
 
 
 
 
 
 
 
 
 
 
 
 

��������	
����
�
����������	
����
�
����������	
����
�
����������	
����
�
������

Visual Basic.NET Programming 

Introduction to Visual Basic.NET  

VB.NET Programming Environment (Review) 

(Part I of IV) 
 

(Lecture Notes 1A) 
 

Prof. Abel Angel Rodriguez 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 2

 

CHAPTER 1� INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING ..................................... 4�

1.1 Understanding Object-Oriented Programming .............................................................................................................................. 4�
1.1.1 The Procedural Programming Approach to Programming ............................................................................................................ 4�

Procedural Programming ................................................................................................................................................................... 4�
Event Driven Programming................................................................................................................................................................ 4�

1.1.2 The Object-Oriented Programming (OOP) Approach .................................................................................................................. 5�
Thinking Objects ................................................................................................................................................................................ 5�
Data Encapsulation ............................................................................................................................................................................ 5�
Reusability ......................................................................................................................................................................................... 6�

1.2 Components of an Object-Oriented Program ................................................................................................................................. 7�
1.2.1 Understanding Classes & Objects ................................................................................................................................................. 7�

The Class ............................................................................................................................................................................................ 7�
Objects ............................................................................................................................................................................................... 7�
Private Data ........................................................................................................................................................................................ 7�
Public Properties (Attributes) ............................................................................................................................................................. 7�
Methods (Behavior) ........................................................................................................................................................................... 8�
Events ................................................................................................................................................................................................. 8�

1.2.2 Creating Object-Oriented Programs (IMPORTANT!) ................................................................................................................ 10�
1.2.4 Object-Oriented Programming and Graphical Elements (Forms & Controls) ............................................................................. 11�

1.3 Object-Oriented Analysis, Design & Programming ...................................................................................................................... 12�
1.3.1 Analysis and Design .................................................................................................................................................................... 12�
1.3.2 Program Development Cycle ...................................................................................................................................................... 12�

Visual Basic Solution & Project ...................................................................................................................................................... 12�
Creating an Applications to solve a problem ................................................................................................................................... 13�

1.3.3 Designing the Code – Creating an Algorithm ............................................................................................................................. 14�
1.3.4 Summary of Strategy for Developing the Algorithm ................................................................................................................... 17�

CHAPTER 2� VISUAL STUDIO.NET DEVELOPMENT ENVIRONMENT ......................................... 18�

2.1 Microsoft .NET Framework and Visual Studio.NET ................................................................................................................... 18�
2.1.1 Microsoft .NET Framework ........................................................................................................................................................ 18�

2.2 The Visual Studio.NET Environment & Visual Basics.NET ........................................................................................................ 19�
2.2.1 Introduction ................................................................................................................................................................................. 19�

Browser ............................................................................................................................................................................................ 20�
Web Page or Web Application......................................................................................................................................................... 20�

2.2.2 Creating Project Using the Integrated Development Environment (IDE) ................................................................................... 21�
Startup Form/Startup Object ............................................................................................................................................................ 26�

2.3 Visual Basics Modes, Error Types & Other Concepts .................................................................................................................. 34�
2.3.1 How Visual Basic Organizes Your Program or Application Files .............................................................................................. 34�
2.3.2 Visual Basics Modes ................................................................................................................................................................... 34�
2.3.3 Programming Errors .................................................................................................................................................................... 34�
2.3.4 Two Aspects of Visual Basic Object Programming .................................................................................................................... 35�
2.3.5 Properties Revisited .................................................................................................................................................................... 35�

Setting Properties at Design Time .................................................................................................................................................... 35�
Setting Properties at Run Time ........................................................................................................................................................ 36�
Common Properties .......................................................................................................................................................................... 36�

2.3.6 Windows Applications Control Flow .......................................................................................................................................... 37�

2. 4. Visual Basic Debugging Tool ........................................................................................................................................................ 38�
2.4.1 Understanding the Debugger ....................................................................................................................................................... 38�
2.4.2 Setting Breakpoints ..................................................................................................................................................................... 38�



 3

2. 4. Putting it All Together ................................................................................................................................................................... 39�
2.4.1 OOP Programming using Visual Basics In a Nutshell ................................................................................................................ 39�

2.5 Sample Programs ............................................................................................................................................................................. 40�
2.5.1 Sample Program 1: Console Application – Login Request Application ..................................................................................... 40�
2.5.2 Sample Program 2: Form-Driven Windows Application – Login Request Application ............................................................. 44�

Three Step Process ........................................................................................................................................................................... 46�
2.5.3 Sample Program 3: Module-Driven Windows Application– Login Request Application Version 1 (Processing Code Inside 
Form) ................................................................................................................................................................................................... 50�

Three Step Process ........................................................................................................................................................................... 53�
HOW IT WORKS: ........................................................................................................................................................................... 58�

2.5.4 Sample Program 4: Module-Driven Windows Application– Login Request Application Version 2 (Little or NO Processing 
Inside Form) (Best Practice!) ............................................................................................................................................................... 59�

Three Step Process ........................................................................................................................................................................... 61�
HOW IT WORKS: ........................................................................................................................................................................... 64�
HOW IT WORKS: ........................................................................................................................................................................... 65�

2.5.5 Homework ................................................................................................................................................................................... 65�
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 4

 

����
��������
��������
��������
�������� ��
����	
����
������	
��
����	
����
������	
��
����	
����
������	
��
����	
����
������	
���������
���������� � ��������
���������� � ��������
���������� � ��������
���������� � �������

1.1 Understanding Object-Oriented Programming 

1.1.1 The Procedural Programming Approach to Programming 
� We will begin this course with a brief discussion of the programming methodologies that you are most likely accustom to in your 

previous Visual Basics.Net introductory courses. 
� Programming as it was done in the past and still being done today in many cases is based on the Event-Driven and Procedural 

Programming approach.   
� These methods of programming are based on what's known as Structured Programming.   Structure programming has been the 

traditional way of programming. 
 
Procedural Programming  
� If you have taken a course in C, Visual Basic, Pascal, FORTRAN, Cobol etc. the programs you wrote were Procedural. 
� In procedural programming, the focus of the programs was to solve a problem. 
� For example, supposed you were asked to write a program to solve the following problem: 
 

���� Write a Video Management System that will process the rental/return of videos tapes for a retail store such as a program used 
for Blockbuster Video.  

� Using a language like C or can be done even with VB.NET, this is usually done as follows: 
 

1. Analyze the problem required to be solved:  Design flow chart, algorithm etc. 
2. Break the problem into smaller manageable pieces, such as the Rental Module, Return Module, Customer 

Information Module etc. 
3. Design the UI for each of the pieces using Forms , controls or any structure supplied by the language to implement 

the UI 
4. Write code to implement each piece using variables, functions & procedures to implement each of the modular 

pieces. 
���� Note that the focus is on solving the problem via the programming code and breaking the problem into smaller 

manageable pieces.  
 
� Dividing a program into Procedures/functions and modules is one of the cornerstones of structured or procedural 

programming.  But here as some of the drawbacks: 
� As programs grow larger and more complex, even the procedural programming approach begins to show signs of 

strain.  Projects can become too complex, schedules slip, more programmers are added, cost skyrockets etc. 
� In Procedural programming data or the variables & data structures that hold or store the data, are usually 

unprotected and may be accessible to functions & procedures that have no business changing them, therefore they can be 
easily corrupted. 

� Procedural programs are difficult to design because their chief components, procedures, functions and data structures 
don't model the real world very well. 

 
Event Driven Programming 
� If you wrote the Video Management Program using Visual Basics 6 or in some cases VB.NET, as it’s taught in courses 

such as CS101 & CS508, then you would normally tend to write this program as an Event-Driven Application.   
� Event-Driven applications react to user events or actions such as clicking buttons, check boxes or navigating through 

forms or graphical front-ends.  These programs are still based on the procedural programming philosophy, but are base on code 
reacting to user actions on the GUI or front-end. 

� The steps to write an Event-Driven program are as follows: 
1. Analyze the problem required to be solved and derive the algorithm: 

� Design flow chart, algorithm to solve this problem etc. 
2. Use Forms & Controls to designed the User Interface (UI) 

���� Drop some controls to implement the GUI, such as labels, text boxes. Command buttons etc. 
���� Use the controls to implement features such as Rental, Return, Customer Information, Video Tape Information 

etc.  



 5

3. Placed programming code inside the Event-Handlers of the controls on the Form, to respond to actions taken by the 
users on the controls.  Such as the button_Click() event of a Command Button etc. 

 
���� Note that with this approach, the focus again is on breaking the program into sections and solving the 

problem via the Form, controls & code in the Event-Handlers  
 

1.1.2 The Object-Oriented Programming (OOP) Approach 
 
Thinking Objects 
� The newer programming languages use a different approach.  With OOP, programs are based on real world objects.   
� This method of programming is based on creating programming code that emulates real world entities, thus the word 

Object. 
� In OOP, instead of focusing on solving the problem, you focus and think in terms of the Objects that will play an 

important role in the program.   
� That is you first create the Objects that are the important characters in the program, such as Employees, Departments, 

Customers, Products etc. 
� Using Objects, allow programs to be based on real world entities, such as a car, person, employee, customer, inventory 

part etc 
� Examples of pure OOP languages are C++, Visual Basics.NET & Java.  
 
� In OOP, each object has its own Properties or Attributes (access to Data), the Methods (Functions/Procedures) that 

operate on the data & the Events that are automatically triggered when the object is used or manipulated. 
� The fundamental idea behind object-oriented languages is to combine into a single package both the data, Methods 

(functions/procedures) & Events (Event-Procedures) that operate on that data.  Such unit is called an object. 
� Combining the Data, Methods & Events that operate on that data into a single package means that the Objects handle 

themselves and have a life of their own, and most important, they can be re-used in other applications 
� The mechanism to implementing Object-Oriented Programming is the Class & the Object. 
 
� Object-Oriented approach to solving the Video Management problem: 

1. Analyze the problem required to be solved and derive the algorithm: 
� Design the Objects that are the key protagonists of the program. 
� For example, a Video Object, Customer Object, Employee Object etc. 

 
2. Implement or create the template or Classes for each of the required Objects with the properties, methods (actions) 

and events required to perform the functionality of each object.  For example implement a video object that behaves as a 
video, a customer object that behaves as a customer & an employee object that behaves as an employee. 

3. Use Forms & Controls to designed the User Interface (UI) for implementing the Video Rental/Return processing 
 

4. Create the Objects and use programming code to manipulate the Objects as necessary via the User Interface Forms to 
solve the problem at hand. 

 
���� Note that with this approach, the focus is on the Objects not the problem.  The object was the first thing that 

was created, then the problem was applied to the objects  
Data Encapsulation 
� A very important feature of OOP is Data Encapsulation or Data Hiding. 
� In OOP, the object's data is Private thus hidden and is only accessible by the Public Methods (Functions/Procedures) and 

Public Properties. 
� Private data means that there is no way for the outside world to access the data directly.  Thus the data is protected and 

invisible or hidden from the outside world. 
� Public Methods & Properties are the interface or vehicle for the outside world to be able to access or manipulate the data.   
� This means that you can only do to an object what the Public Methods and Properties allow you to do.  If there is no 

Public Methods or Properties for a particular task, then it can not be done. 
� An Object behaves exactly as they were specified by the Public Class Methods and Properties.  No more, no less 
�  A benefit of Data Encapsulation is Robustness or a solid, reliable error-free Object.  



 6

 
 
Reusability 
� This method of writing program is very powerful and the objects written can be easily re-used in other applications. 
� This concept of re-using objects is very powerful and known as reusability.  This concept has revolutionized the field of 

programming since reusing objects yields faster and more robust applications.  Applications which took longer to developed are 
now being created at a much faster rate since objects from other applications are being reused, thus saving time on programming 
and testing. 
� For example if we create a Customer Object in a Banking Program, we can reuse this Object in a financial program 

etc. since Customer Objects have similar functionalities.  
 
� This concept of reusability spawned a new software industry where companies were established whose sole business is to 

create ready tested Objects to sell to other software development houses.  
 
 
 
 



 7

 

1.2 Components of an Object-Oriented Program 

1.2.1 Understanding Classes & Objects 
� Real world objects have attributes or properties that define the objects. 
� Also, real world objects are based on some mold or template. 
� In Object-Oriented programming, the objects are based on a class or template.  In this section we take a look at the 

components that make up an Object-Oriented Program 
The Class 
� The mechanism VB.NET provides to implement Objects is the Class. 
� A Class is a template or blueprint that defines what Object of the class look like. 
� A Class is a plan or template that specifies what Data , Methods & Events will reside in objects  
� The objects of the class contain data and the Methods (member functions & procedures) that operate on such data 
� When creating a Class Module, the Data is made Private, & the interface or method to access the data (Procedures & 

Functions) are Public. 
� For example: 
 

� We can have a Class called Automobile, and from this class, we can define the Properties, Methods and Events of this 
class. 

� From this Automobile class we can create Objects of this class such as a Car Object, Truck Object, SUV Object etc. 
� The objects created have all the properties, methods and events dictated by the Class from which they were created 

from. 
Objects 
� Think of Objects as a thing or a noun.  Objects are the items that represent real-world entities, such as a person, place or 

thing in a program. 
� In a program an Object is a software representation of a real-world entity. 
 
Objects - vs - Class 

� The concept of a Class an Object can be very confusing.  A Class is NOT an Object.  An Object is not a Class 
� DO NOT confuse a Class with the Objects, they are two different things. 
� Objects are the manifestation or instance of a Class specification.  
� A class IS NOT the object, but the template in which Objects will be created from! 
� Think of the class as the architectural floor plan of a house, and the objects as the houses that are built from 

that plan. You create ONE floor plan or blue print, but you can create as many houses as you like from the blue print. 
� Objects behave exactly as they were specified in the Class.  No more, no less 

Private Data 
� Data is the storage mechanism inside the object to store information. 
� Data is what we want to manipulate and protect.  
� For example, a person has a name, an ID, birth date etc. These entities are stored and preserved INSIDE THE OBJECT.  
� In a class Object, Data is Private and cannot bee seen by the outside world.. 
 
Public Properties (Attributes) 
� An Object has characteristics.   Such characteristics or attributes are called properties of an Object.  For example a Person 

Object has a name property, a social security property, a birth date property etc. 
� Properties represent the Data of the Object. DO NOT CONFUSE THE PROPERTY WITH THE DATA. They are 

two different things. 
� In reality, the Property is the way the outside world access the actual data directly. 
� This is confusing; the property is not the data, but a vehicle to access the data.  The actual data is private and cannot be 

seen by the outside world, only the properties are seen by the outside world because they are PUBLIC. 
 
�  For example from an Automobile Class, you may create an Object named objCar.  The Automobile Class may have a 

color property, as well as a Make & Model property.   But inside the Data is what stores this information. This is done using 
private variables inside the class. For example these variables can be named m_color, m_make & rm_Model etc. but the outside 
world cannot see these variables, when they want to use the data they see the property Color, Make & Model and through these 
properties the data are accessed. 

 
� Properties are the vehicle in which you can SET (write) or GET (access) the DATA!!!!!!! 



 8

 
� Syntax for using an object Properties is based on the DOT OPERATOR: 
 

Object.Property 
 
� Example, assuming you create an object named objCar from the Automobile class, writing and accessing data is done as 

follows: 
 
    

Purpose Syntax Example 
SET or write data Object.Property = value 

 
objCar.Make = “Acura” 
 

GET or access data value = Object.Property  
 

aStringVariable  = objCar.Color 

   
 
 

Methods (Behavior) 
� Objects have behavior or take action. 
� Methods are actions that the Objects can take.  Where Objects are the Nouns, Method are the verbs or actions of an 

Object. 
� For example a Car Class Object can take the following actions: Start, Stop, Speed Up, Slow Down, turn left, turn right 

etc. 
� Methods are implemented in a class by creating Functions and Sub Procedures that you write to make the object do 

things or take some kind of action 
� Syntax for using an object Methods uses the DOT OPERATOR as well: 
 

Object.Method() 
 

� Example, using the objCar from the Automobile class: 
 
    

Purpose Syntax Example 
Executing or telling the Car object to take an 
action such as stopping 

Object.Method() objCar.Stop() 
 

Executing or telling the Car object to take an 
action such as starting the car 

Object.Method() 
 

objCar.Start() 

   
 

 
Events 
� This is a tough one to explain and understand! 
� Events are actions taken UPON the object by an outside force (User, Program code etc). 
� These actions or Events upon the object will automatically trigger specialized Methods automatically created outside of 

the object known as Event-Handlers.  In other words, Objects respond to events by executing this special method or 
procedure know as an Event-Handler 

� Do not confuse Events and Event-Handlers with regular Methods.  Events are the action taken by an outside source upon 
the object, while Methods are action taken by the Object itself when told. 

� Events & methods may work hand in hand, but they are two different things. 
 

� This can be confusing.  For example an Object such as the objCar Object can have a method called Stop().  You can 
explicitly call the objCar.Stop() method to so the car will stop itself. 

� On the other hand, The Car Object can also have an Event programmed into it called OnCrash which will create 
outside the object and associated Event-handler named objCar_OnCrash().   

� In the event that the car is hit by another car or crashes, the OnCrash event will automatically trigger or EXECUTE 
the Event-handler objCar_OnCrash().  Inside the objCar_OnCrash()) Event-Handler you can code in what ever you 
like. For example you may want to put in a statement that calls or execute the objCar.Stop() method to stop the car, 



 9

or call 911 or what ever action you seem fit for this event.  Makes sense right?  Here an Event occurs, triggers the 
Event-handler, in the Event-Handler we call a Method to stop the car. Confused yet? � 



 10

 

1.2.2 Creating Object-Oriented Programs (IMPORTANT!) 
� Object-Oriented Programs (OOP) are written based on the Class Objects and not on the functionality of the program 
� The following steps is what you need to do every time you create an Object-Oriented-Program 
� The three steps required to creating an Object-Oriented Programs are shown below:  
 

 
 
 

 

 

 

 

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

I. Create and Define the class specification or Class 
� Define Private Data, Properties, Methods & Events  

 
II. Create Object of the Class 

 
III. Use the Object of the Class 

�  Write the program to manipulate, access or modify the objects as 
follows: 
� Get and Set Properties (Manipulate the data) 
� Call Methods 
� Trigger Events 
� Program Event-Handlers 
� Interact with other objects 

 



 11

 

1.2.4 Object-Oriented Programming and Graphical Elements (Forms & Controls) 
� At this point you have a basic understanding of a Class, Object, Properties, Methods and Events 
� Also, you have taken courses (CS101 & CS508) in which you crated VB.NET programs using Forms and graphical 

controls such as Text Boxes, Buttons, List Boxes, Labels, etc. 
� You wrote graphical programs using the following steps: 
 

1. Create a Form 
2. Dropped Graphical Controls onto the Form ( Labels, Text Boxes, Buttons, List Box etc.) to create your GUI 
3. Added programming code to the Event-Handlers of the controls.  For example if you have an OK button, you added 

code to do something on the Event-Handler: btnOK_Click()  
4. You build & compiled the program 
5. Executed the program 

 
� This process just described is known as Event-Driven Programming, as stated in section 1.  Why?  Because you are 

simply programming the Event-Handlers of the Graphical Controls, which execute as a reactions to Events on the 
Controls. 

� What is the point? 
  

� It turns out that Every Graphical Element in VB.NET, such as Forms, Controls etc.  Are all OBJECTS! 
� And if they are Objects, a Class exits for them.   
� The CLASS was CREATED by Microsoft.  That’s right! 
� And every time you drag and place a control to a Form object YOU are actually CREATING an OBJECT of 

that Control. 
� The Form is an Object and the Controls are now child Objects of the Form (Object Interaction). 
� Every Time you set or get a property using the Property Window, you are setting or getting a property of the 

Control Object, so you are USING the object. 
� Every time you placed code such as:  txtBox.Clear() you were executing a Method. 
� And finally, when you are placing code inside the Event-Handler, you were telling the Event-Handler what to do 

when the Event takes place or Event-Driven Programming. 
 
� So as you can see, all along you have been applying the rules to create classes, create objects and use them as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
� So all along you were programming using OOP techniques.  But Microsoft made it easier for you by creating all the 

classes and providing an interface or IDE to make it visual and simply the process. 
 
� In this course (CS608), you will perform all the steps.  You will creating custom classes, creating the objects and using 

them.  
 
 
 

 
I. Create and Define the class (Done by Microsoft) 

 
II. Create Object of the Class (Doe by YOU when you dropped a control on a Form) 

 
III. Use the Object of the Class (Done by YOU) 

� Get and Set Properties (Using Property Window) 
� Call Methods ( Inside the Event-handler code) 
� Trigger Events (Every time you clicked on an OK button, lost focus, etc) 
� Interact with other objects (Drag-Drop controls onto Forms etc) 

 
 



 12

 

1.3 Object-Oriented Analysis, Design & Programming 

1.3.1 Analysis and Design 
� If you recall in our introduction to Object-Oriented Programming, I used the Video Management Program as an example 

to demonstrate the difference between Procedural, Event-driven and Object-Oriented Programming. 
� Note that in the beginning of each of the example, the first step was as follows: 
 

1. Analyze the problem required to be solved:  Design flow chart, algorithm etc. 
 
� In OOP, there are three phases or steps required for developing an Object-Oriented System: 
 
 
 
 
 
 
 
 
 
  
 
� Analysis and Design are very important steps.   This is where all the “brain work” is done to developing the system and 

implementing the algorithm. 
 

1.3.2 Program Development Cycle 
� The program development cycle refers to the steps or process required to create an application from start to finish. 
� The process involves first understanding what the problem is that you are required to solve, come up with a design or idea 

on how to solve the problem and finally choose a programming language to implement the project. 
� The programming language is simply the tool to create the actual program code.  You can choose any language you wish 

to achieve the final results.  The difficult part is in the thought process or design to solve the problem.  
� Remember the following: 
 

** IS NOT THE LANGUAGE THAT MATTERS BUT THE SKILL OF PROGRAMMING** 
 
� Knowing how to program is what’s important, not what language you know.  Programming languages evolve and change, 

and new and more powerful languages are being developed.   Once you have the SKILL of programming, you can tackle 
any language, simply learn the new syntax or rules to a new languages and you should be able complete your project. 

 
Visual Basic Solution & Project 
� When you write a program is basically done to solve a problem. 
� Solving the problem results in a solution to the problem.  A VB application is called a Solutions & a solution is composed 

of one or more Projects. 
� In this CS608 and CS708, you will be creating Solutions that can contain one or multiple projects. 
 
 
 
 
 
 
 
 
 
 

 
Analysis 

(What is the Problem) 

 
Design 

(How can it be solved?) 

 
Programming  
(Write Code) 

Phase 1 Phase 2 Phase 3 



 13

 
Creating an Applications to solve a problem 
� Creating an Application involves a Two Part process, I) Planning II) Design III) Programming. 
� Each Part is broken into three phases or steps: 
 

I. PHASE 1 – System Analysis (Understanding the Problem): 
 

1. Analysis means to study, understand and define the requirements of the system. 
2. Read and understand the problem description. 
3. Write down the requirements and fully understand what is being asked for you to do. 
4. Identify what are the INPUT or data to be entered or manipulated by the program 
5. Identify what are the OUTPUT or results that are required. 

 
 

II. PHASE 2 – Design (Solving the Problem): 
 

1. Design means developing or creating the solution to the problem.  This is a thinking process and the solution 
is derived from the analysis of the requirements. 

2. From the analysis of the INPUT & OUPUT we can derive the required processing. 
3. You can use tools such as: 

 
o Design the solution – Use diagram, flow charts etc., to analyze and design the solution.  

 
4. Plan the code (Problem Solving) – This step you will write down the action required to solve the problem, 

this is known as the Algorithm.  The Algorithm is obtained using the following tools: 
 

� Flow Charts – Graphical representation of the program logic  
� Pseudo-code – Abbreviated short-hand English-like statements representation of the flow chart 

 
 
 
 
 
 
 
 
 
 

 
 

5. In this phase we design on paper (Not in the computer) the Forms and User Interface required. 
 

o Design the User-Interface (GUI) – You draw a sketch of what the Front-End or GUI will look like 
and the Control Objects required. 

 
o Plan the Properties or attributes to the objects in the GUI – In a table write down the properties to 

the Control Objects in the GUI. 
 

III. PHASE 3 – Programming (Writing the Code): 
 

1. Here is where we use VB.NET to create our application. 
2. Create the User-Interface (GUI) 

 
3. Set the Properties or attributes to the objects in the GUI 

 
4. Write the code – Use the syntax or programming code of the programming language to create the program. 

 
 

Wow!! this is Too Much THINKING! 



 14

1.3.3 Designing the Code – Creating an Algorithm 

Problem Solving via an Algorithm 
� We now focus on PHASE 2 of our program development cycle, which is planning the code or how to solve the problem.  

This is the most difficult part of creating an application since it requires thinking logically. 
 
� We will start with the definition of an Algorithm: 
 

Algorithm: a logical sequence of steps or actions executed in a particular order 
 
� The Algorithm is the collection of logical steps require for the solution of the program.  The algorithm is what we will 

derive during the planning phase. 
� We will use the development tools describe in previous lectures to derive the algorithm: 
 

� UML– A graphical diagrams of the CLASSES which will be used to create the OBJECTS of the program 
� Flow Charts – A graphical representation of the algorithm  
� Pseudo-code – Short-hand English-like statements.  Pseudo code programs are not executable code, but 

they help programmers “THINK OUT” before attempting to write it in the actual programming language 
 
� Plan the code – In this step, you plan (THINK) the code or steps required for the program to run.  You will write down 

the action required to solve the problem.  You will use programming tools like UML to design your classes and work 
flow, pseudo-code and flow charts to plan the necessary logic to solve the problem.  This is really the tough part of 
programming since it requires thinking logically 

 
� How the algorithm is written can affect the results or solution to a problem. 
� For example, supposed you were asked to develop an algorithm name “rise and shine”, which lists the steps for a 

manager to get out of bed and get to work.  The pseudo-code for the algorithm may be as follows: 
 

1. Get out of bed 
2. Take off pajamas 
3. Take a shower 
4. Get dressed 
5. Eat breakfast 
6. Drive to work 

 
� This algorithm gets the manager to work and prepared to make critical decisions.  
 

� Now lets change the program control or order in which the pseudo codes are written: 
 

1. Get out of bed 
2. Take off pajamas 
3. Get dressed 
4. Take a shower 
5. Eat breakfast 
6. Drive to work  

 
� This Algorithm gets the manager to work wet and probably not in a condition to make critical decisions. 

 
 
 
 
 
 
 



 15

 

Recommendation on how to Create Algorithms 
� Thinking like a programmer is not easy, but with a problem solving strategy in place and practice you will get better at it. 
� One method I can recommend to get you started when writing programs is as follows: 
 

� Read the requirements several times until you understand what is required of the program. 
� Now put yourself in the role of the computer itself and what is require of you to do, and then switch to the role of the 

user is standing in front of the computer to use it and what is required of the user to do. 
� As yourself questions as to what is required for each of these characters during their interaction. 
� Now you write down the steps of the interaction which takes place between the program and the user.  Now extract the 

performed by the computer program, put these steps in their proper order and you have an algorithm and an idea of 
what needs to be done  

� For example, supposed you were asked to create the following program: 
 
Problem Statement: 

o Create a login program to authenticate users (similar as to when you log in to your computer). The program 
should have a Login Form with controls to allow the user to enter the username and password. In addition 
should have a button to execute the request or cancel. 

o The program should search a database of username and passwords to verify if this user/password 
combination is allowed access to the system if found in the database. 

o From result of the database search allow access to the system or display a message stating that access is 
denied. 

 
� The interactions or exchange between the computer and the user is as follows: 

  
What is the First thing the User does? 

a) Sits in front of the computer 
 
What should the Computer do? 

a) Display the Login Screen 
 
What should the User do? 

a) Enter username 
b) Enter password 
c) Click Ok button or Cancel button 

 
What should the Computer do? 
  
If you user clicks the OK button: 

a) Extract the username 
b) Extract the password 
c) Search the database for the username and password 
d) If the username and password is found in the database: 

1. Allow access to the system 
2. Display a welcome screen  
  

e) If the username and password is NOT found in the database 
1. Display a message stating that access is denied 
2. Go back and display the login screen again. 

                                                      
If you user clicks the Cancel button: 

a) Display a message stating that the user cancelled the operation 
b) Clear the text boxes 

 
 
 
 
 



 16

 
� The algorithm is derived by extracting ONLY the steps performed by the Computer Program: 

  
1. Display the Login Screen 
2. If you user clicks the OK button: 

a) Extract the username 
b) Extract the password 
c) Search the database for the username and password 
d) If the username and password is found in the database: 

1. Allow access to the system 
2. Display a welcome screen  
  

e) If the username and password is NOT found in the database 
1. Display a message stating that access is denied 
2. Go back and display the login screen again. 

 
3. If you user clicks the Cancel button: 

a) Display a message stating that the user cancelled the operation 
b) Clear the text boxes 

 
 
 
 
 
 
 



 17

 

1.3.4 Summary of Strategy for Developing the Algorithm 
� Ok, lets come up with a strategy to help us learn to think and develop the algorithm. 
� The strategy to solve the problem will require seven steps as follows: 
 
 
 
 
 
 
 
 
 
 

I. PHASE 1 – System Analysis (Understanding the Problem): 
 
 

1. Problem: Write down the problem statement 
2. Understand the problem. Make sure you understand what are the inputs and outputs expected. 

 
 

 
II. PHASE 2 – Design (Solve the Problem): 

 
 

1. Discussion: Think! If it helps, write down your thoughts on what the problem is and what it takes to solve it  
 
 

 
2. Ask yourself, what is the input? 
3. What is the output desired?   
4. Try the technique I recommended of listing the expected interactions between the user and the computer 
5. List what processing is required to obtain this output, such as classes or objects, user-interface etc. 
6. Create Algorithm using, UML for illustrating the object model , Flow Charts or/and write down the pseudo-code 

 
III. PHASE 3 – Program (Write the Code): 

 
1. Create the Classes 
2. Create the User-Interface (GUI) using a Graphical programming language such as Visual Basic.NET 
3. Write the code – Use the syntax or programming code of the programming language to create the program based on 

the UML diagram, Algorithm’s pseudo-code. In other words begin to create the OBJECTS AND USE THEM!!! 

How am I going to do this? LET’S THINK 

 
Analysis 

(What is the Problem) 

 
Design 

(How can it be solved?) 

 
Programming  
(Write Code) 

Phase 1 Phase 2 Phase 3 



 18

 

����
��������
��������
��������
��������  ����!��
����"
#$�%�&�!��� ��
� ����!��
����"
#$�%�&�!��� ��
� ����!��
����"
#$�%�&�!��� ��
� ����!��
����"
#$�%�&�!��� ��
�#�&����� ��
#�&����� ��
#�&����� ��
#�&����� ��
����

2.1 Microsoft .NET Framework and Visual Studio.NET 

2.1.1 Microsoft .NET Framework 
� The Microsoft.NET Framework is the new computing platform from Microsoft designed to simplify the development for 

distributed environment such as the Internet. 
� The framework is designed from the grounds up with the Internet in mind.  
� It is not that this Framework was designed for Internet programming only, but simply that if an application you create needs 

Internet capabilities, access to those capabilities are available and almost transparent. 
�  The .NET Framework is composed of two main components  shown in the figured below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. .NET Common Language Runtime or CLR 
���� The CLR is the key component of the .NET Framework.  It is a common compiler for all Microsoft programming 

language.   It compiles all Microsoft languages to one Machine Language. 
���� The CLR Allows programmers to write code in different Microsoft languages of their choice, and ensure that the 

parts can work together 
���� In addition it provides programmers with services for memory management, data types, security etc. 

 
2. .NET Framework Class Library. 

���� A collection of ready-made reusable classes that work with the CLR. 
���� Programmers using any of the .NET programming languages can use these classes to include in their applications. 
���� The CLR Allows programmers to write code in different Microsoft languages of their choice, and ensure that the 

parts can work together 
���� Examples of the classes provided by the library are: 

 
o Database access and manipulation 
o User Interface – Windows Forms, Web Forms, Web Services 
o Security 
o Encryption and decryption 

 

.NET Common Language Runtime 
(CLR) 

.NET Class Library 

VB.NET C#.NET C++.NET 

Common 
Machine 

Language 
Executable 



 19

 

2.2 The Visual Studio.NET Environment & Visual Basics.NET 

2.2.1 Introduction 
� We will use Visual Basic.NET Integrated Development Environment or IDE to program our applications. 
� We could choose any of the languages to create our application such as C#, VB.NET etc., but this course requires that we use 

Visual Basic.NET. 
� Before we begin using the IDE, lets point out some of the types of applications we will be creating in CS608 & CS708:  
 

� Console Application – Usually Text only application.  Runs from a DOS or COMMAND PROMPT screen. 
� Windows Application – Graphical Interface user application.  Typical Windows application that you normally use, such as 

MS WORD etc. 
� Web Based Windows Application – Web application that uses a Browser such as Internet Explorer.   

 
� Let’s look at these type of applications in more details 
 

1. Console Application 
���� A Console Application is a program whose output is usually text based (No Graphics). 
���� Console Applications usually do not contain Forms or any graphics, but they can.  You can if you like from a console 

application call Windows Forms etc.   
���� Console Applications are created when an application performs processing that requires very or no user interaction. 
���� They are lighter and have less overhead than standard windows applications since they contain no graphical libraries 

etc. 
���� Console applications are a good choice when creating programs such as login scripts, device drivers, backend 

processes, test programs, programs that control hardware devices etc. 
���� The results of a Console Application is placed or controlled from a Command Prompt Window: 

 
 
 
 
 
 
 
 
 
 
 
 

2. Windows Application 
���� Windows Applications are your standard graphical applications we are used to using. 
���� Windows Apps use graphical entities such as Forms, Web Forms etc. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 20

 
3. Web-Based Application 

���� These are applications created for the World-Wide-Web or Internet. 
���� These applications run from a Browser, but the actual program code for these applications (HTML) reside on a Web 

Server and are distributed to any client or browser which makes the request. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Browser 

Web Page or Web Application 



 21

 

2.2.2 Creating Project Using the Integrated Development Environment (IDE) 
� The steps to using the IDE to program our applications as follows:  

Step 1: Open the Visual Studio IDE and invoke the Start Page:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 2a: In the Start Page, select New Project  

 

Step 2b: In the New Project Dialog select Application Type 

 
a). In the Project Types box select:  “Visual Basic Projects” 
b). In the Template box select: “Windows Applications”  or “Console Application” 
c). Enter the project name into the “Name:” text box 
d). Set the project path or location in the “Location:” text box.  You can also browse for the path using the “Browse” 

button. 
e). Click OK  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step b – Windows 
Application 

Step a – Visual 
Basics Project type 

Step c – Name the 
Project 

Step d – Project Path 
or Location 



 22

� Example of selecting Console Application:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 3: The IDE Main Screen. 

� This screen is where you will create all your programs. 
� This window will vary depending on which type of application you have selected, Console Application, Window 

Application or other. 
 

Part I - Main Screen for a Console Application:  
� This screen is composed some basic Window items such as Title bar, Menu bar, Menu Toolbars and a Status Bar. 
� In addition some new components that will be important for creating applications, such as Document Window, Solution 

Explorer Window, and Properties Window. 
� A Console Application will automatically create a Module document in the Document Window. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Console Application 

Document Window 

Solution Explorer 

Module 

Property Window 



 23

 

Part I - Main Screen for a Windows Application:  
� This screen is composed some basic Window items such as Title bar, Menu bar, Menu Toolbars and a Status Bar, 

Document Window, Solution Explorer Window, and Properties Window 
� In addition some new components that will be important for creating Windows Applications, such as a Form Designer to 

create the Forms and User Interface.  Also the Toolbox which contains the controls to create the UI. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Form Designer   
� This is the where you will design you Forms as a basis to your User Interface (UI) or Graphical User Interface (GUI). 
� When you begin a new Visual Basic project, a new form is automatically added to the project with the default name Form1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution Explorer 

Form Designer 

Document Window 

Toolbox 

Property Window 



 24

Toolbox 
� The Toolbox is a palette that holds the control objects you will place on the Forms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution Explorer 
� Displays the Files, Forms, Modules and Class Objects included in the project. 
� The Solution Explorer has two views: 
 

1) Solution Explorer View -  Files are displayed 
2) Class View – Class Objects and their methods & events are shown 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Property Window 
� This window is used to SET the Properties of the objects in your project. 

Solution Explorer View 

Class View 

Control Objects 



 25

� You can view the Name of the property in the Name column, and set the property value in the Value Column. 
� Note that these objects include the controls, Forms, Class Objects and other objects used throughout your project. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Document Window   
� Largest window in the center of the screen.  Allows you to switch between the open documents. 
� For Console Applications, this window contains a Module & Code Editor. 
� For Windows Applications, this window contains the Form Designer & Code Editor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Property Name 

Property Value 

Document Window 



 26

 

Step 4: Set the Project Properties (StartUp Object) 

� So far we have talked about the Properties of Forms and Control Object.  Now we focus on the properties of the Project itself. 
� In Visual Basic you can set properties for the entire project.  Some of these properties you have already populated in the New 

Project Window in Step 2. 
 
� The Project Properties Window is invoked as follows: 
 

� In the Menu Bar select Project|NameOfProject Properties to invoke the Project Property Page 
� Another Method uses the Solution Explorer.  Simply Right-Click on the project name and select Properties from the context 

menu to invoke the Project Property Page 
 
Startup Form/Startup Object 
� There is one very important Project Property that must understand prior to writing code.  That is the Startup Form or Startup 

Object. 
� The StartUp Form or Startup Object is the EXECUTION starting or entry point of a program. 
� A Visual Basic Application can be started using the following two options:  
 

I. FORM – (Default) this is the default method you are accustomed to, program starts via a FORM: 
 

� What this means is that when the project executes the Startup Form will display and control the flow of the program 
� Control or flow of program is done via a Form. In a standard Windows Application, this is by default automatically 

assigned to FORM1 
� I call this method of starting a Windows Application as a Form-Driven Application 
� For this method of executing the project, the property is named Startup Form  
� NOTE! There is a checkbox for a property named Enable application framework in the property page. This property 

when checked, displays the startup option as Startup Form.   This property is checked by default, so you don’t need to do 
anything, but if you uncheck this box, it will show as Startup Object (More on this below).  

� The figure below shows the default startup option as Startup Form: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 27

 
 

 
II. SUB MAIN – You can also have your program start execution via a special method named Sub Main().   

 
� In this case, the method Sub Main() is created in a MODULE object (More on this later). Program execution is done from 

within the module’s Sub Main() method. 
� I will not go into details about the module now, but there is a Visual Basic Object named a Module. 
� A Module is simply a special Code Editor Screen that allows you to enter code only.  It has no graphical portion. 
� The code inside a module can be seen by all objects of a program.  We will go into this in future lectures 
� A module can contain a special Method named Sub Main().  This Sub Main() Method will control the flow of the program. 
� You must display your form via code within this Sub Main() method. 
� I call this type of application a Module-Driven Windows Application. This method has the advantage that you can execute 

other processes in your application before any forms are displayed. 
� For this method of executing the project, the property is named Startup Object. 
� NOTE! The checkbox for a property named Enable application framework in the property page MUST BE UNCHECKED, 

for the startup option to be named Startup Object, and you select Sub Main() in list box as shown in figure below: 
 

 
 
 



 28

 

Step 5: Create your program using the components of the IDE Main Screen. 

� Now you can begin to write your code and create the program using the IDE: 
 

1. Create the User-Interface (UI) using the Toolbox and the Form Designer to drop controls onto the Form. 
 

2. Set the Properties to the Control Objects in the Form using the Property Windows. 
 

3. Write the code – Write the code to manipulate the Controls via the Event-Procedures and Methods using the Code 
Editor Screen. 

 

Visual Basic Standard Modules   
� A module is a global or public object where you can place program code such as variables, functions & procedures that can be 

seen by all code in the entire project. 
� The key here is Global code! 
� Up to now, all code written was contained inside the Event-Handlers of various controls on a form. 
� As controls & objects are placed on a form, all code written is usually seen & relates specifically to that form. 
� Suppose you wanted to write code that can manipulate or operate on various forms & controls.  How can you do this? Since every 

code you write for a control or form is only visible within the form?  Where would you place the code?  The answer is the 
Module! 

� The Module has the following characteristics: 
� Modules contain a method named Sub Main() that can be used as the starting point of the application.  Note this applies to 

both Console Applications and Windows Applications. 
� Modules contain variable declarations, functions & procedures or source code ONLY!  No forms! 
� Modules are a good place to put program code that may be common to several forms or other modules. 
� Modules contain variables & Methods. 
� Modules are like forms but without the visual! 

 

Module in Console Applications 
� When you create a Console Application, Visual Basic automatically creates a Module where you can begin entering your code: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Module File 

Module Object and 
declaration 



 29

 

Module in Windows Applications 
� In a Windows Application you can add modules to place global code that can be access by all the Windows Forms. 
� In addition, the StartUp Object can be the Module or Sub Main when control of the program is initiated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Module File Form File 

Form Object 

Module Object 
Window 

Form File 

Module File 



 30

 

Code Editor Screen 
� This screen is where Visual Basic code is written. 

Code Editor for Console Application  
� For a Console Application, the code editor in invoked immediately to allow you to enter code in the Module. 
� Simply begin entering code in the Module Document. 
� The Code Editor screen contains two drop-down list boxes, one for the Object you are coding and the other for the Methods & 

Event-Procedures associated with the object: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Methods & 
Event-Procedures 

Objects 

Enter Code 
Here 



 31

Code Editor for Windows Application  
� This screen is invoked by Right-Clicking on the Form object, and selecting View Code from the context menu that appears.  

Another method is by simply Double-Clicking on the object: 
 
 
 
 
 
 
 
 
 
 
 
 
 
� The Code Editor screen contains two drop-down list boxes, one for the Object you are coding and the other for the Methods & 

Event-Procedures associated with the object: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Help 
� Visual Studio has an extensive help feature. 
� The Help system contains an entire reference manual, as well as coding examples. 
� Using this help system you can define the properties to the controls that you will place on the forms. 

Methods & 
Event-Procedures 

Objects 

Enter Code 
Here 



 32

 

Step 6: Compile or Build the Program. (Console & Windows Applications) 

� In this process you translate from a High-level Language to a Machine Language the Computer understands. 
� This process is know as Building or Compiling the program. 
� Note that this process will generate and executable file that will be located in the project folder\bin directory. 
� The steps to build are as follows: 

1) In the Menu Bar select Build|Build Solution, this will invoke the Output Window 
2) The Output Window displays the results of the Compiler process.  The program is fully compiled when all compiler 

errors are solved.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

� If the compilation is successful, an executable file will generated in the project folder\bin directory of your file system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output Window - Compiler Results 



 33

Step 7: Run the Program 

� Now you are ready to execute the program. 
� Note that you can only execute the program if all Compiler Errors are resolved. 
� There are many ways to execute your program primarily using the debugger. 
 

Console Application where Output Window stays displayed (IMPORTANT!): 
� Console applications will execute and automatically close the output window. The two methods to executes are: 

1) In the Menu Bar Debug|Start Without Debugging. 
2) Or using the keyboard use the Crtl-F5. 

 
Windows Applications & Console Application where Output window automatically closes: 

� The three methods to executes are: 
1) In the Menu Bar select Debug|Start. 
2) Or using the keyboard use the F5 key. 
3) Or Click on the Start Icon in the Toolbar:   
 
4) Or navigate to the program folder\bin directory and double-click on the executable file. 



 34

 

2.3 Visual Basics Modes, Error Types & Other Concepts 

2.3.1 How Visual Basic Organizes Your Program or Application Files 
� When you create a VB program a Folder is automatically created in you computer which contains the files of the program. 
� A Visual Basics application is called a Solution.  The Solution is composed of one or more Project.   
� The table below lists several important files and their file extensions: 
 
File Extension Explanation Example 
.sln Solution – File that holds information 

about all the projects in the application 
VideoManagement.sln 

.vb Object File – Contain definition and code 
for Forms, Modules, Class Modules etc. 

frmLoginScreen.vb 
MainModule.vb 

.resx Resource File – This is a resource file for 
the Forms in the project. It contains 
information about all resources used by 
the form. 

frmLoginScreen.resx 

.vbproj Project File – This file describes the 
project and lists the files included in 
the project. 

VideoManagement.vbproj 

 
 

2.3.2 Visual Basics Modes 
� Visual Basics has three distinct modes: 

� Design Time – When you design the User Interface (GUI) and writing the code. 
� Run Time – When you execute and test the program 
� Break Time – When you have Run time errors and you stop execution  

 
 

2.3.3 Programming Errors 
� There are three varieties of programming errors: 

� Syntax Errors – Errors generated due to the code not following the rules of the language 
o These errors usually involve improper punctuation, spelling or format 
o These problems are easier to solve since the compiler identifies the erroneous statement and you just have to review 

the rules of the language to make sure you are writing the statement properly  
 

� Run Time Errors – Program halts during execution.  The program passed the syntax test but fails during execution.  . 
o These problems are usually caused by improper arithmetic execution, attempting to access recourses that are not 

available etc 
o These problems are difficult to solve since they only show up when the program runs. 

 
 

� Logical Error – The program is not doing what is supposed to do.   .  
o The algorithm fails to solve the problem the program was written to resolve  
o These problems are even more difficult to solve since you need to re-think and go back to the planning phase and 

review the Algorithm. 
 
 
 
 
 
 
 



 35

2.3.4 Two Aspects of Visual Basic Object Programming 
� When programming using Visual Basic Objects & environment there are two aspects to keep in mind : 
 

� Visible Graphical Aspect – Most Visual Basic Objects & Controls have a Graphical representation.  In other word the 
Object has a visible part.  For example in the Toolbox there is a graphical element for a Command Button, Label, Text Box 
etc. 

 
 
 

� Invisible Aspect – The invisible aspect is the part of the Object where you write the code in.  This involves double-clikcin on 
the object and invoking the Code Editor Screen. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.3.5 Properties Revisited 
� Properties are attributes or the data of an Object. 
� The Property Window is used to set the Properties of Objects 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Setting Properties at Design Time 
� When you set the properties to an Object during Design time, or when you are creating your program, these properties are present 

when the program executes. 

Methods & 
Event-Procedures 

Objects 

Enter Code Here 

Property Name 

Property Value 



 36

� These Properties will not change unless otherwise modified by program code during run time. 
 
 
Setting Properties at Run Time 
� During run time or when program is executing, you can write code in your program to set the properties of an Object. 
� For example:   
 
 

Object.Property = value 
 
Example: 
 
btnOK.Text = “Exit”       
       

 
� Note that the Properties set and modified during runtime are only valid during Run Time or while the program is executing.  After 

execution the properties set during design time are replaced by those set during design time.  
 
 
Common Properties 
� In order to make VB easier to learn, Microsoft gave most of the controls and objects similar properties 
� For examples, most controls have the following properties: 
 

� Name Property – Name used in the Code to identify the Control 
� Text Property – Text displayed on the Control 
� Enabled Property – Indicates if Control is enabled (Can be used) 
� Visible Property – Indicates if the Control can be seen 

 
 
 



 37

 

2.3.6 Windows Applications Control Flow 
� Before we continue I want to go over the three types of flow of execution.  What I mean by this is what object controls the flow of 

a Window Application. 
� From previous courses, you were accustomed to controlling the flow of an application via Forms.  In other words, the Form was 

the Startup Object of the application. 
� But using a Module you can also control the flow of the application via the Sub Main(), which means that that program flow of 

execution is being controlled by the module. 
 
� Now with the introduction of Modules, we can write 2 types of Window Applications: 

1) Form-Driven Windows Applications: Application whose flow is controlled by a Form.  Startup Object is a Form.   
 

� Advantage:  Straight forward to program.  Simply load and displays the form immediately upon startup. 
� Disadvantage: Cannot perform initialization tasks prior that don’t involve the Form prior to displaying the form.  It 

is true you can use Form.Load() to perform initialization, but you need to do it from the form, without the form it 
cannot be done.  

 
 
 
2) Module-Driven Windows Applications: Application whose flow is controlled by a Module via Sub Main().  Startup 

Object is the Module Sub Main() procedure.  The user interfaces or GUI are initially displayed from the Sub Main 
procedure.    

 
� Advantage:  You can do many task and execute functionalities prior to displaying any forms.    
� Disadvantage: Requires more logic to program.  

 
 
 
 
 
 
 
 
 
 
 



 38

 

2. 4. Visual Basic Debugging Tool 

2.4.1 Understanding the Debugger 
� The VB debugger is a powerful and useful tool available for you to debug or isolate errors. 
� Some errors are sometimes difficult to isolate when the program is executing.  The debugger can assist you in isolating some of 

these errors. 
� The debugger is not intended to help you identify syntax errors, that is the job of the Compiler or Build engine. 
 
� When you execute a program, you can execute it in Debug Mode. 
� Once you execute a program in Debug Mode, you can use the tools and features of the debugger to isolate problems. 
 
 

2.4.2 Setting Breakpoints 
� The debugger contains many powerful features that I will not cover here, but one feature that we will be using quite often as we 

test our program is to set breakpoints. 
� Breakpoints are a flag or insertion point that tells the debugger to temporarily suspend the execution of the program at that point. 
� Breakpoints work as follows: 
 

1. At the desired point, in the code window, right-click on a code statement and a menu will appear. 
2. Select Insert Brakepoint 
3. The code statement will be highlighted indicating that the breakpoint has been set 
4. Run the program, the execution will pause at the breakpoint 
5. Once execution is suspended, you can view information of the code at that point to determine if the code is working correctly 

up to that point.  View the various variables and program code to determine the status of the program at that point.  
6.  Once you are finished your observation and reach a conclusion, then you can continue with the flow of the program.  In the 

menu bar click Debug|Continue 
  
 
 
 
 
 
 
 
 
 



 39

 

2. 4. Putting it All Together 

2.4.1 OOP Programming using Visual Basics In a Nutshell 
� OK lets put it all together 
 
Part I – Planning & Design of GUI, Properties & Algorithm (Think) 
 

� Analyze the requirements 
� Use UML to design class diagrams, work flow etc. 

 
Part II – Implement the Program 
 

1. Enter Design Mode – Use the Visual Basics.NET IDE screen to create the program. 
2. Set the Project Properties or Startup Object 
3. Design the GUI or Visible Aspect of the program 

� Using the IDE components, create the GUI by placing controls onto the Form 
� Set the properties to the Controls 

 
4. Invoke the Invisible Aspect of the Objects or Control to Write the Code 

� Invoke the Code Editor Screen to write code to manipulate the control objects on the Form 
� This involves coding in the Methods & Event-Procedures in order to implement the Algorithm 

 
5. Compile the Program – Resolve all Compiler Syntax Errors 

 
6. Enter Run Time & Break Time – Execute the program 

� Execute the program and resolve all Run Time Errors 
� Resolve all Logical Errors 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 40

2.5 Sample Programs 

2.5.1 Sample Program 1: Console Application – Login Request Application 
� The following example illustrates a Console Application.   Recall that a Console Application is a text based application. 
� Problem Statement: 
 
 
 
 
� The steps and code are as follows:  

Step 1: Open the Visual Studio IDE and invoke the Start Page & Select New Project  

Step 2: In the New Project Dialog select Console Application 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 3: IDE is invoked 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

� Create a Console Application that prompts the user for the username & password. 
� The values entered are displayed via a message box  

Step b – Console Application 

Step a – Project type 

Step c – Project Name 
Step d – Project Path 



 41

 

Step 4: Rename Module & Project Files 

 
� Now we want to rename some of our objects in the Solution Explorer Window & Document Window 
� The Objects we wish to rename are the Module File: 
 

� Take the following steps: 
o Step a - Module Object: In the Document screen, highlight the name of the Module declaration “Module1”.  Using the 

keyboard type in the name of the Module Class 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 5: Set Project Properties Startup Object 

� The Project Properties Window is invoked as follows: 
 

� In the Solution Explorer, simply Right-Click on the project name LoginScreenProject and select Properties from the context 
menu to invoke the Project Property Page 

 
� Since this is a Console Application, the startup Object will need to be set the Module modMain.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Startup Object is 
automatically the module 

Step a – Rename 
Module File 



 42

Step 6: Add Code in Module Object 

� In a Module the starting point is Sub Main.  Enter desire code in the Sub Main() method. 
 

� In this example, we will add a Console Application Output statement to input data and display text onto the screen: 
 
� Enter the following code: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 43

 

Step 7: Build or Compile the Program 

� Now Compile or Build the program to generate the executable .EXE file. 
 

� The steps to build are as follows: 
1) In the Menu Bar select Build|Build Solution, this will invoke the Output Window 
2) The Output Window displays the results of the Compiler process.  It shows if the results of the compiler were 

successful or failed.  For a fully compiled program, all compiler errors must equal to 0 
 
 
 
 
 
 
 
 
 
 

� If you browse to the project folder and you navigate to the bin folder you will see the executable file: 
 
 
 
 
 
 
 

Step 8: Execute or Run the Program 

� To run or execute the program do the following: 
 
Console Application where Output Window stays displayed: 

� The three methods to executes are: 
1) In the Menu Bar Debug|Start Without Debugging. 
2) Or using the keyboard use the Crtl-F5. 
3) Or navigate to the project folder\bin directory and double-click on the executable file LoginScreenProject.exe. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

� Note that the output 
windows stays displayed until the user presses any key 



 44

 

2.5.2 Sample Program 2: Form-Driven Windows Application – Login Request Application 
� The following example illustrates a Windows Application.   Recall that a Windows Application is a Form based application. 
� IN A FORM-DRIVEN APPLICATION, CONTROL OF THE PROGRAM EXECUTION IS DONE BY THE STARTUP 

FORM! WHEN YOU CLOSE THAT FORM THE PROGRAM ENDS! 
� Problem Statement: 
 
 
 
 
 
 
 
� The steps and code are as follows:  

Step 1: Open the Visual Studio IDE and invoke the Start Page & Select New Project  

 

Step 2: In the New Project Dialog select Windows Application 

 
 
 
 
 
 
 
 
 
 
 
 
 

Step 3: IDE is invoked 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
� Create a Windows Application that displays a Login Form on the screen requesting a Username & Password 
� The values entered are displayed via a message box when the user clicks an OK.  When the user clicks the Cancel 

button, the text boxes are cleared. 
 

Step b – Window Application Step a – Project type 

Step c – Project Name Step d – Project Path 



 45

Step 4: Rename Form & Project Files 

� Now we want to rename some of our objects in the Solution Explorer Window 
� The Objects we wish to rename is the Form File: 
 

� Take the following steps: 
o Step a - Form File: Select the Form1.vb item in the Solution Explorer Window, and in the Property Window select the 

File Name Property.  Enter the desire name. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 5: Set Project Properties Startup Object 

� For Windows Applications, the startup object will automatically be the FORM. 
� If we open the Project Properties Window we see the following: 
 

� In the Solution Explorer, simply Right-Click on the project name and select Properties from the context menu to invoke the 
Project Property Page 

 
� The startup form is frmLogin.    
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 6: Design the User Interface & Add Program Code 

Step a – Rename 
Form File 

Select frmLogin as 
Startup Object 



 46

� This is where the real work takes place.  You will now apply the process of thinking, planning , designing & implementing your 
program. 

� You will use the IDE Form Designer & Toolbox to create your User Interface followed by the Code Editor to enter you code. 
 
Three Step Process 
� Creating an Application involves a Two Phase process, I) Planning II) Programming. 
� Each Part is broken into three steps: 
 

I. Planning  & Design Phase: 
 

2. Design the User-Interface (GUI) – You draw a sketch of what the Front-End or GUI will look like and the Control 
Objects required. 

� In this case we wish to create a login screen with labels describing what it is and text box controls to 
accept the input from the user.  In addition push buttons to proceed or cancel the operation.  For 
example we could draw the following diagram: 

 
 
 
 
 
 
 
 
 
 
 

3. Plan the Properties or attributes to the objects in the GUI – You need to write down the properties to the Control 
Objects that will make up the GUI.  Usually you create a table listing the control and its properties.  From the 
diagram above we see that we need one Form two labels, two textboxes and two push buttons. 

 
 

Object Property Value 
Form 1 
 

Name 
Text 
 

frmLogin 
Login Form 
 

Label1 Name 
Text 
 

lblUsername 
Username 
 

Label2 Name 
Text 
 

lblPassword 
Password 
 

Textbox1 Name 
 

txtUsername 
 

Textbox1 Name 
 

txtPassword 
 

Command button 1 Name 
Text 
 

btnOK 
OK 
 

Command button 2 Name 
Text 
 

btnCancel 
Cancel 
 

 

 Username 

Password   Cancel 

 OK 



 47

 
4. Plan the code – In this step, you plan (THINK) the code or steps required for the program to run.  You will write 

down the action required to solve the problem.  You will use programming tools like UML to design your classes 
and work flow, pseudo-code language similar to a short-hand English expressions and flow charts to plan the 
necessary logic to solve the problem.  This is really the tough part of programming since it requires thinking 
logically. 

 
 
���� One method I can recommend is as follows: 

 
���� Read the requirements several times until you understand what is required of the program. 
���� Now put yourself in the role of the computer program and what is require of you to do, and then switch to 

the role of the user is standing in front of the computer to use it and what is required of the user to do. 
���� As yourself questions as to what is required for each of these characters during their interaction. 
���� Now you write down the steps of the interaction which takes place between the program and the user.  Now 

extract the performed by the computer program, put these steps in their proper order and you have an 
algorithm and an idea of what needs to be done  

���� For example, in this login program here are the interactions between the computer program and the user: 
  

What is the First thing the User does? 
a) Sits in front of the computer 

 
What should the Computer do? 

b) Display the Login Screen 
 
What should the User do? 

d) Enter username 
e) Enter password 
f) Click Ok button or Cancel button 

 
What should the Computer do? 
  
If you user clicks the OK button: 

f) Extract the username 
g) Extract the password 
h) Display a message stating that the user entered a username & password 

 
If you user clicks the Cancel button: 

c) Display a message stating that the user cancelled the operation 
d) Clear the text boxes 

 
 

���� Now write down all the steps performed by the Computer Program to derive your algorithm: 
 

1. Display the Login Screen 
2. If you user clicks the OK button: 

a) Extract the username 
b) Extract the password 
c) Display a message stating that the user entered a username & password 

 
3. If you user clicks the Cancel button: 

a) Clear the text boxes 
 

 
 
 
 
 



 48

Step 7: Implement the User Interface Form & Add Program Code 

� Add controls to the Form and create the program code. 
 

II. Programming: 
 

5. Create the User-Interface (GUI) as follows: 
 

1. Add controls to your form 
2. Set their properties based on the property table you derived during design.  The results should be as 

 
 
 
 
 
 
 
 
 
 
 
 
 

6. Write the code – Use the syntax or programming code to create the program base on the algorithm previously 
derived: 

 
���� The algorithm derived was as follows: 
 

4. Display the Login Screen 
5. If you user clicks the OK button: 

a) Extract the username 
b) Extract the password 
c) Display a message stating that the user entered a username & password 

 
6. If you user clicks the Cancel button: 

a) Display a message stating that the user cancelled the operation 
b) Clear the text boxes 

 
���� Since this is a graphical application and the Startup Form is the login Form it will display automatically, 

therefore we don’t need to manually specify step 1 or display the login form.  It will be done automatically 
when the program starts.  So now the algorithm looks like this: 

 
 

1. If you user clicks the OK button: 
a) Extract the username 
b) Extract the password 
c) Display a message stating that the user entered a username & password 
 

2. If you user clicks the Cancel button: 
a) Clear the text boxes 

 
 
 
 
 
 
 

���� From the algorithm it shows that you need to program the click event of the OK button  and the click event 
of the cancel button and enter the code for each step: 



 49

 

 

Step 8: Build or Compile the Program 

� Now Compile or Build the program to generate the executable .EXE file. 
 

� The steps to build are as follows: 
1) In the Menu Bar select Build|Build Solution, this will invoke the Output Window 
2) The Output Window displays the results of the Compiler process.  It shows if the results of the compiler were 

successful or failed.  For a fully compiled program, all compiler errors must equal to 0 
 

 
� If you browse to the project folder and you navigate to the bin/Debug folder you will see the executable file: 
 
 
 
 
 
 
 
 



 50

Step 9: Execute or Run the Program 

� To run or execute the program do the following: 
 

� The three methods to executes are: 
1) In the Menu Bar select Debug|Start. 
2) Or using the keyboard use the F5 key. 
3) Or Click on the Start Icon in the Toolbar: 
  
4) Or Navigate to the program folder\bin directory and double-click on the executable file LoginFormWinApp.exe 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
HOW IT WORKS 

� The program execution is controlled by the Login Form 
� When the login Form starts you can access/use the controls, to execute their event handlers and do things for you. 
� In this case when you click OK, you will get display the message box of the user/pass you entered. When you click cancel, the 

text boxes are cleared. 
� Once the Form is closed the program ends. 

 
 
 
 

2.5.3 Sample Program 3: Module-Driven Windows Application– Login Request Application 
Version 1 (Processing Code Inside Form) 



 51

� The following example illustrates a Windows Application that is Module-Driven or uses a Standard Module Object to control the 
operation of the program.    

� The program will be controlled from the Sub Main() procedure of the Module.  
� IN A MODULE-DRIVEN APPLICATION, CONTROL OF THE PROGRAM EXECUTION IS DONE BY THE SUB 

MAIN(), WHEN SUB MAIN() ENDS, THE PROGRAM ENDS AS WELL! 
� We will use the same problem Statement as the previous example 2 to illustrate this concept. 
� We will provide two different versions of this application. In version 1, we will display the message box within the OK Click 

Event as we did in the previous Sample Program 2. 
� The program statement is as follows: 
 
 
 
 
 
 
 
� The steps and code are as follows:  

Step 1: Open the Visual Studio IDE and invoke the Start Page & Select New Project  

 

Step 2: In the New Project Dialog select Windows Application 

 
 
 
 
 
 
 
 
 
 
 
 

Step 3: IDE is invoked 

 
 
 
 
 
 
 
 
 
 
 

Step 4a: Add a Module Object to the Project 

Module-Driven Windows � Since this is a 
Application a Standard Module Object is required 
in your application. 

� Add a Standard Module to the project.  This module will contain code that will be public to the entire project. 

� Create a Windows Application that displays a Login Form on the screen requesting a Username & Password 
� The values entered are displayed via a message box when the user clicks an OK.  When the user clicks the Cancel 

button, the text boxes are cleared. 
 

Step b – Window Application Step a – Project type 

Step c – Project Name 

Step d – Project Path 



 52

� The steps are as follows: 
1. In the Menu bar click Project|Add Module… to invoke the Add New Item screen 
2. In the Template section select Module, click Open. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. The module is now part of the project in the IDE. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 4b: Rename Form 

� Now we want to rename some of our objects in the Solution Explorer Window & Document Window 
� The Objects we wish to rename are the Form File: 

Rename the Module File 

Module File 

Module Object 



 53

 
� Take the following steps: 

o Step a - Form File: Select the Form1.vb item in the Solution Explorer Window, and in the Property Window select the 
File Name Property.  Enter the desire name. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 5: Set Project Properties Startup Object 

� Since this Windows Application is driven by the Standard Module Sub Main(), the startup Object will need to be the Sub Main() 
Procedure. 

� The Project Properties Window is invoked as follows: 
� In the Solution Explorer, simply Right-Click on the project name LoginModWinApp1 and select Properties 
� Uncheck the “Enable application framework” check box. 
� In the Startup Object section, click the drop-down arrow and select Sub Main().    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 6: Plan and Design the User Interface & Program Code 

� As the previous example, here is where all the thinking, planning , designing & implementing your program. 
 
Three Step Process 
� Creating an Application involves a Two Phase process, I) Planning II) Programming. 

Step a – Rename 
Form File 

Step b - Select Sub Main 
as Startup Object 

Step a - Uncheck Enable 
application framework 



 54

� Each Part is broken into three steps: 
 

I. Planning 
II. Design Phase: 

 
1. Design the User-Interface (GUI) – You draw a sketch of what the Front-End or GUI will look like and the Control 

Objects required. 
� We are use the same design as the previous example: 

 
 
 
 
 
 
 
 
 
 
 
 

2. Plan the Properties or attributes to the objects in the GUI – We will use the same controls and properties as the 
previous example: 

 
 

Object Property Value 
Form 1 
 

Name 
Text 
 

frmLogin 
Login Form 
 

Label1 Name 
Text 
 

lblUsername 
Username 
 

Label2 Name 
Text 
 

lblPassword 
Password 
 

Textbox1 Name 
 

txtUsername 
 

Textbox1 Name 
 

txtPassword 
 

Command button 1 Name 
Text 
 

btnOK 
OK 
 

Command button 2 Name 
Text 
 

btnCancel 
Cancel 
 

 

 Username 

Password   Cancel 

 OK 



 55

 
3. Plan the code – In this step, you plan (THINK) the code or steps required for the program to run.  The thinking and 

analysis are the same as previous example. 
 

 
���� Derive the algorithm the same as previous example: 

 
1. Display the Login Screen 
2. If you user clicks the OK button: 

a) Extract the username 
b) Extract the password 
c) Display a message stating that the user entered a username & password 

 
3. If you user clicks the Cancel button: 

a) Display a message stating that the user cancelled the operation 
b) Clear the text boxes 

 

Step 7: Implement the User Interface Form & Add Program Code 

� As the previous example, we add controls to the Form and create the program code. 
 

III. Programming: 
 

1. Create the User-Interface (GUI) following the same guidelines as the previous example: 
 
 
 
 
 
 
 
 
 
 
 
 

2. Derive the Algorithm – Create the algorithm using Pseudo-code: 
 

���� The algorithm derived was as follows: 
 

1. Display the Login Screen 
2. If you user clicks the OK button: 

a) Extract the username 
b) Extract the password 
c) Display a message stating that the user entered a username & password 

 
3. If you user clicks the Cancel button: 

a) Clear the text boxes 
 

���� Similar to the previous example, this is a graphical application but since it will be driven by the Module the 
Startup Object is Sub Main and NOT the login Form, we need to manually display the Form via code from 
the Sub Main() procedure.  The login form will NOT automatically display, the program needs to do it via 
code.  With this in mind then the algorithm stays as is, where all steps are being done by the program code: 

 
 
 

3. Write the code – Use the syntax or programming code to create the program base on the algorithm previously 
derived: 



 56

 
 

���� So to begin with we need to control the program from Sub Main.  This means we need to create the Sub 
Main procedure in the Module as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

���� Now we need to implement the algorithm each step at a time.  The program starts by implementing step 1 of 
the algorithm: 

 
1. Display the Login Screen 

 
���� Note that when the startup object is a form as in the previous example, the IDE created an object of the 

Form Class internally and automatically displayed the form object.  But in this case since you need to 
display the form manually, you need to create an object of the Form Class first and then display the form.  
The code is as follows: 

 
 



 57

���� The remaining steps of the algorithm are implemented via the Event-Handlers of the form.  
���� IN THIS VERSION, THE FORM EVENT-HANDLER WILL CONTAIN CODE TO DISPLAY THE 

FORM: 
 

2. If you user clicks the OK button: 
d) Extract the username 
e) Extract the password 
f) Display a message stating that the user entered a username & password 

 
3. If you user clicks the Cancel button: 

b) Display a message stating that the user cancelled the operation 
c) Clear the text boxes 

 
 

���� As in the previous example, the algorithm is implemented in the FORM as follows: 

 

Step 8: Build or Compile the Program 

� Now Compile or Build the program to generate the executable .EXE file. 
 

 
 
 
 



 58

Step 9: Execute or Run the Program 

� To run or execute the program do the following: 
 

� The three methods to executes are: 
5) In the Menu Bar select Debug|Start. 
6) Or using the keyboard use the F5 key. 
7) Or Click on the Start Icon in the Toolbar: 
  
8) Or Navigate to the program folder\bin directory and double-click on the executable file LoginFormWinApp.exe 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
HOW IT WORKS: 

� Control, is done by the Sub Main() method of the module. 
� This method, displays the Login Form as a MODAL form using the ShowDialog() method. 
� THERE AFTER, THE USER CAN USE THE FORM TO TRIGGER THE CONTROL EVENT-HANDLERS TO 

PERFORM THE PROCESSING REQUIRED. 
� WHEN THE FORM HIDES OR IS CLOSED DOES THE FLOW OF THE PROGRAM CONTINUES AND THE END OF 

THE SUB MAIN METHOD IS REACHED AND THE PROGRAM ENDS 
 



 59

 

2.5.4 Sample Program 4: Module-Driven Windows Application– Login Request Application 
Version 2 (Little or NO Processing Inside Form) (Best Practice!) 
� This version of the Module-Driven Windows Application is almost the same as the previous version with ONE EXCEPTION; in 

the form we add very little code. ALL WORK OR PROCESSING IS DONE FROM THE MODULE.  
� REMEMBER, IN A MODULE-DRIVEN APPLICATION, CONTROL OF THE PROGRAM EXECUTION IS DONE BY 

THE SUB MAIN(), WHEN SUB MAIN() ENDS, THE PROGRAM ENDS AS WELL!   
� The program statement is the same as previous example: 
 
 
 
 
 
 
 
� The steps and code are as follows:  

Step 1: Open the Visual Studio IDE and invoke the Start Page & Select New Project  

 

Step 2: In the New Project Dialog select Windows Application 

 
 
 
 
 
 
 
 
 
 
 
 
 

Step 3: IDE is invoked 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

� Create a Windows Application that displays a Login Form on the screen requesting a Username & Password 
� The values entered are displayed via a message box when the user clicks an OK.  When the user clicks the Cancel 

button, the text boxes are cleared. 
 

Step b – Window Application 
Step a – Project type 

Step c – Project Name 

Step d – Project Path 



 60

 
 

Step 4: Add a Module Object to the Project & Rename Form 

� Since this is a Module-Driven Windows Application a Standard Module Object is required in your application. 
� Add a Standard Module to the project.  This module will contain code that will be public to the entire project. 
� Name the Form to frmLogin Form 
� The steps are as follows: 

1. In the Menu bar click Project|Add Module… to invoke the Add New Item screen 
2. In the Template section select Module, click Open. 
3. The module is now part of the project in the IDE. 
4. Rename the Form to frmLogin 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 5: Set Project Properties Startup Object 

� Set the Startup Object to Sub Main() Procedure. 
� The Project Properties Window is invoked as follows: 

� In the Solution Explorer, simply Right-Click on the project name LoginModWinApp2 and select Properties 
� Uncheck the “Enable application framework” check box. 
� In the Startup Object section, click the drop-down arrow and select Sub Main().    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rename the Form File 

Module Object 

Step b - Select Sub Main 
as Startup Object 

Step a - Uncheck Enable 
application framework 



 61

Step 6: Plan and Design the User Interface & Program Code 

� As the previous example, here is where all the thinking, planning , designing & implementing your program. 
 
Three Step Process 
� Creating an Application involves a Two Phase process, I) Planning II) Programming. 
� Each Part is broken into three steps: 
 

I. Planning 
II. Design Phase: 

 
1. Design the User-Interface (GUI) – You draw a sketch of what the Front-End or GUI will look like and the Control 

Objects required. 
� We are use the same design as the previous example: 

 
 
 
 
 
 
 
 
 
 
 
 

2. Plan the Properties or attributes to the objects in the GUI – We will use the same controls and properties as the 
previous example: 

 
 

Object Property Value 
Form 1 
 

Name 
Text 
 

frmLogin 
Login Form 
 

Label1 Name 
Text 
 

lblUsername 
Username 
 

Label2 Name 
Text 
 

lblPassword 
Password 
 

Textbox1 Name 
 

txtUsername 
 

Textbox1 Name 
 

txtPassword 
 

Command button 1 Name 
Text 
 

btnOK 
OK 
 

Command button 2 Name 
Text 
 

btnCancel 
Cancel 
 

 

 Username 

Password   Cancel 

 OK 



 62

 
3. Plan the code – In this step, you plan (THINK) the code or steps required for the program to run.  The thinking and 

analysis are the same as previous example. 
 

 
���� Derive the algorithm the same as previous example: 

 
4. Display the Login Screen 
5. If you user clicks the OK button: 

d) Extract the username 
e) Extract the password 
f) Display a message stating that the user entered a username & password 

 
6. If you user clicks the Cancel button: 

c) Display a message stating that the user cancelled the operation 
d) Clear the text boxes 

 

Step 7: Implement the User Interface Form & Add Program Code 

� As the previous example, we add controls to the Form and create the program code. 
 

III. Programming: 
 

1. Create the User-Interface (GUI) following the same guidelines as the previous example: 
 
 
 
 
 
 
 
 
 
 
 
 

2. Derive the Algorithm – Create the algorithm using Pseudo-code: 
 

���� The algorithm derived was as follows: 
 

1. Display the Login Screen 
2. If you user clicks the OK button: 

g) Extract the username 
h) Extract the password 
i) Display a message stating that the user entered a username & password 

 
3. If you user clicks the Cancel button: 

d) Clear the text boxes 
 

 
 

3. Write the code – Use the syntax or programming code to create the program base on the algorithm previously 
derived: 

 
 

���� So to begin with we need to control the program from Sub Main.  This means we need to create the Sub 
Main procedure in the Module as follows: 

 



 63

���� Now we need to implement the algorithm each step at a time.   
���� Note that in this example, ALL PROCESSING IS BIENG DONE IN THE MODULE NOT IN THE FORM. 

Thus we are separating INTERFACE from IMPLEMENTATION. 
 

a) In the Module, a Form object is displayed 
 

b) The username/password is extracted from the Form Object 
 

c) Finally the data is displayed to the user 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

���� The remaining steps of the algorithm are implemented via the Event-Handlers of the form.  



 64

���� IN THIS VERSION, THE FORM EVENT-HANDLER WILL CONTAIN NO PROCESSING CODE. THE 
FORM ONLY HIDES ITSELF BY CALLING THE METHOD: 
 
    Me.Hide() 

 
���� The Form CODE is implemented as follows: 
 

 
 
HOW IT WORKS: 

� Since Form object is displayed from the MODULE using the ShowDialog() method, this means the Form was displayed as a 
Modal Form. 

� Modal Forms means that control of the program execution stops as long as the Form is being displayed. You cannot access 
the application or navigate to any part of the program. 

� ONLY WHEN THE FORM HIDES OR IS CLOSED DOES THE FLOW OF THE PROGRAM CONTINUES. 
� SINCE WE ARE ONLY HIDING THE FORM OBJECT, THE FORM OBJECT STILL EXIST IN MEMORY AND CAN 

BE ACCESSED VIA its PROPERTIES. THIS IS HOW THE DATA FROM THE FORM IS EXTRATED IN THE 
MODULE. 

 

Step 8: Build or Compile the Program 

� Now Compile or Build the program to generate the executable .EXE file. 
 
 

 
 



 65

Step 9: Execute or Run the Program 

� To run or execute the program do the following: 
 

� The three methods to executes are: 
9) In the Menu Bar select Debug|Start. 
10) Or using the keyboard use the F5 key. 
11) Or Click on the Start Icon in the Toolbar: 
  
12) Or Navigate to the program folder\bin directory and double-click on the executable file LoginFormWinApp.exe 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
HOW IT WORKS: 

� Control, is done by the Sub Main() method of the module. 
� This method, displays the Login Form as a MODAL form using the ShowDialog() method. 
� ONLY WHEN THE FORM HIDES OR IS CLOSED DOES THE FLOW OF THE PROGRAM CONTINUES. 
� SINCE WE ARE ONLY HIDING THE FORM OBJECT, THE FORM OBJECT STILL EXIST IN MEMORY AND CAN 

BE ACCESSED VIA its PROPERTIES. THIS IS HOW THE DATA FROM THE FORM IS EXTRATED IN THE 
MODULE. 

� WHEN THE END OF THE SUB MAIN METHOD IS REACHED THE PROGRAM ENDS 
 
 
 
 

2.5.5 Homework 
� The following HW is due next section.    



 66

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Homework # A 
� Problem statement. 
 

1. Implement Sample Program 1 – Console Login Screen Application 

���� Read the section and follow steps to create the program 

2. Implement Sample Program 2 – Form-Driven Login Screen Application 

���� Read the section and follow steps to create the program 

3. Implement Sample Program 3 – Module-Driven Login Screen Application (Processing on Form) 

���� Read the section and follow steps to create the program 

4. Implement Sample Program 4 – Module-Driven Login Screen Application (No Processing on Form)  

���� Read the section and follow steps to create the program 

���� IMPORTANT!  Note that this example will be the foundation for all HW’s and future 
projects. 

 

Due Next Class. 


