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1. Design Project Overview 

 

This paper involves the implementation of a free-space optical (FSO) communications 

system capable of interfacing with moving receivers such as unmanned ground or aerial vehicles. 

The systems serves as a two-way communication system with only one end of the link required 

to have a laser and LED source while the other end has photodiode receiver architecture and the 

ability to communicate back via a reflected signal source.  The transmit component can receive 

data from any computer with a USB port and calibrates the data for optical transmission through 

a schmitt trigger before the signal enters the LED driver circuit.  Inexpensive light emitting 

diodes (LEDs) are used to transmit data at rates up to 700 Kbps. On the receive side, a 

transimpedance amplifier is used to receive the signal from a reverse biased photodiode. The 

signal is amplified and sent to a comparator circuit so the data can be recognized by the 

computer at the receiver. The final system implementation successfully streams audio files of a 

few megabytes. A computer vision tracking system integrated into the transmitter controls a pan-

tilt platform for target acquisition and tracking. Due to time limitations we were unable to reach 

the ultimate design goal of 1 Mbps. Due to time constraints not all parts of the system are 

compactly integrated together, in particular, the Retro Optical chopper and computer vision 

features of the initial design project scope were not fully integrated into the final implementation. 

However, these parts were successfully project and characterized. Video documentation of the 

experimentation of the system can be found by following the YouTube link: 

 

<https://www.youtube.com/channel/UCLcOockgnsydlnRXT7J9wwg> 
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2. Technical Specifications 

 

The Vision Based Free Space Optical Communication system is composed of four major 

sub systems. These include the transmitter, receiver, Reflective Optical Chopper (ROC) and data 

processors which take place in the form of PCs or Raspberry Pis. 

The transmitter requires a power source of +5 V rated for at least 1 A. Recorded 

transmission rates have reached 1 MHz, and observed recoverable data rates up to 700 kbps.  If 

the Engin 5W LZ1-00R100 LED is used for transmission, the dominant wavelengths emitted are 

between 618-630 and maximum luminous flux not greater than 228 lm. If lasers are used for 

transmission they will be either 5mW at 670nm, 10 mW at 650nm, or 5 mW at 830nm. Input to 

the transmitter system requires TTL voltage levels. 

The receiver requires two power supplies at ± 5 V, ±18 V, +2.5V, +3.3 V. The final 

prototype of the communication system utilizes the SFH213 photodiode which is sensitive to 

wavelengths between 600-1000 nm.  The diode is reversed biased at 18 V. The receiver is 

theoretically capable of reception of signals at 1.3 Mhz, and recorded transmission rates were 

700 kHz. The output of the receiver is in the form of TTL compatible voltage levels. 

 The ROC has a dimension of 2.5” lengthwise with a diameter of 1.1875”. There is an 

active aperture of 8.5mm dimension used for the modulation of the input light. Operational 

wavelengths for use in this communication system are set to 650nm – 1050nm by use of filter. 

The modulation frequency range of the ROC is stated to be up to 100 kHz, although higher 

frequencies have been observed. Contrast ratio at 100 kHz is 80.0%  

 The last major subsystem, the data processors, consists of a computer capable of a Python 

interface. The final prototype utilized two different PC’s, one running Windows 7 the other 

running Linux. Operating systems are irrelevant so long as scripting language Python can run. 

Transmission rates are predetermined and are adjustable in the Python code. The output, and 

receiver for the computer is the USB port through a serial TTL connection which is capable of 6 

MHz transmission speeds. Power supplies for the computer are dependent on model. 
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3. Final Project Summary 

 

3.1 System Design - Final Version 

 

Below is the system block diagram. Note that this represents the working system to date. 

The ROC and Computer Vision is not integrated, but are working components.  

  

                
 

Final prototype establishes a two-way FSO direct line-of-sight communication link and 

requires the ability to transceive a 3.3V TTL signal up  to 700 kHz.  For our purposes, Linux and 

Python programming was used as an interfacing means to process and transceive data via a USB-

TTL adapter.   

The single-ended TTL transmission signal is inputted into Schmitt Trigger & LED Driver 
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system.  This architecture relays the on-off keying protocol to the LED for it to emit light 

according to the binary data bits.  The light is received by a photodiode receiver architecture, 

which incorporates a transimpedance amplifier, voltage amplifier and a comparator circuit. 

The system ultimately outputs a 3.3V TTL signal (the same signal that was initially 

inputted).  This TTL signal is then relayed through another TTL-USB adapter to be interfaced 

and read by the Linux and Python software. 

Data can also be transmitted by use of a Reflective Optical Chopper (ROC).  For our 

purposes, one was generously supplied by Boston Micromachines Corp.  The ROC is an external 

laser modulator that takes in a 3.3V TTL signal and outputs this same signal via FSO.  This is 

done by reflecting a continuous laser source where the reflected laser is the modulated signal.  

This modulated laser is received by the same photodiode architecture as described above. 

 

 3.2 System Implementation  

 

 
 

Fig. 3.2.1: Front-End Schmitt Trigger 

 

The front-end Schmitt Trigger is responsible for upconverting the 0 to 3.3 V input data signal 

from the computer or embedded system to a 0 to 5 V signal to power the laser diode driver. The 

Schmitt-Trigger limits the system in frequency to 700 kHz.  
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Fig. 3.2.2: Driver Circuit Version 2 

 

The laser diode driver powers the LED and transmits the data stream to the optical receiver.  

 
Fig. 3.2.3: Transimpedance Amplifier [Section 5.4.2] 

 

The transimpedance amplifier converts the light signal to an electrical signal. The 

transimpedance amplifier limits the system in frequency to 1.3 MHz. 
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Fig. 3.2.3: Non-inverting amplifier with gain of ten cascaded  to non-inverting comparator. 

[Section 5.4.2] 

 

The non-inverting amplifier amplifies the signal from the transimpedance amplifier by 10 to 

produce a 0 to 5 V input signal to the comparator. The comparator’s reference voltage of 2.5 

determines what data bits are high and low. The output of the comparator is a TTL high signal 

compatible for the USB-Serial Cable.  

 

 3.3 System Performance  

 

The intended goal was to stream HD Video. The USB-Serial cables allow a baud rate of 6 

MBaud, which is capable of HD streaming. Therefore, the goal was to optimize the RX section, 

including the transimpedance amplifier, non-inverting amplifier, and comparator at 6 MHz. 

However the maximum rate we could achieve was 700 kbps. This allowed us to successfully 

stream audio and send audio files. Due to time limitations, the hardware was not totally 

optimized for HD Video Stream. However, with the system we have, python code can be drafted 

to stream video of low quality. Table 3.3 shows the overall performance of each system 

component and their optimal rate.  
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Table 3. 3.1 : System Performance 

System 

Component 

Theoretical 

Optimal 

Frequency 

Frequency 

Achieved 

Simulation 

Reference 

Experimental 

Reference 

USB-TTL Chip 

in Cable 

 6 MHz 6 MHz   

Schmitt Trigger N/A 500 kHz N/A Section 5.3.2.1 

Laser Diode 

Driver V2, V4 

N/A 1 MHz N/A Section 5.3.2.4 

Section 5.4.2 

Transimpedance 

Amplifier: 

TL081 

GBP = 3 MHz  1.3 MHz  N/A  

Noninverting 

Amplifier 

GBP = 125 MHz 1.3 MHz Fig. 5.4.3.1 - 

5.4.3.3 

Section 5.4.4 

Comparator GBP = 125 MHz 1.3 MHz Fig. 5.4.3.1 - 

5.4.3.3 

Section 5.4.4 

 

The bottleneck of the system is the Schmitt Trigger, only rated at 500 kHz. If this design could 

be improved, higher data rates can be achieved on the receive end.  

 

Things to consider:  

 

If the AD8030 was used as a transimpedance amplifier higher frequencies by at least 10 

fold can be achieved based off Fig. 5.4.14.a. We would have to design for the gain that  allows 

for this frequency to boost performance. However, based off simulations and our new intended 

goal of 1 MHz, the simulations correspond to the experimental of the receiver back end as 

referred to in the table.  

Another way to improve performance is to place the TX and RX onto their respective 

PCBs. Surface mount parts can also be used in place of axial resistors. Bread boards provide too 

much parasitic capacitance and allows for RF to jump from trace to trace. Other factors effecting 

the performance of the system is the light intensity of the LED and degree of orientation to 

maintaining the direct line-of-sight. We noticed when finding the direct line of sight and 

increasing the intensity of the LED, the signal performance is cleaner and improved. Finding the 

correct angle of incidence of the photodiode produces the maximum system output. Also, it is 

important to note that the photodiodes implemented in our design were rated for infrared light, 

and all of our designs were done with 650 nm visible red light. Choosing the wavelength that 

correctly partners with the photodiode can improve performance.   
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 3.4 System Design Iterations  

 

Under this subheading all iterations of the design leading up to the final prototype  

must be formally presented in the form of system block diagrams and sufficient  

accompanying text so as to describe the necessity for the shift from one design  

methodology to another.  

 

3.4.1 Driver Circuit 

 
The initial driver circuit was based upon the LM317 linear voltage regulator, a common IC used 

in hobbyist designs (Fig 5.3.2.2). This driver design was deserted for its inability to transfer 

recoverable data over 200 kHz. The Low cost Picosend Laser Module design and Driver Circuit 

V1 were constructed simultaneously( Fig 5.3.2.3, 5.3.2.4). Construction issues were encountered 

with the Low cost Picosecond Laser Module which led to its abandonment as the Driver Circuit 

V1 show preliminary signs of success.  Driver Circuit V1 was based upon hobbyist designs, but 

due material constraints in the lab could not be built with suggested parts. The design required 

use of a MOSFET, and when the 2N7000 FET became available it was incorporated by replacing 

a single 2N2222 BJT. The new circuit was called Driver Circuit V2 (Fig 5.3.2.7). After testing 

suspected drop current drop off above 1 MHz led to the design of Driver Circuit V3 which 

included an additional resistor to decrease the sensitivity of the safety transistor in the design 

which drew away overloading current through the diode by reducing the amplitude of the input 

signal (Fig 5.3.2.20). Once it determined that an LED was more suitable for data transmission 

because of tracking concerns with a laser and photodiode, LED Specific Driver Circuit V4 was 

created (Fig. 5.3.2.23). The difference between Driver Circuit V3 and V4 was the addition of a 
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2N7000 transistor in parallel with the previous one in order to handle the higher current draw 

which the Engin 5W LED could demand. Despite the last two design iterations, Driver Circuit 

V2 is currently used at the final prototype for data transmission due to miscommunication in the 

lab due to late incorporation of the design into on going documentation. Driver Circuit V3 is the 

final prototype version in the laser transmitter which is required by the Reflective Optical 

Chopper (ROC). 
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4. Task List and Work Distribution  

 

Under this heading the individual sub-system- and system-level tasks that have been  

completed must be described in detail. The completed tasks must be representative of all aspects 

of the design process, from initial background research, to simulations, to the preparation of the 

final report, and the final project presentation.  

 

Raspberry Pi, Python Interface & Fault-Tolerant Receiving/Transmitting Code:  

Wayne Chang 100 % 

 

Computer Vision Tracking System:  

Wayne Chang 100% 

 

TX Laser Diode Driver and Schmitt Trigger:  

Jonathan Giordano 70%, Kyle Cavorley 20%, Taichi Hirao 10%. 

 

RX Transimpedance Amplifier:   

Kyle Cavorley 90%, Wayne Change 4%, Jonathan Giordano 3%, Taichi Hirao 3% 

 

Non-inverting Amplifier, Comparator:  

Kyle Cavorley 100% 

This includes the RX system as a whole from research, simulation, design, and test.  

 

Receiver Construction, Lens Collimator:  

Wayne Chang 50%, Jonathan Giordano 50% 

 

ROC Testing and liaison with BMC:  

Taichi Hirao 80%, Jonathan Giordano 20% 

 

Project Poster for Poster Day:  

Kyle Cavorley 33.3%, John Giordano 33.3%, Taichi Hirao 33.3% 

 

Mounting Platform/Gimble, Servo Controller:  

Wayne Chang 100% 

 

Explored Area: Initial Background Research on FPGA Integration:  

Kyle Cavorley 100% 

My first task involved researching how to integrate the Altera DE2-115 FPGA boards to handle 

data transmission in the Free Space Optical Communication link. This required knowledge on 

how to integrate the USB 2.0 or ethernet, SDRAM, SD Card, and Nios II Soft Core Processor. 
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Luckily, Quartus II Software provides a QSys tool that provides the ability of linking each 

component, such as the processor, SDRAM, SD Card, and USB/Ethernet. The tool generates 

interconnect logic by connecting the IP functions and subsystems. Writing C code for the 

processor can control the storage of data, buffering it through SDRAM, and transmission via 

Ethernet/USB. Due to the complexity of creating the FPGA system, the group decided to move 

to a Raspberry Pi System to handle data processing and transmission, which is handled by 

Wayne.  

 

Explored Area: Research on Interfacing with Memory on FPGA:  

Kyle Cavorley 100% 

A variety of through tutorials and IP code of SDRAM, and the SD Card were investigated to 

develop a comprehensive understanding.   

 

Explored Area: Research on Interfacing with USB and Ethernet w.r.t. to FPGA:  

Taichi Hirao 100% 

 

Explored area: Receiver Mosfet amplifier, Mosfet Schmitt Trigger:  

Taichi Hirao 100%  

 

Explored area: RF & directional antennas:  

Jonathan Giordano 100% 
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5. Design Project Details 

 

5.1 Computer Vision  

 

 Name of team member who designed this sub-system: Wayne Chang 

 Name of team member who wrote this subsection: Wayne Chang 

 

 5.1.1 Theoretical Considerations  

A visual feedback system tracking an LED mounted on the receiver is required to point the 

transmitter in the correct direction. Techniques range from simple “brightest region” detection to 

complicated methods involving clustering and stereo reconstruction. Additionally, a proposed 

identification scheme allowed for blinking the receiver LED to broadcast a synced pseudo-

random unique identifier. Unfortunately, there was not enough time to evaluate the tracking 

system because construction of the transmitter and receiver components occupied most of the 

allotted time. 

 

The goal of using cameras is to provide feedback to the servo controller, tuning the platform to 

center on the receiver. The camera processing output is modeled as an XY-offset. If the cameras 

move with the platform, then this offset simply must converge to zero or some other constant 

position. However, if the camera poses are independent of the platform motion, the XY-offsets 

must be calibrated to platform position to ensure accuracy. If distance measurements are 

available to the brightest region, then they may be accommodated for with a linear function with 

input of distance output of center offset. 

 

 5.1.2 Design Procedure  

The simplest solution of tracking a brightest region was implemented very quickly. The 

algorithm searched for the the brightest 9x9 block of pixels and reported the center pixel in the 

block as the target coordinate. This algorithm ran in order O(mn) time with m as the number of 

pixel rows and n as the number of pixel columns. Multi-point tracking is possible by keeping 

track of the k brightest blocks with at least distance d of separation. 

 

It is difficult to identify a single receiver with multiple receivers with lit LEDs. Therefore, a 

proposed solution is to blink the receiver LEDs with unique and updating identifiers so that the 

transmitter may differentiate between the multiple receivers. This blinking can occur at a 

theoretical 30 bps due to the Nyquist frequency of the camera which has the maximum framerate 

of 60 fps. A buffer is used to store the previous states of blinking blocks in the same location, 

accommodating for slight shifts in position. Fortunately, this blinking is slow enough to be 

orthogonal in frequency to the high-bandwidth FSO communications. 
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Lastly, stereo vision is a viable option for obtaining distance measurements. Using simple 

geometry and convex optimization techniques, poses between two camera views can be 

established. This allows extrapolation of 3D data from multiple views of the same scene. This 

technique can be used to provide the aforementioned distance data for a bright cluster of pixels. 

Unfortunately, there was not enough time to implement and test this approach due to 

complications in receiver design. 

 

 5.1.3 Simulation Results  

The simulated brightness tracker functions as expected, drawing a circle around the brightest 9x9 

cluster of pixels. The very simplistic code did not have opportunity for improvement due to time 

constraints. 

 

 5.1.4 Observed and Measured Results  

Due to time constraints, this section was not completed. 

 

5.2 Computer/Embedded System Interface  

 

 Name of team member who designed this sub-system: Wayne Chang 

 Name of team member who wrote this subsection: Wayne Chang (Python), Kyle Cavorley 

(FPGA) 

 

 5.2.2 Design Procedure  

The system interface is required to send and receive arbitrary data across the FSO link. It bridges 

the gap between the transmitter/receiver circuitry and higher-level devices that send/process 

information. The USB interface was chosen for the higher-level device side due to widespread 

adoption, low cost, and high availability. TTL serial was chosen as the circuit-level interface due 

to single transmit and receive lines and compatibility with USB via low-cost converters. The 

Prolific PL-2303HX USB-to-TTL-Serial converter[20] was chosen to interface with any USB-

compatible hardware. The converter supports a baud rate of up to 6 megabits and cost $10 each. 

Two converter-laptop pairs were used during implementation and testing: one pair for 

transmitting and one pair for receiving. 

 

A stop bit is embedded as the last bit per byte for frame synchronization. This allows for only 7 

out of 8 bits of information, resulting in a 12.5% reduction in transmission efficiency. However, 

the stop bit is important for clock synchronization and differentiation between a stream of ‘0’ 

and an idle data line. The inclusion of a stop bit is the default configuration for most serial 

communications, but this can be changed. 

 

Python was chosen as the implementation programming language due to available serial libraries 

and ease of use. Because Python is a high-level scripting languages, care had to be taken when 
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handling byte-level amounts of data at high bitrates. For example, at one megabyte per second, 

the computer would have to process one byte every microsecond. A Python call requiring 20 

microseconds per byte due to system call overheads would not be sufficient. Therefore, many 

bytes must be processed at once (in blocks) to reduce overall overhead and attain high data rates.  

 

A repeating test sequence that generated a square wave (0x54a952a) was used to evaluate the 

communications channel. The value was determined after factoring in the effects of the stop bit, 

thereby leaving the desired sequence of 0101 0100 1010 1001 0101 0010 1010. Reliable 

generation of a square wave at the actual TTL voltages was essential for testing and 

implementation of the FSO circuitry. Varying frequency to test response was convenient using 

the Python serial communications module. 

 

For transmission and receive to operate on file levels, a simple communications protocol with a 

preamble and postamble was implemented. The preamble was a chosen codeword of a 0x55 byte 

repeated a specified amount of times followed by a zero byte. The postable was a 0x55 byte 

repeated an arbitrary amount of times. Future iterations should have a more unique code word 

along with specification of bytes to receive, thereby eliminating the necessity of a postamble. An 

MP3 streaming service was built on top of this protocol, and is described in Section 5.2.4. 

 

 5.2.3 Simulation Results 

For simulations, the two TTL interfaces were directly connected, bypassing the FSO 

communications framework. Both devices performed to specification, as seen in the table below: 

 

Baud Rate (Mbps) BER 

1 0 

3 0 

6 0 

 

As mentioned in the design phase, a test sequence was used to generate a square wave. The 

square wave was very sharp when inspected and allowed testing of the system without an 

additional function generator. 

 

 5.2.4 Observed and Measured Results  

 

First, a 1024 kilobyte text file with the contents of a repeating byte (0x56) was sent across the 

constructed data channel. Discrepancies in received data are grouped into two categories: 

dropped or error. Dropped bytes are bytes that were not picked up by the receiver during 

expected receive time, and error bytes are bytes that were modified (not 0x56) upon receive. 
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Frequency 

(kHZ) 

Bytes Sent Dropped Bytes Error Bytes BER 

100 1048576 0 0 0 

500 1048576 0 0 0 

700 1048576 0 0 0 

750 1048576 218235 0 0.21 

800 1048576 293822 0 0.28 

850 1048576 800492 0 0.76 

 

The table above demonstrates that error bytes were not an issue, but dropped bytes were 

pervasive as frequency increased above 700 kHz. The dropped bytes result from a disfigured 

comparator output waveform. The USB-TTL converter requires a clean 3.3 V TTL signal to 

receive data; with attenuated or deformed signals, data recovery is not possible. This 

phenomenon can be explained by a reduction in receiver front-end amplifier gain due to higher 

frequencies, and the instability of the receiver backend comparator at higher frequencies, 

accentuated by the former effect. To achieve higher speeds, faster parts are needed. Higher 

frequency transistors should be considered for the comparator, and the front-end receiver should 

be constructed from discrete high-frequency transistors as well. As the simulated results show, 

the USB-TTL converter can easily handle data rates up to 1 MHz. 

 

Lastly, digital audio streaming software was constructed upon the simple communications 

protocol described in previous sections. Python was used for streaming transmissions while Unix 

shell scripting was used for receiving transmissions, both techniques utilizing the already-

constructed serial communications protocol. The Python streaming transmission script read an 

audio file and split it into chunks for partial transmission. The receiving Unix shell script runs 

the receiving code and queues received partial audio files for playing. With correct buffering, the 

transition between partial audio files is seamless. 

 

Unfortunately this simplistic technique of transmission introduces significant overhead: 

 

Purpose Overhead per audio slice (bits) 

Preamble and Postamble 400 bytes 

0.3 Second Transmit Pause 0.3 * rate bytes 
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A 0.3 second pause is introduced to allow the Unix shell script receiver to ready the system for 

another slice. With the overhead, different slicings transmit with different efficiencies. For 

example, assuming an audio file with the maximum MP3 bit rate of 320 kbps: 

 

Slice Size (kbits) Seconds at 320 kbps Efficiency @ 700 

kHz 

64 0.2 0.23 

320 1 0.60 

1600 5 0.88 

 

As the slices become larger, the efficiency of transmission is improved. With improvements in 

the serial receiving code to support an “always on” mode, this system can become efficient for 

even small slice sizes. At 700 kHz, the highest quality MP3 streaming can be achieved and 

modest video streaming is also possible. Reasonable D1-quality video streaming can nearly be 

achieved at this rate: 

 

Video Size Type Video Size Total bit rate (Kbps) 

QCIF 176x144 48 

CIF 352x288 300 

D1 640x480 800 

HD 1280x720 1736 

 

 

5.3 Transmit Section 

 Name of team member who designed this sub-system: Jonathan Giordano 

 Name of team member who wrote this subsection: Jonathan Giordano 

 

5.3.1 Theoretical Considerations 

 

Any transmitter of the optical link will require some type of mechanism which emits photons. In 

the case of this design project, these mechanisms have been chosen to be either Light Emitting 

Diode (LED) or Light Amplification by Stimulated Emission of Radiation (Laser). Both of these 

modules tend to continually draw current until they either burn out of damage the power supply. 

These diodes therefore require not only a regulatory systems which maintains a relative constant 

current draw, but is also capable of fast switching time ( > 1 MHz). 
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5.3.2 Design Procedure  

 

5.3.2.1 Schmitt Trigger 
 

Because the initial data stream is released by USB, the voltage levels are set to standard TTL 

levels of 0 to 3.3 Volts for low and high respectively. The initial purpose of the Schmitt Trigger 

was on the receiving end, but upon realization that it could be quickly used as a front-end voltage 

amplifier adjustments to the circuit were made so that output voltages levels were 1.25 to 5 Volts 

for low and high. The hysteresis is set to a negligible amount so that history of past inputs has 

little control over the output. 

 

 
 

Fig. 5.3.2.1: Front-End Schmitt Trigger 

 

 

Testing for the Schmitt Trigger proved to indicate that the system was a bottleneck for the 

transmit side. This was discovered late into the projects lifetime. Fig 5.3.2.2  show the output of 

the Schmitt Trigger with an input waveform from the USB port of a PC producing a signal of 

0x55 repeatedly (101010…) at 500 kHz. At this frequency there is notable degradation at the 

output of the Schmitt Trigger particularly a long rise time. This proved to be somewhat fatal to 

higher transmission speed, as the Schmitt Trigger was necessary as a voltage amplifier for the 

TTL output from the USB port in order to turn on the driver circuit, and thereby the laser or LED 

diode. Future work would include replacement with a faster front end amplifier. 

 



18 

 

 
Fig. 5.3.2.2: Schmitt Trigger Output (1) and PC USB Ouput of 0x55 

 

5.3.2.1 LM317 Based Driver Circuit 
 

 
Fig 5.3.2.2: LM317 Based Driver Circuit 

 

 The first tested driver circuit was based upon the linear voltage regulator LM317. The 

complete driver circuit was based upon a popular LED driver used by hobbyists. At the time of 
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construction the Engin LZ1 5W LEDs were being utilized to transmit the data. The circuit was 

built around the LED’s capabilities and to achieve a 0.8A drive current, an R1 choice of 1.5625 

Ω was calculated. This was replicated in the lab through two 3 Ω resistors in parallel. Testing 

found that the LM317 could easily power the 5W LED but switching frequencies above 200 kHz 

were found to be unfeasible. At the time of testing no other appropriate receiver front-end had 

been constructed and due to the complexity of the LM317 circuit, it was deemed to be too slow 

to handle higher switching frequencies. 

 

 

5.3.2.2a Low-Cost Picosecond Laser Module 
 

 

 
Fig 5.3.2.3 Low-Cost Picosecond Laser Driver Circuit 

 

 The Low-Cost Picosecond Laser Module was constructed early during the projects 

lifetime together with Driver Circuit Version 1. It was constructed off of designs by Lucio 

Pancheri and David Stoppa as detailed in their paper “A Low-Cost Picosecond Laser Module for 

Time-Resolved Optical Sensing Applications”. Unfortunately possible setup issues were 

encountered, and because the circuit was built upon the same prototype board as another circuit, 

it had to be partially deconstructed while another other circuit was tested. The observed problem 

was a constant current through the circuit with an input at 0 V along with an accidental short. 

Further investigation and testing was not performed because the Laser Driver Circuit Version 1 

had been constructed and showed promising results and time constraints did not allow for any 

more development. 
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5.3.2.2b Driver Circuit Version 1 

 

 
Fig 5.3.2.4: Driver Circuit Version 1 

 

 A second driver was constructed based again on hobbyist designs, but from a minimal 

bottom up approach. Initial transistor supplies were limited so despite design call for a MOSFET, 

a BJT was used in place at Q2. Depending if the circuit was being tested with Engin LZ1 LED or 

a laser diode, R3 was modified to regulate the maximum current. R2 was in place in order to 

measure current passing through the Laser/LED module.  

   

 In the following test, a 1mW 650nm laser diode was used in placed with R3 = 3 Ω. Input 

voltage was adjusted from 0 to 5 Volts, and the voltage across R2 was measured. During this 

same experiment, the 720-SFH213 photodiode was tested by placing it as close as possible to the 

laser output and measuring their response voltage. SFH213 was placed in parallel with a 150kΩ 

resistor during this measurement. 
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Fig 5.3.2.5: Input Voltage vs Laser Diode Current for Driver Circuit 1 

 

 
Fig 5.3.2.6: Input Voltage vs Photodiode Response for Driver Circuit 1 

 

5.3.2.3 Driver Circuit Version 2 

 

 Upon the availability of the 2N7000 FET transistor Q2 was swapped out to incorporate 

the change.  
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Fig. 5.3.2.7: Driver Circuit Version 2 

 

 The same testing performed on Driver Circuit V1 was repeated with no other changes. R2 

= 1.688 Ω and R3 = 3 Ω. 

 

 
Fig. 5.3.2.8: Input Voltage vs Laser Diode Current for Driver Circuit 2 
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Fig. 5.3.2.9: Input Voltage vs Photodiode Response for Driver Circuit 2 

 

Driver Circuit Version 2 became preferred over Version 1 for two factors. The switching time on 

the 2N7000 is superior to that of the 2N2222, and the driver has a higher voltage threshold 

before drawing current through the diode. This can be seen in Fig. 3.4.4 compared with 3.4.7 

where the threshold for Version 1 is ~1V and Version 2 ~2.75V. Because of this higher value the 

Schmitt Trigger did not have to be modified to lower its low output voltage. 

 

In our testing three 1 mW laser diodes burnt out which was believed to be caused by the module 

receiving too much current. Modifications were made to the design. R2 and R3 values were 

adjusted to lower the possible maximum current. Furthermore, the laser module was replaced 

with a 270 Ω resistor as an approximation. This was done for frequency testing on the laser 

driver circuit so that no lasers could be damaged. An LED was not put in place for the laser for 

there was concern at the time that the switching times of the LED was significantly lower than 

the driver circuit could provide, thereby bottlenecking the results. 

 

In the following experiment a frequency plot was tested on the Driver Circuit Version 2,with the 

input held at 5 V P-T-P, with the low being 0 Volts, and the frequency ranging from 100 Hz to 5 

MHz. The voltage was measured across R2. Voltage measurements were made with the Agilent 

34401A Digit Multimeter, and frequency measurements made with the Tektronix DPO 4082 

Oscilloscope. The reader should note that the input was measured even though it was held at a 

constant level on the function generator.  
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Fig. 5.3.2.10: Frequency vs Q2 Source Current for Driver Circuit Version 2 

 

 
Fig. 5.3.2.11: Frequency vs Voltage at Q2 Source Current for Driver Circuit Version 2 

 

From this experiment several concerns developed. The first issue was the decline of voltage at 

the input as the frequency of the input signal increased. There was question as to whether the 

function generator was having difficulty driving the output at the higher frequencies or that the 

safety transistor Q1 was draining much of the input at the higher frequencies. There was also 

concern about Agilent multimeters capability to measuring HF accurately, which was supported 

by oscilloscope measurements from the top of R2 to ground. 
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Fig 5.3.2.12 Voltage Measurement of LED Driver Version 2 at 100 KHz 

 

Channel 1 (Yellow) displays the response measured from the top of R2 to Ground at 100 KHz. 

Channel 2 (Cyan) is the output of the function generator. The reader will note that the 

oscilloscope gives a value of 6.60V even though the function generator was set to 5V, confirmed 

by the Agilent Multimeter. Increasing the scale increased the accuracy of the measurement, but 

did not bring it close enough to 5 V to be considered accurate. 

 

 
Fig 5.3.2.13 Voltage Measurement of LED Driver Version 2 at 500 KHz 
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Channel 1 (Yellow) displays the response measured from the top of R2 to Ground at 500 KHz. 

Channel 2 (Cyan) is the output of the function generator. The waveforms from both the function 

generator and the show distortion. 

 

 
Fig 5.3.2.14 Voltage Measurement of LED Driver Version 2 at 1 MHz 

 

Channel 1 (Yellow) displays the response measured from the top of R2 to Ground at 1 MHz. 

Channel 2 (Cyan) is the output of the function generator. There is significantly more distortion to 

the driver waveform at 1 MHz. 

 

 
Fig 5.3.2.15 Voltage Measurement of LED Driver Version 2 at 5 MHz 
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Channel 1 (Yellow) displays the response measured from the top of R2 to Ground at 5 MHz. 

Channel 2 (Cyan) is the output of the function generator. The distortion is severely damaging to 

the driver circuit output waveform. However, even the output of the function generator is grossly 

distorted. This oscilloscope screen shot also indicates that the Agilent Multimeter has difficulty 

reading the voltage at such high frequencies as the voltages listed for them are 3000 greater 

according to the oscilloscope. 

 

A second experiment was performed to test the effects of the current by adjusting the R3 value in 

the circuit from 3 Ω to 47 Ω. Input voltage was kept at 5 V P-T-P, measured by the Agilent 

34401A Multimeter, and the input frequency kept at 100 KHz. The measurement was over R2. 

The Laser/LED was replaced by a 270 Ω resistor and R2 set to 3.34 Ω.  

 

 
Fig. 5.3.2.16: R3 Resistance Value vs Q2 Source Current for Driver Circuit Version 2 
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Fig. 5.3.2.17: R3 Resistance Value vs Voltage at Input for Driver Circuit Version 2 

 

 

A third experiment was performed to test the effects of the current by adjusting the Laser/LED 

substitute resistor value in the circuit from 10 Ω to 270 Ω. Input voltage was kept at 5 V P-T-P, 

measured by the Agilent 34401A Multimeter, and the input frequency kept at 100 KHz. The 

measurement was over R2. R2 was set to 3.34 Ω and R3 set to 33 Ω.  

 

 
Fig. 5.3.2.18: Substitute Resistance vs Q2 Source Current for Driver Circuit Version 2 
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Fig. 5.3.2.19: Substitute Resistance vs Q2 Source Current for Driver Circuit Version 2 

 

 

5.3.2.4 Driver Circuit Version 3 

 

 

  
Fig 5.3.2.20 Driver Circuit Version 3 
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In the belief that high frequency circuits were causing Q1 to turn becomes overactive resistor R4 

was added to decrease this possible problem. Initial testing with both 5 mW 670 nm and 10 mW 

650nm laser diodes demonstrated a lagging DC current after a high input, causing the laser to 

turn on. The problem was discovered to be a series of damaged 2N7000 transistors. 

 

Frequency testing of the Driver Circuit Version 3 revealed interesting effect with the 10 mW 650 

nm laser and Engin 5W LED in place. The circuit was able to effectively operate at 1 MHz, but 

there were interesting effects believed to be caused by the diodes which appear as some kind 

artifact representative of amplitude modulation at very high frequencies. In the case of the laser 

diode, the modulation was at 27 MHz (Fig 5.3.2.21), and the LED display frequencies of 20 

MHz (Fig 5.3.2.22). Measurements were taken over diodes. The discrepancy between the 

overlaid frequencies support the idea that the effect is responsible from the diodes as is the 

testing in Driver Circuit Version 2 where a substitute resistor was utilized in their place and the 

effect went unobserved. Because of the modulating frequency is ~20-27 times greater than the 

message signal it is believed that the effect does not have significant impact upon reception, and 

lab tests do not show damaging impact as well. 

 

 
Fig. 5.3.2.21: 10 mW 650 nm Laser output of Driver Circuit Version 3 showing modulation 

artifact at ~27 MHz 
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Fig. 5.3.2.22: Engin LED output of Driver Circuit Version 3 showing modulation artifact at ~20 

MHz 
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5.3.2.4 LED Specific Driver Circuit Version 4 

 

 
Fig. 5.3.2.23 LED Specific Driver Circuit Version 4 

 

A fourth driver circuit was designed with the LED in mind. During this time of this time of the 

project, concerns were raised regarding the ability of the pan-tilt platform and computer vision 

system to be accurate enough to connect the modulated laser beam on to the photodiode receiver. 

With the LED problems with accuracy would less severe. The 2N7000 is limited to 0.2 mA of 

continuous current draw while the LED is rated for 1.2 A. Because the LED was desired to be at 

the highest safe brightness possible an additional 2N7000 FET was placed in parallel with Q2 

from previous designs to alleviate overdrawn current problems.  
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Fig. 5.3.2.24 LED Specific Driver Circuit Version 4 with Schmitt Trigger on Perfboard 

 

 In Fig 5.3.2.24 the LED Specific Driver Circuit V4 is displayed on perfboard with a 

connection to the Schmitt Trigger which was designed for the front end input. Not seen on the 

board is the LED module. D1+ and D1- display the end of two female-female wire adapters 

which connected the output pins of the board to the leads on the LED terminals. This is the 

system used in testing resistor values for a reversed bias diode at 1 MHz as detailed in section 

5.4.2. 

 

 5.4 Receiver 

 

 Name of team member who designed this sub-system: Kyle Cavorley, photoelectric effect 

theory by Jonathan Giordano 

 Name of team member who wrote this subsection: Kyle Cavorley 

 

5.4.1 Theoretical Considerations  

 

A photodiode is a reverse biased PN junction diode that can be used to detect light. When 

a photon of sufficient energy strikes the diode, it creates an electron- hole pair. This mechanism 

is known as the inner photoelectric effect or impact ionization. If the absorption occurs in the 

junction's depletion region, the carriers are swept from the junction by the built-in electric field. 

The holes move toward the anode, and electrons toward the cathode, and a photocurrent is 

produced. The total current through the photodiode is the sum of the dark current (current that is 
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generated in the absence of light) and the photocurrent. The dark current must be minimized to 

maximize the sensitivity of the device.  

The photodiode is used to capture the signal emitted by the LED or laser module. When 

the photodiode is biased near avalanche breakdown voltage, photo-generated carriers are 

multiplied by the impact ionization in the depletion layer as the electron-hole pairs are carried by 

the electric field. This process produces a photocurrent of greater magnitude and is shown in 

Fig.5.4.1 below.  

 
Fig. 5.4.1:  Impact Ionization of Photodiode. [13] 

 

Impact ionization occurs in the presence of increasing electric field. With increasing 

electric field, electrons traversing the depletion layer gain higher kinetic energy. Some electrons 

have enough energy to raise an electron from the valence band to the conduction band, forming 

an electron-hole pair as shown in figure above. As reverse bias increases, the potential barrier of 

the depletion region increases, therefore, decreasing the depletion capacitance (Wdep). The 

figure below shows the characteristic of the capacitance of the two photodiodes used in our 

experimentation under reverse bias. Their individual performances agree that an increase in 

reverse bias reduce the depletion capacitance. 
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 a) SFH-213 Photodiode [14]    b) MTD5010W Photodiode [15] 

Fig 5.4.2:  Capacitance versus Reverse Voltage 

 

 This phenomena is represented by the equations below:  

 
Fig. 5.4.3 : Wdep = Depletion Capacitance, Phi =  Built in Potential, Vr = Reverse Voltage, q = 

charge, N = Number of carriers, and es = permittivity of silicon 

 
Fig. 5.4.4: Equation to calculate depletion capacitance. 

 

As the depletion region increases by adding reverse bias, the depletion capacitance decreases as 

shown in Fig. 5.4.4. It can be concluded that when reverse biasing a photodiode, the PN junction 

conducts negligibly small current. However, at junction breakdown, the critical reverse biased is 

reached. At this critical reverse bias, the current increases as shown in Fig. 5.4.5 below.  
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Fig. 5.4.5:  Theoretical Current vs Voltage graph of Photodiode [13] 

 

The value of the reverse bias voltage was chosen to satisfy the break down voltage of each 

photodiode. Not only does the reverse bias voltage chosen at -18 V  push the SFH213 

photodiode to maximize its system response, but also operates within the reverse voltage range 

for the MTD5010W photodiode. The maximum reverse bias voltage for the SFH213 photodiode 

is 20 V. The current produced by the photodiode is proportional to the intensity of the incident 

light. A transimpedance amplifier can be used to convert the current to a voltage signal. 

 A transimpedance amplifier is a current to voltage converter, and can be implemented by 

using an operational amplifier. This circuit is shown below.   

 
Fig. 5.4.6: Transimpedance Amplifier operating in photovoltaic mode 

 

The transimpedance amplifier presents a low impedance to the photodiode, and isolates 

the photodiode from the output voltage. Large values of Rf in the MΩs present this isolation. Rf 

also determines the inverted gain of the signal. Fig. 5.4.6 shows the photovoltaic mode when the 

photodiode is reverse biased at zero volts.  The photovoltaic mode is implemented when using 

low light levels that require a lot of gain. Since the feedback resistor is so large, the amplifier 

amplifies the signal the best it can over frequency. However, as frequency increases, the 

resistance value decreases significantly. Therefore, around 1 MHz, a 1 MΩ resistor behaves as a 

resistor of a few hundred ohms. This limits the gain. This is why we see the amplification 

decrease as frequency increases to the point where only the first harmonic is amplified.  

 A photoconductive mode is more preferred because it operates at higher frequencies.  

This requires reverse biasing the photodiode at a voltage greater than zero as shown in the figure 

below. This implementation, shown below,  is similar to the final design of the transimpedance 

amplifier. A greater reverse bias improves the magnitude of the current produced by the 

photodiode because of a decreased junction capacitance. Higher frequencies are also achieved as 

a result of lower junction capacitance.  In the final design, a feedback capacitor is used for faster 

switching speed and improved stability of the amplifier. The feedback capacitor also helps 

eliminate RF. 
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Fig. 5.4.7: Increased Reverse biased photodiode 

 

When designing the transimpedance filter, the relationship below was considered when choosing 

a feedback resistor.  

. 

 

GBP represents the gain bandwidth product of the op amp. The amplifier being used in the 

transimpedance design is the TL081 which has a GBP of 3 Mhz. This was implemented so that 

harmonics of the square wave are amplified at operating frequencies nearing 1 MHz. 

 Recall in Principles of Communication Systems that a square wave is made up of odd 

harmonics, which are sine waves at the fundamental frequency f, 3f, 5f, and so on. The most 

power reside in the first, third, and fifth harmonic, which is essential for proper signal 

amplification. When working with an op amp with a 3 dB GBP of 3 Mhz, the maximum 

frequency achieved to successfully recreate the data stream is around 1 Mhz. To further amplify 

the signal generated by the transimpedance amplifier, a non-inverting amplifier is used.  

 The non inverting shown in the figure below, is used to amplify the signal by a factor 

Gain = 1 + Rf/Rg.  

 
Fig.5.4.8: Non-inverting Amplifier 
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This design was considered to amplify the signal response from the transimpedance 

amplifier from 0 to 0.5 V to 0 to 5 V. The noninverting scheme was chosen to prevent the data 

from being inverted. A signal higher in magnitude is easier to work with in a comparator circuit.  

 The amplified signal is fed into a comparator circuit to produce a 0 to 3.3V signal 

compatible with the USB to serial converter chip. Op-amps are push-pull outputs that swing 

close to the power supply rails as feasible. This is why the comparator designed has a V- = 0V 

and a V+ = 3.3 V. The functionality behind the comparator, is that it compares two levels as 

quickly as possible above or below the reference voltage, and outputs a high for voltages greater 

than the reference voltage, and low  for voltages less than the reference voltage.  

In our design, the comparator has a positive feedback to introduce a small amount of 

hysteresis. Without feedback, capacitive strays from the output to an input may cause the 

comparator to become unstable. Hysteresis provides comparator stability, separating the up and 

down switching points. When a transition has started, the input undergoes a significant reversal 

before the reverse transition can occur. Hysteresis also provides for a cleaner pulsed signal. 

Signals superimposed with noise without hysteresis can provide multiple output transitions as a 

noisy input signal crosses and recrosses the threshold region. A comparator with hysteresis 

introduced provides for clean output transition. The design of the comparator in our system is 

shown in Fig. 5.4.9 below.  

 

 

 
Fig. 5.4.9: Single Supply Noninverting Hysteresis Comparator 

 

The Vth and Vtl is our 5 and 0V input from the signal respectively. By arbitrarily choosing Vref 

= 2.5 V and Vcc = 3.3V, we can set values for R1 and R2. The Vol and Voh values respectively 

are 0 and 3.3 V. From this point, we can pick R3 and R4 values to design the circuit. All resistor 

values calculated are shown in the circuit schematic in Fig. 5.4.16. With this theoretical 

background, the receive system can be designed.  

A side thought experiment developed due to concerns with transmission accuracy and the 

small receiving area of a typical photodiode. The idea for receiving was based out of usage of the 

photoelectric effect. The photoelectric effect is the ejaculation of electrons from various types of 

metal cause by light shining on the metal’s surface. This is due to the wave-particle duality of 

light, and as such not the amount of light. But the energy of the light is what causes the electrons 
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to be emitted. The energy of the light is due to the lights frequency as seen in the Planck relation: 

 

 
 

Once the threshold frequency of a metal has been met, it will begin to emit photons, and this 

emission can be used to develop a charge on the receiving plate. This charge can thus be used to 

measure a receiving signal.  

 

Calculations were completed for the highest frequency laser which had been purchased. The 

wavelength as such was 650 nm. Utilizing the frequency-wavelength relation the frequency is 

equal to 4.615 * 10
14

 Hz. 

 
From the Planck relation, the energy of a 650 nm laser is equal to 3.05815 * 10

-19
J which equates 

to 1.9087 electron volts. Based upon the work functions tables of commonly available metals, 

our highest energy laser would not be enough to cause any electron emission, and therefore 

unusable for any signal reception. There also existed concerns regarding size of the metal 

receiving plate and its reactivity to high speed signals. 

 

 5.4.2 Design Procedure  

 

The SFH-213 photodiode was selected for its wideband optical bandwidth, low cost, and wide 

availability. Table 5.4.1 shows six randomly selected SFH-213 photodiodes and their 

characteristic voltage-current responses under ambient light. It is seen that the measured voltages 

and currents are stable with respect to the same environment. 

 

Table 5.4.1: Voltage and current values of 6 different Photodiodes showing stability of 

photodiodes.  

 

Diode Number Voltage (V) Current (mA) 

1 0.32 0.005 

2 0.33 0.005 

3 0.35 0.0048 

4 0.32 0.0048 

5 0.35 0.005 

6 0.33 0.005 
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To test the response of the photodiode, a LED was hooked up to the signal generator. The leads 

of the photodiode were connected to the oscilloscope to measure the response. As expected, the 

photodiode was successfully able to detect the signal emitted from the LED. The measured DC 

voltage of the device when lased ranged between 0.4 to 0.6 V. At a distance of 14 feet, the 

photodiode produced a reading of 0.5 V across the multimeter. This provided sufficient results 

for the goal of our project. Table 5.4.2 shows the current measurements of the LED, generator 

voltage, voltage across photodiode, power of the LED and photodiode, frequency, rise, and fall 

times of the photodiode when connecting a reverse biased photodiode to a 10 Ω resistor. Table 

5.4.2 shows our initial tests. The table shows the power of the LED and photodiode increase with 

current and voltage across LED and photodiode respectively. These tests were run to find the 

maximum power of the LED and photodiode we could achieve without a driver circuit. The rise 

and fall times of the photodiode are stable with increasing power. 

 

  Table 5.4.2: Photodiode Response with Red LED and no driver circuit 

 

I (mA) 

LED 

Gen 

Vpp  

Meas. 

Vpp 

I(mA) 

Photo 

Power 

LED mW 

Power 

Photo 

(mW) 

F Tr (ns) Tf (ns) 

0.23 8 0.15 7.5 0.92 0.5625 10 

MHz 

9.5 9.7 

0.43 9.6 0.18 9 2.064 0.81 10 

MHz 

9.5 10.5 

0.63 11 0.19 9.5 3.465 0.9025 10 

MHz 

10 10.5 

0.8 12 0.22 11 4.8 1.21 10 

MHz 

10 10.9 

1.2 14 0.25 12.5 8.4 1.5625 10 

MHz 

10 10.9 

1.6 15.8 0.29 14.5 12.64 2.1025 10MH

z 

10 10.9 

2.7 20 0.37 18.5 27 3.4225 10 

MHz 

10 10.9 

 

 

When reverse biasing the photodiode at 5 V in series with a resistor, the current produced 

from the photodiode builds up a voltage signal across the resistor. The magnitude of the signal 

depends on the size of the resistor. This is known as photovoltaic mode. Table 5.4.3 shows the 

effect of increasing series resistances connected to the reverse biased photodiode. At high 

frequencies such as 10 MHz, the most gain comes from the 20 kΩ resistor. The result of this 

waveform is displayed in Fig. 5.4.10. However, the response of the photodiode at 10 MHz does 
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not produce a clean square wave in photovoltaic mode. The schematic is shown in Fig. 5.4.11. 

This is because photovoltaic mode is rated for frequencies less that 300 kHz. 

Increasing the resistance further provides too much distortion for a good reading. These 

measurements were taken at maximum power emitted by the LED.The table shows the current 

decreasing at higher resistances, which is intuitive according to Ohm’s Law. The rise and fall 

times also increase as higher resistances are added. This is a result of the photodiode seeing such 

a high impedance.  

 

Table 5.4.3: Driver Circuit Photodiode response with Red LED 

I 

(mA) 

LED 

Gen 

Vpp  

Meas. 

Vpp 

I(mA) 

Photo 

Power 

LED 

mW 

Power 

Photo 

(mW) 

F Tr 

(ns) 

Tf 

(ns) 

R Ω 

2.7 20 0.3 1.5 27 0.225 10 

MHz 

2 1 100 

2.7 20 0.78 0.76470

5882 

27 0.2982352

94 

10 

MHz 

5 2.5 510 

2.7 20 1 0.5 27 0.25 10 

MHz 

6 3 1000 

2.7 20 1.15 0.2875 27 0.1653125 10 

MHz 

8 4 2000 

2.7 20 1.2 0.0615 27 0.0378225 10 

MHz 

6.6 4 10000 

2.7 20 1.2 0.03 27 0.018 10 

MHz 

6.7 4.5 20000 
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Fig. 5.4.10: Response of reverse biased photodiode with 20 kΩ resistor at 10 MHz in 

photovoltaic mode. 

 
Fig. 5.4.11 Photovoltaic method  original design 

 

As shown Fig. 5.4.10, the response of the photodiode is somewhat distorted and does not 

represent the clean square wave at 10 MHz. This is because the photovoltaic method cannot 

produce a clean response at high frequencies.  

 

Photovoltaic frequency response of a reverse biased SFH213 photodiode was tested by using the 

LED Driver Circuit V4 with the Engin 5W LED to transmit a 1 MHz square wave. The diode 

was reversed by +5 V. It was found that 150 Ohm resistor produced the strongest non degraded 

signal out of all resistor values. The resistor was in series with the photodiode. 
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Table 5.4.4: Photodiode with variable resistor at 1MHz with LED 

Resistor Value 

(Ω) 

Voltage of Diode 

(mean P-T-P V) 

Average Rise 

(ns) 

Average Fall 

(ns) 

Signal Condition 

(arbitrary) 

51 0.2 385 215 Ok 

100 0.4 180 140 Good 

130 0.48 170 155 Good 

*150 0.58 160 120 Good 

172 0.6 170 140 Good 

180 0.63 180 145 Ok 

300 1 180 160 Ok 

470 1.4 190 200 Ok 

1000 2.22 220 300 Bad 

*Best Result 

 

 Before completely abandoning the photovoltaic mode, it was desired to test the 

photovoltaic mode with an op-amp to increase the gain. The TL081 and AD8030 are the op-

amps considered with gain bandwidth product of 3 MHz, and 125 MHz respectively. The op-

amps are shown below in Fig 5.4.12. 

                    
a) TL081                         b) AD8030 

Fig. 5.4.12: Op amp pin outs.  

 

The TL081 op-amp was provided by Rutgers University and the AD8030 dual-package op-amp 

was provided by Triad RF Systems. Fig. 5.4.13 shows the AD8030 op-amps used in the design.  
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 Fig. 5.4.13: AD8030 on Schmart Board and Triad RF board 

 

Fig. 5.4.6 shows the design of the op-amp used in photovoltaic mode. The feedback resistor is 

1MΩ to amplify the response. The design itself using the TL081 is shown in Fig. 5.4.14 below. 

Please refer to the Dropbox shared links below to see the experiment in action! 

 

https://www.dropbox.com/s/4dsm5awcg0ih64r/20140419_123819.mp4 

 

https://www.dropbox.com/s/sa2lnlqk2bxvvxz/20140419_123737.mp4 

 

 
Fig. 5.4.14 Photovoltaic mode with TL081 op amp. 
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The response shown in the videos is very distorted. The work around to this method is using the 

photodiode in photoconductive mode. The figure implemented is shown in Fig. 5.4.7 and 

includes a reverse biased photodiode. This was constructed with both the AD8030 op amp and 

TL081 op amp. There gain response for the op-amps over frequency are shown below.  

 

 
[a]Frequency response of AD8030 op-amp.               [b] Tl081 frequency response 

Fig. 5.4.15: Frequency response versus gain. 

 

 

The AD8030 has a higher GBP than the TL081 as shown in Fig. 5.4.15. When referring to Fig. 

5.4.15.a, the best frequency response of the AD8030 is achieved at a GBP of one. The chart also 

shows that our gain is limited to ten when trying to achieve high frequency. 

             Amplifiers are necessary to amplify the signal from the photodiode. The high frequency 

op-amps are essential so that all odd harmonics of the data transmission are amplified within the 

GBP of the op-amp. The AD8030 is prefered because it operates at higher frequencies. The 

TL081 serves as a bottleneck when amplifying signals of frequency greater than 700 kHz.  

 Before constructing the transimpedance amplifier in photoconductive mode, it was 

decided to build the noninverting amplifier. The noninverting amplifier amplifies the signal from 

the transimpedance amplifier before entering comparator circuit. A noninverting amplifier was 

built because of the measurements taken when lasing a photodiode in photovoltaic mode. The 

mode produced a signal that ranged from 0.4 to 0.6 volts. Amplifying this signal by ten would 

make it easier for the comparator to act as a decision maker because a higher reference voltage 

can be used. The figure below shows an amplifier with a gain of ten, to produce a large enough 

intput to the comparator. This noninverting amplifier precedes the comparator circuit shown in 

Fig. 5.4.16.  
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Fig. 5.4.16: Noninverting amplifier with gain of ten cascaded  to non-inverting comparator.  

 

The design of the comparator with noninverting hysteresis was determined from Fig. 

5.4.9. As mentioned before, Vth and Vtl is 5 and 0V input signal respectively. This signal is 

produced from the noninverting amplifier. I chose the Vref voltage as 2.5 V because it is the 

average voltage of the signal. With a functioning comparator, anything above the reference 

voltage will result as an output high of 3.3V and anything below as 0 V. Vcc was set to 3.3V 

because this is the high value desired for the output signal. Using the equations shown in Fig. 

5.4.9 the functioning comparator circuit was designed accordingly. The resistor values are 

computed below:  

 

 

Vref   Vcc  
R1

R1   R2
) 

2 5   3 3 
R1

R1   R2
) 

R1 = 3.125 R2 

After finding the ratio of R1 to R2, the values R2 = 1 kΩ and R1 = 3.125 kΩ were chosen 

arbitrarily. The hysteresis voltage is equal to the Vth minus Vtl, which is 5 V.  With the 

hysteresis voltage known, R3 and R4 can be determined. These resistances are computed below: 

 

Hyst  R3  
Voh - Vol

R4
) 

5  R3  
3 3

R4
) 

R4 = (3.3/5)R3  
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After finding the ratio of R4 to R3, the value of chose R4 as 1kΩ and R3 as 1.5 kΩ were chosen 

arbitrarily. The calculated resistances are depicted in Fig. 5.4.16 comparator circuit.  When 

swapping R3 and R4 in the simulations, the comparator seemed to function better. The 

simulation for the noninverting amplifier and comparator circuit is shown in the simulation 

section 5.4.3. The simulations produce the correct waveforms desired. 

Figure 5.4.3.1 displays the simulated response of an amplifier cascaded with a 

comparator designed for hysteresis. The first stage amplifier takes in a signal from 0 to .5 V at 5 

MHz (red). This was chosen to replicate the response of the photodiode. This signal is amplified 

by ten producing a signal from 0 to 5 V at 5 MHz (green). The cascaded comparator circuit turns 

the 0 to 5V signal into a 0 to 3.3V signal rated for the USB to serial converter chip by Ardafruit 

(blue). When the incoming signal to the comparator is above 2.5V the comparator outputs a 

3.3V, and when the signal is below 2.5V, the comparator outputs a 0V. Please refer to Fig. 

5.4.3.1 through Fig. 5.4.3.3 for further simulation analysis. The simulations correspond with the 

experimental data shown in Fig. 5.4.4.1 through Fig. 5.4.4.3 in 5.4 Observed and Measured 

Results section. Please refer to the video “Comparator” on the Vision Based Free Space optical 

YouTube channel to show the experimentation. [11] 

At frequencies above 1 MHz, the time when high and low differ. To correct this so that 

the time when high and low are equal at high frequencies, the reference voltage was lowered. 

The reference voltage was lowered because the time high was less than the time the signal was 

low. The preamplifier and comparator circuit function up to 1.3 MHz.  The front end Schmitt 

Trigger and TL081 used as a transimpedance amplifier bottleneck the receive circuitry.   

When finishing the comparator circuit, the design of the transimpedance amplifier was 

started. In this final design, both the MTD5010W and SFH213 were tested. The rise and fall 

times of the MTD5010W and SFH213 photodiodes are 1ns and 5ns respectively. Their max 

reverse bias voltages are 30 and 20 V respectively. Therefore a reverse bias voltage of -18V was 

chosen to operate in the safe region.  Both diodes produce the same results. The rise and fall are 

unnoticed by the oscilloscope because the maximum frequency the system can achieve is limited 

by the TL081 and Schmitt Trigger at 700 kHz.  The working and final system transimpedance 

amplifier is shown in Fig. 5.4.17 below.  
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Fig. 5.4.17: Transimpedance Amplifier 

The feedback resistor of 10 kΩ was chosen to amplify the response of the photodiode by 10. The 

8.3 pF capacitor was installed to eliminate any RF above 2 MHz. The corner frequency of this 

system is 1.9 MHz. This is found from the relation  

f   
1

2  Rf Cf 
 

where Rf and Cf are the feedback resistor and capacitor respectively. Please refer to the video 

“System with LED” on the YouTube channel to demonstrate the Receive Component in full.  

The final receive response is documented in Fig. 5.4.4.6 to Fig. 5.4.4.7. The images 

display the signal that enters the system from the signal generator, to the Schmitt Trigger, to the 

LED Driver Circuit, to the Transimpedance Amplifier, to the noninverting amplifier, and finally 

to the comparator. The darker blue waveform represents the signal from the signal generator as 

input to the transmitter, and the cyan colored waveform represents the output of the receiver. 

Like the simulations, as frequency increases, a phase delay is introduced because the op-amps 

are working harder to switch faster. However, these images demonstrate the success of the 

system. 
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5.4.3 Simulation Results  

  

   

 
Fig. 5.4.3.1: 0 to .5V 5 MHz signal amplified in first stage of Fig. 5.4.16 to 0 and 5 V, and sent 

through a comparator to produce a 0 to 3.3 V signal.  

 

 From the simulation, one can notice a phase delay in all three signals. When operating at 

high frequencies, we are really driving the hardware to produce the gain we desire. However, the 

phase delay is irrelevant to our system and will have no effect.  

 If for whatever reason the signal generated by the photodiode is 50 mV, another 

noninverting amplifier preceding the comparator can be used to multiply the input signal by 100 

for proper comparison. This simulation is shown in Fig. 5.4.3.2 below. The system takes in a 

signal 50 mV and turns it into a 0 to 3.3V signal. The red 50 mV signal is amplified to the green 

0.5V signal. The 0.5 signal is amplified to the 5V signal, than passed through the comparator to 

produce the 0 and 3.3 V output.  

 

 

 

 
Fig. 5.4.3.2: Two stage amplifier with a gain of ten before entering comparator circuit at 5 MHz.  

 

As we decrease the frequency of the system, the phase delay reduces tremendously. This is 
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because the rise and fall times are orders of magnitude smaller than the frequency of the system.  

 

 
Fig. 5.4.3.3: Simulation of 50 mV at 100 kHz input signal entering two stage amplifier feeding 

into comparator circuit. 

 

 5.4.4 Observed and Measured Results 

 

 Shown below is a figure that takes in a 0 to 0.5 V signal and amplifies it to a 0 to 5V 

signal. This is stage two of the receiver.  

 
Fig. 5.4.4.1: Amplification Stage 2. Note that the blue signal is the 0.5 V input signal, and the 

yellow is the 5 V output signal at 1 MHz.   

 

The signal is then fed into a comparator circuit, and produces a peak voltage of 3.3V. This output 

signal is shown in Fig. 5.4.4.2  below, and agrees with the simulation. Note that the peak to peak 

reading reads 3.76V because the oscilloscope is measuring noise. The clean rising and falling 

edges are accounted for from the hysteresis introduced to the comparator.  
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Fig. 5.4.4.2: Note the blue signal is the 0.5V input signal from the signal generator. After 

amplification and going through the comparator circuit, a 3.3 V signal is produced. 

 

As we decrease the frequency of the signal, the phase delay is decreased as shown in figure 

5.4.4.3 below. This also agrees with the simulation . The components in the AD8030 do not have 

to work as hard at lower frequencies, therefore, the phase delay is reduced.  
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Fig. 5.4.4.3: Phase delay reduced as frequency of the signal decreases. The blue signal is 

the input signal to the system, and the yellow is the comparator output at 100 kHz.  

 

The final receive response is documented in Fig. 5.4.4.6 to Fig. 5.4.4.10. These images display 

the received signal that has passed from the signal generator, to the Schmitt Trigger, to the LED 

Driver Circuit, to the Transimpedance Amplifier, to the noninverting amplifier, and finally to the 

comparator. These images demonstrate the success of the system. 
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Fig. 5.4.4: System at 10 kHz. The darker blue waveform represents the signal produced by the 

signal generator to TX system. The Cyan colored waveform represents the output of the RX 

system.  

 

 
Fig. 5.4.5: System at 100 kHz. The darker blue waveform represents the signal produced by the 

signal generator to TX system. The Cyan colored waveform represents the output of the RX 

system. 
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Fig. 5.4.6: System at 500 kHz. The darker blue waveform represents the signal produced by the 

signal generator to TX system. The Cyan colored waveform represents the output of the RX 

system. 
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Fig. 5.4.7: System at 1 MHz. The darker blue waveform represents the signal produced by the 

signal generator to TX system. The Cyan colored waveform represents the output of the RX 

system. 
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5.5 Retro Optical Chopper (ROC) 

 

Name of team member who designed this sub-system:  

Taichi Hirao, John Giordano (testing and driver), Kyle Cavorley (receiver architecture), 

Wayne Chang (software) 

Name of team member who wrote this subsection:  

Taichi Hirao 

 

5.5.1 Theoretical Considerations  

 The Reflective Optical Chopper works by “chopping” a continuous beam.  This chopped 

signal is a reflected laser and is modulated by on-off keying according to a 3.3V TTL input 

signal (up to 5V TTL is acceptable).  The modulated signal is reflected off of the ROC mirror at 

the angle of incidence of the continuous laser.  This external laser modulator utilizes an 

electrically controlled reflective diffraction grating to characterize the signal.  The reflective 

diffraction grating is controlled by an electric field that is induced and switched on/off by the 

precise and sharp cut-off voltage controller, which is supplied by the included driver box.  Most 

likely, some type of liquid crystal technology is utilized, layered and/or oriented in a way that 

surfaces and aligns in a way for it to function as a diffraction grating when an electric field is 

applied.  Diffraction gratings are optical components with a periodic structure which allows them 

to split or “diffract” light into several directions.  Reflective gratings have a ‘zero-order mode’ 

where light is reflected with no dispersed effect and so acts like a regular mirror.  The ROC 

switches between an ‘off’ state of ‘zero-order’ mirror mode and an ‘on’ state where the surface 

disperses light and inhibits reflection. 

 External optical modulators, such as this ROC, are used as much as direct optical 

modulators (i.e. varying current to a laser diode) because both have their pros and cons.  People 

who opt for external optical modulators typically do so to avoid the “chirping” effect of lasers 

that results from switching them via current.  External optical modulators get rid of this problem 

because the laser merely has to stay on at a continuous signal strength. 

 One of the results we ended up using an LED was because our driver circuit design was 

able to get a higher frequency response from it than the laser.  It was not until very late into our 

project that we found out that the main cause of our data rate bottleneck was due to our laser not 

being able to switch fast enough, or switch effectively.  The frequency response of the driver 

circuit with a substitute load cleared 1MHz, and we assumed the laser would handle the speeds 

as well  However, it seems there is a compatability issue whether that results from the impedance 

of the laser diode or the natural functional limit of the laser that we acquired.  Since, there are no 

datasheets available in regards to our obtained laser diodes, it is difficult to get to the bottom of 

our problem.   

 One hypothesis is that the chirping effect of the laser is affecting the frequency response.  

Frequency chirping is an effect that occurs when lasers are varied in intensity.  When lasers are 

subjected to drastic changes in output, unnecessary harmonics are introduced by the nature of 
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laser operation, known as the “chirp” effect.  It is thought that this chirp effect inhibited our laser 

switching speeds to a mere 300 kbps.  John’s driver circuit was redesigned to account for a 

current bias through the laser so that there would be a less dramatic varying of the laser intensity, 

however, the bias current did not seem to have an effect on the frequency response of the laser.  

The next step would be to explore more into the physics of laser operation and design a driver 

circuit that would account for the chirp effect so as to provide a higher frequency response. 

Since, the LED performed much better, and it was also easier to handle in establishing a 

link with the photodiode (due to a greater degree of angular freedom resulting from the dispersed 

LED light, compared to the pinpoint accuracy of lasers), the LED was opted for in our final 

design, used with the photodiode receiver amplifier designed by Kyle.   

 
Figure 5.5.1 

This simple common source mosfet amplifier is an example of one of the test cases for operating 

the laser at a current bias to see if the chirp effect could be reduced. 

 

5.5.2 Design Procedure  

 The main component is the ROC, which was generously supplied by Boston 

Micromachines Corp. great credits and much appreciation to them, but this sub-system also 

requires a continuous laser source via the driver (designed by John), the receiver photodiode 

architecture (designed by Kyle), and the software to process data (designed by Wayne) for the 

entirety to perform.  A wooden platform was put together to serve as a foundation to stabilize the 

components to maintain steady and accurate line-of-sight links between the laser, ROC 

modulator component, and the photodiode.   

Unfortunately, varying distance measurements between the laser, ROC, and photodiode, 

could not be tested because our aperture did not have that degree of freedom and one could not 

be put together in time.   
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The ROC accepts up to a 5 V TTL signal input via BNC cable to the driver box, which 

amplifies the signal to the reflective modulator, so data can be channeled directly from a USB 

port via the Adafruit USB to TTL serial converter.  As soon as you send a signal into the driver 

via TTL signaling, the modulator is already doing its job by switching the reflective mirror on 

and off regardless of having a laser shined onto it or not. 

Here we used the driver circuit version 3, the same one that Johnathan used to directly 

modulate the laser signal via current, but instead of inputting a modulating signal, we put a DC 

bias (past the blocking capacitor) to feed the laser with a steady unaltering current so that a 

continuous beam could be pointed at the ROC. 

Once this is set up, the reflected laser off of the ROC mirror is now the modulated signal 

controlled by the USB input.  All that’s left is for the photodiode receiver to pick up the signal, 

the same receiver used the same as described in 5.4. 

  

5.5.3 Simulation Results  

 
Figure 5.5.2 (a) Contrast Ratio vs Frequency of ROC 

(b) Range of permeability for lasers of the AR coasted lens 

 

All ROC simulations were handled by BMC and there is little data available to the public, 

but the above graph (a) shows the contrast ratio of the ROC across frequencies up to 100 KHz.  

Of course, we were confident in reaching up to 100 KHz and data transmissions up to 200 KHz, 

if 2 bits were to be transferred every cycle, but the graph gets cut-off at 100 KHz. We hoped to 

push the ROC to its limit by increasing the frequency past 100 KHz and battle the declining 

contrast ratio, which tests our design of the photodiode receiver and software architectures to be 

able to handle the sensitivity at those response times 

Regarding the above graph  (b), we were worried that our 650nm laser would not 

penetrate the AR-coated lens of the ROC, even though it is within the wavelength graph supplied 

by Thorlabs, because of tolerances existing in the world.  However, Thorlabs delivered as 

specified and the ROC was able to handle our 650nm laser optimally, when compared to our 

other lasers. 
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5.5.4 Observed and Measured Results 

Test cases 

(A) 

670 nm 5mW laser 

Distance from laser to reflective mirror: 8.75” 

 (B) 

832 nm 5mW laser 

Distance from laser to reflective mirror: 8.75” 

(C) 

650 nm 10mW laser 

Distance from laser to reflective mirror: 8.75” 

Max data rate observed by oscilloscope:  

 Test case A: 120 KHz 

 Test case B: 120 KHz 

 Test case C: 300 KHz 

 

Max data transmission of audio signal: TBA 

 

 
Figure 5.5.3 

Test case A at 10 KHz 
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Figure 5.5.4 

Test case A at 50 KHz 

 

 
Figure 5.5.5 

Test case A at 80 KHz 

 

 
Figure 5.5.6 

Test case A at 100 KHz 
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Figure 5.5.7 

Test case B at 10 KHz 

 

 
Figure 5.5.8 

Test case B at 50 KHz 

 

 
Figure 5.5.9 

Test case B at 80 KHz 
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Figure 5.5.10 

Test case B at 100 KHz 

 

 
Figure 5.5.11 

Test case C at 10 KHz 

 

 
Figure 5.5.12 

Test case C at 50 KHz 
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Figure 5.5.13 

Test case C at 80 KHz 

 

 
Figure 5.5.14 

Test case C at 100 KHz 

 

 
Figure 5.5.15 

Test case C at 150 KHz 
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Figure 5.5.16 

Test case C at 200 KHz 

*Photodiode placement was adjusted so amplitude does not correlate from previous picture. 

 

 
Figure 5.5.17 

Test case C at 300 KHz 

*Photodiode placement was adjusted so amplitude does not correlate from previous picture. 

 

The frequency readings on the oscilloscopes may not match up with the listed 

frequencies.  This is because the oscilloscope sometimes is not able to properly assess signal 

shapes that deviate from the ideal sinusoidal shapes. 

Voltage readings should also not be counted on to be accurate amplitudes, but the 

degrading contrast ratio can be reflected upon in these measurement, as well as visualized. 

The degrading contrast ratio arises from the gain bandwidth product that results from the 

frequency response of the ROC component circuitry. 
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6. Sub-system Integration Considerations  

 Fortunately, there were not any issues for us when integrating each of the subsystems.  

The only variable was to carefully match the different voltage levels to maintain compatibility 

between each stage.  However, this was already taken into consideration at the initial design 

phase.   

 The maximum and minimum induced current through the photodiode will vary 

depending on the intensity of the focused light, and the amplifier subsystem has headroom to 

significantly amplifier those voltage signals, however, the comparator stage is always there to 

down convert to 3.3V TTL safe voltage signals. 

In regards to the ROC, for our intended application, a separate external modulator, the 

modulating retro-reflector (MRR), would ultimately take place of the ROC because the ROC 

requires the angle of incidence upon the reflective mirror to be taken into consideration, whereas, 

the MRR would naturally reflect a modulated signal right back to the origin.  Seeing that one of 

our goals is to embed our system onto mobile UAVs, it would be much more efficient to aim a 

continuous laser source to a target that will reflect a signal right back to its source without having 

to calculate the angle of incidence, in relation to distance, as a design variable. 
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7. Economic Considerations 

 

 7.1 Cost Analysis - Prototype  

 Table 7.1: Project Costs 

Item Quantity Price ($) Total ($) 

Servos 2 N/A N/A 

Cameras 2 13 26 

Platform Materials N/A N/A N/A 

38-1030-ND  

LASER DIODE 

850NM 5MW 

 

1 32 32 

Reflective Optical 

Chopper 

1 1000-5000 Provided by Boston 

Micromachines 

L21-00R100 High 

Power LED 

3 3.57 10.71 

SFH213 

Photodiode 

50 0.41 20.50 

2 GB SD Card Two 

Pack 

1 12.71 12.71 

8 GB SD Card Two 

Pack 

1 10.74 10.74 

Raspberry Pi 

Model B 

2 35 75 

MTD5010W 

PHOTO DIODE 

850NM 

2 5.37 10.74 

5 mW 670 nm 

Laser Laser 

Module 

2 6.50 13 

L21-00R100 High 

Power LED 

2 5 10 

5 mW 832 nm 

Laser Module 

1 16 16 
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10 mW 650nm 

Laser Module 

1 10 10 

Dia: 72 Focal: 118 

Lense 

2 4.50 9 

Dia: 75 Focal: 185 

Lense 

1 5.35 5.35 

AD8030 Op-amp 4 N/A Provided by Triad 

RF Systems 

Rutgers Lab 

Materials 

N/A N/A N/A 

Home Depot 

Supplies 

1 48 48 

**Taxes and Shipping costs not included 

 

The table above lists all project costs necessary for completing the project. All items 

purchased were used in experimentation with the system. To prototype the low level 

communication system, any computer source can be used. Therefore, Raspberry Pi Model B can 

be excluded from the production cost. Also, the final system implemented uses an LED as shown 

on our YouTube channel video “Final System”. The different laser modules were purchased for 

experimentation. Therefore, it is up to the user which device to use, all work well in the system.  

 

Listed below are the laboratory equipment and materials provided by Rutgers University.    

TL081 Op-amp, wire, wire cutters, pliers, Tektronix DPO 4082 Oscilloscope and 

probes,Agilent 34401A Digital Multimeter, Tektronix AFG3021B Function Generator, 

Lecroy HDO6054 Oscilloscope, BNC cables, BNC connectors, resistors, capacitors, 

BJTs, MOSFETs, soldering iron, solder 

 

7.2 Cost, Manufacturability and Marketability 

 

While the majority of the parts used in the final prototype are inexpensive it would be ill 

advised to give theoretical cost estimations based on these values. The current final prototype is 

still finicky, and does not work near ranges initially sought after it. The highest transmission rate 

recorded at 700 kbps is at a mere distance of several inches and does not include any 

connectivity to the computer vision or pan-tilt platform. That sub-system in itself remains 

unexplored, and additional costs towards the completion of such, including the combination with 

transmission system are unforeseen. There are further variables which are pertinent, such as the 

range which the computer vision can theoretically track over which is no more than estimated 25 

feet. This in itself makes the tracking program virtually useless in terms of utilization. Other 
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variables depends upon actions not yet performs, cost-efficiency improvement of using PCB to 

reduce RF noise, examination of various optical wavelength to determine best signal transfer 

along with tests for each frequency variation for different atmospheric conditions. Each of these 

are serious factors which would leave the considered manufacturability and commercialization of 

the communication system, and without knowing them cost estimation and market feasibility are 

too unknown to confidently predict. 

The marketability for the Vision Based Free Space Optical Communication is extremely 

limited at this point in time. Current customers of such as system are likely to be either military 

or space industry. The communication link formed by the system is extremely secure, and would 

show promise for communication with unmanned military aerial vehicles such as drones. 

Because of the efficiency of the system compared with RF transmission, this system is ideal for 

satellites which have limited power supplies. The future may produce a wider market as the 

explosion of space industry continues along with the corporate and private sector in the 

development of unmanned aerial craft such as quadcopters. Major companies such as Amazon 

have indicated interest in the utilization of such mobile craft for the transport of packages.
21

  The 

future may be a place where the skies and lower atmosphere are swarmed with satellites and 

drones respectively, and with bandwidth already limited, free space optical may be the choice of 

communication. 
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8. Individual Discussions of Project 

 

Kyle Cavorley:  

 

 The Free Space Optical Communications (FSO) Prototype that we created this semester 

was a huge success. The system prototype was marketable for utilizing low cost devices to 

implement a complex communication system of high performance.  The value in FSO 

communications is that it is unlicensed and does not have to meet a particular bandwidth 

requirement by the FCC. With no environmental obstructions, the FSO can transmit at further 

distances than RF at an unlimited bandwidth. This optical link is more than capable of reaching 

fiber like data rates. Although this prototype is limited in frequency, it can still transmit high data 

rates with a system cost no greater than 30 dollars. Note this cost excludes the embedded system 

and quality of the cameras for computer vision.  

 The prototype requires an embedded system to transmit data. The embedded system 

integrated will inquire the bulk of the cost. A recommended embedded system such as the 

Raspberry Pi Model B costs $35, and runs on a Linux platform. A more expensive embedded 

system may be required if the consumer requires memory greater than 16 GB. Increased costs are 

also placed on the resolution of the cameras involved in the computer vision component. Over 

extended distances, greater resolution than the $13 Sony Playstation Cameras would be required.  

 Overall the system provides for an effective and efficient communication system. The 

reason for choosing to build a low cost FSO system is for its use in the defense industry. The 

system can be used to communicate with unmanned vehicles. For instance, a base station can 

transmit instructions to a drone flying overhead to conduct aerial mapping. The transmission rate 

of the instruction fired from the laser to the drone would be hard for enemies to track location. 

Using RF would radiate too much power that can be detected. Not only can FSO transmit at 

rapid rates, the system has unlimited bandwidth because it is unregulated by the FCC. Therefore, 

a base station can fire gigabytes of data instructions to the drone at fast rates. That is if the 

hardware for the transmitter and receiver are optimized for higher speeds. At 700 kbps, the 

enemy will track down the drone overhead when transmitting gigabytes of data.  

The Free Space Optical Communication system requires an optical link for data 

transmission. The transmitter in our prototype is compatible with an LED and laser module. The 

receiver uses a photodiode to convert a light signal into an electrical signal, which is sent to the 

receiver circuitry to recover the transmitted signal. To enhance the system, the prototype 

integrates a computer vision tracking system. Therefore, the FSO transmitter can align itself with 

a mobile receiver that emits the LED recognition pattern that it recognizes.  To design an 

intricate system, the system must be broken up into multiple sub systems.  

 The prototype is designed around the embedded system. The first embedded system 

considered for the FSO system was Altera’s DE2-115 FPGA board. The FPGA system can 

communicate through Ethernet at Triple Speed Ethernet speeds such as 10/100/1000 Gbit/sec. 

The other viable option for transmission is the USB 2.0 port which is bottlenecked at 12 Mbps. 
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The integration of data storage, data transmission, and data reception with the FPGA add to the 

complexity of the project. Integrating an FPGA requires a whole other project in itself that 

cannot be finished in one semester. A NIOS II Processor is needed to connect the IPs of the 

components on the board. These components include SDRAM for data buffering, SD card for 

data storage, USB, and Ethernet. If the system is connected properly with the processor, C code 

can be drafted to build and integrate the system.  However, the stress of this project is based on 

proof of concept for FSO Communication Systems, therefore the group decided to switch from 

using the FPGA to the Raspberry Pi Model B. 

 The Raspberry Pi Model B has a 700 MHz clock, therefore the fastest rate at which it can 

transmit data is 700 MBaud. The python package pyserial provides for an easy way to transmit 

and receive data. This data is sent from a USB port and converted to serial data with Ardafruit’s 

USB-Serial converter chip. The code is written so that a preamble is sent from the transmitter to 

the receiver for recognition. Once the receiver recognizes the preamble, it begins to receive data 

until the file is fully transmitted. This process is defined for system organization.  

 The front end Schmitt Trigger receives the 0 to 3.3V data stream and upconverts it to a 0 

to 5V signal to properly power the laser driver circuit for transmission. This provides enough 

power to the LED/laser to transmit over a range of 14 feet. Ultimately, the goal of the project is 

to achieve maximum distance at high data rates.  

 On the receive end, a reverse biased photodiode is used to detect the light signal and 

convert it to an electrical signal. The reason for reverse biasing the photodiode is to reduce the 

junction capacitance, and push the device to higher frequencies. The electrical signal from the 

photodiode is converted to a voltage from a transimpedance amplifier. The operating frequency 

of the transimpedance amplifier is limited to 1.3 MHz because the GBP of the TL081 op-amp is 

limited to 3 MHz. A non-inverting amplifier is used to amplify the signal before it is sent to a 

comparator, that sets any bits above the reference voltage of 2.5 V to 3.3V and any bits below to 

0V. The comparator is designed with a positive feedback to introduce hysteresis into the system. 

Hysteresis reduces the noise of the system by stabilizing the comparator to the intended 

frequency rate. These data bits are then sent to the computer on the receive end.  

 After a semester that required a lot of effort and work put into the system, it was 

completed. Due to time limitations we not able to achieve our initial intended goal of HD video 

streaming. However, we can successfully stream audio at a rate of 700 kbps. The system can also 

transmit a 4.5 MB song to the receiver of great quality. I am very proud of how the system came 

together in the end. 

For future work, the Schmitt Trigger would require tweaking so that it can operate at 

frequencies greater than 500 kHz. Integrating the system on a PCB to will eliminate stray 

capacitance and external RF. Better parts can also be purchased to find ways to demonstrate a 

low level FSO communications system operating at higher frequencies. In the end, I am satisfied 

with my progress and seeing the system come together.  
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Jonathan Giordano: 

 

The Vision Based Free Space Optical Communication was the solution to modern 

concerns of security and bandwidth utilization, with two unique offsets from the typical optical 

communication systems. Optical communication systems utilizing lasers and more recently, fast 

switching LED’s have the benefit over RF communication systems by being far more energy 

efficient and capable of high throughput without sacrifices large bandwidth. Major challenges 

encountered in this optical communication link are that both transmitter and receiver must be 

spatially aligned in order for the signal to be transferred. Because of this alignment, 

communication is typically one way as tracking systems would otherwise be incorporated on 

both ends of the communication link doubling the complexity of the system. 

The initial goal for this communication system was a distance of at least 20 feet, with 

throughput at 50 MHz. This transmission frequency would allow for 50 Mbps transfer rates 

using On-Off keying for modulation. As virtually all circuits were constructed from Op-Amps 

and transistors the designs were limited to far less transfer rates. Because of by hand construction 

other issues including bleeding RF and parasitic capacitances plagued development. Goal 

transfer rates were lowered during the projects lifetime, and a measured transfer rate of 700 kbps 

was observed. With further minor correction, 1 Mbps appears at the end of the projects life as 

near reachable goal. 

In order to combat the two major downfalls of optical communication systems the two 

unique offsets hinted above, automated computer based tracking and a Reflective Optical 

Chopper (ROC) were incorporated into the system. The computer based tracking depended upon 

two digital cameras which would find and follow the receiver. This eliminated time consuming, 

and human error in establishing an optical link. The cameras would detect pockets of bright light 

in their vision and mark them. These lights would be attached to the receiver, and an initial 

design idea included blinking of these receiver lights at different rates to transmit the receiver 

identification. The physical system utilized two Sony PlayStation Eye Cameras. The vision feed 

would be processed by code running on an accompanying PC. The ROC was a way for the 

receiver to send data back to the transmission end without requiring a tracking system.  This 

would require the transmission side to have two optical links, one modulated and one 

unmodulated. The ROC would “chop” the unmodulated signal and reflect it back to the 

transmitter. The “chopping” would modulate the reflection with encoded data in the same 

modulation manner as on-off keying. The ROC utilized for this project was loaned by Boston 

Micromachines with a started modulation rate of 100 kHz. Testing confirmed this number with 

high intensity laser at 650 nm, 670 nm, and 830 nm. 

 With these benefits to our system, the Vision Based Free Space Optical Communication 

was still limited to line of sight communication, and only as good as its optical transmission and 

reception. The ideal model required two Raspberry Pi’s to run code which would transmit and 

receive the final data and make it usable to the user. On the transmission end, data would leave 

the USB port of the Raspberry Pi, enter a Schmitt Trigger where TTL voltage levels would be 

amplified, and this signal led to a driver circuit which would maintain safe current on the LED or 

laser it was driving. Testing showed that the Schmitt Trigger turned to be a bottleneck in the 

system and future plans would have this design replaced by a faster amplifier portion. There 

were many driver circuit drafts but the latter version proved to be capable of transmission up to 1 

MHz. 

 The receiving end began with a photodiode, the SFH213 proving due be not only the 
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cheapest photodiode, but the most responsive compared to more expensive, “higher-end” models 

purchased. The photodiode was back biased, and the output led to a transimpedance amplifier, 

then to a non-inverting amplifier, a comparator circuit to bring the voltage to TTL acceptable 

levels, and final to the USB port of the receiving end Raspberry Pi. In practice, the Raspberry Pi 

was never used, but PC’s with a Python interface were. The reason for this was ease of use, but if 

time allowed this small computer would be incorporated into practice. The receiver end proved 

to be the most difficult set-up for the entire project due to lack of knowledge in photo-

electronics, and the too well known difficulty of working with Op-Amps. 

Because of time limitation a complete connection of all parts of the Vision Based Free 

Space Optical Communication was unfeasible. The computer based tracking was never tested, 

was any physical mounting for the platform built for the receiver or transmitter. There are many 

difficulties to consider for the incorporation of the ROC into the system, namely its delicate 

nature, its small aperture size which requires a finely focus adjust laser which in turn demands a 

finely tuned computer vision tracking accuracy, and the ability to have the reflection sent back to 

the transmitter and not an offset angle. Data transmission was tested, and achieved a data rate of 

700 kbps, but only at a distance of several inches, and even at that distance transmission was 

likely to develop data errors. 

The commercial usage for such application would be either military or in space industry. 

The Vision Based Free Space Optical Communication project would in no means in its current 

prototype state be ready for any practical ventures, but the ideas and proof of concepts developed 

over the past months show promise in having real-world value. With the use of both higher 

budget, and IC’s developed specifically to replace breadboard circuits, higher data rates with 

lower error could be achieved. 

 

Wayne Chang: 

- transmission-end challenges 

 - high frequency + high power for the LED 

  - we wanted ~2 A of power at MHz frequencies 

  - transistors in parallel for more current 

  - investigating existing drivers but they only go up to ~150 mA 

- receive-end challenges 

 - photodiode capacitance 

  - resistor value toggling 

  - reverse biasing to reduce junction capacitance 

 - clean comparator for TTL input at MHz 

- microcontrollers 

 - FPGA speeds 

 - power draw 

 - interfaces (settled on USB) 

- platform 

 - targeting precision must be offset by conical wave diffraction 

 - accuracy of servos or use of stepper motors 

 - vision code to track multiple targets 

- message structure 
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 - preamble (codeword) 

 - postamble (codeword) 

 - error correcting codes 

 

Taichi Hirao: 

 

While still in the phase of trying to improve the speed of our system, our team was stuck 

on the idea that the receiver amplifier was the bottleneck.  Below is an exploratory design that 

was simulated while Kyle was testing his AD8030 op-amp amplifiers.  It was never put together, 

because the AD8030’s sufficed.  However, as this project continues outside of Rutgers, 

expanding on this circuit may be a viable option as the next step because the frequency response 

has enough headroom for promising results (depending on the quality of the actual mosfets).   

The transistors are dc biased at Vds >= Vgs - Vt (parameters are dependent of specific 

transistors models).  Vds is increased as much as possible to widen the depletion region and 

allow greater gain to generate through the cascaded transistors.  The increased Vgs calls for a 

greater Vds.  The  20V VDD is used to cope with this headroom.  The combination of the greater 

gain and increased headroom allow the cascade to operate without distorting while meeting our 

needs. 

 
Figure 8.1 (a) 

Cascaded Cascode Mosfet amplifiers 

Individual gain: 10; Total gain: 100 
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Figure 8.1 (b) 

Transient Response 

Input signal (red): Vpp 50 mV 

First stage output (blue): Vpp 500 mV 

Second stage output (green): Vpp 5V 

 

 
Figure 8.1 (c) 

Frequency Response 

First stage output (red) 

Second stage output (blue) 
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 Below is a variant of the Schmitt Trigger.  While Jonathan’s Schmitt Trigger utilized 

BJTs, this design was the result of trying to increase response time of the system by using 

mosfets.  We’ll never know the true performance unless it is actually tested, but it may be a 

worthwhile endeavor if the mosfets can operate at a faster frequency than the BJTs.  There is 

capacitive noise in the output as shown in the Transient response of Figure 8.2 (b), so this area 

will have to be explored for the advent of out putting clean 3.3 V TTL signals to go into the 

Adafruit TTL-to-USB converter adapters. 

 

 
Figure 8.2 (a) 

Mosfet based Schmitt Trigger 

Gate DC Biased at cutoff voltage of nmos, for it function as a switch : 1.65 V 
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Figure 8.2 (b) 

Transient Response 

Input (blue): Vpp 3.3V, offset 1.65 V, square wave 

Inverted output (red): Vpp 3.3V, offset 1.65 V, square wave 

 
Figure 8.2 (c) 

Frequency Response 

 

 As this project continues, there are areas for improvement in every aspect of this system 

design (as with all things).  The interface has to be streamlined and simplified to be user friendly, 

so all people with basic computer knowledge can operate the system.  

 After optimal frequency response is reached, the next step would be to increase data rates 

by working on the software architecture to simultaneously transmit multiple data bits.  Such as 

by utilizing different signal strengths of lasers, or using multiple lasers to channel more bits as a 

time, i.e. the current technology of 1Gbps ethernet protocol. 

 The visual tracking and targeting software has to increase in artificial intelligence and 

precision of aiming.  The software must be able to distinguish its target from everything else and 

the motors have to be refined to a greater resolution. 

 The biggest area of improvement is to research how to operate lasers to optimize their 

performance parameters, such as frequency response.  My interest is in to designing a driver 

circuit that will compensate the chirp effect by identifying the ideal degree of intensity shift. 

The following is the Preliminary Laser Communication Protocol simply to go over the 

encountered design iterations and reflect on the team’s initial goals.   

Once tracking is to be successfully defined and demonstrated, on-off keying through laser 
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communication is one of the methods that is to be explored in wireless transmission.  At the early 

stages of development, the ALTERA DE2-115 FPGA board was investigated to see if it should 

handle the on-off keying that will control the system.  The FPGA was thought to perform all the 

data processing for transmission and reception and error-correcting codes.  However, further 

investigation resulted in many obstacles, which ultimately led to finding another means: the 

Raspberry Pi Model-B.   

 

 Our initial research was targeted at designing the following Transmit and Receive 

topologies: 

 TX 

● Data is stored on a SD Card and accessed by the FPGA board. 

● Then the data gets buffered onto the SDRAM. 

● The Ethernet port will transmit the information from the SDRAM buffer. 

● The Tx output from the Ethernet port goes to a differential-input Multi-level decoder 

● Output from the decoder goes to an amplifier circuit. 

● The amplifier signal will drive the laser diode. 

 

Rx 

● Free-space optical stream is captured by an array of photodiodes. 

● A comparator is utilized to capture a single stream of data. 

● The weak signal goes through an amplifier circuit. 

● The on-off keyed data is then put through a multiplexer to be able to communicate with 

either the multi-level-transmit-three(100BASE) or PAM-5(1000BASE) Ethernet 

protocol. 

● Data is received by the Ethernet port of the FPGA board. 

● Buffered into the SDRAM 

● Then stored again on an SD Card. 

 

The following are design obstacles, dilemmas and areas for growth that should be 

explored and utilized for expanding our current final prototype.  It is an analysis of the ethernet 

protocol with the advent of streamlining and synchronizing with FSO technology. 

 Using a single pair of the 4 pairs of lines in an Ethernet port allows for a mere 25 Mbps 

data rate on the Altera DE2-115 board using 100BASE and 125 Mbps on 1000BASE.  While 

100BASE is still faster than using the Fast Speed USB 2.0 port on the same FPGA board (which 

is capped at 12 Mbps), 25 Mbps is not attractive in today’s high-speed world.  The reason for 

wanting to use the 100BASE instead of the 1000BASE is because the 100BASE uses multi-

level-transmit 3 whereas 1000BASE uses the 5 level PAM-5 protocol.  This will alter the design 

of our decoder and multiplexer circuits. Decoding a PAM-5 signal will require a decoder twice 

the speed of the 125 MHz line (250 MHz) to be able to process the two-bit signal and output two 

separate on-off keyed signals at a time to the laser driver.  Using the 100BASE will keep the 

decoder speed the same 25MHz because it does not output 2 bit signals at a time like the 

1000BASE. 

 It would be interesting to utilize four-lasers, one for each pair of lines of the Ethernet 

port, to be able to transceiver four bits at a time, essentially 4 x 25 MHz = 100 MHz 

transmission.  Even 4 GHz transmission would be possible with four lasers, if we were able to 

overcome the design obstacles for 1000BASE. 
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9. Future Work 

 Construction of a new frontend amplifier to replace the Schmitt trigger. This change 

would remove the transmitter’s current bottleneck. 

 Completion of the pan-tilt platform in conjunction with the computer vision tracking. 

 Construction of a receiving structure with ROC. This would consist of a house which 

would protect the delicate components, as well as mange the reflect light so that it is 

directed back towards the receiver. This case would also contain the receiver’s front end, 

and a bright light source for the computer vision tracking to lock on to. 

 Further testing of the ROC with varying light frequencies and intensity. This would also 

incorporate the testing of data transmission using the ROC. 

 Fabrication of PCB for Transmission and Receiving circuits to reduce RF noise and 

parasitic capacitances. 
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Appendix 1: List of Equipment  

 

Lab Equipment:  

 

Agilent 34401A Digital Multimeter 

Tektronix DPO 4082 Oscilloscope 

Tektronix AFG3021B Function Generator 

Lecroy HDO6054 Oscilloscope 

Power Supply 

BNC cables 

BNC connector clip leads 

oscilloscope probes 

soldering iron/solder 

wire 

enamel wire 

wire cutters 

alligator clips 

banana plug wire connectors 

 

Resistors:  Digikey 

3 

22 

1 K 

1.5 K 

3.3 K 

10 K 

 

Capacitors: Digikey 

0.1 uF 

8.3 pF 

 

IC: 

LM317 

TL081         :Transimpedance Amplifier. Manufacturer: STMICROELECTRONICS 

AD8030       : Non inverting amplifier and comparator circuit. Manufacturer: Analog Devices 

 

LED: 

LED Engin 897-LZ100R100 5W LED 

 

Laser: 
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Unnamed 1mW 650 nm Laser 

Unnamed 5mW 670 nm Laser 

Unnamed 5mW 830 nm Laser 

Unnamed 10mW 650 nm Laser 

38-1030-ND LASER DIODE 850NM 5MW: Manufacturer: US Lasers 

 

Photodiode: 

SFH213        : Transimpedance Amplifier. Manufacturer: OSRAM OPTO SEMICONDUCTORS 

MTD5010W : Manufacturer: Marktech Optoelectronics 

 

Transistors: 

2N2222 

2N7000 

 

MISC:  

Lenses: Receiver   

PBC: Receiver  

USB-Serial Cable: Responsible for transmission and reception to embedded system. 

Manufacturer: Ardafruit 

Raspberry Pi Model B: Manufacturer: Raspberry Pi 

Altera DE2-115 FPGA: Manufactuer: Altera 

Reflective Optical Chopper 

 Manufacturer: Boston Micromachines 

 Comes with: 

 Driver: 

 Optical Modulator 

 BNC cable 

 Power cord 

 Electrostatic wrist bands 

Platform for supporting ROC Modulator, laser diode and photo diode 
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Appendix 2: Simulations and Program Code  

 

audiostream.py 

 

#!/usr/bin/python 

 

import os 

import time 

from sys import argv 

from pydub import AudioSegment 

 

sound = AudioSegment.from_mp3(argv[1]) 

step = 5000 

for i in range(0, int(len(sound) / step)): 

    segment = sound[i*step:(i+1)*step] 

    d = os.path.dirname(os.path.realpath(argv[1]))  

    f = "audio%05d.mp3" % (i)  

    path = "%s/%s" % (d, f) 

    segment.export(path, format="mp3") 

    print("writing to %s" % (path)) 

    os.system("./pysend.py %s" % (path)) 

    os.remove(path) 

    time.sleep(0.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pyrecv.py 
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#!/usr/bin/python 

 

from sys import argv 

 

def waitPreamble(ser): 

    i = 0 

    while True: 

        b = ord(ser.read(1)) 

        if b == 0x55: 

            i = i + 1 

        elif b == 0x0 and i > 100: 

            print("Preamble Received and Verified") 

            return True 

        else: 

            print("Bad Data: 0x%x" % ord(ser.read(1))) 

 

def isPostamble(postfix): 

    if len(postfix) < 101: 

        return False 

    i = 0 

    for b in postfix: 

        if b == 0x55: 

            if i == 100: 

                print("Postamble Received and Verified") 

                return True 

            elif i > 0: 

                i = i + 1 

        elif b == 0x0: 

            if i == 0: 

                i = i + 1 

            else: 

                return False 

        else: 

            return False 

 

def updatePostfix(postfix, ba): 

    wr = [] 

    extra = (len(postfix) + len(ba)) - 101 

    if extra > 0: 
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        for i in range(0, extra): 

            wr.append(postfix.pop(0)) 

    postfix.extend(ba) 

    return wr 

 

import serial 

 

ser = serial.Serial('/dev/ttyUSB0', baudrate=500000) 

print(ser.name, ": RX") 

 

waitPreamble(ser) 

 

outpath = argv[1] 

 

f = open(outpath, "w") 

postfix = [] 

print("Receiving File") 

while True: 

    ca = ser.read(1) 

    ba = ca 

    wr = updatePostfix(postfix, ba)  

    if isPostamble(postfix): 

        break 

    wr = ''.join(list(map(chr, wr))) 

    f.write(wr) 

 

 

 

 

 

 

 

 

 

 

 

 

pysend.py 

#!/usr/bin/python 
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from sys import argv 

 

def sendPreamble(ser): 

    for i in range(0, 2000): 

        ser.write([0x55]) 

    ser.write([0x0]) 

    print("Preamble Transmitted") 

 

def sendPostamble(ser): 

    ser.write([0x0]) 

    for i in range(0, 2000): 

        ser.write([0x55]) 

    print("Postamble Transmitted") 

 

def sendFile(ser, path): 

    f = open(path, "r") 

    while True: 

        c = f.read(2048) 

        if len(c) > 0: 

            ser.write(c.encode("utf-8")) 

        else: 

            break 

    print("File Transmitted") 

 

import serial 

 

ser = serial.Serial('/dev/ttyUSB0', baudrate=1000000)  # open first serial port 

print(ser.name, ": TX") 

 

path = argv[1] 

sendPreamble(ser) 

sendFile(ser, path) 

sendPostamble(ser) 
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Appendix 3: Datasheets 

 

Datasheets for the following components are included: 

 

 LZ1-00R100 

 LZ1-MCPCB 

 2N2222 

 SFH213 

 AD8029/AD8030/AD8040 

 BMC Reflective Optical Chopper 


