Files

Visual Basic 2010 How to Program

© 1992-2011 by Pearson Education, Inc. All Rights Reserved.

OBJECTIVES

In this chapter you'll learn:

= To use file processing to implement a business application.

= To create, write to and read from files.

= To become familiar with sequential-access file processing.

= To use classes StreamWri ter and StreamReader to write text to and read text from files.
= To organize GUI commands in menus.

= To manage resources with Using statements and the Finally block of a Try statement.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.1
8.2
8.3
8.4
8.5

8.6
8.7

8.8

Introduction

Data Hierarchy

Files and Streams

Test-Driving the credit Inquiry Application
Writing Data Sequentially to a Text File

8.5.1
853
853
8.5.5
8.5.6

Class CreateAccounts

Opening the File

Managing Resources with the Using Statement
Adding an Account to the File

Closing the File and Terminating the Application

Building Menus with the Windows Forms Designer
credit Inquiry Application: Reading Data Sequentially from a Text File

8.7.1 Implementing the Credit Inquiry Application
8.7.2 Selecting the File to Process

8.7.3 Specifying the Type of Records to Display
8.7.4 Displaying the Records

Wrap-Up

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

3.1 Introduction

» Variables and arrays offer only temporary storage of data in
memory—the data is lost, for example, when a local
variable “goes out of scope” or when the program
terminates.

» By contrast, files (and databases, which we cover In
Chapter 12) are used for long-term retention of large (and
often vast) amounts of data, even after the program that
created the data terminates, so data maintained in files is
often called persistent data.

» Computers store files on secondary storage devices, such as
magnetic disks, optical disks (like CDs, DVDs and Blu-ray
Discs™), USB flash drives and magnetic tapes.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

3.1 Introduction

» In this chapter, we explain how to create, write to and
read from data files.

» We continue our treatment of GUIs, explaining how to
organize commands in menus, and showing how to use
the Windows Forms Designer to rapidly create menus.

» We also discuss resource management.

» As programs execute, they often acquire resources,
such as memory and files, that need to be returned to
the system so they can be reused at a later point.

» We show how to ensure that resources are properly
returned to the system when they’re no longer needed.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.2 Data Hierarchy

» Ultimately, all data items that computers process are
reduced to combinations of Os and 1s.

» This occurs because 1t’s simple and economical to build
electronic devices that can assume two stable states—
one represents 0 and the other represents 1.

» It’s remarkable that the impressive functions performed
by computers involve only the most fundamental
manipulations of Os and 1s!

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.2 Data Hierarchy

» Bits

> The smallest data item that computers support is called a bit,
short for “binary digit”—a digit that can assume either the
value O or the value 1.

o Computer circuitry performs various simple bit manipulations,
such as examining the value of a bit, setting the value of a bit
and reversing a bit (from 1 to O or from O to 1).

> For more information on the binary number system, see
Appendix C, Number Systems.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.2 Data Hierarchy

» Characters

> Programming with data in the low-level form of bits is
cumbersome.

o It’s preferable to program with data in forms such as decimal
digits (thatis, 0, 1, 2, 3,4, 5, 6, 7, 8 and 9), letters (that is,
the uppercase letters A—Z and the lowercase letters a—z) and
special symbols (thatis, $,@, %, &, *, (,),-,+ ", :,?,/
and many others).

> Digits, letters and special symbols are referred to as characters.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.2 Data Hierarchy

» The set of all characters used to write programs and
represent data items on a particular computer is called that
computer’s character set.

» Every character in a computer’s character set 1s represented
as a pattern of Os and 1s.

» Bytes are composed of eight bits.

» Visual Basic uses the Unicode character set, in which each
character is composed of two bytes (and hence 16 bits).

» You create programs and data items with characters;
computers manipulate and process these characters as
patterns of bits.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.2 Data Hierarchy

» Fields

> Just as characters are composed of bits, fields are composed of
characters.

- Afield is a group of characters that conveys meaning.
> For example, a field consisting of uppercase and lowercase
letters can represent a person’s name.

» Data Hierarchy

- Data items processed by computers form a data hierarchy
(Fig. 8.1), in which data items become larger and more
complex In structure as we progress up the hierarchy from bits
to characters to fields to larger data aggregates.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

Sally Black

Tom Blue
—= Judy Green File
Iris Orange
Randy Red
Judy Green Record
Judy Field

T

00000000 01001010 Urnicode character |

!

1 Bit

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.2 Data Hierarchy

» Records
> Typically, a record is composed of several related fields.
> In a payroll system, for example, a record for a particular
employee might include the following fields:
- Employee identification number
- Name
- Address
- Hourly pay rate
- Number of exemptions claimed
- Year-to-date earnings
- Amount of taxes withheld

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.2 Data Hierarchy

» In the preceding example, each field is associated with the same
employee.

» A data file can be implemented as a group of related records.

» A company’s payroll file normally contains one record for each
employee.

» Companies typically have many files, some containing millions,
billions or even trillions of characters of information.

» To facilitate the retrieval of specific records from a file, at least
one field in each record can be chosen as a record key, which
Identifies a record as belonging to a particular person or entity
and distinguishes that record from all others.

» For example, in a payroll record, the employee identification
number normally would be the record key.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.2 Data Hierarchy

» Sequential Files
> There are many ways to organize records in a file.

> A common organization is called a sequential file in which
records typically are stored in order by a record-key field.

> In a payroll file, records usually are placed in order by
employee identification number.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.2 Data Hierarchy

» Databases

O

o

Most businesses use many different files to store data.

For example, a company might have payroll files, accounts
receivable files (listing money due from clients), accounts payable
files (listing money due to suppliers), inventory files (listing facts
about all the items handled by the business) and many other files.
Related files often are stored in a database.

A collection of programs designed to create and manage databases is
called a database management system (DBMS).

You’ll learn about databases in Chapter 12 and you’ll do additional
work with databases in Chapter 13, Web App Development with
ASP.NET, and the online Web Services chapter.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.3 Files and Streams

» Visual Basic views a file simply as a sequential stream of

>

bytes (Fig. 8.2).

Depending on the operating system, each file ends either
with an end-of-file marker or at a specific byte number
that’s recorded in a system-maintained administrative data

structure for the file.

For example, the Windows o
the number of bytes in a file.

You open a file from a Visua

perating system keeps track of

Basic program by creating an

object that enables communication between a program and

a particular file, such asan o

bject of class

Streamwriter to write text to a file or an object of class
StreamReader to read text from a file.

© 1992-2011 by Pearson Education, Inc.

All Rights Reserved.

end-of-file marker

Fig. 8.2 | Visual Basic’s view of an n-byte file.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.4 Test-Driving the Credit Inquiry
Application

» A credit manager would like you to implement a Credit
Inquiry application that enables the credit manager to
separately search for and display account information for
customers with

o debit balances—customers who owe the company money for
previously received goods and services

o zero balances—customers who do not owe the company money
o credit balances—customers to whom the company owes money

» The application reads records from a text file then displays
the contents of each record that matches the type selected
by the credit manager, whom we shall refer to from this
point forward simply as “the user.”

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.4 Test-Driving the Credit Inquiry
Application

» Opening the File
> When the user initially executes the Credit Inquiry
application, the Buttons at the bottom of the window are
disabled (Fig. 8.3(a))—the user cannot interact with them until
a file has been selected.

> The company could have several files containing account data,
so to begin processing a file of accounts, the user selects
Open... from the application’s custom File menu (Fig. 8.3(b)),
which you’ll create in Section 8.6.

> This displays an Open dialog (Fig. 8.3(c)) that allows the user
to specify the name and location of the file from which the

records will be read.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.4

Test-Driving the Credit Inquiry

Application

» In our case, we stored the file in the folder

C

:\DataF1i les and named the file

ACcounts. tXT.

» T
fi
» T

ne left side of the dialog allows the user to locate the
e on disk.

ne user can then select the file in the right side of the

dialog and click the Open Button to submit the file
name to the application.

» The File menu also provides an Exit menu item that
allows the user to terminate the application.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

a) Initial GUI with Buttons |
disabled until the user selects a
file from which to read records

b) Selecting the Open... menu (&5
item from the File menu displays
the Open dialog in part (c)

Fig. 8.3 | GUI for the Credit Inquiry application. (Part | of 2.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

Organze v New folder

|, » Computer » Local Disk (C:) » DataFiles

Date modified Type Size

& Homegroup =

JARNNAINIM..TeaDocmit 108

1S Computer
&, Local Disk (C)
@0 DVD Drive (E)VS
& allusers (\anteat|
(* Shared Folders (\
=
€ Network
™ PAULWINIVM |
™ ymware-host .

File name: Accounts.ba

-

[mkljl Cancel |

Fig. 8.3 | GUI for the Credit Inquiry application. (Part 2 of 2.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.4 Test-Driving the Credit Inquiry
Application

» Displaying Accounts with Credit, Debit and Zero
Balances

- After selecting a file name, the user can click one of the
Buttons at the bottom of the window to display the records
that match the specified account type.

> Figure 8.4(a) shows the accounts with debit balances.
> Figure 8.4(b) shows the accounts with credit balances.
> Figure 8.4(c) shows the accounts with zero balances.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

a) Clicking the Debit Balances
Button displays the accounts with
positive balances (that is, the
people who owe the company
money)

The accounts are:
200 Stacey Blue §31433
400 Dave Yellow $25834

500 Sam Red §3498

[Debt&lmasd[Credit Balances J[Zero Balances]

Fig. 8.4 | GUI for credit Inquiry application. (Part | of 3.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

b) Clicking the Credit Balances
Button displays the accounts
with negative balances (that is,
the people to whom the company
owes money)

The accounts are:
100 Nany

Brown

(524.54)

| Debit Balances

e

Negative currency values are displayed in
parentheses by default

Fig. 8.4 | GUI for Credit Inquiry application. (Part 2 of 3.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

c) Clicking the Zero Balances
Button displays the accounts
with zero balances (that is, the
people who do not have a
balance because they've already
paid or have not had any recent
transactions)

300

The accounts are:

Doug Green $0.00

| Debit Balances | | CreditBalances | | Zero Balances I_}l

Fig. 8.4 | GUI for Credit Inquiry application. (Part 3 of 3.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.5 Writing Data Sequentially to a Text
File

» Before we can implement the Credit Inquiry
application, we must create the file from which that

application will read records.

» Our first program builds the sequential file containing
the account information for the company’s clients.

» For each client, the program obtains through its GUI
the client’s account number, first name, last name and
balance—the amount of money that the client owes to
the company for previously purchased goods and
services.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.5 Writing Data Sequentially to a Text
File
» The data obtained for each client constitutes a “record”
for that client.

» In this application, the account number is used as the
record key—files are often maintained in order by their

record keys.
» For simplicity, this program assumes that the user
enters records In account number order.

\ .
© 1992-2011 by Pearson Education, Inc.
\ \ All Rights Reserved.
WY

8.5 Writing Data Sequentially to a Text
File

» GUI for the Create Accounts Application

> The GUI for the Create Accounts application is shown in
Fig. 8.5.

> This application introduces the MenuStrip control which
enables you to place a menu bar in your window.

> It also introduces ToolStripMenultem controls which are used
to create menus and menu items.

> We show how use the IDE to build the menu and menu items
In Section 8.6.

> There you’ll see that the menu and menu item variable names
are generated by the IDE and begin with capital letters.

> Like other controls, you can change the variable names in the
Properties window by modifying the (Name) property.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

. . applicationMenuStrip
FileToolStripMenulten (on the screen this control has
NewToo1StripMenuItem New... a slightly lighter color than the
CloseToolStripMenultem Close \
ExitToolStripMenultem Exit "N\ These controls are disabled
tast name: ; ~—4=> until the user specifies a file
Balance: i % using the New... option in the
/ File menu
File
accountNumberLabel ——f— Account number; 100 ~—t— accountNumberTextBox
firstNameLabel ——}— First name Nany —1— firstNameTextBox
lastNamelLabel ——— Last name: Brown —+— lastNameTextBox
balancelLabel —1— Balance -24.54) —1— balanceTextBox
| Add Account Er— addAccountButton

Fig. 8.5 | GUI for the Create Accounts application.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.5 Writing Data Sequentially to a Text
File

» Interacting with the Create Accounts Application

> When the user initially executes this application, the Close
menu item, the TextBoxes and the Add Account Button
are disabled (Fig. 8.6(a))—the user can interact with these
controls only after specifying the file into which the records
will be saved.

> To begin creating a file of accounts, the user selects File >
New... (Fig. 8.6(b)), which displays a Save As dialog
(Fig. 8.6(c)) that allows the user to specify the name and
location of the file into which the records will be placed.

> The File menu provides two other menu items—Close to
close the file so the user can create another file and Exit to
terminate the application.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.5 Writing Data Sequentially to a Text
File

» After the user specifies a file name, the application
opens the file and enables the controls, so the user can
begin entering account information.

» Figure 8.6(d)—(h) shows the sample data being entered
for five accounts.

» The program does not depict how the records are stored
In the file.

» This Is a text file, so after you close the program, you
can open the file in any text editor to see its contents.

» Figure 8.6(j) shows the file’s contents in Notepad.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

a) Initial GUI
before user
selects a file

Account number:

First name

b) Selecting
New... to
create a file

Fig. 8.6 | User creating a text file of account information. (Part | of 4.)

© 1992-2011 by Pearson Education, Inc.

All Rights Reserved.

c) Save As dialog displayed when user selects New... from the File menu.

&L=/ » Computer » Local Disk (C) » DataFies v | %9 || Search DotaFites]

Organize v New folder 5= - o
o Music * Name Date modified Type Size
& Pictures
. Videos No items match your search.

&, Homegroup

& Computer 5
& Local Disk (C)
90 DVD Drive (E) VS
Lt allusers (\\anteat
x¥ Shared Folders [\ il

Filename Accounts.bd .
Swesstpe | B i
~ Hide Folders [Save & . Cancel]

Fig. 8.6 | User creating a text file of account information. (Part 2 of 4.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

Account number: 100

First name Nany
Last name Brown
Balance: -24.54|

Add Account

Account number: 200

First name Stacey
Last name: Blue
Balance: 214.33
Add Account [

Account number: 300

First name Doug
Last name Green
Balance: 0.00|
dd Accoun |

Fig. 8.6 | User creating a text file of account information. (Part 3 of 4.)

© 1992-2011 by Pearson Education, Inc.

All Rights Reserved.

Account number: 400

First name Dave
Last name Yellow
Balance: 258.34|

Add Account

First name Sam

Last name: Red

Balance: 2498
AddAKGNlib

j) The Accounts. txt file
open in Notepad to show
how the records were
written to the file. Note the
comma separators between
the data items

 File Edit Format View Help

1LOO,Nany,Brown,-24. 54
1 200,stacey,Blue,314,.33

300,poug,Green,0.00

400,Dpave,vellow,258. 34

500,Sam,Red,34.98

« ’

Fig. 8.6 | User creating a text file of account information. (Part 4 of 4.)

© 1992-2011 by Pearson Education, Inc.

All Rights Reserved.

8.5.1 Class CreateAccounts

» Let’s now study the declaration of class CreateAccounts,
which begins in Fig. 8.7.

» We’ve split this class into several figures.

» Framework Class Library classes are grouped by functionality
Into namespaces, which make it easier for you to find the classes
needed to perform particular tasks.

» Line 3 Is an Imports statement, which indicates that we’re using
classes from the System.lO namespace.

» This namespace contains stream classes such as Stream\Writer
(for text output) and StreamReader (for text input).

» Line 6 declares f1lewriter as an instance variable of type
Streamwriter.

» We’ll use this variable to interact with the user’s file.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

" Fig. 8.7: CreateAccounts.vb
" Program that creates a text file of account information.
Imports System.IO ' using classes from this namespace

Public Class CreateAccounts

Dim fileWriter As StreamWriter ' writes data to text file

SN Unh WN -

Fig. 8.7 | Program that creates a text file of account information.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

3.5.2 Class CreateAccounts

» You must import Streamwriter before you can use it.

» In fact, all namespaces except System must be imported into a
program to use the classes in those namespaces.

» Namespace System is imported by default into every program.

» Classes like String, Convert and Math used in earlier examples
are declared in the Sy stem namespace.

» So far, we have not used Imports statements in any of our programs,
but we have used many classes from namespaces that must be
Imported.

» For example, all of the GUI controls you’ve used so far are classes in
the System.windows.Forms namespace.

» S0 why were we able to compile those programs? When you create a
project, each Visual Basic project type automatically imports several
namespaces that are commonly used with that project type.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

3.5.2 Class CreateAccounts

» You can see the namespaces (Fig. 8.8) that were
automatically imported into your project by right clicking
the project’s name in the Properties window, selecting
PLoperties from the menu and clicking the References
tab.

» The list appears under Imported namespaces.—each
namespace with a checkmark is automatically imported into
the project.

» This application is a Windows Forms application.The
System. IO namespace is not imported by default.

» To Import a namespace, you can either use an Imports
statement (as in line 3 of Fig. 8.7) or you can scroll through
the list in Fig. 8.8 and check the checkbox for the

namespace you wish to import.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

PPACereR Imported namespaces =
Compile Microsoft. VisualBasic
Debug [.I Microsoft VisualBasic o
V| System |
References |[¥] System.Collections
|[¥] System.Collections.Generic
Resources V| System.Data
|¥] System.Drawing
Settings |[¥] System.Diagnostics s
< V| System.Windows. Forms
{¥] System.Ling - <

Fig. 8.8 | Viewing the namespaces that are pre-Imported into a
Windows Forms application.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.5.3 Opening the File

» When the user selects File > New..., method
NewToolStripMenuItem_Click (Fig. 8.9)is
called to handle the New... menu item’s C11 ck event.

» This method opens the file.

» First, line 12 calls method CloseF1 le (Fig. 8.11,
lines 102—-111) in case the user previously opened
another file during the current execution of the
application.

» CloseF1 le closes the file associated with this
application’s Streamwr1i ter.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8 ' create a new file in which accounts can be stored

9 Private Sub NewToolStripMenultem_Click(ByVal sender As System.Object,
10 ByvVal e As System.EventArgs) Handles NewToolStripMenuItem.Cl1ick
11

12 CloseFile() ' ensure that any prior file is closed

13 Dim result As DialogResult ' stores result of Save dialog

14 Dim fileName As String ' name of file to save data

15

16 " display dialog so user can choose the name of the file to save
17 Using fileChooser As New SaveFileDialog()

18 result = fileChooser.ShowDialog()

19 fileName = fileChooser.FileName ' get specified file name

20 End Using ' automatic call to fileChooser.Dispose() occurs here
21

22 " if user did not click Cancel

23 If result <> Windows.Forms.DialogResult.Cancel Then

24 Try

25 ' open or create file for writing

26 fileWriter = New StreamWriter(fileName, True)

27

Fig. 8.9 | Using the SaveFileDialog to allow the user to select the
file into which records will be written. (Part | of 2.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

28 ' enable controls

29 CloseToolStripMenultem.Enabled = True

30 addAccountButton.Enabled = True

31 accountNumberTextBox.Enabled = True

32 firstNameTextBox.Enabled = True

33 lastNameTextBox.Enabled = True

34 balanceTextBox.Enabled = True

35 Catch ex As IOException

36 MessageBox.Show('trror C s ,
37 MessageBoxButtons . 0K, Messag [or)
38 End Try

39 End If

40 End Sub ' NewToolStripMenultem_Click

41

Fig. 8.9 | Using the SaveFileDialog to allow the user to select the
file into which records will be written. (Part 2 of 2.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.5.3 Opening the File

» Next, lines 17-20 display the Save As dialog and get
the file name specified by the user.

» First, line 17 creates the SaveFileDialog object
(namespace System.wWindows . Forms) named
fi1leChooser.

» Line 18 calls its ShowDialog method to display the
SaveFileD1alog (Fig. 8.6(c)).

» This dialog prevents the user from interacting with any
other window in the program until the user closes it by
clicking either Save or Cancel, so it’s a modal dialog.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.5.3 Opening the File

» The user selects the location where the file should be
stored and specifies the file name, then clicks Save.

» Method ShowD1alog returns a DialogResult
enumeration constant specifying which button (Save
or Cancel) the user clicked to close the dialog.

» This is assigned to the D1alogResu |t variable
result (line 18).

» Line 19 uses SaveF1ileD1alog property FileName
to obtain the location and name of the file.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.5.4 Managing Resources with the
Us1ng Statement

» Lines 17-20 introduce the Using statement, which
simplifies writing code in which you obtain, use and
release a resource.

» In this case, the resource isa SaveF1ileDialog.

» Windows and dialogs are limited system resources that
occupy memory and should be returned to the system
(to free up that memory) as soon as they’re no longer
needed.

» In all our previous applications, this happens when the
program terminates.

;‘ e
© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

......

8.5.4 Managing Resources with the
Us1ng Statement

» Ina long running program, if resources are not returned to
the system when they’re no longer needed, then a resource
leak occurs and the resources are not available for use in
this or other programs.

» Objects that represent such resources typically provide a
D1spose method that must be called to return the
resources to the system.

» The Us1ng statement in lines 17-20 creates a
SaveF1leD1alog object, uses it in lines 18-19, then
automatically calls its D1spose method to release the
object’s resources as soon as End Us1ng is reached, thus
guaranteeing that the resources are returned to the system
and the memory they occupy is freed up.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.5.4 Managing Resources with the
Us1ng Statement

>

Line 23 tests whether the user clicked Cancel by
comparing result to the constant
windows.Forms.Dialog-Result.Cancel.

If not, line 26 creates a Streamwriter object that we’ll
use to write data to the file.

The two arguments are a String representing the location
and name of the file, and a Boo 1 ean indicating what to do
If the file already exists.

If the file doesn’t exist, this statement creates the file.

If the file does exist, the second argument (True) indicates
that new data written to the file should be appended at the
end of the file’s current contents.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.5.4 Managing Resources with the
Us1ng Statement

» If the second argument is False and the file already exists,
the file’s contents will be discarded and new data will be
written starting at the beginning of the file.

» Lines 29-34 enable the Close menu item and the
TextBoxes and Button that are used to enter records
Into the program.

» Lines 35-37 catch an IOException if there Is a problem
opening the file.

» If so, the program displays an error message.

» If no exception occurs, the file is opened for writing.

» Most file-processing operations have the potential to throw

exceptions, so such operations are typically placed in Try
statements.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.9.5 Adding an Account to the File

» After typing information in each TextBoX, the user clicks
the Add Account Button, which calls method
addAccountButton_Cl11ck (Fig. 8.10) to save the
data into the file.

» If the user entered a valid account number (that is, an
Integer greater than zero), lines 56-59 erte the record to
the file by invoking the Streamwriter’s WriteLine
method, which writes a sequence of characters to the file
and positions the output cursor to the beginning of the next
line in the file.

» We separate each field in the record with a comma in this
example (this is known as a comma-delimited text file), and
we place each record on its own line in the file.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.9.5 Adding an Account to the File

» If an TOExcept1on occurs when attempting to write
the record to the file, lines 64-66 Catch the exception
and display an appropriate message to the user.

» Similarly, if the user entered invalid data in the
accountNumberTextBox or balanceTextBox
lines 67—69 catch the FormatExceptions thrown by
class Convert’s methods and display an appropriate
error message.

» Lines 73—77 clear the TextBoxes and return the focus
to the accountNumberTextBoX so the user can
enter the next record.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

add an account to the file
Private Sub addAccountButton_Click(ByVal sender As System.Object,
ByvVal e As System.EventArgs) Handles addAccountButton.Click

" determine whether TextBox account field is empty

If accountNumberTextBox.Text <> String.tmpty Then
" try to store record to file
Try

get account number

Dim accountNumber As Integer =
Convert.ToInt32(accountNumberTextBox.Text)

If accountNumber > O Then ' valid account number?

' write record data to file separating fields by commas

fileWriter.WriteLine(accountNumber & @ &
firstNameTextBox.Text & = &
lastNameTextBox.Text & @ &
Convert.ToDecimal (balanceTextBox.Text))
Else
MessageBox.Show(“Invalid Account Number”, "Error’,
MessageBoxButtons.0K, Me Icon.Error)
End If

Fig. 8.10 | Writing an account record to the file. (Part | of 2.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

64 Catch ex As IOException

65 MessageBox Show(or Writing to File"”, "Error",

66 MessageBoxBut t« e,‘-f‘i-{, Messag on ror)

67 Catch ex As FormatExcept1on

68 MessageBox Show(id account ber or b ,
69 Format Error", s. 0K, (Icon
70 End Try

71 End If

72

73 accountNumberTextBox.Clear()

74 firstNameTextBox.Clear()

75 TastNameTextBox.Clear()

76 balanceTextBox.Clear()

7 accountNumberTextBox. Focus()

78 End Sub ' addAccountButton_Click

79

Fig. 8.10 | Writing an account record to the file. (Part 2 of 2.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

<

8.5.6 Closing the File and Terminating the
Application

» When the user selects File > Close, method
CloseToolStripMenuItem_Click (Fig. 8.11,
lines 81-91) calls method CloseF11e (lines 102—
111) to close the file.

» Then lines 85-90 disable the controls that should not be
available when a file iIs not open.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

80 " close the currently open file and disable controls

81 Private Sub CloseToolStripMenultem_Click(ByVal sender As System.Object,
82 ByVal e As System.EventArgs) Handles CloseToolStripMenuIltem.Click
83

84 CloseFile() ' close currently open file

85 CloseToolStripMenultem.Enabled = False

86 addAccountButton.Enabled = False

87 accountNumberTextBox.Enabled = False

88 firstNameTextBox.Enabled = False

89 TastNameTextBox.Enabled = False

90 balanceTextBox.Enabled = False

91 End Sub ' CloseToolStripMenultem_Click

92

93 ' exit the application

94 Private Sub ExitToolStripMenultem_Click(ByVal sender As System.Object,
95 ByvVal e As System.EventArgs) Handles ExitToolStripMenultem.Click
96

97 CloseFile() ' close the file before terminating application

98 Application.Exit() ' terminate the application

929 End Sub ' ExitToolStripMenultem_Click

100

Fig. 8.11 | Closing the file and terminating the application. (Part | of 2.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

101
102
103
104
105
106
107
108
109
1o
i

close the file
Sub CloseFile()
If fileWriter IsNot Nothing Then
Try
fileWriter.Close() ' close StreamWriter
Catch ex As IOException
MessageBox.Show("Crror closing

lessageBoxButtons . 0K

’

End Try
End If
End Sub ' CloseFile

112 End Class ' CreateAccounts

Fig. 8.11 | Closing the file and terminating the application. (Part 2 of 2.)

© 1992-2011 by Pearson Education, Inc.

All Rights Reserved.

<

8.5.6 Closing the File and Terminating the
Application

» When the user clicks the Exit menu item, method
Ex1tToolStripMenuItem_Cl1ick (lines 94-99)
responds to the menu item’s C11ck event by exiting the
application.

» Line 97 closes the Streamwriter and the associated file,
then line 98 terminates the program.

» The call to method Close (line 105) is located ina Try
block.

» Method Close throws an TOException if the file cannot
be closed properly.

» In this case, 1t’s important to notify the user that the
Information in the file or stream might be corrupted.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.6 Building Menus with the Windows
Forms Designer

» In the test-drive of the Credit Inquiry application
(Section 8.4) and in the overview of the Create
Accounts application (Section 8.5), we demonstrated
how menus provide a convenient way to organize the
commands that you use to interact with an application
without “cluttering” 1ts user interface.

» Menus contain groups of related commands.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.6 Building Menus with the Windows
Forms Designer

» When a command is selected, the application performs
a specific action (for example, select a file to open, exit
the application, etc.).

» Menus make it simple and straightforward to locate an
application’s commands.

» They can also make It easier for users to use
applications.

» For example, many applications provide a File menu
that contains an Exit menu item to terminate the
application.

;‘ e
© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

......

8.6 Building Menus with the Windows
Forms Designer

» If this menu item is always placed in the File menu,
then users become accustomed to going to the File
menu to terminate an application.

» When they use a new application and it has a File
menu, they’ll already be familiar with the location of
the Exit command.

» The menu that contains a menu item 1s that menu i1item’s

parent menu.

» In the Create Accounts application, File is the parent
menu that contains three menu items
and Exit.

New..., Close

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.6 Building Menus with the Windows
Forms Designer

» Adding a MenuStriptothe Form

O

Before you can place a menu on your application, you must provide
a MenuStrip to organize and manage the application’s menus.
Double click the MenuStrip control in the Toolbox.

This creates a menu bar (the MenuStr1ip) across the top of the
Form (below the title bar; Fig. 8.12) and places a MenuStrip icon
In the component tray (the gray area) at the bottom of the designer.
You can access the MenuStrip’s properties in the Properties
window by clicking the MenuStrip icon in the component tray.

We set the MenuStrip’s (Name) property to
applicationMenuStrip.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.6 Building Menus with the Windows
Forms Designer

» Adding a Too/StripMenuItemto MenuStrip

> You can now use Design mode to create and edit menus for
your application.

> To add a menu, click the Type Here TextBox (Fig. 8.12) in
the menu bar and type the menu’s name.

> For the File menu, type &F1 1e (we’ll explain the & in a
moment) then press Enter.

> This creates a Too1StripMenuItem that the IDE
automatically names F1leToolStripMenuItem.

- Additional Type Here TextBoxes appear, allowing you to
add menu items to the menu or add more menus to the menu
bar (Fig. 8.13).

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.6 Building Menus with the Windows
Forms Designer

» Most menus and menu items provide access shortcuts
(or keyboard shortcuts) that allow users to open a menu
or select a menu item by using the keyboard.

» For example, most applications allow you to open the
File menu by typing Alt + F.

» The letter that’s used as the shortcut 1s underlined 1n the
GUI when you press the Alt key.

» To specify the shortcut key, type an ampersand (&)
before the character to be underlined—so &F1 1le
underlines the F In File.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

Creserccountsyb (Desgnl < [

Type menu name ¥
in TextBox B

i | ‘ MenuStrip

MenuStripiconin —

—

= MenuStripl
component tray

i

Fig. 8.12 | Editing menus in Visual Studio.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

Creaenccounts.ve Desgn) < | NN

TextBox for
adding another
top-level menu

Place the & character
before a letter to
underline it in the
menu, so that the
letter can be used as TextBox for
an access shortcut \ adding a menu
item to the
existing top-
level menu

d]v

MenuStripl

Fig. 8.13 | Adding Too1StripMenuIltems toa MenuStrip.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.6 Building Menus with the Windows
Forms Designer

» Adding Menu Items to the File Menu

> To add the New..., Close and Exit menu items to the File menu,
type &\ew. . ., &Close and E&x1t (one at a time) into the
TextBox that appears below the File menu.

> When you press Enter after each, a new 7extBox appears below
that item so you can add another menu item.

> Placing the & before the x in Ex1t makes the x the access key—xX is
commonly used as the access key for the Exit menu item.

> The menu editor automatically names the Too1StripMenuItems
for the New..., Close and Exit menu items as
NewToolStripMenuItem, CloseToolStripMenuItem and
Ex1tToolStripMenuItem, respectively.

A © 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

Look-and-Feel Observation 8.1

By convention, place an ellipsis (...) after the name of a
menu item that, when selected, displays a dialog (e.g.

New...).

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.6 Building Menus with the Windows
Forms Designer

» Creating Event Handlers for the Menu Items

> Like Buttons, menu items have C11ck events that notify the
program when an item is selected.

> To create the event handler for a menu item so the application
can respond when the menu item is selected, double click the
menu item in the Windows Forms Designer then insert your
event handling code in the new method’s body.

> In fact, the same event handler method can be used for
Buttons and menu items that perform the same task.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.7 Credit Inquiry Application: Reading
Data Sequentially from a Text File

» Now that we’ve presented the code for creating the file
of accounts, let’s develop the code for the Credit
Inquiry application which reads that file.

» Much of the code in this example is similar to the

Create Accounts application, so we’ll discuss only the
unique aspects of the application.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.7.1 Implementing the Credit Inquiry
Application

» The declaration of class Credi1tInquiry beginsin
Fig. 8.14.

» Line 4 imports the System. I0 namespace, which
contains the StreamReader class that we’ll use to
read from the text file in this example.

» Line 7 declares the instance variable ¥1 1eName in
which we store the file name selected by the user (that
IS, credit manager) in the Open dialog (Fig. 8.3(c)).

» Lines 9-13 declare the enumeration AccountType,

which creates constants that represent the types of
accounts that can be displayed.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

I ' Fig. 8.14: CreditInquiry.vb

2 ' Read a file sequentially and display contents based on

3 ' account type specified by user (credit, debit or zero balances).
4 Imports System.IO ' using classes from this namespace

5

6 Public Class CreditInquiry

7 Private fileName As String ' name of file containing account data
8

9 Enum AccountType ' constants representing account types

10 CREDIT

1 DEBIT

12 ZERO

13 End Enum ' AccountType

14

Fig. 8.14 | Declaring the fileName instance variable and creating
the AccountType enumeration that’s used to specify the type of
account to display.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.7.2 Selecting the File to Process

» When the user selects File > Open..., the event
handler OpenToo I1StripMenuItem_Click
(Fig. 8.15, lines 16—33) executes.

» Line 22 creates an OpenFileDialog, and line 23 calls its
ShowDialog method to display the Open dialog, In
which the user selects the file to open.

» Line 24 stores the selected file name in £1 1eName.

. ‘-\ >
\ © 1992-2011 by Pearson Education, Inc.
W All Rights Reserved.

AL

15 ' opens a file in which accounts are stored

16 Private Sub OpenToolStripMenuIltem_Click(ByVal sender As System.Object,
17 Byval e As System.EventArgs) Handles OpenToolStripMenultem.Click
18

19 Dim result As DialogResult ' stores result of Open dialog

20

21 " create dialog box enabling user to open file

22 Using fileChooser As New OpenFileDialog()

23 result = fileChooser.ShowDialog()

24 fileName = fileChooser.FileName ' get specified file name

25 End Using ' automatic call to fileChooser.Dispose() occurs here
26

27 " if user did not click Cancel, enable Buttons

28 If result <> Windows.Forms.DialogResult.Cancel Then

29 creditBalancesButton.Enabled = True

30 debitBalancesButton.Enabled = True

31 zeroBalancesButton.Enabled = True

32 End If

33 End Sub ' OpenToolStripMenultem_Click

34

Fig. 8.15 | Event handlers for the Open... and Exit menu items.
(Part 1 of 2.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

35 ' exit the application

36 Private Sub ExitToolStripMenultem_Click(ByVal sender As System.Object,
37 ByvVal e As System.EventArgs) Handles ExitToolStripMenultem.Click
38

39 Application.Exit() ' terminate the application

40 End Sub ' ExitToolStripMenultem_Click

41

Fig. 8.15 | Event handlers for the Open... and Exit menu items.
(Part 2 of 2.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.7.3 Specifying the Type of Records to
Display

» When the user clicks the Credit Balances, Debit
Balances or Zero Balances Button, the program
Invokes the corresponding event-handler method—
credit-Balances-Button Click (Fig. 8.16, lines
43-47), debitBalancesButton Click (lines 50-54)
or zero-Balances-Button Click (lines57-61).

» Each of these methods calls method D1splayAccounts
(Fig. 8.17), passing a constant from the AccountType
enumeration as an argument.

» Method D1splayAccounts then displays the matching

accounts.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

42 " display accounts with credit balances

43 Private Sub creditBalancesButton_Click(ByvVal sender As System.Object,
44 ByvVal e As System.EventArgs) Handles creditBalancesButton.Click
45

46 DisplayAccounts(Accountiype CREDIT) ' displays credit balances
47 End Sub ' cred1tBa1ancesButton _Click

48

49 ' display accounts with debit balances

50 Private Sub debitBalancesButton_Click(ByVal sender As System.Object,
51 ByVal e As System.EventArgs) Handles debitBalancesButton.Click
52

53 DisplayAccounts (AccountType . DEEIT) ' displays debit balances

54 End Sub ' deb1tBa1ancesButton C11ck

35

56 ' display accounts with zero balances

57 Private Sub zeroBalancesButton_Click(ByVal sender As System.Object,
58 ByvVal e As System.EventArgs) Handles zeroBalancesButton.Click

59

60 DisplayAccounts (AccountType . ZERD) ' displays zero balances

61 End Sub ' zeroBa]ancesButton Click

62

Fig. 8.16 | Each Button event handler calls method
DisplayAccounts and passes the appropriate AccountType as an
argument to specify which accounts to display.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.7.4 Displaying the Records

» Method D1splayAccounts (Fig. 8.17, lines 64—
104) receives as an argument an AccountType
constant specifying the type of accounts to display.

» The method reads the entire file one record at a time
until the end of the file Is reached, displaying a record
only if its balance matches the type of accounts
specified by the user.

» Opening the File
> Line 65 declares the StreamReader variable ¥11eReader

that will be used to interact with the file.

> Line 72 opens the file by passing the T1 1eName instance
variable to the StreamReader constructor.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

63 " display accounts of specified type

64 Sub DisplayAccounts(ByvVal accountType As AccountType)

65 Dim fileReader As StreamReader = Nothing

66

67 " read and display file information

68 Try

69 accountsTextBox.Text = "The accounts are:” & vhirlf

70

71 ' open file for reading

72 fileReader = New StreamReader (fileName)

73

74 ' read file and display lines that match the balance type
75 Do While Not fileReader.EndOfStream ' while not end of file
76 Dim Tine As String = fileReader.ReadLine() ' read line
77 Dim fields() As String = line.Split("'. '¢) ' split into fields
78

79 ' get data from fields array

80 Dim accountNumber As Integer = Convert.ToInt32(fields(())
81 Dim firstName As String = fields(l)

Fig. 8.17 | Method DisplayAccounts opens the file, reads one
record at a time, displays the record if it matches the selected
AccountType and closes the file when all records have been
processed. (Part | of 4.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

82 Dim TastName As String = fields(2)

83 Dim balance As Decimal = Convert.ToDecimal(fields(?))
84

85 If ShouldDisplay(balance, accountType) Then

86 accountsTextBox.AppendText(accountNumber & vihiab &
87 firstName & vhiab & lastName & vhiab &

88 String.Format("{0:C:", balance) & vhirli?®)

89 End If

90 Loop

91 Catch ex As IOException

92 MessageBox.Show('Cannot Read File”, "Error”,

93 MessageBoxButtons.0K, MessageBoxIcon.Error)

94 Finally ' ensure that file gets closed

95 If fileReader IsNot Nothing Then

96 Try

97 fileReader.Close() ' close StreamReader

Fig. 8.17 | Method DisplayAccounts opens the file, reads one
record at a time, displays the record if it matches the selected
AccountType and closes the file when all records have been
processed. (Part 2 of 4.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

98 Catch ex As IOException

929 MessageBox.Show("Lrror closing Tile”, "Error’,
100 MessageBoxButtons . 0K, Mes oxIcon.Error)
101 End Try

102 End If

103 End Try

104 End Sub ' DisplayAccounts

105

106 ' determine whether to display given account based on the balance
107 Function ShouldDisplay(ByVal balance As Double,

108 ByvVal type As AccountType) As Boolean

109

1o If balance < ¢ AndAlso type = AccountType.CREDIT Then
i Return True ' record should be displayed

12 ElseIf balance > 0 AndAlso type = AccountType.DEBIT Then
13 Return True ' record should be d1sp1ayed

114 ElseIf balance = 0 AndAlso type = Accountiype.ZERO Then
115 Return True ' record should be displayed

116 End If

Fig. 8.17 | Method DisplayAccounts opens the file, reads one
record at a time, displays the record if it matches the selected
AccountType and closes the file when all records have been
processed. (Part 3 of 4.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

17

118 Return False ' record should not be displayed
19 End Function ' ShouldDisplay

120 End Class ' Credit Inquiry

Fig. 8.17 | Method DisplayAccounts opens the file, reads one
record at a time, displays the record if it matches the selected
AccountType and closes the file when all records have been
processed. (Part 4 of 4.)

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.7.4 Displaying the Records

» Reading and Processing Records

> The company could have many separate files containing
account information.

> So this application does not know in advance how many
records will be processed.

> In file processing, we receive an indication that the end of the
file has been reached when we’ve read the entire contents of a
file.

> For a StreamReader, this is when its EndOfStream
property returns True (line 75).

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.7.4 Displaying the Records

» As long as the end of the file has not been reached, line
76 uses the StreamReader’s ReadLine method
(which returns a String) to read one line of text from
the file.

» Recall from Section 8.5 that a each line of text in the
file represents one “record” and that the record’s fields
are delimited by commas.

\ .
© 1992-2011 by Pearson Education, Inc.
\ \ All Rights Reserved.
WY

8.7.4 Displaying the Records

>

To access the record’s data, we need to break the String
Into its separate fields.

This is known as tokenizing the String.

Line 77 breaks the line of text into fields using String
method Split, which receives a delimiter as an argument.
In this case, the delimiter is the character literal ", " c—
Indicating that the delimiter is a comma.

A character literal looks like a String literal that contains
one character and is followed immediately by the letter c.

Method Sp 11t returns an array of Strings representing
the tokens, which we assign to array variable fields.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.7.4 Displaying the Records

» Preparing to Display the Record
> Lines 80-83 assign the tokens to the local variables
accountNumber, firstName, TastName and balance.

> Line 85 calls method ShouldDisplay (lines 107-119) to
determine whether the current record should be displayed.

> |If so, lines 8688 display the record.

o If the balance is negative, the currency format specifier (C) formats
the value in parentheses (Fig. 8.4(b)).

- Method ShouldD1splay receives the balance and the
AccountType as arguments.

o If the balance represents the specified AccountType, the method
returns True and the record will be displayed by method
DisplayAccounts.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.7.4 Displaying the Records

» Ensuring that the File is Closed Properly
- When performing file processing, exceptions can occur.

> In this example, if the program is unable to open the file or
unable to read from the file, TOExceptions will occur.

> For this reason, file-processing code normally appears in a
Try block.

- Regardless of whether a program experiences exceptions while
processing a file, the program should close the file when 1t’s no
longer needed.

> Suppose we put the statement that closes the StreamReader
after the Do Wwh1ile...Loop at line 91.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.7.4 Displaying the Records

» 1f no exceptions occur, the Try block executes normally and the
file is closed.

» However, If an exception occurs, the Try block terminates
immediately—before the StreamReader can be closed.

» We could duplicate the statement that closes the
StreamReader in the Catch block, but this would make the
code more difficult to modify and maintain.

» We could also place the statement that closes the
StreamReader after the Try statement; however, if the Try
block terminated due to a Return statement, code following the
Try statement would never execute.

» To address these problems, Visual Basic’s exception-handling
mechanism provides the optional Finally block, which—if
present—Is guaranteed to execute regardless of whether the 7ry
block executes successfully or an exception occurs.

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.7.4 Displaying the Records

>

This makes the F1nal 1y block an ideal location in which
to place resource release code for resources that are
acquired and manipulated in the corresponding Try block
(such as files).

By placing the statement that closes the StreamReader
ina Final ly block, we ensure that the file will always be
closed properly.

Local variables in a Try block cannot be accessed in the
corresponding Final 1y block.

For this reason, variables that must be accessed in both a
Try block and its corresponding Final 1y block should
be declared before the Try block, as we did with the
StreamReader variable (line 65).

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

8.7.4 Displaying the Records

» Relationship Between the Us1ng and Try Statements
> In Section 8.5.4, we discussed how a Us1ng statement manages
resources.

> The Us1ng statement is actually a shorthand notation for a Try
statement with a Final 1y block.

> For example, the Us1ng statement in Fig. 8.15 (lines 22-25) is
equivalent to the following code

Dim fileChooser As New OpenFileDialog()

Try
result = fileChooser.ShowDialog()
' ?et specified file name
fileName = fileChooser.FileName

Finally
fileChooser.Dispose()

End Try

© 1992-2011 by Pearson Education, Inc.
All Rights Reserved.

