
VISTA: A System for Interactive Code Improvement†

WANKANG ZHAO1, BAOSHENG CAI2, DAVID WHALLEY1, MARK W. BAILEY1,3, ROBERT VAN ENGELEN1,
XIN YUAN1, JASON D. HISER4, JACK W. DAVIDSON4, KYLE GALLIVAN1, AND DOUGLAS L. JONES5

1 Computer Science Department, Florida State University, Tallahassee, FL 32306-4530
E-mail: {wankzhao, whalley, engelen, xyuan, gallivan}@cs.fsu.edu

2 Oracle Corporation, 4OP 955, 400 Oracle Parkway, Redwood City, CA 94065
E-mail: baosheng.cai@oracle.com

3 Computer Science Department, Hamilton College, Clinton, NY 13323
E-mail: mbailey@hamilton.edu

4 Computer Science Department, University of Virginia, Charlottesville, VA 22903
E-mail: {hiser, jwd}@virginia.edu

5 Electrical and Computer Engineering Department, University of Illinois at Urbana-Champaign, Urbana, IL 61801
E-mail: dl-jones@uiuc.edu

ABSTRACT

Software designers face many challenges when developing appli-
cations for embedded systems. A major challenge is meeting the
conflicting constraints of speed, code density, and power consump-
tion. Traditional optimizing compiler technology is usually of little
help in addressing this challenge. To meet speed, power, and size
constraints, application developers typically resort to hand-coded
assembly language. The results are software systems that are not
portable, less robust, and more costly to develop and maintain.
This paper describes a new code improvement paradigm imple-
mented in a system called vista that can help achieve the cost/
performance trade-offs that embedded applications demand.
Unlike traditional compilation systems where the smallest unit of
compilation is typically a function and the programmer has no con-
trol over the code improvement process other than what types of
code improvements to perform, the vista system opens the code
improvement process and gives the application programmer, when
necessary, the ability to finely control it. In particular, vista allows
the application developer to (1) direct the order and scope in which
the code improvement phases are applied, (2) manually specify
code transformations, (3) undo previously applied transformations,
and (4) view the low-level program representation graphically.
vista can be used by embedded systems developers to produce
applications, by compiler writers to prototype and debug new low-
level code transformations, and by instructors to illustrate code
transformations (e.g., in a compilers course).

Category and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User Inter-
faces—graphical user interfaces; D.2.6 [Software Engineering]:
Programming Environments—interactive environments; D.3.4
[Programming Languages]: Processors—compilers, optimiza-
tion; D.4.7 [Operating Systems]: Organization and Design—real-
time systems and embedded systems, interactive systems

General Terms
Performance, Measurement

Keywords
User-directed code improvement

1 INTRODUCTION
The problem of automatically generating acceptable code for
embedded microprocessors is much more complicated than for
general-purpose processors. First, embedded applications are opti-
mized for a number of conflicting constraints. In addition to speed,
other common constraints are code size and power consumption.
For many embedded applications, code density and power con-
sumption are often more critical than speed. In fact, in many
applications, the conflicting constraints of speed, code density, and
power consumption are managed by the software designer writing
and tuning assembly code. Unfortunately, the resulting software is
less portable, less robust, and more costly to develop and maintain.

Automatic compilation for embedded microprocessors is further
complicated because embedded microprocessors often have spe-
cialized architectural features that make code improvement and
code generation difficult [20, 19]. While some progress has been
made in developing compilers and embedded software develop-
ment tools, many embedded applications still contain substantial
amounts of assembly language because current compiler technol-
ogy cannot produce code that meets the cost and performance
goals for the application domain.

In this paper we describe a new code improvement paradigm that
we believe can achieve the cost/performance trade-offs (i.e., size,

† This work is supported in part by National Science Foundation grants
EIA-9806525, CCR-9904943, and EIA-0072043.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LCTES’02-SCOPES’02, June 19–21, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-527-0/02/0006...$5.00.

power, speed, cost, etc.) demanded for embedded applications. A
traditional compilation framework has a fixed order in which the
code improvement phases are executed and there is no control over
individual transformations, except for compilation flags to turn
code improvement phases on or off. In contrast, our compilation
framework, called vista (vpo Interactive System for Tuning Appli-
cations) gives the application programmer the ability to finely
control the code-improvement process.

We had the following goals when developing the vista compilation
framework. First, the user should be able to direct the order of the
code improvement phases that are to be performed. The order of
the code improvement phases in a typical compiler is fixed, which
is unlikely to be the best order for all applications. Second, user-
specified transformations should be possible. For instance, the user
may provide a code sequence that vista inserts and integrates into
the program. We are not aware of any compiler that allows a pro-
grammer such direct and fine control over the code improvement
process. Third, the user should be able to undo code transforma-
tions previously applied since a user may wish to experiment with
other, alternative phase orderings or types of transformations. In
contrast, the effects of a code transformation cannot be reversed
once it is applied in a typical compiler. Finally, the low-level pro-
gram representation should appear in an easily readable display.
The use of dynamically allocated structures by optimizing compil-
ers and the inadequate debugging facilities of conventional source-
level symbolic debuggers makes it difficult for a typical user to
visualize the low-level program representation of an application
during the compilation process. To assist the programmer when
interacting with the optimization engine, vista should provide the
ability for the programmer to view the current program representa-
tion, relevant compilation state information (e.g., live registers,
dominator information, loops, dead registers, etc.) and perfor-
mance metrics.

Figure 1 illustrates the flow of information in vista. The program-
mer initially specifies a source file to be compiled. The
programmer retains control over the code-improvement process by
specifying requests to the compiler, which includes the order of the
code improvement phases and actual transformations to be per-
formed. The compiler responds to optimization requests by
performing the specified actions and sending the program repre-
sentation changes back to the viewer. Likewise, the compiler
responds to queries by the viewer about the program representation
state. If at any point the user chooses to terminate the session, vista
saves the current sequence of applied program transformations in a
file to enable future updates. The programmer may also wish to
save multiple optimized versions to contrast their performance. In
addition, the programmer may collect preliminary results about the
performance of the generated code by requesting that the assembly
code be instrumented with additional instructions that collect a
variety of measurements during the program’s execution.

Beyond vista’s primary purpose of supporting development of
embedded systems applications, it has several other uses. First,
vista can assist a compiler writer in prototyping and debugging
new code transformations by manually specifying them. Second, it
can help compiler writers to understand how different code
improvements interact. Finally, instructors teaching compilation
techniques can use the system to illustrate code transformations.

The remainder of this paper is structured as follows. First, we
review related work regarding alternative compilation paradigms
and compiler user interfaces. Second, we describe the underlying
structure of vista’s optimization engine. Third, we present the
functionality of the types of compilation requests that a program-
mer may make and show how this functionality is achieved in the
viewer. Fourth, we discuss implementation issues that were
involved in developing an interactive code improvement system.
Finally, we give the conclusions of the paper.

2 RELATED WORK

There exist systems that are used for simple visualization of the
compilation process. The UW Illustrated Compiler [1], also known
as icomp, is used in undergraduate compiler classes to illustrate the
compilation process. The xvpodb system [6, 7] is used to illustrate
low-level code transformations in the vpo compiler system [4].
xvpodb is also used when teaching compiler classes and to help
ease the process of retargeting the compiler to a new machine or
diagnosing problems when developing new code transformations.

There are also several systems that provide some visualization sup-
port for the high-level parallelization of programs. These systems
include the pat toolkit [2], the parafrase-2 environment [24], the e/
sp system [8], a visualization system developed at the University of
Pittsburgh [14], a visualization tool for the Zephyr system [11],
and SUIF explorer [21]. All of these systems provide support for a
programmer by illustrating the possible dependencies that may
prevent parallelizing transformations from occurring. A user can
inspect these dependencies and assist the compilation system by
verifying whether a dependency is valid or can be removed. In con-
trast, vista supports low-level transformations and user-specified
changes, which are needed for tuning embedded applications.

Because of the difficulty of producing code for embedded proces-
sors that meets the conflicting constraints of space, speed, and
power consumption, there is a wide body of research that has
advanced the state of the art of embedded systems compilation [20,

Figure 1: Interactive code improvement process.

Saved
State

Assembly
File

Source
File

ViewerUser

Transformation
Information

Compiler

Selections

Transformation
Information

Display

Optimization Requests
and Queries

22, 15, 13, 25, 16]. There is also some work on experimenting with
code improvement phase ordering and other techniques to produce
better code. Coagulating code generators use run-time profiles to
perform code improvements on the most frequent sections of the
code before the less frequently executed sections [23]. Genetic
algorithms have been used to experiment with different orders of
applying code improvement phases in an attempt to reduce code
size [9, 10]. Iterative compilation techniques have been used to
determine good phase orderings for specific programs [18] and
values for optimization parameters such as loop unroll factors and
blocking sizes [17]. In contrast, vista allows a user to interactively
specify the order and scope in which code improvement phases are
applied.

3 VISTA’S OPTIMIZATION ENGINE

vista’s optimization engine is based on vpo, the Very Portable
Optimizer [3, 5]. vpo has several properties that make it an ideal
starting point for realizing the vista compilation framework. First,
vpo performs all code improvements on a single intermediate rep-
resentation called RTLs (register transfer lists). RTL is a machine-
and language-independent representation of machine-specific
instructions. The comprehensive use of RTL in vpo has several
important consequences. Because there is a single representation,
vpo offers the possibility of applying analyses and code transfor-
mations repeatedly and in an arbitrary order. In addition, the use of
RTL allows vpo to be largely machine-independent, yet efficiently
handle machine-specific aspects such as register allocation,
instruction scheduling, memory latencies, multiple condition code
registers, etc. vpo, in effect, improves object code. Machine-spe-
cific code improvement is important for embedded systems
because it is a viable approach for realizing compilers that produce
code that effectively balances target-specific constraints such as
code density, power consumption, and execution speed.

A second important property of vpo is that it is easily retargeted to
a new machine. Retargetability is key for embedded microproces-
sors where chip manufacturers provide many different variants of
the same base architecture and some chips have application-spe-
cific designs.

A third property of vpo is that it is easily extended to handle new
architectural features. Extensibility is also important for embedded
chips where cost, performance, and power consumption consider-
ations often mandate development of specialized features centered
around a core architecture.

A fourth and final property of vpo is that its analysis phases (e.g.,
dataflow analysis, control flow analysis, etc.) are designed so that
information is easily extracted and updated. This property makes
writing new code improvement phases easier and it allows the
information collected by the analyzers to be obtained for display.

4 FUNCTIONALITY OF VISTA

In this section we describe the functionality of vista from the user’s
viewpoint. This functionality includes viewing the low-level repre-
sentation, controlling when and where code improvement phases
are applied, specifying code transformations, measuring perfor-
mance, and undoing previously applied transformations.

4.1 Viewing the Low-Level Representation

Figure 2 shows a snapshot of the vista viewer that supports interac-
tive code improvement. The program representation appears in the
right window of the viewer and is shown as basic blocks in a con-
trol flow graph. Within the basic blocks are machine instructions.
The programmer may view these instructions as either RTLs or
assembly code. Displaying the representation in RTLs may be pre-
ferred by compiler writers, while assembly may be preferred by
embedded systems application developers who are familiar with
the assembly language for a particular machine. In addition, vista
provides options to display additional information about the pro-
gram that a programmer may find useful.

The left window varies depending on the viewer’s mode. Figure 2
shows the default display mode. The top left of the viewer screen
shows the name of the current function and the number of the cur-
rent transformation. A transformation consists of a sequence of
changes that preserve the semantics of the program. The viewer
can display a transformation in either the before or after state. In
the before state, the transformation has not yet been applied. How-
ever, the instructions that are to be modified or deleted are
highlighted. In the after state, the transformation has been applied.
At this point, the instructions that have been modified or inserted
are highlighted. This highlighting allows a user to quickly and eas-
ily understand the effects of each transformation. Before and after
states are used in other graphical compilation viewers [6, 7].

The bottom left window contains the viewer control panel. The
‘>’, ‘>>’, and ‘>|’ buttons allow a user to advance through the
transformations that were performed. The ‘|<’, ‘<<’, and ‘<’ but-
tons allow the user to back through the transformations and are
described in further detail in Section 4.5. The ‘>’ button allows a
user to display the next transformation. A user can display an
entire transformation (before and after states) with two clicks of
this button. The ‘>>’ button allows a user to advance to the next
phase. A phase is a sequence of transformations applying the same
type of transformation. The ‘>|’ button allows the user to advance
beyond all transformations and phases.

Shown in the left window is the list of code improvement phases
that the compiler has performed, which includes phases that have
been applied in the viewer and the phases yet to be applied by the
viewer. For instance, the state represented in Figure 2 is in the
before state of transformation 15 of the sixth phase. We have found
that displaying the list of code improvement phases in this manner
helps to give a user some context to the current state of the
program.

When viewing a program, the user may also change the way the
program is displayed and may query the compiler for additional
information. When control flow is of more interest than the spe-
cific machine instructions, the user can choose to display only the
basic block structure without the machine instructions. This makes
it possible to display more basic blocks on the screen and gives the
user a wider view of the program as shown in Figure 3. The user
may also query the compiler for the list of loops in a function, a list
of registers that are live at a particular point, basic block informa-
tion such as dominators, successors, predecessors, and RTL
information such as registers that are dead.

4.2 Directing the Order of Phases

Generally, a programmer has little control over the order in which
a typical compiler applies code improvement phases. Usually the
programmer may only turn a compiler code improvement phase on
or off for the entire compilation of a file. For some functions, one
phase ordering may produce the most suitable code, while a differ-
ent phase ordering may be best for other functions. Consider
Figure 4, which shows effect that cross jumping has on 75 ARM
object files. The effect is illustrated as a ratio of code size when

cross jumping is performed after common subexpression elimina-
tion versus before common subexpression elimination. While most
of the programs showed a greater reduction in code size after com-
mon subexpression elimination, there were some programs in
which a smaller executable was achieved when cross jumping was
performed before common subexpression elimination. vista pro-
vides the programmer with the flexibility to specify what code
improvements to apply to a program region and the order in which
to apply them. A knowledgeable embedded systems application
developer can use this capability for critical program regions to
specify that the most beneficial transformations are applied in the

most advantageous order.

Figure 5 shows the user selecting code improvement phases. The
user can make selections from all of the different required and
optional phases that the back end of the compiler applies. As each
phase is selected, vista adds it to a numbered list of code improve-
ment phases. In addition, the user may specify phase order control.
For instance, the example in Figure 5 shows that the user specified
that as long as changes to the representation are detected, the com-
piler should repeatedly perform register allocation, common
subexpression elimination and instruction selection. Thus, we are
in essence providing the programmer with the ability to program
the compiler in a code improvement ordering phase language.
Once the user confirms the selection of the sequence of phases, this
sequence is sent to the compiler, which performs the phases in the
specified order and sends a series of messages back to the viewer
describing the resulting program representation changes.

As shown in the upper window, the user is prevented from select-
ing some of the phases at particular points in the compilation. This
is due to compiler restrictions on the order in which it can perform
phases. Although we have tried to keep these restrictions to a mini-
mum, some restrictions are unavoidable. For instance, the compiler

Figure 2: Showing the history of code improvement performed by the compiler on the SPARC.

Figure 3: Displaying only program control flow.

does not allow the register allocation phase (allocating variables to
hardware registers) to be selected until the register assignment

phase (assigning pseudo registers to hardware registers) has been

completed*. Likewise, the user may only request that the compiler

perform register assignment once.

In addition to specifying the order of the code improvement
phases, a user can also restrict the scope in which a phase is
applied to a region of code. This feature allows a user to use
resources, such as registers, based on what she considers to be the
critical portions of the program. The user can restrict the region to
a set of basic blocks by either clicking on blocks in the right win-
dow or clicking on loops in a loop report similar to the one shown
in Figure 6. We believe that a set of blocks and loops are natural
units for which users would wish to restrict the scope of phases. A
few phases cannot have their scope restricted due to the method in
which they were implemented in the compiler or how they interact
with other phases (e.g., filling delay slots). Note that by default the
scope in which a phase is applied is unrestricted (i.e., the entire
function).

4.3 User-Specified Code Transformations

Despite advances in code generation for embedded systems,
knowledgeable assembly programmers can always improve code
generated by current compiler technology. This is likely to be the
case because the programmer has access to information the com-
piler does not. In addition, many embedded architectures have
special features (e.g., zero overhead loop buffers, modulo address
arithmetic, etc.) not commonly available on general-purpose pro-
cessors. Automatically exploiting these features is difficult due to
the high rate at which these architectures are introduced and the
time required for a highly optimizing compiler to be produced. Yet
generating an application entirely in assembly code is not an
attractive alternative due to the labor involved. It would be desir-
able to have a system that not only supports traditional compiler
code improvement phases but also supports the ability to manually
specify transformations.

Figure 7 shows how vista supports the application of user-specified
code transformations. When the user points to an instruction, the
viewer displays the list of possible user-specified changes for that
instruction. As the user selects each change, the change is sent to
the compiler, which checks it for validity. For instance, if an
instruction is inserted, then the syntax is checked to make sure it is
valid. Transformations to basic blocks (insert, delete, label) are
also possible. A number of semantic checks are also necessary. For
instance, if the target of a branch is modified, then the compiler
checks to ensure that the target label in the branch is actually a
label of a basic block. The compiler responds to each change by
indicating if the change is valid and by sending the appropriate
change messages to the viewer so it can update the presented pro-
gram representation. The approach of immediately querying the

Figure 4: Ratio of applying cross-jumping after CSE to applying
cross-jumping before CSE.

Figure 5: Selecting an iterative sequence of phases.

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

B
en

ch
m

ar
k

M
o

d
u

le

Code Size Ratio

* Unlike textbook compilers, vpo performs register allocation after regis-
ter assignment.

Figure 6: Loop report indicating member basic blocks.

compiler when each change is specified ensures that the user does
not create an invalid program representation.

The user also can query the compiler for information that may be
helpful when specifying a transformation. For instance, a user may
wish to know which registers are live at a particular point in the
control flow. The query is sent to the compiler, the compiler
obtains the requested information (calculating it only if necessary)
and sends it back to viewer. Thus, the compiler can be used to help
ensure that the changes associated with user-specified transforma-
tions are properly made and to guide the user in generating valid
and more efficient code.

4.3.1 User-Specified Transformation Examples

Common examples of programmer code improvements for embed-
ded applications are ones that exploit knowledge that the
programmer has that the compiler does not. One class of such
transformations are value-dependent transformations. Consider the
binary search function shown in Figure 8(a). In this example,
which was extracted from an embedded application, a small global
table (32 entries) of short integers is searched. The programmer
has kept the table small by using shorts. The programmer has gone
a step farther to conserve space by using bytes as the indices into
the array. The RTLs the ARM compiler generates are shown in
Figure 8(b).

Close examination of the generated RTLs yields several opportuni-
ties for improvement. The index variable c must be kept in the
range of an unsigned byte. The compiler generates the necessary
masks when c is used. However, since the programmer knows c’s
range is 0–31, the masking instructions are not necessary, so they
can be removed. This removes two instructions from the loop (line
9 and 19) and one instruction outside the loop (line 30). In addi-
tion, line 17, which adds the sign bit for signed division (for the
division by 2), is unnecessary since the expression never yields a
negative result. These are important transformations for the func-
tion because they reduce the number of instructions in the loop
from 16 to 13 (an 18% reduction).

One further improvement can be made to the function. Since the
function takes a short as a parameter, the procedure calling conven-
tion requires that the caller promote the parameter to a long. The
callee then must zero-extend data to ensure that it falls in range of
a short (lines 2 and 3). If the programmer knows that the function

will always be called with values of data that are in range, then the
zero-extension can be removed. This removes two additional
instructions.

It may be possible that some of these transformations can be auto-
mated when global analysis is performed. However, even with
aggressive optimization technology, there will always be situations
where a programmer concerned with meeting a particular con-
straint may wish to make modifications to the code produced by
the compiler.

Figure 7: Manually specifying a transformation on the ARM.

unsigned char binary_search(short data) {
 unsigned char u,l,c;
 u=32,l=0,c=u/2;
 for(;;) {
 if(data<table[c]) {
 u=c;
 c=(l+u)/2;
 }
 else {
 l=c;
 c=(u+l)/2;
 }
 if((u-c)==1 || (c-l)==1) break;
 }
 return table[c]==data ? c : c-1;
}

(a) Source code.
binary_search:
 1 r[1]=r[0];
 2 r[12]=r[1]{16;
 3 r[1]=r[12]}16;
 4 r[12]=LA[L1];
 5 r[4]=LA[r[12]];
 6 r[2]=32;
 7 r[3]=0;
 8 r[0]=16;
 L4
 9 r[0]=r[0]&255;
 10 r[12]=r[4]+(r[0]*2);
 11 r[12]=(W[r[12]]{16)}16;
 12 c[0]=r[1]?r[12];
 13 r[2]=c[0]<0,r[0],r[2];
 14 r[12]=c[0]<0,r[3]+r[0],r[12];
 15 r[3]=c[0]`0,r[0],r[3];
 16 r[12]=c[0]`0,r[2]+r[0],r[12];
 17 r[12]=r[12]+(r[12]"31);
 18 r[12]=r[12]}1;
 19 r[0]=r[12]&255;
 20 r[12]=r[2]-r[0];
 21 c[0]=r[12]?1;
 22 r[12]=c[0]!0,r[0]-r[3],r[12];
 23 c[0]=c[0]!0,r[12]!1,c[0];
 24 PC=c[0]!0,L4;
 25 r[12]=r[4]+(r[0]*2);
 26 r[12]=(W[r[12]]{16)}16;
 27 c[0]=r[12]?r[1];
 28 r[12]=c[0]:0,r[0],r[12];
 29 r[12]=c[0]!0,r[0]-1,r[12];
 30 r[0]=r[12]&255;
 31 PC=RT;

(b) RTLs corresponding to the source code.

Figure 8: Example of a user-specified transformation.

Figure 9 shows another example where a knowledgeable program-
mer could overcome shortcomings in the alias analysis of a
compiler. Figure 9(a) shows a source code excerpt from the twolf
benchmark. A data structure, rowArray, is dynamically allocated.
The row variable is a global scalar. Figure 9(b) shows the corre-
sponding ARM instructions that are produced for this code portion.
Without aggressive interprocedural alias analysis, the compiler
cannot determine that the assignment to the field endx1, the store
instruction at line 27, does not overwrite the global scalar row. If a
user could determine that this is safe, then the RTLs at lines 28, 29,
and 30 could be eliminated and the value in r[1] could be reused.
Embedded systems application developers may often be willing to
perform these types transformations to improve the performance of
an embedded application in a product where millions of units may
be sold.

Providing user-specified transformations as vista does has an addi-
tional benefit. After the programmer has identified and performed
a transformation, the optimization engine can be called upon to
further improve the code. Such user-specified transformations may
reveal additional opportunities for the optimization engine that
were not available without programmer knowledge. In this way,
the optimizer and programmer can, jointly, generate better code
than either the programmer or the optimizer could have generated
separately.

4.3.2 Validating User-Specified Transformations

A user can easily introduce errors in a program when specifying
transformations. Transformations can be classified as required or
optional. An optional transformation consists of a sequence of
changes, where the program representation before and after the
sequence should be semantically equivalent and hopefully
improved (faster, smaller, less power). We have developed a sys-

tem that attempts to validate optional transformations. The user
advances or backs up to the point that the transformation in ques-
tion is displayed. The user has the option to send a validation
request for the current transformation to the compiler. The com-
piler sends one of three responses: (1) the transformation was
validated, (2) the transformation was not validated, or (3) the
region associated with the transformation could not be validated.
The third response is sometimes given since we currently do not
validate transformations that span multiple loop levels. Besides
validating user-specified transformations, we have also validated a
number of conventional compiler transformations, which include
algebraic simplification of expressions, basic block reordering,
branch chaining, common subexpression elimination, constant
folding, constant propagation, unreachable code elimination, dead
store elimination, evaluation order determination, filling delay
slots, induction variable removal, instruction selection, jump mini-
mization, register allocation, strength reduction, and useless jump
elimination. More details about validating transformations using
this system can be found elsewhere [26].

4.3.3 Prototyping New Code Improvements

The ability to specify low-level code transformations has another
important, more general, application of user-specified transforma-
tions. Unlike high-level code transformations, it is difficult to
prototype the effectiveness of low-level code transformations.

There are two factors that make prototyping low-level code trans-
formations difficult. First, many low-level code improvements
exploit architectural features that are not visible in a high-level rep-
resentation. For example, machine-dependent code improvements,
such as register allocation, do not have equivalent source code
transformations. In such cases, the source code cannot be hand-
modified to measure the effectiveness of the transformation. Sec-
ond, low-level code transformations are often only fully effective
when performed after other, specific transformations have been
applied. For example, branch chaining may reveal additional
opportunities for unreachable code elimination. For such cases, it
may be possible to perform the transformation in source code, but
it is not possible to prototype its effectiveness accurately at the
source level since opportunities will be missed.

One prototyping strategy is to generate low-level code, write it to a
file, manually perform the code improvement, read the low-level
code back in, and perform any additional code improvements. This
process can only work if the code improver accepts the same repre-
sentation it generates. Although vpo uses a single low-level
representation, the RTLs it accepts use pseudo registers while the
RTLs it generates use hardware registers. Often, there are other
phase order limitations that prevent the use of this strategy. By
opening the code improvement process to user-specified changes,
vista provides a general solution to prototyping and measuring the
effectiveness of new low-level code transformations.

4.4 Visualizing Performance

An important requirement of interactive code improvement is the
ability to measure and visualize the performance of the program
being improved. It is only by examining the performance of the
program that the user can understand the effectiveness of their
user-specified code improvements and their choices in phase

 rowArray = malloc(....);
 ...
 for(row = 1 ; row <= numRows ; row++) {
 rowArray[row].endx1 = -1;
 rowArray[row].startx2 = -1;
 }

(a) Source code.
L3

22 r[1]=R[r[5]];
23 r[0]=-1;
24 r[3]=24;
25 r[2]=R[r[4]];
26 r[1]=r[1]+(r[2]*r[3]);
27 R[r[1]+8]=r[0];
28 r[1]=R[r[5]];
29 r[2]=R[r[4]];
30 r[1]=r[1]+(r[2]*r[3]);
31 R[r[1]+12]=r[0];
32 r[1]=LA[r[6]+8];
33 r[0]=R[r[4]];
34 r[2]=r[0]+1;
35 R[r[4]]=r[2];
36 r[1]=R[r[1]];
37 c[0]=r[2]?r[1];
38 PC=c[0]'0,L3;

(b) RTLs corresponding to the source code.

Figure 9: Example of a user-specified transformation.

ordering. vista provides the mechanisms necessary to easily gather
and view this information.

Before applying any code transformations, the user may wish to
know where in the program they should focus their efforts. At any
point during the code improvement process, the user may gather
this information by directing vista to produce assembly that is
instrumented with performance measuring code. This code, when
executed, produces instruction-level performance measurements
using the ease system [12]. The resulting performance measure-
ments are read by the compiler and transmitted to the viewer. The
viewer, in turn, annotates the display with the performance
measurements.

Figure 10 shows the control flow graph after gathering perfor-
mance measurements. In the current implementation, execution
counts are gathered for each basic block. The viewer receives these
measurements for the entire function and computes the percentage
of executed instructions for each basic block. This percentage is
displayed for each basic block in the function so the user can
quickly identify portions of the program that are executed fre-
quently. This makes it easy for the user to identify the locations in
the program that are most likely to benefit from additional tuning.
The user can then improve the code—either by using an existing
code improvement phase or by a user-specified code improve-
ment—and take another set of measurements to glean the benefit
of the improvement.

The current implementation allows the user to visualize perfor-
mance, but it does not directly support the visualization of
performance improvement. Clearly, it is desirable to see how indi-
vidual transformations improve (or degrade) the performance of
the program. We plan to address this need in two ways. First, the
viewer can often derive the change in performance from applying a
valid transformation. For example, if an instruction is removed
from a basic block, the instruction counts can easily be updated.
The same is true when an instruction is moved from one basic
block to another. On the other hand, when control flow is modified
or branch results are affected, changes in performance may be dif-
ficult to derive. In such cases, we plan to automatically capture
new performance measurements (when directed to do so by the
user) in order to accurately display the impact transformations
have on performance.

4.5 Undoing Transformations
An important design issue for an interactive code improvement
system is how to allow an embedded systems application developer
to experiment with different orderings of phases and user-specified
transformations in an attempt to improve the generated code. In
order to support such experimentation, we provide the ability for
the user to reverse previously made decisions regarding phases and
transformations that have been specified.

This reversing of transformations is accomplished using the (‘|<’,
‘<<’, ‘<’) buttons. These buttons allow a user to view the transfor-
mations that were previously applied. The ‘<’ button allows a user
to display the previous transformation. The ‘<<’ button allows a
user to back up to the previous code improvement phase. Likewise,
the ‘|<’ button allows the user to view the state of the program
before any transformations have been applied. The ability to back
up and view previously applied transformations is very useful for

understanding how code was generated or to grasp the effects of
individual transformations.

If the user invokes a code improvement phase or user-specified
transformation while viewing a prior state of the program, then the
subsequent transformations must be removed before the new trans-
formation can be performed. The user must confirm this action
before the compiler is directed to make this adjustment. Thus, the
user has the ability to permanently undo previously applied phases
and transformations.

The ability to undo transformations is also useful in a batch code
improvement environment. A traditional compiler can use this fea-
ture to exhaustively attempt a variety of code improvements and
select the phase ordering that produces the most effective code. In
addition, it is sometimes easier to perform a portion of a transfor-
mation before completely determining whether the transformation
is legal or worthwhile. Being able to revoke changes to the pro-
gram will facilitate the development of such transformations.

5 IMPLEMENTATION ISSUES
We implemented the viewer using Java to enhance its portability.
We used Java 1.2, which includes the Java Swing toolkit that is
used to create graphical user interfaces. The aspects of the inter-
face that limit its speed are the displaying of information and the
communication with the compiler. Thus, we have found that the
performance of the interface was satisfyingly fast, despite having
not been implemented in a traditionally compiled language.

We separated the compiler and the viewer into different processes
for several reasons. First, the use of separate processes provides
additional flexibility. For instance, the sequence of change mes-
sages sent from the compiler to the viewer can be saved and a
simple simulator has been used instead of the compiler to facilitate
demonstrations of the interface. Likewise, a set of user commands

Figure 10: Visualizing performance on the ARM.

can be read from a file by a simple simulator that replaces the
viewer, which can be used to support batch mode experimentation
with different phase orderings. Second, we were concerned that the
amount of memory used by the compiler and the viewer may be
excessive for a single process. Separating the compiler and the
viewer into separate processes allows users to access the interac-
tive code improvement system on a different machine from which
the compiler executes. The communication between the compiler
and the viewer was accomplished using TCP/IP sockets.

vpo required numerous modifications to support interactive code
improvement. First, the high-level function in vpo to perform the
code improvement phases for a function had to be rewritten. vpo
had a fixed order, depending upon the compilation flags selected,
in which code improvement phases were attempted. Figure 11
shows the revised logic used for responding to user requests. A
user can request to apply a sequence of code improvement phases,
can manually specify a transformation, can undo previously
applied transformations, or can query the compiler for some infor-
mation about the current program representation.

After composing a sequence of code improvement phase com-
mands, the viewer sends the sequence to vpo and the compiler
interprets these commands until an exit command is encountered.
The branch command allows a user to specify a transfer of control
based on whether or not changes to the program were encountered.
Before each code improvement phase, vpo performs the analysis
needed for the phase that is not already marked as valid. After per-
forming the code improvement phase, vpo marks which analysis
could possibly be invalidated by the current phase. Identifying the
analysis needed for each phase and analysis invalidated by each
phase was accomplished in a table-driven fashion.

We also had to identify which phases were required during the
compilation (e.g., fix entry/exit), which code improvement phases
could only be performed once (e.g., fill delay slots), and the restric-
tions on the order in which code improvement phases could be
applied. Fortunately, many ordering restrictions required by other
compilers are not required in vpo since all code improvement
phases are applied on a single program representation (RTLs).

Each change associated with a user-specified transformation has to
be reflected in the program representation in the compiler. If an
instruction was inserted or modified, the RTL or assembly instruc-
tion specified had to be converted to the encoded RTL
representation used in the compiler. We developed two translators
for this purpose. The first translator converts a human generated
RTL into an encoded RTL. The second translator transforms an
assembly instruction into an encoded RTL. After obtaining the
encoded RTL, we used the machine description in the compiler to
check if the instruction specified was legal for the machine. Before
performing the change, the compiler checks if the change
requested is valid. This check includes ensuring not only that the
syntax of an instruction is valid, but also that its semantics are valid
with regard to the rest of the program. If the user requested change
does not cause the program to be in an invalid state, then the
change is performed by the compiler.

A user can also request to undo one or more previously applied
transformations. In order to accomplish such requests, both the
compiler and the viewer keep a history of changes to the program.
Figure 12 depicts a linked list of the history of changes. All

changes (additions and deletions) to the list occur at the tail. The
viewer allows a user to apply or undo transformations using this
list. Enough information regarding each change must be saved so
its effect can be undone. For instance, if a change reflects a modifi-
cation to an instruction, then the compiler and viewer must save the

Read request from the user.
WHILE user selects additional requests to be performed DO
 IF user selected a sequence of phases THEN
 pc = 0.
 WHILE commands[pc].oper != EXIT DO
 IF commands[pc].oper == BRANCH THEN
 Adjust pc according to branch command
 CONTINUE;
 END IF
 Perform analysis needed for current phase.
 SWITCH (commands[pc].oper)
 CASE BRANCH_CHAINING:
 remove branch chains.
 ...
 END SWITCH
 Mark analysis invalidated by current phase.
 pc += 1.
 END WHILE
 ELSE IF user selected a transformation change THEN
 Perform transformation change selected by the user.
 ELSE IF user selected to reverse transformations THEN
 Reverse transformations as specified by the user.
 ELSE IF user requested a query THEN
 Calculate query information and send to viewer.
 END IF
 Read request from the user.
END WHILE

Figure 11: Algorithm for performing user requests.

Figure 12: Data structure used for undoing transformations.

Begin Phase

Begin Transformation

Change 1

Change 2

Change 3

End Transformation

Begin Transformation

Change 1

Change 2

End Transformation

...

End Transformation

Head Current Tail

old version of the instruction before the modification so its effect
can be reversed if requested by the user. The viewer updates its
representation of the program to reflect applying or undoing trans-
formations. The current point in Figure 12 indicates the point in
the history of transformations that is kept in the viewer where the
user is viewing the representation. If a user selects a different
phase or transformation to perform when she has not currently
applied all of the transformations received, then the compiler is
instructed to undo the appropriate number of transformations to
reflect the current representation shown in the viewer.

Once a user decides to proceed to compile the next function or ter-
minate a compilation session, the state of the program
representation of the function needs to be saved. The compiler
saves this state by writing the linked list of transformation changes
to a file. When a user initiates a compilation session for the same
compilation unit, this file is read and these initial transformation
changes are automatically applied. Thus, a user can easily make
updates to a compilation of a file over a number of sessions.

6 CONCLUSIONS
We have described a new code improvement paradigm that
changes the role of low-level code improvers. This new approach
can help achieve the cost/performance trade-offs that are needed
for tuning embedded applications. By adding interaction to the
code improvement process, the user can gain an understanding of
code improvement trade-offs by examining the low-level program
representation, directing the order of code improvement phases,
applying user-specified code transformations, and visualizing the
impact on performance. This system can be used by embedded sys-
tems developers to tune application code, by compiler writers to
prototype, debug, and evaluate proposed code transformations, and
by instructors to illustrate code transformations.

References
[1] K. Andrews, R. Henry, and W. Yamamoto. Design and imple-

mentation of the UW illustrated compiler. In Proceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 105–114, June 1988.

[2] B. Appelbe, K. Smith, and C. McDowell. Start/pat: a parallel-
programming toolkit. IEEE Software, 6:29–40, 1988.

[3] M. E. Benitez. Retargetable Register Allocation. PhD thesis,
University of Virginia, 1994.

[4] M. E. Benitez and J. W. Davidson. A portable global optimizer
and linker. In Proceedings of the SIGPLAN ’88 Symposium on
Programming Language Design and Implementation, pages
329–338, June 1988.

[5] M. E. Benitez and J. W. Davidson. The advantages of
machine-dependent global optimization. In Proceedings of the
1994 International Conference on Programming Languages
and Architectures, pages 105–124, March 1994.

[6] M. Boyd and D. Whalley. Isolation and analysis of optimiza-
tion errors. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation,
pages 26–35, June 1993.

[7] M. Boyd and D. Whalley. Graphical visualization of compiler
optimizations. Journal of Programming Languages, 3:69–94,
1995.

[8] J. Browne, K. Sridharan, J. Kiall, C. Denton, and W. Eventoff.
Parallel structuring of real-time simulation programs. In
COMPCON Spring ’90: Thirty-Fifth IEEE Computer Society
International Conference, pages 580–584, 1990.

[9] Cliff Click and Keith D. Cooper. Combining analyses, com-
bining optimizations. ACM Transactions on Programming
Languages and Systems, 17(2):181–196, 1995.

[10] K. Cooper, P. Schielke, and D. Subramanian. Optimizing for
reduced code space using genetic algorithms. In Proceedings
of the ACM SIGPLAN Workshop on Language, Compilers, and
Tools for Embedded Systems, pages 1–9, May 1999.

[11] Keith D. Cooper, Devika Subramanian, and Linda Torczon.
Adaptive optimizing compilers for the 21st century. Journal of
Supercomputing, 2002 (to appear).

[12] J. W. Davidson and D. B. Whalley. A design environment for
addressing architecture and compiler interactions. Micropro-
cessors and Microsystems, pages 459–472, November 1991.

[13] Guido Costa Souza de Araujo. Code Generation Algorithms
for Digital Signal Processors. PhD thesis, Princeton Univer-
sity, June 1997.

[14] C. Dow, S. Chang, and M. Soffa. A visualization system for
parallelizing programs. In Proceedings of Supercomputing,
pages 194–203, 1992.

[15] Christine Eisenbeis and Sylvain Lelait. LoRA: a package for
loop optimal register allocation. In 3rd International Work-
shop on Code Generation for Embedded Processors, Witten,
Germany, March 1998.

[16] Daniel Kästner. Ilp-based approximations for retargetable
code optimization. In Proceedings of the 5th International
Conference on Optimization: Techniques and Applications,
2001.

[17] T. Kisuki, P. Knijnenburg, and M. O’Boyle. Combined selec-
tion of tile sizes and unroll factors using iterative compilation.
In Proceedings of the 2000 International Conference on Par-
allel Architectures and Compilation Techniques, pages 237–
248, October 2000.

[18] Jeffrey L. Korn and Andrew W. Appel. Traversal-based visu-
alization of data structures. In IEEE Symposium on Informa-
tion Visualization, pages 11–18, October 1998.

[19] Haris Lekatsas. Code compression for embedded systems. PhD
thesis, Princeton University, 2000.

[20] Rainer Leupers. Retargetable Code Generation for Digital
Signal Processors. Kluwer Academic Publishers, Boston,
1997.

[21] Shih-Wei Liao, Amer Diwan, Jr. Robert P. Bosch, Anwar Ghu-
loum, and Monica S. Lam. Suif explorer: an interactive and
interprocedural parallelizer. In Proceedings of the ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Pro-
gramming, pages 37–48, 1999.

[22] Peter Marwedel and Gert Goossens. Code Generation for
Embedded Processors. Kluwer Academic Publishers, Boston,
1995.

[23] W. G. Morris. CCG: A prototype coagulating code generator.
In Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 45–
58, June 1991.

[24] D. Polychronopoulos, M. Girkar, M. Haghighat, C. Lee,
B. Leung, and D. Schouten. Parafrase-2: an environment for
parallelizing, partitioning, synchronizing, and scheduling pro-
grams on multiprocessors. In Proceedings of the 1989 Interna-
tional Conference on Parallel Processing, pages 39–48, 1989.

[25] Ashok Sudarsanam. Code Optimization Libraries for Retar-
getable Compilation for Embedded Digital Signal Processors.
PhD thesis, Princeton University, November 1998.

[26] R. van Engelen, D. Whalley, and X. Yuan. Automatic valida-
tion of code-improving transformations. In Proceedings of the
ACM SIGPLAN Workshop on Language, Compilers, and Tools
for Embedded Systems, pages 206–210, June 2000.

	1 Introduction
	Figure 1: Interactive code improvement process.

	2 Related Work
	3 Vista’s Optimization Engine
	4 Functionality of Vista
	4.1 Viewing the Low-Level Representation
	Figure 2: Showing the history of code improvement performed by the compiler on the SPARC.
	Figure 3: Displaying only program control flow.

	4.2 Directing the Order of Phases
	Figure 5: Selecting an iterative sequence of phases.
	Figure 6: Loop report indicating member basic blocks.

	4.3 User-Specified Code Transformations
	Figure 7: Manually specifying a transformation on the ARM.
	4.3.1 User-Specified Transformation Examples
	Figure 8: Example of a user-specified transformation.
	Figure 9: Example of a user-specified transformation.

	4.3.2 Validating User-Specified Transformations
	4.3.3 Prototyping New Code Improvements

	4.4 Visualizing Performance
	Figure 10: Visualizing performance on the ARM.

	4.5 Undoing Transformations

	5 Implementation Issues
	Figure 11: Algorithm for performing user requests.
	Figure 12: Data structure used for undoing transformations.

	6 Conclusions
	References

