
Visual Basic 2010 How to Program

© 1992-2011 by Pearson Education, Inc. All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Variables and arrays offer only temporary storage of data in
memory—the data is lost, for example, when a local
variable “goes out of scope” or when the program
terminates.

 By contrast, files (and databases, which we cover in
Chapter 12) are used for long-term retention of large (and
often vast) amounts of data, even after the program that
created the data terminates, so data maintained in files is
often called persistent data.

 Computers store files on secondary storage devices, such as
magnetic disks, optical disks (like CDs, DVDs and Blu-ray
Discs™), USB flash drives and magnetic tapes.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 In this chapter, we explain how to create, write to and
read from data files.

 We continue our treatment of GUIs, explaining how to
organize commands in menus, and showing how to use
the Windows Forms Designer to rapidly create menus.

 We also discuss resource management.

 As programs execute, they often acquire resources,
such as memory and files, that need to be returned to
the system so they can be reused at a later point.

 We show how to ensure that resources are properly
returned to the system when they’re no longer needed.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Ultimately, all data items that computers process are

reduced to combinations of 0s and 1s.

 This occurs because it’s simple and economical to build

electronic devices that can assume two stable states—

one represents 0 and the other represents 1.

 It’s remarkable that the impressive functions performed

by computers involve only the most fundamental

manipulations of 0s and 1s!

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Bits

◦ The smallest data item that computers support is called a bit,

short for “binary digit”—a digit that can assume either the

value 0 or the value 1.

◦ Computer circuitry performs various simple bit manipulations,

such as examining the value of a bit, setting the value of a bit

and reversing a bit (from 1 to 0 or from 0 to 1).

◦ For more information on the binary number system, see

Appendix C, Number Systems.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Characters

◦ Programming with data in the low-level form of bits is

cumbersome.

◦ It’s preferable to program with data in forms such as decimal

digits (that is, 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9), letters (that is,

the uppercase letters A–Z and the lowercase letters a–z) and

special symbols (that is, $, @, %, &, *, (,), -, +, ", :, ?, /

and many others).

◦ Digits, letters and special symbols are referred to as characters.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 The set of all characters used to write programs and

represent data items on a particular computer is called that

computer’s character set.

 Every character in a computer’s character set is represented

as a pattern of 0s and 1s.

 Bytes are composed of eight bits.

 Visual Basic uses the Unicode character set, in which each

character is composed of two bytes (and hence 16 bits).

 You create programs and data items with characters;

computers manipulate and process these characters as

patterns of bits.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Fields

◦ Just as characters are composed of bits, fields are composed of

characters.

◦ A field is a group of characters that conveys meaning.

◦ For example, a field consisting of uppercase and lowercase

letters can represent a person’s name.

 Data Hierarchy

◦ Data items processed by computers form a data hierarchy

(Fig. 8.1), in which data items become larger and more

complex in structure as we progress up the hierarchy from bits

to characters to fields to larger data aggregates.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Records

◦ Typically, a record is composed of several related fields.

◦ In a payroll system, for example, a record for a particular

employee might include the following fields:

 Employee identification number

 Name

 Address

 Hourly pay rate

 Number of exemptions claimed

 Year-to-date earnings

 Amount of taxes withheld

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 In the preceding example, each field is associated with the same
employee.

 A data file can be implemented as a group of related records.

 A company’s payroll file normally contains one record for each
employee.

 Companies typically have many files, some containing millions,
billions or even trillions of characters of information.

 To facilitate the retrieval of specific records from a file, at least
one field in each record can be chosen as a record key, which
identifies a record as belonging to a particular person or entity
and distinguishes that record from all others.

 For example, in a payroll record, the employee identification
number normally would be the record key.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Sequential Files

◦ There are many ways to organize records in a file.

◦ A common organization is called a sequential file in which

records typically are stored in order by a record-key field.

◦ In a payroll file, records usually are placed in order by

employee identification number.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Databases

◦ Most businesses use many different files to store data.

◦ For example, a company might have payroll files, accounts

receivable files (listing money due from clients), accounts payable

files (listing money due to suppliers), inventory files (listing facts

about all the items handled by the business) and many other files.

◦ Related files often are stored in a database.

◦ A collection of programs designed to create and manage databases is

called a database management system (DBMS).

◦ You’ll learn about databases in Chapter 12 and you’ll do additional

work with databases in Chapter 13, Web App Development with

ASP.NET, and the online Web Services chapter.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Visual Basic views a file simply as a sequential stream of
bytes (Fig. 8.2).

 Depending on the operating system, each file ends either
with an end-of-file marker or at a specific byte number
that’s recorded in a system-maintained administrative data
structure for the file.

 For example, the Windows operating system keeps track of
the number of bytes in a file.

 You open a file from a Visual Basic program by creating an
object that enables communication between a program and
a particular file, such as an object of class
StreamWriter to write text to a file or an object of class
StreamReader to read text from a file.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 A credit manager would like you to implement a Credit
Inquiry application that enables the credit manager to
separately search for and display account information for
customers with
◦ debit balances—customers who owe the company money for

previously received goods and services

◦ zero balances—customers who do not owe the company money

◦ credit balances—customers to whom the company owes money

 The application reads records from a text file then displays
the contents of each record that matches the type selected
by the credit manager, whom we shall refer to from this
point forward simply as “the user.”

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Opening the File

◦ When the user initially executes the Credit Inquiry

application, the Buttons at the bottom of the window are

disabled (Fig. 8.3(a))—the user cannot interact with them until

a file has been selected.

◦ The company could have several files containing account data,

so to begin processing a file of accounts, the user selects

Open… from the application’s custom File menu (Fig. 8.3(b)),

which you’ll create in Section 8.6.

◦ This displays an Open dialog (Fig. 8.3(c)) that allows the user

to specify the name and location of the file from which the

records will be read.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 In our case, we stored the file in the folder

C:\DataFiles and named the file

Accounts.txt.

 The left side of the dialog allows the user to locate the

file on disk.

 The user can then select the file in the right side of the

dialog and click the Open Button to submit the file

name to the application.

 The File menu also provides an Exit menu item that

allows the user to terminate the application.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Displaying Accounts with Credit, Debit and Zero

Balances

◦ After selecting a file name, the user can click one of the

Buttons at the bottom of the window to display the records

that match the specified account type.

◦ Figure 8.4(a) shows the accounts with debit balances.

◦ Figure 8.4(b) shows the accounts with credit balances.

◦ Figure 8.4(c) shows the accounts with zero balances.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Before we can implement the Credit Inquiry

application, we must create the file from which that

application will read records.

 Our first program builds the sequential file containing

the account information for the company’s clients.

 For each client, the program obtains through its GUI

the client’s account number, first name, last name and

balance—the amount of money that the client owes to

the company for previously purchased goods and

services.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 The data obtained for each client constitutes a “record”

for that client.

 In this application, the account number is used as the

record key—files are often maintained in order by their

record keys.

 For simplicity, this program assumes that the user

enters records in account number order.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 GUI for the Create Accounts Application
◦ The GUI for the Create Accounts application is shown in

Fig. 8.5.

◦ This application introduces the MenuStrip control which
enables you to place a menu bar in your window.

◦ It also introduces ToolStripMenuItem controls which are used
to create menus and menu items.

◦ We show how use the IDE to build the menu and menu items
in Section 8.6.

◦ There you’ll see that the menu and menu item variable names
are generated by the IDE and begin with capital letters.

◦ Like other controls, you can change the variable names in the
Properties window by modifying the (Name) property.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Interacting with the Create Accounts Application
◦ When the user initially executes this application, the Close

menu item, the TextBoxes and the Add Account Button
are disabled (Fig. 8.6(a))—the user can interact with these
controls only after specifying the file into which the records
will be saved.

◦ To begin creating a file of accounts, the user selects File >
New… (Fig. 8.6(b)), which displays a Save As dialog
(Fig. 8.6(c)) that allows the user to specify the name and
location of the file into which the records will be placed.

◦ The File menu provides two other menu items—Close to
close the file so the user can create another file and Exit to
terminate the application.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 After the user specifies a file name, the application

opens the file and enables the controls, so the user can

begin entering account information.

 Figure 8.6(d)–(h) shows the sample data being entered

for five accounts.

 The program does not depict how the records are stored

in the file.

 This is a text file, so after you close the program, you

can open the file in any text editor to see its contents.

 Figure 8.6(j) shows the file’s contents in Notepad.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Let’s now study the declaration of class CreateAccounts,
which begins in Fig. 8.7.

 We’ve split this class into several figures.

 Framework Class Library classes are grouped by functionality
into namespaces, which make it easier for you to find the classes
needed to perform particular tasks.

 Line 3 is an Imports statement, which indicates that we’re using
classes from the System.IO namespace.

 This namespace contains stream classes such as StreamWriter
(for text output) and StreamReader (for text input).

 Line 6 declares fileWriter as an instance variable of type
StreamWriter.

 We’ll use this variable to interact with the user’s file.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 You must import StreamWriter before you can use it.

 In fact, all namespaces except System must be imported into a
program to use the classes in those namespaces.

 Namespace System is imported by default into every program.

 Classes like String, Convert and Math used in earlier examples
are declared in the System namespace.

 So far, we have not used Imports statements in any of our programs,
but we have used many classes from namespaces that must be
imported.

 For example, all of the GUI controls you’ve used so far are classes in
the System.Windows.Forms namespace.

 So why were we able to compile those programs? When you create a
project, each Visual Basic project type automatically imports several
namespaces that are commonly used with that project type.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 You can see the namespaces (Fig. 8.8) that were
automatically imported into your project by right clicking
the project’s name in the Properties window, selecting
Properties from the menu and clicking the References
tab.

 The list appears under Imported namespaces:—each
namespace with a checkmark is automatically imported into
the project.

 This application is a Windows Forms application.The
System.IO namespace is not imported by default.

 To import a namespace, you can either use an Imports
statement (as in line 3 of Fig. 8.7) or you can scroll through
the list in Fig. 8.8 and check the checkbox for the
namespace you wish to import.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 When the user selects File > New…, method

NewToolStripMenuItem_Click (Fig. 8.9) is

called to handle the New… menu item’s Click event.

 This method opens the file.

 First, line 12 calls method CloseFile (Fig. 8.11,

lines 102–111) in case the user previously opened

another file during the current execution of the

application.

 CloseFile closes the file associated with this

application’s StreamWriter.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Next, lines 17–20 display the Save As dialog and get

the file name specified by the user.

 First, line 17 creates the SaveFileDialog object

(namespace System.Windows.Forms) named

fileChooser.

 Line 18 calls its ShowDialog method to display the

SaveFileDialog (Fig. 8.6(c)).

 This dialog prevents the user from interacting with any

other window in the program until the user closes it by

clicking either Save or Cancel, so it’s a modal dialog.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 The user selects the location where the file should be

stored and specifies the file name, then clicks Save.

 Method ShowDialog returns a DialogResult

enumeration constant specifying which button (Save

or Cancel) the user clicked to close the dialog.

 This is assigned to the DialogResult variable

result (line 18).

 Line 19 uses SaveFileDialog property FileName

to obtain the location and name of the file.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Lines 17–20 introduce the Using statement, which

simplifies writing code in which you obtain, use and

release a resource.

 In this case, the resource is a SaveFileDialog.

 Windows and dialogs are limited system resources that

occupy memory and should be returned to the system

(to free up that memory) as soon as they’re no longer

needed.

 In all our previous applications, this happens when the

program terminates.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 In a long running program, if resources are not returned to
the system when they’re no longer needed, then a resource
leak occurs and the resources are not available for use in
this or other programs.

 Objects that represent such resources typically provide a
Dispose method that must be called to return the
resources to the system.

 The Using statement in lines 17–20 creates a
SaveFileDialog object, uses it in lines 18–19, then
automatically calls its Dispose method to release the
object’s resources as soon as End Using is reached, thus
guaranteeing that the resources are returned to the system
and the memory they occupy is freed up.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Line 23 tests whether the user clicked Cancel by
comparing result to the constant
Windows.Forms.Dialog-Result.Cancel.

 If not, line 26 creates a StreamWriter object that we’ll
use to write data to the file.

 The two arguments are a String representing the location
and name of the file, and a Boolean indicating what to do
if the file already exists.

 If the file doesn’t exist, this statement creates the file.

 If the file does exist, the second argument (True) indicates
that new data written to the file should be appended at the
end of the file’s current contents.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 If the second argument is False and the file already exists,
the file’s contents will be discarded and new data will be
written starting at the beginning of the file.

 Lines 29–34 enable the Close menu item and the
TextBoxes and Button that are used to enter records
into the program.

 Lines 35–37 catch an IOException if there is a problem
opening the file.

 If so, the program displays an error message.
 If no exception occurs, the file is opened for writing.
 Most file-processing operations have the potential to throw

exceptions, so such operations are typically placed in Try
statements.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 After typing information in each TextBox, the user clicks
the Add Account Button, which calls method
addAccountButton_Click (Fig. 8.10) to save the
data into the file.

 If the user entered a valid account number (that is, an
integer greater than zero), lines 56–59 write the record to
the file by invoking the StreamWriter’s WriteLine
method, which writes a sequence of characters to the file
and positions the output cursor to the beginning of the next
line in the file.

 We separate each field in the record with a comma in this
example (this is known as a comma-delimited text file), and
we place each record on its own line in the file.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 If an IOException occurs when attempting to write
the record to the file, lines 64–66 Catch the exception
and display an appropriate message to the user.

 Similarly, if the user entered invalid data in the
accountNumberTextBox or balanceTextBox
lines 67–69 catch the FormatExceptions thrown by
class Convert’s methods and display an appropriate
error message.

 Lines 73–77 clear the TextBoxes and return the focus
to the accountNumberTextBox so the user can
enter the next record.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 When the user selects File > Close, method

CloseToolStripMenuItem_Click (Fig. 8.11,

lines 81–91) calls method CloseFile (lines 102–

111) to close the file.

 Then lines 85–90 disable the controls that should not be

available when a file is not open.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 When the user clicks the Exit menu item, method
ExitToolStripMenuItem_Click (lines 94–99)
responds to the menu item’s Click event by exiting the
application.

 Line 97 closes the StreamWriter and the associated file,
then line 98 terminates the program.

 The call to method Close (line 105) is located in a Try
block.

 Method Close throws an IOException if the file cannot
be closed properly.

 In this case, it’s important to notify the user that the
information in the file or stream might be corrupted.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 In the test-drive of the Credit Inquiry application

(Section 8.4) and in the overview of the Create

Accounts application (Section 8.5), we demonstrated

how menus provide a convenient way to organize the

commands that you use to interact with an application

without “cluttering” its user interface.

 Menus contain groups of related commands.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 When a command is selected, the application performs

a specific action (for example, select a file to open, exit

the application, etc.).

 Menus make it simple and straightforward to locate an

application’s commands.

 They can also make it easier for users to use

applications.

 For example, many applications provide a File menu

that contains an Exit menu item to terminate the

application.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 If this menu item is always placed in the File menu,
then users become accustomed to going to the File
menu to terminate an application.

 When they use a new application and it has a File
menu, they’ll already be familiar with the location of
the Exit command.

 The menu that contains a menu item is that menu item’s
parent menu.

 In the Create Accounts application, File is the parent
menu that contains three menu items—New…, Close
and Exit.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Adding a MenuStrip to the Form
◦ Before you can place a menu on your application, you must provide

a MenuStrip to organize and manage the application’s menus.

◦ Double click the MenuStrip control in the Toolbox.

◦ This creates a menu bar (the MenuStrip) across the top of the

Form (below the title bar; Fig. 8.12) and places a MenuStrip icon

in the component tray (the gray area) at the bottom of the designer.

◦ You can access the MenuStrip’s properties in the Properties

window by clicking the MenuStrip icon in the component tray.

◦ We set the MenuStrip’s (Name) property to

applicationMenuStrip.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Adding a ToolStripMenuItem to MenuStrip
◦ You can now use Design mode to create and edit menus for

your application.

◦ To add a menu, click the Type Here TextBox (Fig. 8.12) in
the menu bar and type the menu’s name.

◦ For the File menu, type &File (we’ll explain the & in a
moment) then press Enter.

◦ This creates a ToolStripMenuItem that the IDE
automatically names FileToolStripMenuItem.

◦ Additional Type Here TextBoxes appear, allowing you to
add menu items to the menu or add more menus to the menu
bar (Fig. 8.13).

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Most menus and menu items provide access shortcuts

(or keyboard shortcuts) that allow users to open a menu

or select a menu item by using the keyboard.

 For example, most applications allow you to open the

File menu by typing Alt + F.

 The letter that’s used as the shortcut is underlined in the

GUI when you press the Alt key.

 To specify the shortcut key, type an ampersand (&)

before the character to be underlined—so &File

underlines the F in File.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Adding Menu Items to the File Menu

◦ To add the New…, Close and Exit menu items to the File menu,

type &New..., &Close and E&xit (one at a time) into the

TextBox that appears below the File menu.

◦ When you press Enter after each, a new TextBox appears below

that item so you can add another menu item.

◦ Placing the & before the x in Exit makes the x the access key—x is

commonly used as the access key for the Exit menu item.

◦ The menu editor automatically names the ToolStripMenuItems

for the New…, Close and Exit menu items as

NewToolStripMenuItem, CloseToolStripMenuItem and

ExitToolStripMenuItem, respectively.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Creating Event Handlers for the Menu Items

◦ Like Buttons, menu items have Click events that notify the

program when an item is selected.

◦ To create the event handler for a menu item so the application

can respond when the menu item is selected, double click the

menu item in the Windows Forms Designer then insert your

event handling code in the new method’s body.

◦ In fact, the same event handler method can be used for

Buttons and menu items that perform the same task.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Now that we’ve presented the code for creating the file

of accounts, let’s develop the code for the Credit

Inquiry application which reads that file.

 Much of the code in this example is similar to the

Create Accounts application, so we’ll discuss only the

unique aspects of the application.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 The declaration of class CreditInquiry begins in
Fig. 8.14.

 Line 4 imports the System.IO namespace, which
contains the StreamReader class that we’ll use to
read from the text file in this example.

 Line 7 declares the instance variable fileName in
which we store the file name selected by the user (that
is, credit manager) in the Open dialog (Fig. 8.3(c)).

 Lines 9–13 declare the enumeration AccountType,
which creates constants that represent the types of
accounts that can be displayed.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 When the user selects File > Open…, the event

handler OpenToolStripMenuItem_Click

(Fig. 8.15, lines 16–33) executes.

 Line 22 creates an OpenFileDialog, and line 23 calls its

ShowDialog method to display the Open dialog, in

which the user selects the file to open.

 Line 24 stores the selected file name in fileName.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 When the user clicks the Credit Balances, Debit

Balances or Zero Balances Button, the program

invokes the corresponding event-handler method—

credit-Balances-Button_Click (Fig. 8.16, lines

43–47), debitBalancesButton_Click (lines 50–54)

or zero-Balances-Button_Click (lines 57–61).

 Each of these methods calls method DisplayAccounts

(Fig. 8.17), passing a constant from the AccountType

enumeration as an argument.

 Method DisplayAccounts then displays the matching

accounts.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Method DisplayAccounts (Fig. 8.17, lines 64–
104) receives as an argument an AccountType
constant specifying the type of accounts to display.

 The method reads the entire file one record at a time
until the end of the file is reached, displaying a record
only if its balance matches the type of accounts
specified by the user.

 Opening the File
◦ Line 65 declares the StreamReader variable fileReader

that will be used to interact with the file.

◦ Line 72 opens the file by passing the fileName instance
variable to the StreamReader constructor.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Reading and Processing Records

◦ The company could have many separate files containing

account information.

◦ So this application does not know in advance how many

records will be processed.

◦ In file processing, we receive an indication that the end of the

file has been reached when we’ve read the entire contents of a

file.

◦ For a StreamReader, this is when its EndOfStream

property returns True (line 75).

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 As long as the end of the file has not been reached, line

76 uses the StreamReader’s ReadLine method

(which returns a String) to read one line of text from

the file.

 Recall from Section 8.5 that a each line of text in the

file represents one “record” and that the record’s fields

are delimited by commas.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 To access the record’s data, we need to break the String
into its separate fields.

 This is known as tokenizing the String.

 Line 77 breaks the line of text into fields using String
method Split, which receives a delimiter as an argument.

 In this case, the delimiter is the character literal ","c—
indicating that the delimiter is a comma.

 A character literal looks like a String literal that contains
one character and is followed immediately by the letter c.

 Method Split returns an array of Strings representing
the tokens, which we assign to array variable fields.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Preparing to Display the Record
◦ Lines 80–83 assign the tokens to the local variables
accountNumber, firstName, lastName and balance.

◦ Line 85 calls method ShouldDisplay (lines 107–119) to
determine whether the current record should be displayed.

◦ If so, lines 86–88 display the record.

◦ If the balance is negative, the currency format specifier (C) formats
the value in parentheses (Fig. 8.4(b)).

◦ Method ShouldDisplay receives the balance and the
AccountType as arguments.

◦ If the balance represents the specified AccountType, the method
returns True and the record will be displayed by method
DisplayAccounts.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Ensuring that the File is Closed Properly

◦ When performing file processing, exceptions can occur.

◦ In this example, if the program is unable to open the file or

unable to read from the file, IOExceptions will occur.

◦ For this reason, file-processing code normally appears in a

Try block.

◦ Regardless of whether a program experiences exceptions while

processing a file, the program should close the file when it’s no

longer needed.

◦ Suppose we put the statement that closes the StreamReader

after the Do While…Loop at line 91.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 If no exceptions occur, the Try block executes normally and the
file is closed.

 However, if an exception occurs, the Try block terminates
immediately—before the StreamReader can be closed.

 We could duplicate the statement that closes the
StreamReader in the Catch block, but this would make the
code more difficult to modify and maintain.

 We could also place the statement that closes the
StreamReader after the Try statement; however, if the Try
block terminated due to a Return statement, code following the
Try statement would never execute.

 To address these problems, Visual Basic’s exception-handling
mechanism provides the optional Finally block, which—if
present—is guaranteed to execute regardless of whether the Try
block executes successfully or an exception occurs.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 This makes the Finally block an ideal location in which
to place resource release code for resources that are
acquired and manipulated in the corresponding Try block
(such as files).

 By placing the statement that closes the StreamReader
in a Finally block, we ensure that the file will always be
closed properly.

 Local variables in a Try block cannot be accessed in the
corresponding Finally block.

 For this reason, variables that must be accessed in both a
Try block and its corresponding Finally block should
be declared before the Try block, as we did with the
StreamReader variable (line 65).

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

 Relationship Between the Using and Try Statements
◦ In Section 8.5.4, we discussed how a Using statement manages

resources.
◦ The Using statement is actually a shorthand notation for a Try

statement with a Finally block.
◦ For example, the Using statement in Fig. 8.15 (lines 22–25) is

equivalent to the following code
 Dim fileChooser As New OpenFileDialog()

Try
 result = fileChooser.ShowDialog()
 ' get specified file name
 fileName = fileChooser.FileName
Finally
 fileChooser.Dispose()
End Try

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

