dissipation Factor: 0.1% max

561C Series

Temperature/Frequency/Voltage Stable

- Application: NP0 capacitors are used when the ultimate in stability is required
- N750/S3L are smaller & ideal for "lossless snubbers".

VALUE	CATALOG	SI	ZE
pF*	NUMBER	FIG.	CODE
1.0	10TCCV10	3	С
2.2	10TCCV22	3	С
2.7	10TCCV27	3	С
3.0	10TCCV30	3	С
3.3	10TCCV33	3	С
3.9	10TCCV39	3	С
4.7	10TCCV47	3	С
5.0	10TCCV50	3	С
5.6	10TCCV56	3	С
6.8	10TCCV68	3	С
8.2	10TCCV82	3	С

VALUE	CATALOG	SIZE	
pF	NUMBER	FIG.	CODE
10	10TCCQ10	3	С
12	10TCCQ12	3	С
15	10TCCQ15	3	С
18	10TCCQ18	3	E
20	10TCCQ20	3	E
22	10TCCQ22	3	E
25	10TCCQ25	3	E
27	10TCCQ27	3	F
30	10TCCQ30	3	F
33	10TCCQ33	3	F
39	10TCCQ39	3	F

VALUE	CATALOG	SIZ	ZE
pF	NUMBER	FIG.	CODE
47	10TCCQ47	1	G
50	10TCCQ50	1	G
56	10TCCQ56	1	G
68	10TCCQ68	1	Н
82	10TCCQ82	1	H ₃
100	10TCCT10	1	J
120	10TCCT12	1	J
150	10TCCT15	1	K
180	10TCCT18	1	L
220	10TCCT22	1	М
270	10TCCT27	1	Р

VALUE pF	CATALOG	SIZ FIG.	E CODE	TEMP.
P.	N750/S3L D			
33	10TCUQ33	3	Е	U
47	10TCUQ47	3	E	U
68	10TCUQ68	3	F	U
100	10TCUT10	3	F	U
220	10TCUT22	1	G	V
330	10TCUT33	1	Н	V
470	10TCUT47	1	J	V
560	10TCUT56	1	J	V
680	10TCUT68	1	K	Υ
1000	10TCUD10	1	L	Υ

**See "Application Data" section for limits on AC voltage.

^{*1.0} to 10pF are D tolerance

AC Line Rated Disc Capacitors

VISHAY

X & Y EMI/RFI FILTER TYPES: ACROSS-THE-LINE, LINE-BY-PASS, ANTENNA COUPLING

Vishay Cera-Mite AC Line Rated Discs are rugged, high voltage capacitors specifically designed and tested for use on 125 Volt through 600 Volt AC power sources. Certified to meet demanding X & Y type worldwide safety agency requirements, they are applied in across-the-line, line-to-ground, and line-by-pass

filtering applications. Vishay Cera-Mite offers the most complete selection in the industry—six product families—exactly tailored to your needs.

- Worldwide Safety Agency Recognition
 - Underwriters Laboratories UL1414 & UL1283
 - Canadian Standards Association CSA 22.2 No. 1 & No. 8
 - European EN132400 to IEC 384-14 Second Edition
- Required In AC Power Supply and Filter Applications
- Six Families Tailored To Specific Industry Requirements
- Complete Range of Capacitance Values

AC LINE RATED CERAMIC	CAP	ACIT	OR SP	ECIFI	CAT	IONS
PERFORMANCE DATA / SERIES:	440L	30LV	30LVS	25Y	125L	20VL
Application Voltage Range (Vrms 50/60 Hz) (Note 1)	250/500	300/400	250/400	250/400	250	250
Dielectric Strength (Vrms 50/60 Hz for 1 minute)	4000	2500	2500	2500	2000	1250
Dissipation Factor (Maximum)			2%			
Insulation Resistance (Minimum)			1000 ΩF	•		
Mechanical Data	Service Temperature 125°C Maximum;				num;	
	Coating Material per UL94V0					
Temperature Characteristics	Y5U	Y5U	Y5U	Y5S	Y5V	Y5V

SAFETY AGENCY RECOGNIT	ION AND E	MI/RFI FILT	ERING SUI	BCLASS		
Series / Recognition / Voltage	440L	30LV	30LVS	25Y	125L	20VL
Underwriters Laboratories Inc.: (Note 2)						
UL 1414 Across-The-Line	Across-The-Line	Across-The-Line		_	_	_
UL 1414 Antenna Coupling	Antenna-Coupling	Antenna-Coupling	_	_	_	_
UL 1414 Line-By-Pass	Line-By-Pass	Line-By-Pass	Line-By-Pass	Line-By-Pass	Line-By-Pass	_
UL 1414 Rated Voltage	250 VAC	250 VAC	250 VAC	250 VAC	250 VAC	_
Electromagnetic Interference Filters	EMI Filters	EMI Filters	EMI Filters	EMI Filters	_	EMI Filters
UL1283 Rated Voltage	600 VAC	250 VAC	250 VAC	250 VAC	_	250 VAC
Canadian Standards Association:						
CSA 22.2 No.1 Across-The-Line	Across-The-Line	Across-The-Line	_	_	_	_
CSA 22.2 No.1 Isolation	Isolation	Isolation	Isolation	Isolation	Isolation	_
CSA 22.2 No. 1 Rated Voltage	250 VAC	250 VAC	250 VAC	250 VAC	125/250 VAC	_
CSA 22.2 No. 8 Line-to-Ground Capacitors	_	Line-To-Ground	Line-To-Ground	Line-To-Ground	_	Line-To-Ground
For Use in Certified EMI Filters	_	Certified EMI Filters	Certified EMI Filters	Certified EMI Filters	_	Certified EMI Filters
CSA 22.2 No. 8 Rated Voltage	_	400 VAC	400 VAC	400 VAC		250 VAC
European CENELEC Electronic Components	Committee (CE	CC) EN 132 400 I	o Publication IE	C 384-14 Table II	, Edition 2:	
IEC 384-14 Second Edition Subclass Y: (Note 3)	Y1	Y2	Y2	Y2	Y4	_
Subclass Y Voltage (Vrms 50-60 Hz)	500 VAC	300 VAC	250 VAC	250 VAC	125 VAC	
Type of Insulation Bridged	Double or	Basic or	Basic or	Basic or	Basic or	_
	Reinforced	Supplementary	Supplementary	Supplementary	Supplementary	
Peak Impulse Voltage Before Endurance Test	8 kV	5 kV	5 kV	5 kV	2.5 kV	_
IEC 384-14 Second Edition Subclass X: (Note 4)	X1	X1	X1	X1	X1	X2
Subclass X Voltage (Vrms 50-60 Hz)	400 VAC	400 VAC	400 VAC	400 VAC	400 VAC	400 VAC
Peak Impulse Voltage in Service	2.5 to 4.0 kV	2.5 to 4.0 kV	2.5 to 4.0 kV	2.5 to 4.0 kV	2.5 to 4.0 kV	To 2.5 kV
Application	High Pulse	High Pulse	High Pulse	High Pulse	High Pulse	Gen. Purpose
Damp Heat, Steady State Recognition		Code Hk	(F - 25°C/ + 125°C	C/21 days		

Note 1

Voltage Ratings: All ratings are manufacturer's rating.

- Part markings are governed by agency rules and customer requirements.
- Parts are marked 250 VAC unless otherwise requested.

Note 2

www.vishay.com

UL1414 Across-The-Line, Antenna Coupling, and Line-By-Pass Capacitors:

- Across-The-Line—A capacitor connected either across a supply circuit or between one side of a supply circuit and a conductive part that may be connected to earth ground.
- Antenna-Coupling—A capacitor connected from an antenna terminal to circuits within an appliance.
- Line-By-Pass—A capacitor connected between one side of a supply circuit and an accessible conductive part.

Note 3

IEC 384-14 Subclass Y Capacitors:

- A capacitor of a type suitable for use in situations where failure of the capacitor could lead to danger of electric shock.
- Class Y capacitors are divided into sub- classes based on type of insulation bridged and voltage ranges.
- For definitions of basic, supplementary, double and reinforced insulation, see IEC Publication 536.
- Subclass Y capacitors may be used in applications which require a Subclass X rating.

Note 4

IEC 384-14 Subclass X Capacitors:

 A capacitor of a type suitable for use in situations where failure of the capacitor would not lead to danger of electric shock Class X capacitors are divided into subclasses according to the peak impulse test voltage superimposed on the main voltage

See Part Number Detail for Temperature Characteristics

Note 5

AC Leakage Current:

- For all Series (except 125L) AC Leakage Current (mA) specified at 250 Vrms, 60 Hz.
- For 125L Series AC Leakage Current (mA) specified at 125 Vrms, 60Hz.

Note 6

Alternate Lead Spacings of 7.5mm and 10mm are available bulk or tape & reel.

 European Required Minimum Lead Clearance (Prevents Use of Inside Crimp) .315" (8mm) on 440L Series; 0.118" (3mm) on all other series.

> Document Number: 23084 Revision 14-May-02

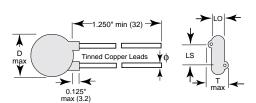
440L, 30LV, 30LVS, 25Y, 125L, 20VL Series

AC Line Rated Disc Capacitors

Vishay Cera-Mite

INTERNATIONAL AGENCY APPROVALS

Fig 6



TYPICAL FILTER SHOWING X & Y TYPES Fig 5

Series	"LO" typ.		
	in	mm	
440L	.158"	(4.0)	
30LV	.132"	(3.4)	
30LVS	.125"	(3.2)	
25Y	.060"	(1.5)	
125L	.110"	(2.8)	
20VL	.077"	(2.0)	

WIRE LEAD OFFSET

440L SERIES

AC RATED CERAMIC DISC CAPACITORS Rugged, High Dielectric Strength, Full UL Recognition,

X1 & Y1 Applications IEC 384-14 <u>UL 1414</u> **UL 1283** CSA 22.2

Across-The-Line EMI Filters No. 1 - Across-The-Line 2nd Edition Antenna Coupling No. 1 - Isolation Y1 - 500 VAC Line-By-Pass X1 - 400 VAC

10 K 440LQ10 1.3 uA COG .330 (8.4) .195 (5.0) .375 (9 15 K 440LQ15 2.0 uA U2J .330 (8.4) .210 (5.3) .375 (9 22 K 440LQ22 3.0 uA P3K .330 (8.4) .190 (4.8) .375 (9 33 K 440LQ33 4.4 uA R3L .330 (8.4) .200 (5.1) .375 (9	5) 20 .032 (.81) 5) 20 .032 (.81) 5) 20 .032 (.81) 5) 20 .032 (.81) 5) 20 .032 (.81)
22 K 440LQ22 3.0 uA P3K .330 (8.4) 190 (4.8) .375 (9.	5) 20 .032 (.81) 5) 20 .032 (.81) 5) 20 .032 (.81)
	5) 20 .032 (.81) 5) 20 .032 (.81)
33 K 440 Q33 4.4 uA R3 .330 (8.4) .200 (5.1) .375 (9.	5) 20 .032 (.81)
47 K 440LQ47 6.3 uA R3L .330 (8.4) .180 (4.6) .375 (9.	
68 K 440LQ68 0.01 X7R .330 (8.4) .220 (5.6) .375 (9.	
100 K 440LT10 0.02 X7R .330 (8.4) .220 (5.6) .375 (9.	
150 K 440LT15 0.03 X7R .330 (8.4) .235 (6.0) .375 (9.	
220 K 440LT22 0.04 X7R .330 (8.4) .235 (6.0) .375 (9.	
330 K 440LT33 0.05 X7R .330 (8.4) .225 (5.7) .375 (9.4)	
470 M 440LT47 0.07 Y5U .330 (8.4) .230 (5.8) .375 (9.	
560 M 440LT56 0.08 Y5U .330 (8.4) .230 (5.8) .375 (9.	
680 M 440LT68 0.10 Y5U .330 (8.4) .235 (6.0) .375 (9.	5) 20 .032 (.81)
1000 M 440LD10 0.15 Y5U .365 (9.3) .220 (5.6) .375 (9.	
1500 M 440LD15 0.23 Y5U .365 (9.3) .220 (5.6) .375 (9.	
2000 M 440LD20 0.30 Y5U 400 (10.2) 220 (5.6) 375 (9.	
2200 M 440LD22 0.34 Y5U 430 (10.9) 225 (5.7) 375 (9.	
2700 M 440LD27 0.41 Y5U 460 (11.7) 225 (5.7) 375 (9.	
2800 M 440LD28 0.43 Y5U 460 (11.7) 220 (5.6) 375 (9.	5) 20 .032 (.81)
3000 M 440LD30 0.46 Y5U.490 (12.4).225 (5.7) 375 (9.	
3200 M 440LD32 0.49 Y5U 490 (12.4) 220 (5.6) 375 (9.	
3300 M 440LD33 0.50 Y5U 490 (12.4) 215 (5.5) 375 (9.	5) 20 .032 (.81)
3900 M 440LD39 0.59 Y5U 530 (13.5) 220 (5.6) 375 (9.	
4000 M 440LD40 0.61 Y5U .530 (13.5) .220 (5.6) .375 (9.	
4700 M 440LD47 0.71 Y5U .620 (15.7) .230 (5.8) .375 (9.	
5000 M 440LD50 0.76 Y5U 620 (15.7) 225 (5.7) 375 (9.	
5500 M 440LD55 0.84 Y5U 680 (17.3) 230 (5.8) 375 (9.	
5600 M 440LD56 0.85 Y5U 680 (17.3) 230 (5.8) 375 (9.	, , , , ,
6800 M 440LD68 1.04 Y5U .720 (18.3) .235 (6.0) 375 (9.	
8000 M 440LD80 1.22 Y5U .720 (18.3) .220 (5.6) 375 (9.	
9000 M 440LD90 1.37 Y5U 790 (20.1) .225 (5.7) 375 (9.	
.01µF M 440LS10 1.52 Y5U .850 (21.6) .230 (5.8) .375 (9.	5) 20 .032 (.81)

30LV SERIES

AC RATED CERAMIC DISC CAPACITORS

Full UL 1414 Recognition, X1 & Y2 Applications

CSA 22.2 UL 1283 IEC 384-14 **UL 1414** No. 1 - Across-The-Line **2nd Edition** Across-The-Line EMI Filters Antenna Coupling No. 1 - Isolation Y2 - 300 VAC No. 8 - EMI Filters Line-By-Pass X1 - 400 VAC

	VALUE VISHAY CERA-MITE NUMBER		AC LEAKAGE I _L mA	TEMP CHAR.	D DIAMETER (in/mm)	T THICKNESS (in/mm)	LS LEAD SPACE (in/mm)	F WIRE SIZE (AWG/in/mm)
10	ĸ	30LVQ10	1.3 uA	COG	.330 (8.4)	.185 (4.7)	.250 (6.4)	22 .025 (.64)
15	K	30LVQ15	2.0 uA	U2J	.330 (8.4)	.200 (5.1)	.250 (6.4)	22 .025 (.64)
22	K	30LVQ22	3.0 uA	P3K	.330 (8.4)	.180 (4.6)	.250 (6.4)	22 .025 (.64)
33	K	30LVQ33	4.4 uA	R3L	.330 (8.4)	.190 (4.8)	.250 (6.4)	22 .025 (.64)
47	K	30LVQ47	6.3 uA	R3L	.330 (8.4)	.170 (4.3)	.250 (6.4)	22 .025 (.64)
68	K	30LVQ68	0.01	S3L	.330 (8.4)	.175 (4.4)	.250 (6.4)	22 .025 (.64)
100	K	30LVT10	0.02	X7R	.330 (8.4)	.180 (4.6)	.250 (6.4)	22 .025 (.64)
150	K	30LVT15	0.03	X7R	.330 (8.4)	.180 (4.6)	.250 (6.4)	22 .025 (.64)
220	K	30LVT22	0.04	X7R	.330 (8.4)	.195 (5.0)	.250 (6.4)	22 .025 (.64)
330	K	30LVT33	0.05	X7R	.330 (8.4)	.195 (5.0)	.250 (6.4)	22 .025 (.64)
470	K	30LVT47	0.08	X7R	.330 (8.4)	.180 (4.6)	.250 (6.4)	22 .025 (.64)
560	K	30LVT56	0.09	X7R	.330 (8.4)	.200 (5.1)	.250 (6.4)	22 .025 (.64)
680	K	30LVTT68	0.11	X7R	.330 (8.4)	.180 (4.6)	.250 (6.4)	22 .025 (.64)
680	M	30LVT68	0.10	Y5U	.330 (8.4)	.220 (5.6)	.250 (6.4)	22 .025 (.64)
1000	K	30LVTD10	0.16	X7R	.365 (9.3)	.185 (4.7)	.250 (6.4)	22 .025 (.64)
1000	M	30LVD10	0.15	Y5U	.330 (8.4)	.215 (5.5)	.250 (6.4)	22 .025 (.64)
1500	K	30LVTD15	0.24	X7R	.460 (11.7)	.180 (4.6)	.250 (6.4)	22 .025 (.64)
1500	M	30LVD15	0.23	Y5U	.330 (8.4)	.195 (5.0)	.250 (6.4)	22 .025 (.64)
2000	М	30LVD20	0.31	Y5U	.400 (10.2)		.250 (6.4)	22 .025 (.64)
2200	М	30LVD22	0.34	Y5U	.400 (10.2)		.250 (6.4)	22 .025 (.64)
2700	М	30LVD27	0.41	Y5U	.430 (10.9)		.250 (6.4)	22 .025 (.64)
2800	M	30LVD28	0.43	Y5U	.430 (10.9)		.250 (6.4)	22 .025 (.64)
3000	М	30LVD30	0.46	Y5U	.460 (11.7)	.205 (5.2)	.250 (6.4)	22 .025 (.64)
3200	М	30LVD32	0.49	Y5U	.460 (11.7)		.250 (6.4)	22 .025 (.64)
3300	М	30LVD33	0.50	Y5U	.460 (11.7)		.250 (6.4)	22 .025 (.64)
3900	M	30LVD39	0.59	Y5U	.490 (12.4)		.250 (6.4)	22 .025 (.64)
4000	M	30LVD40	0.61	Y5U	.530 (13.5)		.250 (6.4)	22 .025 (.64)
4700	M	30LVD47	0.72	Y5U	.620 (15.7)	.220 (5.6)	.375 (9.5)	20 .032 (.81)
5000	M	30LVD50	0.76	Y5U	.620 (15.7)	.215 (5.5)	.375 (9.5)	20 .032 (.81)
5500	M	30LVD55	0.84	Y5U	.560 (14.2)		.375 (9.5)	20 .032 (.81)
5600	M	30LVD56	0.85	Y5U	.560 (14.2)		.375 (9.5)	20 .032 (.81)
6800	M	30LVD68	1.04	Y5U	.680 (17.3)		.375 (9.5)	20 .032 (.81)
8000	M	30LVD80	1.22	Y5U	.680 (17.3)		.375 (9.5)	20 .032 (.81)
9000	M	30LVD90	1.37	Y5U	.720 (18.3)		.375 (9.5)	20 .032 (.81)
.01µF	M	30LVS10	1.52	Y5U	.790 (20.1)		.375 (9.5)	20 .032 (.81)
.015µF	М	30LVS15*	2.28	Y5U	.900 (22.9)	.200 (5.1)	.375 (9.5)	20 .032 (.81)
			Note 5				Note 6	

Fig 7 Optional 3-Leaded Style

Note 5

An optional 3-leaded construction is available. It consists of a single capacitor with the two outside leads attached to one electrode, and the center lead attached to the other electrode. Used in feed-thru or line-to-ground applications, it allows a short ground lead for enhanced high frequency performance.

Note 6

* 30LVS15 not available with UL 1414 recognition.

440L, 30LV, 30LVS, 25Y, 125L, 20VL Series

Vishay Cera-Mite

AC Line Rated Disc Capacitors

INTERNATIONAL SAFETY AGENCY APPROVALS

Agency Files/ Licenses	440L	30LV	30LVS	25Y	125L	20VL
Underwriters Laboratories Inc.						
UL 1414 Antenna-Coupling Components UL 1414 Line-By-Pass Components UL 1283 Electromagnetic Interference Filters	E99264 — E128046	E99264 — E99264 E99264 E128046		E99264 E99264	E99264 —	— E128046
Canadian Standards Association:						
CSA 22.2 No.1 Across-The-Line, Isolation CSA 22.2 No.1 Isolation CSA 22.2 No. 8 EMI Filters	LR62016 — —	LR62016 — LR62016	 LR62016 LR62016	 LR62016 LR62016	LR62016 —	 LR62016
European CENELEC Electronic Componen	ts Committee ((CECC)				
Country Certifications:	Specif	ication EN 132	400 to Publicat	ion IEC 384-14	Гable 11, Editic	n 2 (1993)
VDE SEV SEMKO NEMKO DEMKO	14239 - 4670 95,771173 954311001 P95104257 304885	14239 - 4670 95,771173 961416201 P96101228 304886	14239 - 4670 95,771173 961416301 P96101227 304887	14239 - 4670 95,771173 954311601 P95104253 304883	14239 - 4670 95,771173 954310601 P95104252 304882	14239 - 4670 95,771173 9543108801 P95104254 304884
FIMKO	187550 - 01	190061 - 01	190059 - 01	187547 - 01	187548 - 01	187549 - 01

30LVS SERIES AC RATED CERAMIC DISC CAPACITORS

Compact Size for EMI Filtering, X1 & Y2 Applications

 UL 1414
 UL 1283
 CSA 22.2
 IEC 384-1

 Line-By-Pass
 EMI Filters
 No. 1 - Isolation
 2nd Edition

No. 8 - EMI Filters Y2 - 250 VAC X1 - 400 VAC

VALUE pF To	OL.	VISHAY CERA-MITE NUMBER	AC LEAK. I _L mA	TEMP CHAR.	D DIAMETER (in/mm)	T THICK. (in/mm)	LS LEAD SPACE (in/mm)	F WIRE SIZE (AWG/in/mm)
	М	30LVSD10	0.15	Y5U	.330 (8.4)			22 .025 (.64)
	М	30LVSD15	0.23	Y5U	.330 (8.4)	.185 (4.7)		22 .025 (.64)
	M	30LVSD20	0.31	Y5U	.330 (8.4)	.175 (4.4)		22 .025 (.64)
	M	30LVSD22	0.34	Y5U	.330 (8.4)	.170 (4.3)		22 .025 (.64)
	M	30LVSD27	0.41	Y5U	.365 (9.3)			22 .025 (.64)
2800	M	30LVSD28	0.43	Y5U	.365 (9.3)	.180 (4.6)	.250 (6.4)	22 .025 (.64)
3000	M	30LVSD30	0.46	Y5U				22 .025 (.64)
3200	M	30LVSD32	0.49	Y5U	.400 (10.2)	.175 (4.4)	.250 (6.4)	22 .025 (.64)
3300	M	30LVSD33	0.50	Y5U	.400 (10.2)	.175 (4.4)	.250 (6.4)	22 .025 (.64)
3900	M	30LVSD39	0.59	Y5U	.460 (11.7)	.185 (4.7)	.250 (6.4)	22 .025 (.64)
4000	M	30LVSD40	0.61	Y5U	.490 (12.4)	.185 (4.7)	.250 (6.4)	22 .025 (.64)
4700	M	30LVSD47	0.72	Y5U	.490 (12.4)	.180 (4.6)	.250 (6.4)	22 .025 (.64)
4700	M	30LVSVD47	0.72	Y5V	.430 (10.9)	.185 (4.7)	.250 (6.4)	22 .025 (.64)
5000	M	30LVSD50	0.76	Y5U	.530 (13.5)	.180 (4.6)	.250 (6.4)	22 .025 (.64)
5500	M	30LVSD55	0.84	Y5U	.530 (13.5)	.185 (4.7)	.250 (6.4)	22 .025 (.64)
6800	М	30LVSD68	1.04	Y5U	.620 (15.7)	.200 (5.1)	.375 (9.5)	20 .032 (.81)
.010µF	M	30LVSS10	1.52	Y5U	.720 (18.3)	.200 (5.1)	.375 (9.5)	20 .032 (.81)
.010µF	M	30LVSVS10	1.52	Y5V	.620 (15.7)	.200 (5.1)	.375 (9.5)	20 .032 (.81)
			Note 5				Note 6	

125L SERIES AC RATED CERAMIC DISC CAPACITORS

Economical, Line-by-Pass, X1 & Y4 Applications
UL 1414 CSA 22.2 IEC 384-14 2nd Edition

Line-By-Pass No. 1 - Isolation Y4 - 125 VAC X1 - 400 VAC

		VICLIAV	40			-	10	
	_	VISHAY	AC	TEMP	DIAMETER	TUIOKNEOO	LS	Φ
VALU		CERA-MITE	LEAK.	TEMP	DIAMETER		LEAD SPACE	
pF	TOL.	NUMBER	I _L mA	CHAR.	(in/mm)	(in/mm)	(in/mm)	(AWG/in/mm)
1000	M	125LD10	0.07	Y5V	.330 (8.4)	195 (5.0)	.250 (6.4)	20 .032 (.81)
1500	M	125LD15	0.11	Y5V	.330 (8.4)	1.195 (5.0)	.250 (6.4)	20 .032 (.81)
2000	M	125LD20	0.15	Y5V	.330 (8.4)	.185 (4.7)	.250 (6.4)	20 .032 (.81)
2200	M	125LD22	0.17	Y5V	.330 (8.4)	.180 (4.6)	.250 (6.4)	20 .032 (.81)
3300	M	125LD33	0.25	Y5V	.365 (9.3)	.195 (5.0)	.250 (6.4)	20 .032 (.81)
4700	M	125LD47	0.36	Y5V	400 (10.2)	.185 (4.7)	.250 (6.4)	20 .032 (.81)
5000	M	125LD50	0.38	Y5V	430 (10.9)	.195 (5.0)	.375 (9.5)	20 .032 (.81)
6800	M	125LD68	0.52	Y5V	490 (12.4)	.190 (4.8)	.375 (9.5)	20 .032 (.81)
8200	M	125LD82	0.63	Y5V	530 (13.5)	.190 (4.8)	.375 (9.5)	20 .032 (.81)
.010µF	M	125LS10	0.76	Y5V	560 (14.2)	.190 (4.8)	.375 (9.5)	20 .032 (.81)
.015µF	M	125LS15	1.14	Y5V	720 (18.3)	.205 (5.2)	.375 (9.5)	20 .032 (.81)
.018µF	M	125LS18	1.37	Y5V	790 (20.1)	.205 (5.2)	.375 (9.5)	20 .032 (.81)
.020µF	M	125LS20	1.52	Y5V	620 (15.7)	.240 (6.1)	.375 (9.5)	22 .025 (.64)
.022µF	M	125LS22	1.67	Y5V	900 (22.9)	1.185 (4.7)	.375 (9.5)	20 .032 (.81)
.030µF	M	125LS30	2.28	Y5V	720 (17.3)	.240 (6.1)	.375 (9.5)	22 .025 (.64)
.050µF			3.80	Y5V	900 (22.9)	.240 (6.1)	.375 (9.5)	22 .025 (.64)
			Note 5				Note 6	

25Y SERIES AC RATED CERAMIC DISC CAPACITORS

Temperature Stable Y5S (-30°C to +85°C ±22%), X1 & Y2 Applications

 UL 1414
 UL 1283
 CSA 22.2
 IEC 384-14

 Line-By-Pass
 EMI Filters
 No. 1 - Isolation
 2nd Edition

 No. 8 - EMI Filters
 Y2 - 250 VAC

s Y2 - 250 VAC X1 - 400 VAC

	VALUE C		AC LEAK. I _L mA	TEMP Char.	D DIAMETER (in/mm)	T THICKNESS (in/mm)	LS LEAD SPACE (in/mm)	Φ WIRE SIZE (AWG/in/mm)
1000	М	25YD10	0.17	Y5S	.330 (8.4)	.170 (4.3)	.250 (6.4)	22 .025 (.64)
1500	M	25YD15	0.25	Y5S	.400 (10.2)	.175 (4.4)	.250 (6.4)	22 .025 (.64)
2000	M	25YD20	0.33	Y5S	.430 (10.9)	.170 (4.3)	.250 (6.4)	22 .025 (.64)
2200	М	25YD22	0.36	Y5S	.460 (11.7)	.170 (4.3)	.250 (6.4)	22 .025 (.64)
2700	M	25YD27	0.45	Y5S	.490 (12.4)	.170 (4.3)	.250 (6.4)	22 .025 (.64)
2800	М	25YD28	0.46	Y5S	.530 (13.5)	.175 (4.4)	.250 (6.4)	22 .025 (.64)
3000	M	25YD30	0.50	Y5S	.530 (13.5)	.175 (4.4)	.250 (6.4)	22 .025 (.64)
3200	М	25YD32	0.53	Y5S	.560 (14.2)	.185 (4.7)	.375 (9.5)	20 .032 (.81)
3300	М	25YD33	0.55	Y5S	.560 (14.2)	.185 (4.7)	.375 (9.5)	20 .032 (.81)
3900	M	25YD39	0.64	Y5S	.620 (15.7)	.185 (4.7)	.375 (9.5)	20 .032 (.81)
4000	М	25YD40	0.66	Y5S	.620 (15.7)	.185 (4.7)	.375 (9.5)	20 .032 (.81)
4700	M	25YD47	0.78	Y5S	.680 (17.3)	.185 (4.7)	.375 (9.5)	20 .032 (.81)
5000	М	25YD50	0.83	Y5S	.680 (17.3)	.185 (4.7)	.375 (9.5)	20 .032 (.81)
5500	M	25YD55	0.91	Y5S	.720 (18.3)	.190 (4.8)	.375 (9.5)	20 .032 (.81)
5600	М	25YD56	0.92	Y5S	.720 (18.3)	.190 (4.8)	.375 (9.5)	20 .032 (.81)
6800	М	25YD68	1.12	Y5S	.790 (20.1)	.185 (4.7)	.375 (9.5)	20 .032 (.81)
8000	М	25YD80	1.32	Y5S	.900 (22.9)	.200 (5.1)	.375 (9.5)	20 .032 (.81)
			Note 5				Note 6	

20VL SERIES AC RATED CERAMIC DISC CAPACITORS

High Cap Valve, Compact Size, X2 Applications
UL 1283 CSA 22.2 IEC 384-14 2nd Edition

EMI Filters No. 8 - EMI Filters X2 - 400 VAC

VISHAY CERA-MITE NUMBER D Diameter LS LEAD SPACE WIRE SIZE VALUE THICKNESS TEMP TOL. CHAR. (in/mm) (AWG/in/mm) (in/mm) (in/mm) .009 M 20VLD90 Y5V .530 (13.5) .150 (3.8) .375 (9.5) 22 .025 (.64) 22 .025 (.64) 20VLS10 .150 (3.8) .375 (9.5) .010 Μ Y5V .620 (15.7) .010 20VLSS10 Z5U .530 (13.5) | .160 (4.1) .250 (6.4) 22 .025 (.64) .020 20VLS20 Y5V .720 (18.3) | .150 (3.8) .375 (9.5) 22 .025 (.64) 20VLP10 * Y5V 375 (9.5) 22 .025 (.64) .940 (23.9) .240 (6.1)

* 20VLP10 not available with CSA 22.2 No. 8 recognition.

Note 6

Low Dissipation Factor Disc Capacitors

FEATURES

- Ideal for High Voltage Switching to 100 kHz
- Low DF Minimizes Self Heating at High Frequencies.
- Application Voltages: 500, 1000 and 1500 Vac.
- · Economical Alternative to Film Capacitors.

The 1DFO, 2DFO, and 3DFO Series are designed to operate up to 500, 1000, and 1500 $V_{\mbox{\tiny RMS}}$, respectively. Their low dissipation factor (DF) and stable temperature characteristics are well suited for operation at elevated frequency. Operating limits are governed by a suggested 30°C maximum case temperature rise as controlled by applied voltage and frequency dependent current. Power-rating charts covering the entire series provide operating guidelines for higher frequency applications.

1DFO SERIES - LOW DISSIPATION FACTOR

561C Series

Application Range: 500 Vrms; 1000 Vdc

		Kange. 500		ı	-	1.0
1/21		Catalan	T	Diameter	T	LS
Valu		Catalog	Temp	Diameter	Thickness	Lead Space
pF	Tol.	Number	Char.	(in / mm)	(in / mm)	(in / mm)
10	J	1DF0Q10	NP0	.250 (6.4)	.156 (4.0)	.250 (6.4)
12	J	1DF0Q10 1DF0Q12	NP0	.250 (6.4)		.250 (6.4)
15	J	1DF0Q12	N1500	.250 (6.4)	.156 (4.0) .156 (4.0)	.250 (6.4)
18	J	1DF0Q13	N1500	.250 (6.4)	.156 (4.0)	.250 (6.4)
22	J	1DF0Q18	N1500	.250 (6.4)	.156 (4.0)	.250 (6.4)
27	J	1DF0Q22	N2200	.250 (6.4)	.156 (4.0)	.250 (6.4)
33	J	1DF0Q27	N2200	.250 (6.4)	.156 (4.0)	.250 (6.4)
39	J	1DF0Q33	N2200	.250 (6.4)	.156 (4.0)	.250 (6.4)
47	J	1DF0Q39	N1500	.250 (6.4)	.156 (4.0)	.250 (6.4)
56	j	1DF0Q56	N1500	.250 (6.4)	.156 (4.0)	.250 (6.4)
68	Ĵ	1DF0Q68	N1500	.250 (6.4)	.156 (4.0)	.250 (6.4)
82	Ĵ	1DF0Q82	N1500	.250 (6.4)	.156 (4.0)	.250 (6.4)
100	ĸ	1DF0T10	N2000	.250 (6.4)	.156 (4.0)	.250 (6.4)
120	K	1DF0T12	N2000	.250 (6.4)	.156 (4.0)	.250 (6.4)
150	K	1DF0T15	N2000	.250 (6.4)	.156 (4.0)	.250 (6.4)
180	ĸ	1DF0T18	N2000	.250 (6.4)	.156 (4.0)	.250 (6.4)
220	ĸ	1DF0T22	N2500	.250 (6.4)	.156 (4.0)	.250 (6.4)
270	K	1DF0T27	N2500	.250 (6.4)	.156 (4.0)	.250 (6.4)
330	ĸ	1DF0T33	N2800	.250 (6.4)	.156 (4.0)	.250 (6.4)
390	ĸ	1DF0T39	N2800	.250 (6.4)	.156 (4.0)	.250 (6.4)
470	K	1DF0T47	N2800	.290 (7.4)	.156 (4.0)	.250 (6.4)
560	K	1DF0T56	N2800	.290 (7.4)	.156 (4.0)	.250 (6.4)
680	ĸ	1DF0T68	N2800	.290 (7.4)	.156 (4.0)	.250 (6.4)
820	K	1DF0T82	N2800	.290 (7.4)	.156 (4.0)	.250 (6.4)
1000	K	1DF0D10	N2800	.370 (9.4)	.156 (4.0)	.250 (6.4)
1200	K	1DF0D12	N2800	.370 (9.4)	.156 (4.0)	.250 (6.4)
1500	K	1DF0D15	N2800	.405 (10.3)	.156 (4.0)	.250 (6.4)
1800	K	1DF0D18	N2800	.440 (11.2)	.156 (4.0)	.250 (6.4)
2200	K	1DF0D22	N2800	.460 (11.7)	.156 (4.0)	.250 (6.4)
2300	K	1DF0D23	N2800	.460 (11.7)	.156 (4.0)	.250 (6.4)
2400	K	1DF0D24	N2800	.460 (11.7)	.156 (4.0)	.250 (6.4)
2500	K	1DF0D25	N2800	.460 (11.7)	.156 (4.0)	.250 (6.4)
2700	K	1DF0D27	N2800	.490 (12.5)	.156 (4.0)	.250 (6.4)
3300	K	1DF0D33	N2800	.530 (13.5)	.156 (4.0)	.250 (6.4)
3900	K	1DF0D39	N2800	.560 (14.2)	.156 (4.0)	.375 (9.5)
4700	K	1DF0D47	N2800	.630 (16.0)	.156 (4.0)	.375 (9.5)
5600	K	1DF0D56	N2800	.680 (17.3)	.156 (4.0)	.375 (9.5)
6800	K	1DF0D68	N2800	.760 (19.3)	.156 (4.0)	.375 (9.5)

Power ratings are based on still air 60°C ambient with additional 30°C rise due to self heating. Thermal effects such as forced air cooling, component encapsulation or other heat-sinking techniques will alter ratings. Actual circuit test is recommended.

APPLICATIONS:

- Fluorescent Ballasts
- Industrial Electronic Systems
- Switching Power Supplies
 Snubber Networks

GENERAL SPECIFICATIONS

Series:	1DFO	2DFO	3DFO
Application Voltage:	500 Vrms	1000 Vrms	1500 Vrms
	1000 Vdc	2000 Vdc	3000 Vdc
Dielectric Strength:	1200 Vrms	2000 Vrms	3000 Vrms
	2500 Vdc	6000 Vdc	
Dissipation Factor:	0.1% N	laximum at 1 kH	Tz and 25°C
Maximum Service Ter	mperature:	125°C	
Power Rating: (Note	1) Limit to 30°	°C Case Tempe	rature Rise
Insulation Resistance	e: 50	,000 MΩ Minim	um

2DFO SERIES - LOW DISSIPATION FACTOR

564C Series

Application Range: 1000 Vrms; 2000 Vdc

		Kange. 1000			-	
Val	ue	Catalog	Temp	Diameter	T Thickness	LS Lead Space
pF	Tol.	Number	Char.		(in / mm)	(in / mm)
10	J	2DF0Q10	NP0	.290 (7.4)	.160 (4.1)	.250 (6.4)
12	J	2DF0Q12	N1500	.290 (7.4)	.170 (4.3)	.250 (6.4)
15	J	2DF0Q15	N2200	.290 (7.4)	.185 (4.7)	.250 (6.4)
18	J	2DF0Q18	N2200	.290 (7.4)	.170 (4.3)	.250 (6.4)
22	J	2DF0Q22	N2200	.290 (7.4)	.170 (4.3)	.250 (6.4)
27	J	2DF0Q27	N1500	.290 (7.4)	.220 (5.6)	.250 (6.4)
33	J	2DF0Q33	N1500	.290 (7.4)	.195 (5.0)	.250 (6.4)
39	J	2DF0Q39	N1500	.290 (7.4)	.180 (4.6)	.250 (6.4)
47	J	2DF0Q47	N1500	.290 (7.4)	.170 (4.3)	.250 (6.4)
56	J	2DF0Q56	N2000	.290 (7.4)	.210 (5.3)	.250 (6.4)
68	J	2DF0Q68	N2000	.290 (7.4)	.190 (4.8)	.250 (6.4)
82	J	2DF0Q82	N2000	.290 (7.4)	.175 (4.5)	.250 (6.4)
100	K	2DF0T10	N2000	.290 (7.4)	.170 (4.3)	.250 (6.4)
120	K	2DF0T12	N2500	.290 (7.4)	.185 (4.7)	.250 (6.4)
150	K	2DF0T15	N2500	.290 (7.4)	.170 (4.3)	.250 (6.4)
180	K	2DF0T18	N2800	.290 (7.4)	.185 (4.7)	.250 (6.4)
220	K	2DF0T22	N2800	.290 (7.4)	.170 (4.3)	.250 (6.4)
270	K	2DF0T27	N2500	.330 (8.4)		.250 (6.4)
330	K	2DF0T33	N2800	.330 (8.4)	.185 (4.7)	.250 (6.4)
390	K	2DF0T39	N2800	.330 (8.4)	.175 (4.5)	.250 (6.4)
470	K	2DF0T47	N2500	400 (10.2)		.250 (6.4)
560	K	2DF0T56	N2800	400 (10.2)		.250 (6.4)
680	K	2DF0T68	N2800	400 (10.2)		.250 (6.4)
820	K	2DF0T82	N2800	430 (10.9)		.250 (6.4)
1000	K	2DF0D10	N2800	460 (11.7)		.250 (6.4)
1200	K	2DF0D12	N2800	490 (12.5)		.250 (6.4)
1500	K	2DF0D15	N2800	530 (13.5)		.250 (6.4)
1800	K	2DF0D18	N2800	560 (14.2)		.375 (9.5)
2200	K	2DF0D22	N2800	680 (17.3)		.375 (9.5)
2300	K	2DF0D23	N2800		.175 (4.5)	.375 (9.5)
2400	K	2DF0D24	N2800	680 (17.3)		.375 (9.5)
2500	K	2DF0D25	N2800	680 (17.3)		.375 (9.5)
2700	K	2DF0D27	N2800	680 (17.3)	.170 (4.3)	.375 (9.5)
3300	K	2DF0D33	N2800	720 (18.3)		.375 (9.5)
3900	K	2DF0D39	N2800	790 (20.1)		.375 (9.5)
4700	K	2DF0D47	N2800	900 (22.9)		.375 (9.5)
5600	K	2DF0D56	N2800		.170 (4.3)	.375 (9.5)
6800	K	2DF0D68	N2800	950 (24.1)	.170 (4.3)	.375 (9.5)
						Note 3

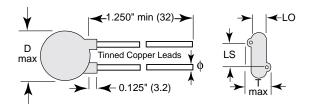
Note 2

Note 3

For convenience, power rating charts are shown to 100 kHz. frequency operation is permissible with appropriate derating. Consult factory for application suggestions.

1DFO, 2DFO, 3DFO Series

Vishay Cera-Mite


Low Dissipation Factor Disc Capacitors

100

10 20

Fig 8

WIRE LEAD INFORMATION

SERIES	Φ WIRE SIZE AWG / in / mm	"LO" TYP LEAD OFFSET in / mm
1DFO	22 .025 (.64)	.045 (1.2)
2DFO	20 .032 (.81)	.075 (1.8)
3DFO	20 .032 (.81)	.095 (2.4)

3DFO SERIES - LOW DISSIPATION FACTOR

564C Series

Application Range: 1500 Vrms, 3000 VDC

				D	Т	LS
VAL	.UE	CATALOG	TEMP	DIAMETER	THICKNESS	LEAD SPACE
pF	TOL.	NUMBER	CHAR.	(in / mm)	(in / mm)	(in / mm)
10	5%	3DF0Q10	N1500	.290 (7.4)	.185 (4.7)	.250 (6.4)
12	5%	3DF0Q12	N2200	.290 (7.4)	.210 (5.3)	.250 (6.4)
15	5%	3DF0Q15	N2200	.290 (7.4)	.185 (4.7)	.250 (6.4)
18	5%	3DF0Q18	N2200	.290 (7.4)	.185 (4.7)	.250 (6.4)
22	5%	3DF0Q22	N2200	.330 (8.4)	.210 (5.3)	.250 (6.4)
27	5%	3DF0Q27	N1500	.290 (7.4)	.220 (5.6)	.250 (6.4)
33	5%	3DF0Q33	N1500	.290 (7.4)	.195 (5.0)	.250 (6.4)
39	5%	3DF0Q39	N1500	.290 (7.4)	.190 (4.8)	.250 (6.4)
47	5%	3DF0Q47	N1500	.330 (8.4)	.225 (5.7)	.250 (6.4)
56	5%	3DF0Q56	N2000	.290 (7.4)	.210 (5.3)	.250 (6.4)
68	5%	3DF0Q68	N2000	.290 (7.4)	.190 (4.8)	.250 (6.4)
82	5%	3DF0Q82	N2000	.290 (7.4)	.185 (4.7)	.250 (6.4)
100	10%	3DF0T10	N2500	.290 (7.4)	.205 (5.2)	.250 (6.4)
120	10%	3DF0T12	N2500	.290 (7.4)	.190 (4.8)	.250 (6.4)
150	10%	3DF0T15	N2800	.290 (7.4)	.200 (5.1)	.250 (6.4)
180	10%	3DF0T18	N2800	.290 (7.4)	.190 (4.8)	.250 (6.4)
220	10%	3DF0T22	N2500	.330 (8.4)	.190 (4.8)	.250 (6.4)
270	10%	3DF0T27	N2800	.330 (8.4)	.205 (5.2)	.250 (6.4)
330	10%	3DF0T33	N2800	.330 (8.4)	.190 (4.8)	.250 (6.4)
390	10%	3DF0T39	N2800	.400 (10.2)	.215 (5.5)	.250 (6.4)
470	10%	3DF0T47	N2800	.400 (10.2)	.195 (5.0)	.250 (6.4)
560	10%	3DF0T56	N2800	.430 (10.9)	.200 (5.1)	.250 (6.4)
680	10%	3DF0T68	N2800	.460 (11.7)	.195 (5.0)	.250 (6.4)
820	10%	3DF0T82	N2800	.490 (12.5)	.195 (5.0)	.250 (6.4)
1000	10%	3DF0D10	N2800	.530 (13.5)	.190 (4.8)	.250 (6.4)
1200	10%	3DF0D12	N2800	.560 (14.2)	.190 (4.8)	.375 (9.5)
1500	10%	3DF0D15	N2800	.620 (15.8)	.190 (4.8)	.375 (9.5)
1800	10%	3DF0D18	N2800	.680 (17.3)	.190 (4.8)	.375 (9.5)
2200	10%	3DF0D22	N2800	.720 (18.3)	.190 (4.8)	.375 (9.5)
2300	10%	3DF0D23	N2800	.720 (18.3)	.190 (4.8)	.375 (9.5)
2400	10%	3DF0D24	N2800	.790 (20.1)	.195 (5.0)	.375 (9.5)
2500	10%	3DF0D25	N2800	.790 (20.1)	.195 (5.0)	.375 (9.5)
2700	10%	3DF0D27	N2800	.790 (20.1)		.375 (9.5)
3300	10%	3DF0D33	N2800	.900 (22.9)	\ ,	.375 (9.5)
3900	10%	3DF0D39	N2800	.900 (22.9)		.375 (9.5)
4700	10%	3DF0D47	N2800	.950 (24.1)	.185 (4.7)	.375 (9.5)
Note	3					Note 3

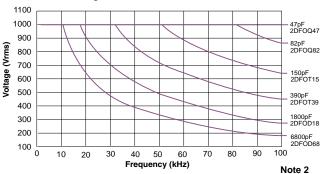
Note 3

Alternate lead spacing of 5mm, 7.5mm, and 10mm are available bulk or tape & reel.

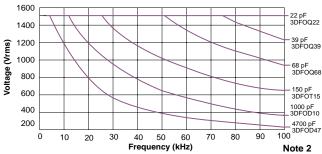
Power Rating - 1DFO Series 500 Vrms Low DF - Note 1 550 150pF 1DFOT15 500 450 270pF 1DFOT27 Voltage (Vrms) 400 390pF 1DFOT39 350 1000pF 1DFOD10 300 250 2400pF 1DFOD24 200 6800pF 1DFOD68 150

30

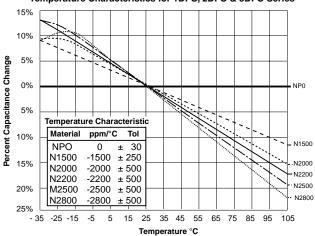
40 50 60


Note 2

100


80 90

Power Rating - 2DFO Series 1000 Vrms Low DF - Note 1


Frequency (kHz)

Power Rating - 3DFO Series 1500 Vrms Low DF - Note 1

Temperature Characteristics for 1DFO, 2DFO & 3DFO Series

Vishay Cera-Mite High Voltage Capacitors are the choice of discriminating

designers throughout the world. Our reputation for product quality

and reliability is a result of continuous research in fine electrical ceramics, high temperature coatings, process controls and rigorous

The 2 and 3 kV parts are widely used in demanding applications such

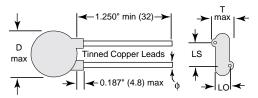
as snubbers, EMI/RFI filters, and switching power supplies. High

voltage capacitors are also specified in lower voltage applications to

withstand transient voltage and energy surges in accordance with FCC

Vishay Cera-Mite

High Voltage Disc Capacitors


production testing.

and IEEE standards.

APPLICATIONS:

Lighting Ballasts

Radial Lead Style - 2000 to 15,000 VDC Axial Lead Style - 10,000 to 30,000 VDC

 φ - 20 AWG .032" (.81) except per Note 1. LO \sim (Thk - .100") except per Note 1.

Note 1

#22 AWG .025" (.64) wire leads used on: 20GAP10 (LO = .07")

30GASS20 (LO = .08")

30GASS33 (LO = .10")

Power Supplies

Telecommunications

2000 VOLT, 10% AND 20% TOLERANCE

Application Range:

Up to 2500 VDC, 600 VRMS

- Insulation Resistance: 10,000 M Ω minimum
- Dissipation Factor: 2.0% maximum

564C Series

 Dielectric Strength: 3500 VDC, 1000 VRMS

	VAL	UE	CATALOG	MECI	HANICA	L (in)	TEMP.	VALUE		CATALOG	MEC	HANICA	L (in)	TEMP.	VAL	UE	CATALOG	MECH	IANICA	L (in)	TEMP.	1
	pF	TOL.	NUMBER	DIA.	THK.	L.S.	CHAR.	pF	TOL.	NUMBER	DIA.	THK.	L.S.	CHAR.	pF	TOL.	NUMBER	DIA.	THK.	L.S.	CHAR.	1
I	100	K	20TST10	.330	.190	.250	X7R	1800	М	20GAD18	.360	.170	.250	Z5U	3900	М	20GAD39	.490	.175	.250	Z5U	1
	220	K	20TST22	.330	.180	.250	X7R	1800	M	20TSSD18	.430	.170	.250	Y5S	3900	M	20TSSD39	.620	.175	.250	Y5S	
	330	K	20TST33	.330	.180	.250	X7R	1800	K	20TSD18	.460	.170	.250	X7R	3900	K	20TSD39	.680	.170	.250	X7R	1
	470	K	20TST47	.330	.170	.250	X7R	2200	M	20GAD22	.400	.175	.250	Z5U	4700	M	20GAD47	.490	.170	.250	Z5U	1
	560	K	20TST56	.330	.185	.250	X7R	2200	M	20TSSD22	.460	.170	.250	Y5S	4700	M	20TSSD47	.680	.175	.375	Y5S	1
	680	K	20TST68	.330	.170	.250	X7R	2200	K	20TSD22	.460	.170	.250	X7R	4700	K	20TSD47	.680	.170	.375	X7R	1
	1000	M	20GAD10	.330	.170	.250	Y5U	2700	M	20GAD27	.430	.175	.250	Z5U	5600	M	20TSSD56	.680	.170	.375	Y5S	1
	1000	M	20TSSD10	.330	.175	.250	Y5S	2700	M	20TSSD27	.530	.175	.250	Y5S	6800	M	20GAD68	.560	.170	.375	Z5U	1
	1000	K	20TSD10	.400	.175	.250	X7R	2700	K	20TSD27	.530	.170	.250	X7R	6800	M	20TSSD68	.720	.170	.375	Y5S	1
	1500	M	20GAD15	.330	.170	.250	Y5U	3300	M	20GAD33	.430	.175	.250	Z5U	.01uF	M	20GAS10	.680	.170	.375	Z5U	1
	1500	M	20TSSD15	.400	.170	.250	Y5S	3300	M	20TSSD33	.530	.175	.250	Y5S	.01uF	M	20GASS10	.620	.170	.375	Y5V	
1	1500	K	20TSD15	.430	.160	.250	X7R	3300	K	20TSD33	.530	.160	.250	X7R	.10uF	M	20GAP10	.950	.240	.375	Y5V	

3000 VOLT, 10% AND 20% TOLERANCE

 Application Range: Up to 4000 VDC, 1000 VRMS

- Insulation Resistance: 50,000 M Ω minimum
- Dissipation Factor: 2.0% maximum

564C Series

Dielectric Strength:
 5250 VDC, 1500 VRMS

	VALUE		CATALOG	MECI	HANICA	L (in)	I LIVIE.	
l	pF	TOL.	NUMBER	DIA.	THK.	L.S.	CHAR.	
	10	М	30GAQ10	.330	.210	.250	U2J	
	12	М	30GAQ12	.330	.205	.250	U2J	
	15	M	30GAQ15	.330	.180	.250	U2J	
	22	M	30GAQ22	.330	.200	.250	R3L	
	27	М	30GAQ27	.330	.190	.250	R3L	
	33	M	30GAQ33	.330	.170	.250	R3L	
	47	M	30GAQ47	.330	.230	.250	X7R	
	56	M	30GAQ56	.330	.190	.250	X7R	
	68	M	30GAQ68	.330	.200	.250	X7R	
	100	M	30GAT10	.330	.180	.250	X7R	
	150	M	30GAT15	.330	.190	.250	X7R	
	220	M	30GAT22	.330	.175	.250	X7R	
	270	M	30GAT27	.330	.180	.250	X7R	
	330	M	30GAT33	.330	.175	.250	X7R	
	390	M	30GAT39	.330	.175	.250	X7R	
	470	M	30GAT47	.330	.175	.250	X7R	
ı	680	M	30GAT68	.330	.175	.250	Y5U	

VAL	UE	CATALOG	MECHANIC		L (in)	TEMP.
pF	TOL.	NUMBER	DIA.	THK.	L.S.	CHAR.
680	K	30TST68	.330	.180	.250	X7R
1000	M	30GAD10	.330	.195	.250	Z5U
1000	M	30TSSD10	.400	.190	.250	Y5S
1000	K	30TSD10	.400	.175	.250	X7R
1500	M	30GAD15	.360	.190	.250	Z5U
1500	M	30TSSD15	.460	.190	.250	Y5S
1500	K	30TSD15	.490	.185	.250	X7R
1800	M	30GAD18	.400	.190	.250	Z5U
1800	M	30TSSD18	.490	.190	.250	Y5S
1800	K	30TSD18	.530	.185	.250	X7R
2200	M	30GAD22	.430	.190	.250	Z5U
2200	M	30TSSD22	.530	.190	.250	Y5S
2200	K	30TSD22	.530	.180	.250	X7R
2700	M	30GAD27	.460	.200	.250	Z5U
2700	M	30TSSD27	.560	.185	.250	Y5S
2700	K	30TSD27	.620	.185	.250	X7R
3300	М	30GAD33	.490	.185	.250	Z5U

			CATALOG	MECI	HANICA	L (in)	TEMP.	
ì.		pF	TOL.	NUMBER	DIA.	THK.	L.S.	CHAR.
		3300	M	30TSSD33	.620	.185	.375	Y5S
		3300	K	30TSD33	.620	.170	.375	X7R
		3900	M	30GAD39	.530	.185	.375	Z5U
		3900	M	30TSSD39	.680	.185	.375	Y5S
		3900	K	30TSD39	.720	.185	.375	X7R
		4700	M	30GAD47	.620	.195	.375	Z5U
		4700	M	30TSSD47	.680	.185	.375	Y5S
		4700	K	30TSD47	.720	.175	.375	X7R
		5600	M	30TSSD56	.790	.190	.375	Y5S
		6800	M	30GAD68	.680	.185	.375	Z5U
		6800	M	30TSSD68	.900	.205	.375	Y5S
		6800	K	30TSD68	.900	.185	.375	X7R
		8200	M	30GAD82	.680	.185	.375	Z5U
		.01uF	M	30GAS10	.790	.185	.375	Z5U
		.01uF	M	30GASS10	.720	.185	.375	Y5V
		.02uF	M	30GASS20	.720	.240	.375	Z5U
		l.033uFl	М	30GASS33	.900	.240	.375	Z5U

6000 VOLT, 20% TOLERANCE

 Application Range: Up to 6000 VDC, 1500 VRMS Insulation Resistance: 75,000 MΩ minimum
 Dissipation Factor: 2.0% maximum

564C Series
• Dielectric Strength:
10,500 VDC, 3000 VRMS

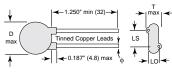
VALUE	CATALOG	MECHA	1)	TEMP.	
pF	NUMBER	DIA.	THK.	L.S.	CHAR.
10	60GAQ10	.400	.220	.375	NP0
22	60GAQ22	.460	.240	.375	U2J
33	60GAQ33	.400	.230	.375	R3L
47	60GAQ47	.460	.205	.375	R3L
100	60GAT10	.400	.240	.375	X5F

VALUE	CATALOG	MECH	IANICAL	(in)	TEMP.
pF	NUMBER	DIA.	THK.	L.S.	CHAR.
220	60GAT22	.400	.265	.375	X5F
330	60GAT33	.400	.260	.375	X5S
470	60GAT47	.400	.265	.375	Y5U
560	60GAT56	.400	.240	.375	Y5U
1000	60GAD10	.400	.270	.375	Z5U

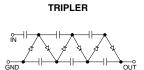
VALUE CATALOG MECHANICA			ANICAL (i	n)	TEMP.
pF	NUMBER	DIA.	THK.	L.S.	CHAR.
1500	60GAD15	.460	.280	.375	Z5U
2200	60GAD22	.530	.240	.375	Z5U
3300	60GAD33	.620	.260	.375	Z5U
4700	60GAD47	.790	.260	.375	Z5U
.01uF	60GAS10	.950	.250	.375	Z5U

75GA, 100GA, 150GA, 10A, 15A, 20A, 30A Series

Vishay Cera-Mite


High Voltage Disc Capacitors

Radial Lead Style - 2000 to 15,000 VDC
Axial Lead Style -10,000 to 30,000 VDC


564C Series

HIGH VOLTAGE APPLICATIONS:

- Televisions, Monitors and Oscilloscopes
- High Voltage Power Supplies and Lasers
- Electronic Air Cleaners
- X-Ray Equipment

615C Series

7500 VDC. 2000 VRMS. 60 HZ

VALUE	CATALOG	MEC	TEMP.			
pF	CATALOG NUMBER	DIA.	THK.	L.S.	CHÄR.	
100	75GAT10	.530	.310	.500	X5F	
470	75GAT47	.620	.270	.500	X5F	
1000	75GAD10	.620	.320	.500	Y5U	
2500	75GAD25	.620	.280	.500	Z5U	

10,000 VDC, 3000 VRMS, 60 HZ

VALUE	CATAL OG	MEC	MECHANICAL (in)			
pF	CATALOG NUMBER	DIA.	THK.	L.S.	TEMP. CHAR.	
100	100GAT10	.680	.370	.500	X5F	
100	100GAST10	.490	.330	.375	Y5R	
250	100GAT25	.680	.300	.500	X5F	
250	100GATT25	.490	.290	.375	N4700	
250	100GAST25	.490	.340	.375	Y5R	
500	100GAT50	.680	.345	.500	X5F	
500	100GATT50	.680	.320	.500	N4700	
500	100GAST50	.490	.310	.375	Y5R	

VALUE	CATALOG	MEC	HANICA	L (in)	TEMP
pF	CATALOG NUMBER	DIA.	THK.	L.S.	TEMP. CHAR.
680	100GATT68	.750	.300	.500	N4700
820	100GATT82	.810	.300	.500	N4700
1000	100GAD10	.750	.320	.500	Y5R
1000	100GATD10	.980	.320	.500	N4700
1000	100GASD10	.680	.330	.500	Y5U
2500	100GAD25	.750	.350	.500	Z5U
2500	100GATD25	.980	.330	.500	Y5R
3000	100GAD33	.980	.390	.500	Z5U

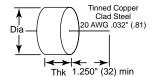
615C Series

15,000 VDC, 4500 VRMS, 60 HZ

VALUE	CATALOG	MEG	TEMP.		
pF	CATALOG NUMBER	DIA.	THK.	L.S.	CHÄR.
100	150GAST10	.490	.490	.500	Y5R
100	150GAT10	.670	.430	.750	X5F
100	150GATT10	.490	.470	.500	N4700
250	150GAST25	.490	.480	.500	Y5R
250	150GAT25	.670	.455	.750	X5F

VALUE	CATALOG	MEC	(in)	TEMP.	
PF	CATALOG NUMBER	DIA.	THK.	L.S.	CHÄR.
250	150GATT25	.670	.430	.750	N4700
390	150GATT39	.750	.425	.750	N4700
500	150GAST50	.490	.375	.500	Y5U
500	150GAT50	.670	.430	.750	Y5R
500	150GATT50	.810	.410	.750	N4700

VALUE	CATAL OG	MEC	_ (in)	TEMP.	
pF	CATALOG NUMBER	DIA.	THK.	L.S.	CHÄR.
750	150GATT75	.980	.350	.750	N4700
1000	150GAD10	.670	.420	.750	Y5U
1000	150GATD10	.980	.460	.750	Y5R
2200	150GAD22	.980	.510	.750	Z5U
2500	150GAD25	1.150	.450	.750	Z5U


PERFORMANCE DATA - 7500 TO 15KV SERIES

- Operating Temperature: -25° to +105°C
- Capacitance Tolerance: ±20% (X5F, Y5R, N4700); +80/-20% (Y5U, Z5U).
- Dissipation Factor: 0.2%, (N4700); 1.5 & 2.0% (X5F, Y5U, Y5R, Z5U).
- Dielectric Strength: 150% of VDC (dielectric fluid), charging current limit to 50 mA max.
- Insulation Resistance: 200,000 M Ω minimum @ 180 VDC, 1000 ΩF
- Corona: 100 picocoulombs at rated AC voltage.
- Power Dissipation: Limit to 25°C case rise above ambient, 105°C max.
- Peak Current: dv/dt limit approx. 2000 V/µs. Application to be tested and confirmed by user.

Axial Leaded High Voltage Capacitors, Molded Case, High Temperature, Epoxy Construction

FEATURES

- Greater lead-to-lead arcing distance, without costly encapsulation.
- Longer life at elevated temperatures (up to 125°C); extended thermal cycling.
- Low corona (10 picocoulombs) at rated AC voltage.

660C Series

SIZE CODES-AXIAL LEADED

DIA	in / mm	THK	in/mm
Α	0.83 (21)	1	0.50 (13)
С	1.18 (30)	2	0.60 (15)
D	1.45 (37)	3	0.80 (20)
		4	0.95 (24)

10,000 VDC/3,000 V_{rms}

VALI	JE	CATALOG	SIZE	TEMP.		
pF	Tol.	NUMBER		COEF.		
470 1000 1500	M M Z	10AZT47 10AZD10 10AED15	A1 C1 A1 D1	N4700 N4700 Z5U		
2000 2200 3300 3300	M Z Z M	10AZD20 10AED22 10AED33 10ACD33	A1 C1 C2	N4700 Z5U Z5U X7R		
4700	Z	10AED47	C1	Z5U		
4700	M	10ACD47	D2	X7R		
6800	Z	10AED68	C1	Z5U		
10000	Z	10AES10	D1	Z5U		

15,000 VDC/5,000 V_{rms}

VALI	JE	CATALOG	SIZE	TEMP.
pF	TOL.	NUMBER	CODE	COEF.
390 820 1000 1500 1500 2200 2200 3300 3300 3900 4700 6800	M M Z M M Z M M Z M Z M	15AZT39 15AZT82 15AED10 15AED15 15ACD15 15AZD15 15AED22 15ACD22 15ACD33 15ACD33 15ACD39 15AED47 15AED68	A1 C1 A1 C2 D1 C1 C1 C1 D2 D2 C1	

20,000 VDC/6,000 V_{rms}

VALI pF	UE TOL.	CATALOG NUMBER	SIZE	TEMP.
220 680 680 1000 1000 1500 2200 2200 2500 2700 4700 5000	M Z M Z M Z M Z M Z Z Z Z Z	20AZT22 20AET68 20AZT68 20ACD10 20ACD10 20AZD10 20AZD15 20ACD15 20ACD25 20ACD25 20ACD25 20ACD27 20AED33 20AED33 20AED47 20AED50	A2 A2 C2 A2 C3 D2 A2 C3 C2 D3 D3 D3 D3 D2 D2	N4700 Z5U N4700 Z5U X7R N4700 Z5U X7R Z5U X7R X7R X7R X7R Z5U Z5U Z5U

30,000 VDC/10,000 VR

<u>30,0</u> 0	י טט	VDC/10,0	000	RMS
VAL pF	UE TOL.	CATALOG NUMBER	SIZE CODE	TEMP. COEF.
180 330 470 470 680 680 820 1000 1200 1500 1500 2000 2200 2200 3000 3300	M M M Z M Z Z M Z Z Z Z Z Z Z Z Z	30AZT18 30ACT33 30AZT47 30AET47 30AET68 30AET68 30AED10 30AED12 30ACD15 30AED15 30AED20 30AED22 30AED22 30AED23 30AED23 30AED23 30AED23	A3 A4 C3 A3 D3 A3 C4 C3 D4 C3 D3 D3 D3 D3 D3	N4700 X7R N4700 Z5U N4700 Z5U X7R Z5U X7R Z5U X5U Z5U Z5U Z5U Z5U Z5U Z5U Z5U Z5U

SPECIFICATIONS:

- Application Range: Up to 30,000 VDC,10,000Vrms
- Dielectric Strength: 150% of rated voltage (in dielectric fluid) charging current limited to 50mA.
- Temperature Characteristcs: N4700 (T3M), X7R, Z5U
- Insulation Resistance: 200,000 M Ω , minimum @ 180 VDC,1000 Ω F.
- Dissipation Factor: 0.2% (N4700); 2% max (X7R, Z5U).

561C, 562C, 563C, 564C Custom Discs

Custom Capacitor Capability

Vishay Cera-Mite

561 AND 564 CLASS I SERIES ELECTRICAL OPTIONS (Precision and over 50 kHz)

	RANG	RANGE OF CAPACITANCE VALUES (PICOFARADS)														
CERAMIC TYPE	500 VOLT .250"TO .680" (6.4 TO 17mm)		2000 VOLT .330" TO .900" (8.4 TO 23mm)		TOLERANCE CODES											
NP0	10 - 390	1 - 330	1 - 270	1 -180	C, D, J, K											
N750	47 - 680	22 - 470	10 - 330	10 - 270	J, K											
N1000	56 - 820	33 - 560	15 - 390	10 - 330	J, K											
N2200	68 - 750	56 - 680	33 - 560	22 - 470	J, K											
N3300	100 -1000	75 - 820	47 - 750	33 - 560	J, K											
N4700	n/A	330-5600	220-4700	100-3300	K, M											

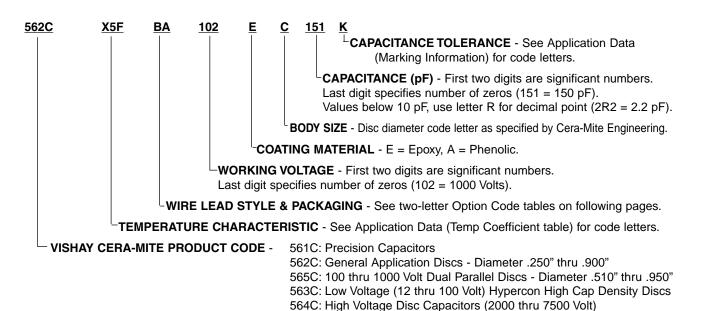
Note: Vishay Cera-Mite also offers capacitors in N030, N080, N150, N220, N330, and N470 characteristics to serve special applications requiring TC matching. Values are available in the same range as NP0.

CUSTOM DISCS

Vishay Cera-Mite's most popular 12 Volt to 6,000 Volt values and constructions are shown as standard part numbers in this catalog. Many other values and lead styles are available. Complete capacitance ranges for various Class I, II and III ceramic materials are shown in the tables below. Various wire lead forms and packaging options are detailed on the next pages. Part numbers for custom capacitors consist of an 18-character designator assigned by our application engineering group. Vishay Cera-Mite will provide a certified outline drawing and complete part number covering custom options specified. Customer approval of the outline is usually requested to guarantee satisfaction.

All performance characteristics shown in this catalog apply to the options unless otherwise stated on the outline drawing.

562 AND 564 CLASS II & III SERIES ELECTRICAL OPTIONS


(General Purpose)

	RANGE OF CAPACITANCE VALUES (PICOFARADS)													
CERAMIC TYPE	500 Volt .250" to .950" (6.4 to 24mm)	1000 Volt .250" to .950" (6.4 to 24mm)	2000 Volt .330" to .950" (8.4 to 24mm)	3000 Volt .330" to .950" (8.4 to 24mm)	6000 Volt .400" to .900" (10.2 to 23mm)	TOL 500 V	ERANCE (CODES 2 to 6 KV						
X5F X5S X7R Y5U Z5U Y5V	200 - 22,000 400 - 22,000 500 - 22,000 1000 - 50,000 1500 - 100,000 2000 - 200,000	100 - 20,000 300 - 25,000 390 - 28,000 750 - 50,000 1000 -100,000 1500 -150,000	68 - 12,000 470 - 22,000 390 - 22,000 560 - 33,000 1000 - 47,000 1500 -100,000	47 - 8,200 390 -15,000 290 - 15,000 390 - 33,000 680 - 33,000 1000 - 50,000	47 - 2200 220 - 3900 560 - 3900 470 - 6800 820 - 8200 N/A	K, M M K, M M M, Z Y. Z	K, M K, M K, M M M, Z M, Z	K, M K, M K, M M, Y M, Z M, Z						

Note: 100 Volt ratings are available in same ranges as 500 Volt.

CUSTOM PART NUMBER DESIGNATOR

General Method Used To Describe Radial Leaded Custom Disc Capacitors

615C: High Voltage Disc Capacitors (10,000 Volt and 15,000 Volt)

Packaging Options

BULK PACKAGING

Inner cardboard boxes will be either $6 \times 6 \times 2$ inches $(15 \times 15 \times 5 \text{cm})$; or $6 \times 6 \times 3.5$ inches $(15 \times 15 \times 9 \text{cm})$ and are labeled as shown. In certain circumstances, sealed plastic bags may be used as an alternate.

CUSTOMER	VISHAY CERA-MITE							
Name Purchaser Order Numb Part Number & Rev. Item Number	 Part No. & Descriptor Code Order Number Lot Number Quantity & Date Code 							
Vishay Cera-Mite Corporation • Grafton, WI 53024 • US								

Outer corrugated cardboard shipping cartons range in size from $6.5 \times 7 \times 8$ inches $(17 \times 18 \times 20 \text{cm})$ to $12.5 \times 15 \times 7$ inches $(32 \times 38 \times 18 \text{cm})$ and are labeled as follows:

Vishay Cera-Mit 1327 6th Avenu Grafton, WI 530	ie .	Vishay Cera-Mite Corporation 6150 Van Hecke Avenue Oconto, WI 54153					
Customer PO#	Customer Part #	Quantity	Box of				
Custome	er Name	Customer Address					

WIRE LEAD OPTIONS

 Radial leaded capacitors may be ordered with various wire lead options by adding appropriate suffix code to the catalog part number.

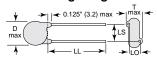
Example: 30GAD22 GJ (Suffix Code) specifies:

#20 AWG wire; LS = .375"; Inside Crimp; Short Cut Lead Length.

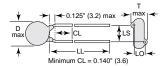
1	OLT - 10		SUFFIX CODES FOR VARIOUS LEAD SPACING (LS) AND WIRE SIZE (AWG)										
WIRE FORM DESCRIPTION	l .	LEAD LENGTH	.20 #22 AWG	.200" (5) #22 #24 AWG AWG		' (6.3) #24 AWG	.300" (7.5) #22 AWG	.375" (9.5) #22 AWG	.400" (10) #22 AWG				
Straight Wire	Fig 11	Long "LL"	MA	PA	UB	UA	BK	BJ	BL				
Steeple Wire	Fig 12	Long "LL" Cut "CL"	CL NB	PT PK	CJ NK	CH NG	CA NC	CK ND	CB NE				
Step Wire	Fig 14	Long "LL" Cut "CL"	VDG PG	VK PU	VB PR	PQ PL	VF PH	VG PS	VH PJ				
Inside Crimp	Long "LL"		94	JT JD	JCK	JF JY	JL JR	JS JJ	JP JB				

	0 AND CAPAC		SUFF	IX COD	ES FO	R VAR	IOUS L	EAD SI	PACINO	G (LS)	AND W	RE SIZ	Œ (AWG)
WIRE FORM DESCRIPTION		LEAD LENGTH	#20	(6.3) #22 AWG	#20	(7.5) #22 AWG	.375" #20 AWG	`#22	.400' #20 AWG	`#22	.500" #20 AWG	`#22´	.750" (19) #20 AWG
Straight Wire	Fig 11	Long "LL'	AA	UB	AE	BK	AJ	BJ	AD	BL	AM	ВМ	AB
Inline Wire	Fig 13	Long "LL' Cut "CL"	XW XX	XY XZ	UC UD	UE UF	UG UH	UJ UK	UL UN	UM UP	UQ UR	US UT	_
Inside Crimp	Fig 15	Long "LL' Cut "CL"	GB GE	JC JK	GC JH	JL JR	GN GJ	JS JJ	GD JG	JP JB	GF GM	JN JM	_

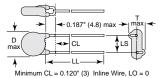
NOTE: Popular wire lead form options are described above; consult factory for other available forms. NOTE: Practical consideration may limit wire options depending on capacitor size - verify special requirements with factory.

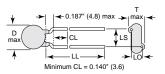

Wire Information: #20 AWG .032" (.81) Copper Wire #22 AWG .025" (.64) Copper Wire

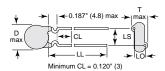
#24 AWG .020" (.51) Copper Clad Steel Wire


PACKAGING OPTIONS:

- Parts will be BULK packaged in cartons or plastic bags unless optional packing is specified.
- Can be optionally TAPE & REELED per EIA-468B or Reverse Reeled. (Fig 16)
- Consult factory for other packaging options, such as Ammo Pack cartons.
- · Bar coding is available.


Straight Fig 11


Steeple Fig 12


Inline High Voltage Fig 13

Step Low Voltage Fig 14

Inside Crimp Fig 15

LEAD LENGTH INFORMATION:

- Standard Long Lead "LL" Length = 1.250" (32mm) minimum.
- Cut Lead "CL" Length may be user specified; if unspecified Vishay Cera-Mite supplies 0.187" (4.8mm) EIA standard.
- Cut Lead Lengths are measured from bottom of wire seating plane (wire support point on circuit board).
- Minimum Cut Lead Lengths "CL min" are contained in wire figures 12 thru 15.
- Cut Lead Length Tolerance: +.031"/-.015" (0.8/-0.4mm).

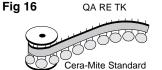
Packaging Options

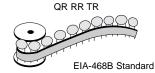
TAPE & REEL OPTIONS

Radial leaded parts may be ordered with Tape & Reel packaging by adding appropriate suffix code to part number.
 Example: TGS10 QR (Suffix Code) defines: #22 AWG wire; Straight Lead Form; LS = 5mm; Tape & Reel per EIA 468B.

1 -	APE & REE RT NUMBE			TAPE & REEL SUFFIX CODES FOR VARIOUS WIRE FORMS & SIZES												
TAPE & REEL FIGURE	LEAD MAX. CAP DIAMETER in. mm		TAPE & REEL (NOTE 1)	FIG. 11 STRAIGHT WIRE #20 #22 #24 AWG AWG AWG		FIG. 12 STEEPLE WIRE #22 #24 AWG AWG AWG FIG. 13 INLINE WIRE #20 #22 AWG AWG AWG		E WIRE #22	FIG. 14 STEP WIRE #22 #24 AWG AWG		FIG. 15 INSIDE CRIMP V #20 #22 AWG AWG		WIRE #24 AWG			
А	5mm	.490	12.4	C-M EIA	QG QH	QA QR	QB QD	TK TR	WK TX	XA XB	ZA XN	VC VZ	VQ VE	RA RC	RE RR	RB LA
В	7.5mm	.530	13.5	C-M EIA	QP QS	QK QF	_	=	_	XG XH	ZC XR	=	_	RP RX	RK RL	
С	10mm	.708	18.0	C-M EIA	QQ AP	QM QX	_	_	_	XJ XK	XS XT	=	_	RQ RJ	RM RU	_
D	7.5mm	.708	18.0	C-M EIA	QW AQ	QN QE	_	_	_	XL XM	XU XV	=	_	RW RV	RN RD	_

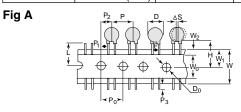
Wire Information: #20 AWG .032" (.81) Tinned Copper Wire

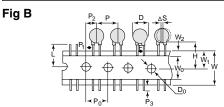

#22 AWG .025" (.64) Tinned Copper Wire


#24 AWG .020" (.51) Tinned Copper Clad Steel Wire

TAPE & REEL (EIA - 468-B)

		Tape & Reel Packaging			
ITEM (DIMENSIONS IN MM)	CODE	FIG A LS=5mm P=12.7mm	FIG B LS=7.5mm P=15mm	FIG C LS=10mm P=25.4mm	FIG D LS=7.5mm P=30mm
Pitch of component	Р	12.7	15.0	25.4	30.0
Pitch of sprocket hole	P ₀	12.7 ± 0.3	15.0 ± 0.3	12.7 ± 0.3	15.0 ± 0.3
Lead spacing	F	5.0 + 0.8 - 0.2	7.5 ±1.0	10.0 ± 1.0	7.5 ± 1.0
Length from hole center to component center	P ₂	6.35 ± 1.3	7.5 ± 1.5	_	7.5 ± 1.5
Length from hole center to lead	P ₁	3.85 ± 0.7	3.75 ± 1.0	7.7 ± 1.5	3.75 ± 1.0
Body diameter	D	See	See individual product specification		
Deviation along tape, left/right	Δs	0 ± 1.3 0 ± 2.0			0
Carrier tape width	W	18.0 ± 0.5			
Position of sprocket hole	W ₁			9.0 ± 0.5	
Height (Fig 11) straight wire	Н	20 +1.5 - 1.0	20 +1.5 20 - 1.0	18 + 2.0 - 1.0	20 +1.5 20 - 1.0
Height (Fig 12-15) seating plane		16 ± 0.5	16 ± 0.5	16 ± 0.5	16 ± 0.5
Protrusion length	P ₃		3.0 N	lax.	
Dia. of sprocket hole	D_0		4.0	± 0.2	
Total tape thickness	t ₁		0.6	5 ± 0.3	
Total thickness, tape and lead wire	t ₂	1.5 Maximum			
Portion to cut in case of defect	L	11 Maximum			
Hold down tape width	W_0		11.5 Minimum		
Hold down tape position	W_2		1.5	± 1.5	


EIA lead spacings for tape and reel are based on multiples of .100" (2.5mm) to coordinate with automatic insertion machinery and boards using .100" grid convention.



Note 1 Vishay Cera-Mite standard is a reverse reeled version of EIA 468B.

LEAD SPACE	PITCH	CAP DIA.	CAP FAMILY
5mm	12.7mm (0.5")	≤ 12.4mm	≤ 3KVDC

LEAD SPACE	PITCH	CAP DIA.	CAP FAMILY
7.5mm	15mm	≤ 13.5mm	≤ 3KVDC & AC Rated

PITCH

LEAD SPACE	PITCH	CAP DIA.	CAP FAMILY
10mm	25.4mm (1.0")	≤ 18mm	≤ 6KVDC & AC Rated
Fig C	P1 +	D	△S

CAP DIA.

7.5mm		30mm	≤ 18mm	≤ 6KVDC & AC Rated
Fig D		P ₂ < → < P-	—→ D	∆s →II
*)	P ₁	+ +	₩ ₂ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

LEAD SPACE

CAP FAMILY

VISHAY

Heavy Duty High Voltage Capacitors

10 TO 40KV MOLDED EPOXY CASE DK GENERAL PURPOSE TYPE, EIA CLASS III APPLICATIONS:

- · High Voltage Power Supplies, CRTs, Lasers.
- · Smallest Size Available.

KT SPECIAL PURPOSE TYPE, EIA CLASS I APPLICATIONS:

- High Voltage Power Supplies, CRTs, Lasers.
- · Greater Capacitance Stability.
- Features Low DF and Low Heating, Low DC & AC Voltage Coefficient.
- Tighter Tolerance On Capacitance.
- Highest AC Voltage Ratings.

PERFORMANCE CHARACTERISTICS:

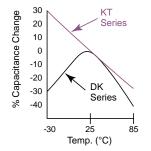
Operating Temperature Range: -30°C to +85°C Storage Temperature Range: -40°C to +100°C

Dielectric Strength: 150% of rated voltage, charging

current limited to 50mA.

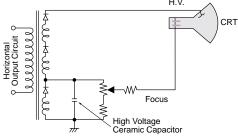
Insulation Resistance: 200,000 megohms or $1000\Omega F$

minimum at 25°C.

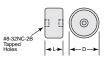

Corona Limit: 50 picocoulombs at rated AC voltage.

Self Resonant Frequency: Ranges from 50 MHz for small

diameters to 10 MHz for large diameters.


Power Dissipation: Limit to 25°C rise above ambient,

measured on case.


KT Series ceramic material is specially designed to handle AC current, due to low dissipation factor.

Typical Applications

Applications where high dv/dt is present will operate at high peak currents ($I_p = dv/dt \times C$). Capacitors should be evaluated in the actual circuit for dv/dt greater than 2000V/ microsecond. If repetitive, it may be necessary to use a series resistor or other impedance to limit peak currents to safe values.

Fig 17

NOTE: Screw torque limit: 12 inch pounds. Use #8-32, 3/16" long screw to prevent bottoming.

D SIZE	DIAMETER MAX.		
CODE	in.	mm	
A B C D E F G H	.880 1.05 1.30 1.55 1.80 2.13 2.30 2.42	22.4 26.7 33.0 39.4 45.7 54.1 58.4 61.5	

SIZE	LENGTH MAX.			
CODE	in.	mm		
J K L M N	.780 .900 1.00 1.18 1.36	19.8 22.9 25.4 30.0 34.5		

715C Series

TYPE DK CAPACITOR

Class III Y5U Temp. Coefficient Cap Tol. +80% - 20% DF: 2% Max @ 1 kHz

15,000 VDC; 4,000 VRMS, 60HZ

CAP	CATALOG	SI	ZE	
pF	NUMBER	D CODE	L CODE	
1500	15DKD15	В	K	
2000	15DKD20	С	K	
3300	15DKD33	D	K	
4700	15DKD47	D	K	
.01 uF	15DKS10	G	K	

20,000 VDC; 5,000 VRMS, 60HZ

CAP	CATALOG	SI	ZE
pF	NUMBER	D CODE	L CODE
500	20DKT50	Α	L
1000	20DKD10	С	L
1300	20DKD13	С	L
2500	20DKD25	D	L
3300	20DKD33	E	L
4700	20DKD47	F	L
6800	20DKD68	Н	L

30,000 VDC: 7,000 VRMS, 60HZ

CAP	CATALOG	SI	ZE	
pF	NUMBER	D CODE	L CODE	
500	30DKT50	В	N	
1000	30DKD10	С	М	
2500	30DKD25	D	M	
3300	30DKD33	F	M	
4700	30DKD47	G	M	

40,000 VDC; 9,000 VRMS, 60HZ

CAP	CATALOG	SI	ZE	
pF	NUMBER	D CODE	L CODE	
300	40DKT30	Α	Ν	
500	40DKT50	В	N	
780	40DKT78	С	N	
1000	40DKD10	D	N	
1600	40DKD16	Е	N	
2500	40DKD25	F	N	
3300	40DKD33	G	N	

Class I N4700 Temp. Coefficient Cap Tol. ±20% DF: 0.2% Max @ 1 kHz

TYPE KT CAPACITOR

10,000 VDC; 4,000 VRMS, 60HZ

CAP	CATALOG	SIZE	
PF		D CODE	L CODE
1000	10KTD10	С	J
2200	10KTD22	D	J
3900	10KTD39	F	J
4700	10KTD47	G	J

15.000 VDC: 6.000 VRMS, 60HZ

CAP	CATALOG	SI	ZE
pF	NUMBER	D CODE	L CODE
820	15KTT82	С	K
1900	15KTD19	F	K
3300	15KTD33	G	K

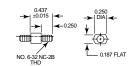
20,000 VDC: 8,000 VRMS, 60HZ

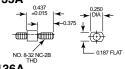
CAP	CATALOG	SI	ZE
pF	NUMBER	D CODE	L CODE
560	20KTT56	С	L
1000	20KTD10	D	L
1900	20KTD19	F	L
2700	20KTD27	Н	L

30,000 VDC; 10,000 VRMS, 60HZ

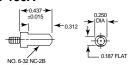
CAP	CATALOG	SIZE	
pF	NUMBER	D CODE	L CODE
400	30KTT40	С	М
660	30KTT66	D	М
1200	30KTD12	F	М
1800	30KTD18	Н	М

40.000 VDC: 13.000 VRMS, 60HZ

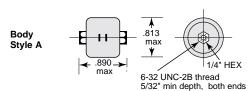

,	10,000 120, 10,000 11							
CAP	CATALOG	SIZE						
pF	NUMBER	D CODE	L CODE					
300	40KTT30	С	N					
640	40KTT64	E	N					
1000	40KTD10	F	N					
1300	40KTD13	Н	N					


TERMINAL ADAPTORS 75-135A

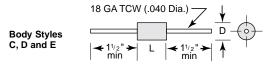
#8-32NC-2B Adapters.
Order separately as required.


All tolerances ±0.010 unless specified.

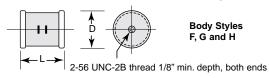
75-134A


75-136A

Specialty High Voltage Items RF Duty Capacitors


5 AND 7.5 KVDC - 1.5 TO 10 AMPERES

CAPACITANCE RANGE BY TEMPERATURE CHARACTERISTIC


Voltage	Value	T.C.
5 KVDC - 7.5 KVDC	5 - 65 pF	NP0
5 KVDC - 7.5 KVDC	50 - 150 pF	N750
5 KVDC	500 - 1,000 pF	X5U

T.C.= Temperature Characteristic per EIA 198

CAPACITANCE RANGE BY TEMPERATURE CHARACTERISTIC

Cera-Mite Body Style	Length ±.031	Dia. ±.031	KVDC	NP0	N750
С	.343	.250	5 KV	1-7 pF	8-10 pF
D	.375	.375	5 KV	5-10 pF	15-25 pF
E	.437	.500	5 KV	7-30 pF	34-45 pF

CAPACITANCE RANGE BY TEMPERATURE CHARACTERISTIC

Cera-Mite Body Style	Length ±.031	Dia. ±.031	KVDC	NP0	N750
F	.390	.312			8-10 pF
G	.422	.437	5 KV	5-10 pF	15-25 pF
Н	.484	.562	5 KV	7-30 pF	34-45 pF

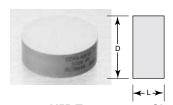
Vishay Cera-Mite RF duty high voltage capacitors are designed to be used in circuits which operate at radio frequency. They are capable of handling high RF currents and voltages. Geometry minimizes inductance, optimizes voltage withstand and maximizes heat radiation. Applications include radio transmitters, antenna couplers, induction heaters and similar apparatus.

- DIELECTRIC STRENGTH: 150% of rated DC voltage.
- INSULATION RESISTANCE: 100,000 megohms
- **DISSIPATION FACTOR:** 0.1% to 0.2% for NP0 and N750. 0.5% for X5U.
- ENVIRONMENTAL DESIGN CRITERIA: EIA 198.

TYPICAL APPLICATION DATA FOR POPULAR CAPACITANCE VALUES

Value	T.C.	Std. Cap. Tolerance	Cera-Mite Part No.	Max. A.C. Volts (Peak KV)	Max. A.C. Current (RMS) Amps.	Max.VA (KVAR)*
25 pF	NP0	±10%	7FAA250K	7.5	5.5	7.0
50 pF	NP0	±10%	7FAA500K	7.5	8.0	8.0
50 pF	N750	±10%	7FAU500K	7.5	8.0	8.0
75 pF	N750	±10%	7FAU750K	7.5	9.0	8.0
100 pF	N750	±10%	7FAU101K	7.5	9.2	9.0
1,000 pF	X5U	±20%	5FAE102M	5.0	3.7	0.2

TYPICAL APPLICATION DATA FOR POPULAR CAPACITANCE VALUES


Value	T.C.	Std. Cap. Tolerance	Body Style	Cera-Mite Part No.	Max. A.C Volts (Peak KV)	Max. AC Current (RMS) Amps.	Max. VA (KVAR)*
3 pF	NP0	±10%	С	5FCA3R0K	5.0	1.5	2.3
5 pF	NP0	±10%	С	5FCA5R0K	5.0	1.6	3.8
10 pF	N750	±10%	С	5FCU100K	5.0	2.3	4.2
10 pF	NP0	±10%	D	5FDA100K	5.0	2.3	4.2
20 pF	N750	±10%	D	5FDU200K	5.0	3.4	7.6
20 pF	NP0	±10%	E	5FEA200K	5.0	3.4	7.6
40 pF	N750	±10%	E	5FEU400K	5.0	3.5	7.8
3 pF	NP0	±10%	F	5FFA3R0K	5.0	1.5	2.3
5 pF	NP0	±10%	F	5FFA5R0K	5.0	1.6	3.8
10 pF	N750	±10%	F	5FFU100K	5.0	2.3	4.2
10 pF	NP0	±10%	G	5FGA100K	5.0	2.3	4.2
20 pF	N750	±10%	G	5FGU200K	5.0	3.4	7.6
20 pF	NP0	±10%	Н	5FHA200K	5.0	3.4	7.6
40 pF	N750	±10%	Н	5FHU400K	5.0	3.5	7.8

*At rated voltage.

Data presented is based on a maximum case temperature rise of 30°C at 25°C ambient in free air.

Unencapsulated, Temperature Stabilized 20 to 40 KVDC, 6 to 12 KVAC

722C SERIES

D: .980" (25mm) to 2.15" (54.6mm)

L: To suit application, typically .400" (10.0mm) to .800" (20.3mm)

Vishay Cera-Mite 722C type offers a temperature stabilized capacitor where capacitance stability over wider temperature ranges are needed.

This product is usually furnished unencapsulated for use in very high voltage capacitor assemblies utilizing capacitors in series, with very high BIL ratings. Typical applications are power circuit breakers, lightning arrestors, power transformers and metering, and medical laser technology.

The user must take all responsibility for mechanical and environmental protection against chipping, moisture and contamination. The capacitor must be enveloped in a suitable enclosure of oil, pressurized gas or equivalent.

• DIELECTRIC STRENGTH: 150% of rated voltage, charging current

limited to 50mA

DISSIPATION FACTOR: 2.0% max. at 1kHz

CAPACITANCE RANGE: 20KVDC, 750 pF thru 3700pF

30KVDC, 500 pF thru 2500pF 40KVDC, 380 pF thru 1800pF

Fabmika[®] Capacitors

When applications extend beyond the capability of ceramic capacitors, consider Vishay Cera-Mite's Fabmika high voltage mica film technology. Offering high voltage and Hi-Rel packaging, it is applied in single or network designs.

Fabmika® capacitors are generally made over the range of $.001\mu F$ to $1.0\mu F$ and 1500VDC to 30KVDC. Product is supplied either unencapsulated, polyester film wrapped and end potted, fiberglass epoxy housed or epoxy molded.

AEROSPACE & ELECTRICAL POWER APPLICATIONS:

- · Military Aircraft Radar Transmitters
- · Jet Engine Ignitors
- Missile Destruct Systems
- Pulse Forming Networks
- Power Generation Commutating Capacitors

APPLICATION CONSIDERATIONS

VOLTAGE & CURRENT STRESS ON DIELECTRICS:

The specified operating DC rating for the mica capacitor is that voltage which the capacitor can withstand continuously at rated temperature. The current is limited to a very small value equal to the leakage current, determined by the IR. In the case of an applied AC voltage, the capacitor dielectric must withstand both RMS voltages, peak voltage and peak-to-peak voltages. Each application must be considered carefully.

In AC, there are both continuous currents and transient currents that can generate steady state heating and localized heating. The steady state heating would be the function of the continuous repetitive wave form or equivalent duty cycle. The transient currents are a function of the dv/dt and di/dt of the wave form or pulses.

For any AC application, the user should define the wave forms and duty cycle at the time of request for quotation.

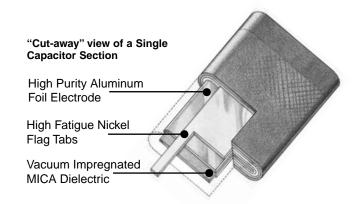
An important factor governing a mica capacitor's ability to withstand current surges is the amount of electrical tab area. In high peak current applications, the tab area is increased to prevent erosion between the aluminum electrode foil and connecting tab.

• THERMAL STRESS:

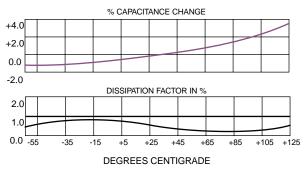
Even though mica capacitors have low losses relative to other types of capacitors, internal thermal heating is often the limiting factor in high-frequency applications. The capacitor temperature due to internal heating plus the ambient temperature should not exceed the maximum allowable operating temperature.

Power Dissipation = $(I_{RMS})^2$ x ESR

• EQUIVALENT SERIES RESISTANCE:


ESR of the capacitor includes a frequency dependent factor which reflects the losses in the dielectric material and other internal losses.

Approx. ESR =
$$\frac{D.F.}{2\pi fC}$$


The design may have to be made larger to increase the power dissipation for high-frequency design.

INDUCTANCE:

Fabmika capacitors have inductance (50 to 250 nano henrys), proportional to voltage and capacitance rating.

CAPACITANCE AND DISSIPATION FACTOR VS. TEMPERATURE

224M SERIES

This product consists of one section, available either unencapsulated or wrapped with polyester film tape and end potted with epoxy compound. The 224M offers the smallest volume part available. Wire leads or ribbon leads are terminations available.

Standard Ratings and Sizes:

1500 Volts DC Working • Cap Range of $0.01\mu F$ to $1.0\mu F$ 1.50"L x 0.50"W x 0.105"T to 5.13"L x 2.00"W x 0.310"T

3000 Volts DC Working • Cap Range of $0.01\mu F$ to $1.0\mu F$ 1.50"L x 0.75"W x 0.155"T to 5.13"L x 3.50"W x 0.495"T

5000 Volts DC Working • Cap Range of 3300pF to $0.33\mu F$ 2.63"L x 0.75"W x 0.175"T to 5.13"L x 3.50"W x 0.600"T

7500 Volts DC Working • Cap Range of 1500pF to $0.15\mu F$ $2.63"L \times 0.75"W \times 0.190"T$ to $5.13"L \times 3.50"W \times 0.500"T$

Fabmika® Capacitors

Vishay Cera-Mite

305M SERIES

This product is the bare impregnated section, available in a laminated epoxy fiberglass housing. The assembly is then potted with an epoxy compound. The 305M offers the greatest environmental protection available. Terminations can be wire leads or threaded studs.

Standard Ratings and Sizes:

5KV DC Working • Cap Range of $0.001\mu F$ to $0.1\mu F$ $1.56"L \times 0.53"W \times 0.53"T$ to $2.75"L \times 1.03"W \times 1.03"T$ 10KV DC Working • Cap Range of 500pF to $0.05\mu F$ $2.25"L \times 0.63"W \times 0.63"T$ to $4.25"L \times 1.35"W \times 1.35"T$ 20KV DC Working • Cap Range of 500pF to $0.01\mu F$ $2.75"L \times 0.63"W \times 0.63"T$ to $4.25"L \times 1.03"W \times 1.03"T$ 30KV DC Working • Cap Range of 500pF to $0.01\mu F$ $4.00"L \times 0.88"W \times 0.88"T$ to $5.50"L \times 1.35"W \times 1.35"T$

221M SERIES

High Energy StorageFor radar and guidance transmitters.

Network Capability
With multiple voltages
and capacitance value

Power Utilities

High BIL for measurements. Dual 0.3μF, 1400 VRMS commutating capacitors for brushless exciters.

The rugged 221M Series offers a high voltage, high current capability multiple capacitor network in a single package. This single pretested device can internally house several capacitors of different values and voltage ratings or combine units in series-parallel combinations. Rugged electrical and mechanical packaging can be configured to allow curved surfaces, special mounting and irregular shapes, while offering superior strength and reliability. Such features lead to greater utilization of space and in many cases, lighter weight capacitor assemblies.

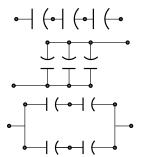
Either a single section or an assembly of sections may be epoxy encapsulated utilizing a metal or epoxy mold. Terminations can be wire leads, turret terminals, threaded studs or inserts, or high voltage connectors.

221M Series is available in voltages from 1500 VDC to 200 KVDC; and capacitance values of .001 μ F to 10 μ F.

TYPICAL PERFORMANCE CHARACTERISTICS

Parameter	Specification	MIL-STD-202
Capacitance	At 25°C & 1kHz	Method 305
Dissipation Factor	0.5% max @ 25°C & 1kHz 0.8% max @ 125°C & 1kHz	Method 306
Insulation Resistance	5G ohms-uF minimum @ 25°C 20M ohms-uF minimum @ 125°C	Method 302 Test Condition B
Dielectric Withstanding Voltage	200% of rated DC voltage	Method 301
ACrms, 60Hz Voltage Rating	30% of rated DC voltage	Method 301
Temperature Range	-55°C to +125°C	_
Voltage Derating	No voltage derating required below +125°C	_
Capacitance Change	±4% max over the range of -55°C to +125°C (see curve)	_
Humidity Resistance (not applicable to bare sections)	Capacitance, DF and IR shall meet initial requirements	Method 103B
Moisture Resistance (not applicable to 224M style)	Capacitance, DF and IR shall meet initial requirements	Method 106F Test Condition B
Immersion (not applicable to 224M style)	Capacitance, DF and IR shall meet initial requirements	Method 104A Test Condition B
Temperature Cycling	Examine for physical damage	Method 107G Test Condition A
Vibration	No opens or shorts greater than 0.5 milliseconds	Method 201A and 204D
Shock	No opens or shorts greater than 0.5 milliseconds	Method 205E
Solderability	95% wetted by new solder	Method 208F
Terminal Strength	No evidence of breaking or loosening of the terminals	Method 211A

TYPICAL SECTION ARRANGEMENTS


Single Section

CV Product (KV x μ F) = .25 max Max Voltage = 5KVDC Corona Start Voltage = 500Vrms, 60 Hz

Split-Wound Section

CV Product (KV x μF) = .25 max Max Voltage = 15KVDC Corona Start Voltage = 1000Vrms, 60 Hz

Sections in Series

For voltages over 10KVDC

Sections in Parallel For CV Product over .25μF•KV

Sections in Series/Parallel For Applications Requiring High Voltage and Large Capacitance

Notes

Vishay Cera-Mite

DISCRETE SEMICONDUCTORS AND PASSIVE COMPONENTS

THE AMERICAS VISHAY AMERICAS

ONE GREENWICH PLACE SHELTON, CT 06484 UNITED STATES PH: +1-402-563-6866 FAX: +1-402-563-6296

ASIA VISHAY INTERTECHNOLOGY

ASIA PTE LTD.25 TAMPINES STREET 92
KEPPEL BUILDING #02-00
SINGAPORE 528877

PH: +65-6788-6668 FAX: +65-6788-0988

JAPAN VISHAY JAPAN CO., LTD.

SHIBUYA 3F, GE EDISON BUILDING 3-5-16 SHIBUYA

SHIBUYA-KU TOKYO 150-0002

Japan

PH: +81-3-5464-6411 FAX: +81-3-5464-6433

EUROPE VISHAY ELECTRONIC GMBH

GEHEIMRAT-ROSENTHAL-STR. 100 95100 SELB

GERMANY

PH: +49-9287-71-0 FAX: +49-9287-70435

VISHAY S.A.

4, RUE DE SALONIQUE 95101 ARGENTEUIL

FRANCE

PH: +33-1-39-98-22-00 FAX: +33-1-39-98-22-05

VISHAY LTD.

PALLION INDUSTRIAL ESTATE SUNDERLAND, SR4 6SU GREAT BRITAIN PH: +44-191-514-4155

FAX: +44-191-567-8262

ONLINE INFORMATION

For product information and a current list of sales reps and distributors, visit our website:

www.vishay.com

MANUFACTURER OF THE WORLD'S BROADEST LINE OF DISCRETE SEMICONDUCTORS AND PASSIVE COMPONENTS

VISHAY INTERTECHNOLOGY, INC.

World Headquarters

63 Lincoln Highway Malvern, PA 19355-2143 United States

www.vishay.com

© Copyright Vishay Intertechnology, Inc.
Registered Trademarks of Vishay Intertechnology, Inc.
All rights reserved. Printed in the United States.
Specifications subject to change without notice.